

MTH 404: VECTOR CALCULUS

Unit -	1: Product of Vectors	Marks-15
	1.1 Scalar Product	
	1.2 Vector Product	
	1.3 Scalar Triple Product	
	1.4 Vector Product of Three Vectors	
	1.5 Reciprocal Vector	
Unit-2	2: Vector functions	Marks-15
	2.1 Vector functions of a single variable.	
	2.2 Limits and continuity.	
	2.3 Differentiability, Algebra of differentiation.	
	2.4 Curves in space, Velocity and acceleration.	
	2.5 Vector function of two or three variables.	
	2.6 Limits, Continuity, Partial Differentiation	4
Unit-3	: The Vector Operator Del	Marks-15
	3.1 The vector differentiation operator del.	
	3.2 Gradient.	
	3.3 Divergence and curl.	
	3.4 Formulae involving del. Invariance.	
Unit-4	: Vector Integration	Marks-15
	4.1 Ordinary integrals of vectors.	
	4.2 Line integrals.	
-	4.3 Surface integrals.	
Recon	nmended Book: 1. Vector Analysis by Murray R Spiegel, Schaum's Series, McGraw H	lill Book Compa
Refer	ence Book:	
	1. Vector Calculus by Shanti Narayan and P.K. Mittal, S. Chand & any	p; Co., New Dell
Learn	ing Outcomes:	
	a) understand scalar and vector products	
		1 (1)

estimate velocity and acceleration of partials.

c) Calculate the curl and divergence of a vector field.

d) Set up and evaluate line integrals of functions along curves.

UNIT -1: PRODUCT OF VECTORS

Scalar Product or Dot Product: The scalar product or dot product of two vectors \overline{A} and \overline{B} is denoted by \overline{A} . \overline{B} and defined as \overline{A} . $\overline{B} = AB \cos\theta$, Where $|\overline{A}| = A$, $|\overline{B}| = B$ and θ is angle between vectors \overline{A} and \overline{B} . Remark: 1) \overline{A} . $\overline{B} = \overline{B}$. \overline{A} i.e. scalar product is commutative. 2) \overline{A} . $(\overline{B} + \overline{C}) = \overline{A}$. $\overline{B} + \overline{A}$. \overline{C} (Distributive law) 3) m(\overline{A} . \overline{B}) = (m \overline{A}). $\overline{B} = \overline{A}$. (m \overline{B}) = (\overline{A} . \overline{B})*m* for any scalar m. 4) \overline{i} . $\overline{i} = \overline{j}$. $\overline{j} = \overline{k}$. $\overline{k} = 1$ and \overline{i} . $\overline{j} = \overline{j}$. $\overline{k} = \overline{k}$. $\overline{i} = 0$, where \overline{i} , \overline{j} , \overline{k} are unit vectors along x, y, z axis respectively. 5) If $\overline{A} = A_1\overline{i} + A_2\overline{j} + A_3\overline{k}$ and $\overline{B} = B_1\overline{i} + B_2\overline{j} + B_3\overline{k}$ then \overline{A} . $\overline{B} = A_1B_1 + A_2B_2 + A_3B_3$ 6) If $\overline{A} = A_1\overline{i} + A_2\overline{j} + A_3\overline{k}$, then \overline{A} . $\overline{A} = (A_1)^2 + (A_2)^2 + (A_3)^2 = |\overline{A}|^2$ i.e. $|\overline{A}| = \sqrt{(A_1)^2 + (A_2)^2 + (A_3)^2}$ 7) Non-zero vectors \overline{A} and \overline{B} are perpendicular iff \overline{A} . $\overline{B} = 0$

Ex. Find $\bar{a} \cdot \bar{b}$ for $\bar{a} = \bar{i} - 2\bar{j} + \bar{k}$ and $\bar{b} = 4\bar{i} - 4\bar{j} + 7\bar{k}$ **Solution:** Let $\bar{a} = \bar{i} - 2\bar{j} + \bar{k}$ and $\bar{b} = 4\bar{i} - 4\bar{j} + 7\bar{k}$ $\therefore \bar{a} \cdot \bar{b} = (\bar{i} - 2\bar{j} + \bar{k}) \cdot (4\bar{i} - 4\bar{j} + 7\bar{k}) = (1)(4) + (-2)(-4) + (1)(7) = 4 + 8 + 7 = 19$

Ex. Find $\overline{a} \cdot \overline{b}$ for $\overline{a} = \overline{j} + 2\overline{k}$ and $\overline{b} = 2\overline{i} + \overline{k}$ **Solution:** Let $\overline{a} = \overline{j} + 2\overline{k}$ and $\overline{b} = 2\overline{i} + \overline{k}$ $\therefore \ \overline{a} \cdot \overline{b} = (\overline{j} + 2\overline{k}) \cdot (2\overline{i} + \overline{k}) = (0)(2) + (1)(0) + (2)(1) = 0 + 0 + 2 = 2$

Ex. Find $\overline{a} \cdot \overline{b}$ for $\overline{a} = \overline{j} - 2\overline{k}$ and $\overline{b} = 2\overline{i} + 3\overline{j} - 2\overline{k}$ **Solution:** Let $\overline{a} = \overline{j} - 2\overline{k}$ and $\overline{b} = 2\overline{i} + 3\overline{j} - 2\overline{k}$

 $\therefore \ \bar{a} \ . \ \bar{b} = (\bar{j} - 2\bar{k}) \cdot (2\bar{i} + 3\bar{j} - 2\bar{k}) = (0)(2) + (1)(3) + (-2)(-2) = 0 + 3 + 4 = 7$

Ex. For what value of m the vectors \bar{a} and \bar{b} are perpendicular to each other

i) $\bar{a} = m\bar{i} + 2\bar{j} + \bar{k}$ and $\bar{b} = 4\bar{i} - 9\bar{j} + 2\bar{k}$, ii) $\bar{a} = 5\bar{i} - 9\bar{j} + \bar{2}\bar{k}$ and $\bar{b} = m\bar{i} + 2\bar{j} + \bar{k}$ Solution: i) Let $\bar{a} = m\bar{i} + 2\bar{j} + \bar{k}$ and $\bar{b} = 4\bar{i} - 9\bar{j} + 2\bar{k}$ are perpendicular to each other

> $\therefore \ \overline{a} \ . \ \overline{b} = 0$ $\Rightarrow (m\overline{i} + 2\overline{j} + \overline{k}).(4\overline{i} - 9\overline{j} + 2\overline{k}) = 0$ $\Rightarrow (m)(4) + (2)(-9) + (1)(2) = 0$ $\Rightarrow 4m - 18 + 2 = 0$

$$\Rightarrow 4m = 16$$

$$\Rightarrow m = 4$$

ii) Let $\overline{a} = 5\overline{1} - 9\overline{j} + \overline{2k}$ and $\overline{b} = m\overline{1} + 2\overline{j} + \overline{k}$ are perpendicular to each other

$$\therefore \overline{a} \cdot \overline{b} = 0$$

$$\Rightarrow (5\overline{1} - 9\overline{j} + 2\overline{k}) \cdot (m\overline{1} + 2\overline{j} + \overline{k}) = 0$$

$$\Rightarrow (5)(m) + (-9)(2) + (2)(1) = 0$$

$$\Rightarrow 5m - 18 + 2 = 0$$

$$\Rightarrow 5m = 16$$

$$\Rightarrow m = \frac{16}{5}$$

Ex. Find the angle between the vectors \overline{a} and \overline{b} where $\overline{a} = \overline{i} - \overline{j}$ and $\overline{b} = \overline{j} - \overline{k}$ **Solution:** Let θ be the angle between the vectors $\overline{a} = \overline{i} - \overline{j}$ and $\overline{b} = \overline{j} - \overline{k}$

$$\therefore \cos\theta = \frac{\bar{a}.\bar{b}}{|\bar{a}||\bar{b}|} = \frac{(1)(0) + (-1)(1) + (0)(-1)}{\sqrt{1^2 + (-1)^2 + 0^2}\sqrt{0^2 + 1^2 + (-1)^2}} = \frac{0 - 1 - 0}{\sqrt{2}\sqrt{2}} = \frac{-1}{2}$$
$$\therefore \theta = \frac{2\pi}{3}$$

Ex. Find the angle between the vectors $3\overline{1} - 2\overline{j} - 6\overline{k}$ and $4\overline{1} - \overline{j} + 8\overline{k}$ **Solution:** Let θ be the angle between the vectors $\overline{a} = 3\overline{1} - 2\overline{j} - 6\overline{k}$ and $\overline{b} = 4\overline{1} - \overline{j} + 8\overline{k}$

$$\therefore \cos\theta = \frac{\bar{a} \cdot b}{|\bar{a}||\bar{b}|} = \frac{(3)(4) + (-2)(-1) + (-6)(8)}{\sqrt{3^2 + (-2)^2 + (-6)^2}\sqrt{4^2 + (-1)^2 + (8)^2}} = \frac{12 + 2 - 48}{\sqrt{49}\sqrt{81}} = \frac{-34}{63}$$
$$\therefore \theta = \cos^{-1}(\frac{-34}{63})$$

Ex. If \bar{a} and \bar{b} are two vectors such that $|\bar{a}| = 4$, $|\bar{b}| = 3$ and $\bar{a} \cdot \bar{b} = 6$.

Find the angle between the vectors \bar{a} and \bar{b}

Solution: Let θ be the angle between the vectors \overline{a} and \overline{b}

such that
$$|\bar{a}| = 4$$
, $|\bar{b}| = 3$ and $\bar{a} \cdot \bar{b} = 6$
 $\therefore \cos\theta = \frac{\bar{a} \cdot \bar{b}}{1 + 1 + 1} = \frac{6}{1 + 1 + 1} = \frac{1}{2} \qquad \therefore \theta = \frac{\pi}{2}$

$$\therefore \cos\theta = \frac{a \cdot b}{|\bar{a}||\bar{b}|} = \frac{6}{(4)(3)} = \frac{1}{2} \qquad \therefore \theta = \frac{\pi}{3}$$

Ex. For any vector \bar{r} , prove that $\bar{r} = (\bar{r}.\bar{\iota})\bar{\iota} + (\bar{r}.\bar{J})\bar{J} + (\bar{r}.\bar{k})\bar{k}$

Proof: Let $\bar{r} = x\bar{\iota} + y\bar{\jmath} + z\bar{k}$ be any vector, then

$$\bar{r}.\bar{\iota} = (x\bar{\iota} + y\bar{\jmath} + z\bar{k}).\bar{\iota} = x$$

$$\bar{r}.\bar{J} = (x\bar{\iota} + y\bar{\jmath} + z\bar{k}).\bar{J} = y$$

$$\bar{r}.\bar{k} = (x\bar{\iota} + y\bar{\jmath} + z\bar{k}).\bar{k} = z$$

$$\therefore (\bar{r}.\bar{\iota})\bar{\iota} + (\bar{r}.\bar{\jmath})\bar{\jmath} + (\bar{r}.\bar{k})\bar{k} = x\bar{\iota} + y\bar{\jmath} + z\bar{k} = \bar{r} \text{ Hence proved.}$$

Ex. For any two vectors \overline{a} and \overline{b} prove that $|\overline{a} + \overline{b}|^2 + |\overline{a} - \overline{b}|^2 = 2(|\overline{a}|^2 + |\overline{b}|^2)$ **Proof:** Consider

LHS=
$$|\overline{a} + \overline{b}|^2 + |\overline{a} - \overline{b}|^2$$

= $(\overline{a} + \overline{b}).(\overline{a} + \overline{b}) + (\overline{a} - \overline{b}).(\overline{a} - \overline{b})$
= $\overline{a}.\overline{a} + \overline{a}.\overline{b} + \overline{b}.\overline{a} + \overline{b}.\overline{b} + \overline{a}.\overline{a} - \overline{a}.\overline{b} - \overline{b}.\overline{a} + \overline{b}.\overline{b}$
= $2\overline{a}.\overline{a} + 2\overline{b}.\overline{b}$
= $2(|\overline{a}|^2 + |\overline{b}|^2)$
= RHS
Hence proved.

Ex. If $\bar{a}+\bar{b}+\bar{c}=\bar{0}$, $|\bar{a}|=3$, $|\bar{b}|=5$ and $|\bar{c}|=7$, Find the angle between \bar{a} and \bar{b} **Solution:** Let $\bar{a}+\bar{b}+\bar{c}=\bar{0}$

 $\therefore \bar{a} + \bar{b} = -\bar{c}$ $\therefore (\bar{a} + \bar{b}).(\bar{a} + \bar{b}) = (-\bar{c}).(-\bar{c})$ $\therefore \bar{a}.\bar{a} + \bar{a}.\bar{b} + \bar{b}.\bar{a} + \bar{b}.\bar{b} = \bar{c}.\bar{c}$ $\therefore |\bar{a}|^2 + 2\bar{a}.\bar{b} + |\bar{b}|^2 = |\bar{c}|^2$ $\therefore 9 + 2\bar{a}.\bar{b} + 25 = 49 \qquad \because |\bar{a}| = 3, |\bar{b}| = 5 \text{ and } |\bar{c}| = 7$ $\therefore 2\bar{a}.\bar{b} = 15$ $\therefore 2|\bar{a}||\bar{b}|\cos\theta = 15 \text{ where } \theta \text{ is angle between vectors } \bar{a} \text{ and } \bar{b}$ $\therefore 2(3)(5)\cos\theta = 15$ $\therefore \cos\theta = \frac{1}{2} \implies \theta = \frac{\pi}{3} \qquad \text{be the angle between vectors } \bar{a} \text{ and } \bar{b}.$

Vector Product or Cross Product: The vector product or cross product of two vectors

 \overline{A} and \overline{B} is denoted by $\overline{A} \times \overline{B}$ and defined as $\overline{A} \times \overline{B} = AB \sin\theta \hat{u}$ Where $|\overline{A}| = A$, $|\overline{B}| = B$, θ is angle between vectors \overline{A} and \overline{B} and \hat{u} is unit vector indicating the direction of $\overline{A} \times \overline{B}$. **Remark:** 1) $\overline{A} \times \overline{B} = -\overline{B} \times \overline{A}$ i.e. vector product is not commutative.

2) $\overline{A} \times (\overline{B} + \overline{C}) = \overline{A} \times \overline{B} + \overline{A} \times \overline{C}$ (Distributive law)

- 3) m($\overline{A} \times \overline{B}$) = (m \overline{A})× \overline{B} = $\overline{A} \times$ (m \overline{B}) = ($\overline{A} \times \overline{B}$)*m* for any scalar m.
- 4) $\overline{i} \times \overline{i} = \overline{j} \times \overline{j} = \overline{k} \times \overline{k} = \overline{0}$ and $\overline{i} \times \overline{j} = \overline{k}$, $\overline{j} \times \overline{k} = \overline{i}$, $\overline{k} \times \overline{i} = \overline{j}$,

where \bar{i} , \bar{j} , \bar{k} are unit vectors along x, y, z axis resp.

5) If $\overline{A} = A_1\overline{i} + A_2\overline{j} + A_3\overline{k}$ and $\overline{B} = B_1\overline{i} + B_2\overline{j} + B_3\overline{k}$ then

$$\overline{\mathbf{A}} \times \overline{\mathbf{B}} = \begin{vmatrix} \overline{\mathbf{I}} & \overline{\mathbf{J}} & \mathbf{k} \\ \mathbf{A}_1 & \mathbf{A}_2 & \mathbf{A}_3 \\ \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{B}_3 \end{vmatrix} \text{ and } \overline{\mathbf{A}} \times \overline{\mathbf{A}} = \overline{\mathbf{B}} \times \overline{\mathbf{B}} = \overline{\mathbf{0}}$$

6) Non-zero vectors \overline{A} and \overline{B} are parallel iff $\overline{A} \times \overline{B} = \overline{0}$

7) Vectors \overline{A} and \overline{B} both are perpendicular to vector $\overline{A} \times \overline{B}$ because $\overline{A} \cdot (\overline{A} \times \overline{B}) = 0$ and $\overline{B} \cdot (\overline{A} \times \overline{B}) = 0$

8) Area of parallelogram with sides \overline{A} and $\overline{B} = |\overline{A} \times \overline{B}|$

Ex. Find $\overline{a} \times \overline{b}$ for $\overline{a} = \overline{j} - 2\overline{k}$ and $\overline{b} = 2\overline{i} + 3\overline{j} - 2\overline{k}$ **Solution:** Let $\overline{a} = \overline{j} - 2\overline{k}$ and $\overline{b} = 2\overline{i} + 3\overline{j} - 2\overline{k}$

$$\therefore \ \bar{a} \times \bar{b} = \begin{vmatrix} \bar{i} & \bar{j} & k \\ 0 & 1 & -2 \\ 2 & 3 & -2 \end{vmatrix} = (-2+6)\bar{i} - (0+4)\bar{j} + (0-2)\bar{k} = 4\bar{i} - 4\bar{j} - 2\bar{k}$$

Ex. If $\bar{p} = -3\bar{i} + 4\bar{j} - 7\bar{k}$ and $\bar{q} = 6\bar{i} + 2\bar{j} - 3\bar{k}$, then find $\bar{p} \times \bar{q}$. Verify that \bar{p} and $\bar{p} \times \bar{q}$ are perpendicular to each other and also verify that \bar{q} and $\bar{p} \times \bar{q}$ are perpendicular to each other.

Proof: Let
$$\bar{p} = -3\bar{i} + 4\bar{j} - 7\bar{k}$$
 and $\bar{q} = 6\bar{i} + 2\bar{j} - 3\bar{k}$
 $\therefore \bar{p} \times \bar{q} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ -3 & 4 & -7 \\ 6 & 2 & -3 \end{vmatrix} = (-12+14)\bar{i} - (9+42)\bar{j} + (-6-24)\bar{k} = 2\bar{i} - 51\bar{j} - 30\bar{k}$
Now $\bar{p} \cdot (\bar{p} \times \bar{q}) = (-3\bar{i} + 4\bar{j} - 7\bar{k}) \cdot (2\bar{i} - 51\bar{j} - 30\bar{k}) = -6 - 204 + 210 = 0$
Hence \bar{p} and $\bar{p} \times \bar{q}$ are perpendicular to each other
Again $\bar{q} \cdot (\bar{p} \times \bar{q}) = (6\bar{i} + 2\bar{j} - 3\bar{k}) \cdot (2\bar{i} - 51\bar{j} - 30\bar{k}) = 12 - 102 + 90 = 0$

Hence \overline{q} and $\overline{p} \times \overline{q}$ are perpendicular to each other is proved.

Ex. If \bar{a} and \bar{b} are two vectors, then prove that $|\bar{a} \times \bar{b}|^2 + (\bar{a}, \bar{b})^2 = |\bar{a}|^2 |\bar{b}|^2$ **Proof:** Let θ is angle between any two vectors \bar{a} and \bar{b} .

 $\therefore \bar{a} \times \bar{b} = |\bar{a}| |\bar{b}| \sin\theta \hat{u}$ and $\bar{a} \cdot \bar{b} = |\bar{a}| |\bar{b}| \cos\theta$

- $\therefore |\bar{a} \times \bar{b}| = |\bar{a}| |\bar{b}| \sin\theta \text{ and } \bar{a} \cdot \bar{b} = |\bar{a}| |\bar{b}| \cos\theta$
- $\therefore |\overline{\mathbf{a}} \times \overline{\mathbf{b}}|^2 + (\overline{\mathbf{a}}, \overline{\mathbf{b}})^2 = |\overline{\mathbf{a}}|^2 |\overline{\mathbf{b}}|^2 \sin^2 \theta + |\overline{\mathbf{a}}|^2 |\overline{\mathbf{b}}|^2 \cos^2 \theta$
- $\therefore |\bar{\mathbf{a}} \times \bar{\mathbf{b}}|^2 + (\bar{\mathbf{a}}, \bar{\mathbf{b}})^2 = |\bar{\mathbf{a}}|^2 |\bar{\mathbf{b}}|^2 \qquad \text{Hence proved.}$

Ex. If $|\bar{a}| = 13$, $|\bar{b}| = 5$ and $\bar{a}.\bar{b} = 60$ then find $|\bar{a} \times \bar{b}|$. **Solution:** Let $|\bar{a}| = 13$, $|\bar{b}| = 5$ and $\bar{a}.\bar{b} = 60$ As $|\bar{a} \times \bar{b}|^2 + (\bar{a}.\bar{b})^2 = |\bar{a}|^2 |\bar{b}|^2$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 4

 $\therefore |\overline{\mathbf{a}} \times \overline{\mathbf{b}}|^2 + (60)^2 = (13)^2 (5)^2$ $\therefore |\overline{\mathbf{a}} \times \overline{\mathbf{b}}|^2 = 4225 - 3600 = 625$ $\therefore |\overline{\mathbf{a}} \times \overline{\mathbf{b}}| = 25$

Ex. If the position vectors of three points A, B and C are $\overline{\iota} + 2\overline{j} + 3\overline{k}$, $4\overline{\iota} + \overline{j} + 5\overline{k}$ and $7(\overline{\iota} + \overline{k})$ respectively, then find $\overline{AB} \times \overline{AC}$

Solution: Let $\bar{\iota} + 2\bar{j} + 3\bar{k}$, $4\bar{\iota} + \bar{j} + 5\bar{k}$ and $7(\bar{\iota} + \bar{k})$ are the position vectors of three points A, B and C respectively.

$$\therefore \overline{AB} = (4\overline{\iota} + \overline{j} + 5\overline{k}) \cdot (\overline{\iota} + 2\overline{j} + 3\overline{k}) = 3\overline{\iota} - \overline{j} + 2\overline{k}$$

$$\& \overline{AC} = (7\overline{\iota} + 7\overline{k}) \cdot (\overline{\iota} + 2\overline{j} + 3\overline{k}) = 6\overline{\iota} - 2\overline{j} + 4\overline{k}$$

$$\therefore \overline{AB} \times \overline{AC} = \begin{vmatrix} \overline{\imath} & \overline{\imath} & \overline{k} \\ 3 & -1 & 2 \\ 6 & -2 & 4 \end{vmatrix} = 0\overline{\iota} - 0\overline{j} + 0\overline{k} = \overline{0}$$

Scalar Triple Product or Box Product: The scalar triple product or box product of three vectors $\overline{A} = A_1\overline{i} + A_2\overline{j} + A_3\overline{k}$, $\overline{B} = B_1\overline{i} + B_2\overline{j} + B_3\overline{k}$ and $\overline{C} = C_1\overline{i} + C_2\overline{j} + C_3\overline{k}$ is denoted by $[\overline{A} \ \overline{B} \ \overline{C}]$ and defined as $[\overline{A} \ \overline{B} \ \overline{C}] = \overline{A} \cdot (\overline{B} \times \overline{C}) = \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix}$ **Properties of Scalar Triple Product:** 1) $\overline{A} \cdot (\overline{B} \times \overline{C}) = \overline{B} \cdot (\overline{C} \times \overline{A}) = \overline{C} \cdot (\overline{A} \times \overline{B})$ 2) $\overline{A} \cdot (\overline{B} \times \overline{C}) = (\overline{A} \times \overline{B}) \cdot \overline{C}$ 3) $\overline{A} \cdot (\overline{A} \times \overline{C}) = 0$

4) \overline{A} , \overline{B} and \overline{C} are coplanar iff \overline{A} . ($\overline{B} \times \overline{C}$) = 0

5) Volume of parallelepiped with sides \overline{A} , \overline{B} and $\overline{C} = |\overline{A} \cdot (\overline{B} \times \overline{C})|$

Ex. Find the scalar triple product of $\overline{a} = \overline{i} - 2\overline{j} + \overline{k}$, $\overline{b} = 2\overline{i} + \overline{j} + \overline{k}$ and $\overline{c} = \overline{i} + 2\overline{j} - \overline{k}$ **Solution:** Let $\overline{a} = \overline{i} - 2\overline{j} + \overline{k}$, $\overline{b} = 2\overline{i} + \overline{j} + \overline{k}$ and $\overline{c} = \overline{i} + 2\overline{j} - \overline{k}$

$$\therefore \overline{a} \cdot (\overline{b} \times \overline{c}) = \begin{vmatrix} 1 & -2 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & -1 \end{vmatrix} = (-1-2)+2(-2-1)+(4-1)=-3-6+3=-6$$

Ex. If the edges $\bar{a} = -3\bar{\iota} + 7\bar{j} + 5\bar{k}$, $\bar{b} = -5\bar{\iota} + 7\bar{j} - 3\bar{k}$ and $\bar{c} = 7\bar{\iota} - 5\bar{j} - 3\bar{k}$ meet at a vertex point, find the volume of the parallelepiped.

Solution: Let $\bar{a} = -3\bar{\iota} + 7\bar{j} + 5\bar{k}$, $\bar{b} = -5\bar{\iota} + 7\bar{j} - 3\bar{k}$ and $\bar{c} = 7\bar{\iota} - 5\bar{j} - 3\bar{k}$ meet at a vertex point.

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCHENCE SR. COLLEGE, PIMPALNER 5

 \therefore The volume of the parallelepiped = $|\bar{a}.(\bar{b}\times\bar{c})|$

Now
$$\overline{a}$$
. $(\overline{b} \times \overline{c}) = \begin{vmatrix} -3 & 7 & 5 \\ -5 & 7 & -3 \\ 7 & -5 & -3 \end{vmatrix}$
= -3(-21-15) - 7(15+21) + 5(25-49)
= 108 - 252 - 120
= - 264

 \therefore The volume of the parallelepiped = |-264| = 264 cu. units.

Vector Triple Product: Let \overline{A} , \overline{B} and \overline{C} be any three vectors, then $\overline{A} \times (\overline{B} \times \overline{C})$ is called the vector triple product.

Ex. Show that $\overline{A} \times (\overline{B} \times \overline{C}) = (\overline{A} \cdot \overline{C})\overline{B} - (\overline{A} \cdot \overline{B})\overline{C}$ **Proof:** Let $\overline{A} = A_1\overline{i} + A_2\overline{j} + A_3\overline{k}$, $\overline{B} = B_1\overline{i} + B_2\overline{j} + B_3\overline{k}$ and $\overline{C} = C_1\overline{i} + C_2\overline{j} + C_3\overline{k}$, then $\overline{A} \times (\overline{B} \times \overline{C}) = \overline{A} \times \begin{vmatrix} \overline{I} & \overline{J} & \overline{k} \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix}$ $= (A_1\bar{i} + A_2\bar{j} + A_3\bar{k}) \times [(B_2C_3 - B_3C_2)\bar{i} - (B_1C_3 - B_3C_1)\bar{j} + (B_1C_2 - B_2C_1)\bar{k}]$ $= \begin{vmatrix} \bar{1} & \bar{J} & \bar{k} \\ A_1 & A_2 & A_3 \\ B_2 C_3 - B_3 C_2 & B_3 C_1 - B_1 C_3 & B_1 C_2 - B_2 C_1 \end{vmatrix}$ $= (A_2B_1C_2 - A_2B_2C_1 - A_3B_3C_1 + A_3B_1C_3)I$ $-(A_1B_1C_2 - A_1B_2C_1 - A_2B_2C_2 + A_2B_2C_2)_{\bar{1}}$ $+(A_1B_2C_1 - A_1B_1C_2 - A_2B_2C_2 + A_2B_2C_2)\bar{k}$ $=(A_2B_1C_2 - A_2B_2C_1 - A_3B_3C_1 + A_3B_1C_3)\overline{I}$ $+(A_3B_2C_3 - A_3B_3C_2 - A_1B_1C_2 + A_1B_2C_1)\bar{I}$ $+(A_1B_2C_1 - A_1B_1C_3 - A_2B_2C_3 + A_2B_3C_2)\bar{k}$ (1) & $(\overline{A},\overline{C})\overline{B} - (\overline{A},\overline{B})\overline{C} = (A_1C_1 + A_2C_2 + A_3C_3)(B_1\overline{I} + B_2\overline{I} + B_3\overline{k})$ $-(A_1B_1 + A_2B_2 + A_3B_3)(C_1\overline{I} + C_2\overline{I} + C_3\overline{k})$ $= (A_1B_1C_1 + A_2B_1C_2 + A_3B_1C_3 - A_1B_1C_1 - A_2B_2C_1 - A_3B_3C_1)\mathbf{\bar{I}}$ $+(A_1B_2C_1 + A_2B_2C_2 + A_3B_2C_3 - A_1B_1C_2 - A_2B_2C_2 - A_3B_3C_2)\bar{I}$ $+(A_1B_3C_1 + A_2B_3C_2 + A_3B_3C_3 - A_1B_1C_3 - A_2B_2C_3 - A_3B_3C_3)\bar{k}$ $= (A_2B_1C_2 - A_2B_2C_1 - A_3B_3C_1 + A_3B_1C_3)\overline{I}$ $+(A_3B_2C_3 - A_3B_3C_2 - A_1B_1C_2 + A_1B_2C_1)\bar{I}$ $+(A_1B_3C_1 - A_1B_1C_3 - A_2B_2C_3 + A_2B_3C_2)\bar{k}$ (2) \therefore From equation (1) and (2), we have

$\overline{A} \times (\overline{B} \times \overline{C}) = (\overline{A} \cdot \overline{C})\overline{B} - (\overline{A} \cdot \overline{B})\overline{C}$ Hence proved.

Ex. Show that $(\overline{A} \times \overline{B}) \times \overline{C} = (\overline{A} \cdot \overline{C})\overline{B} - (\overline{B} \cdot \overline{C})\overline{A}$ **Proof:** Consider $(\overline{A} \times \overline{B}) \times \overline{C} = -\overline{C} \times (\overline{A} \times \overline{B})$ $= -[(\overline{C} \cdot \overline{B})\overline{A} - (\overline{C} \cdot \overline{A})\overline{B}]$ $= (\overline{A} \cdot \overline{C})\overline{B} - \overline{A} (\overline{B} \cdot \overline{C})\overline{A}$ Hence proved. **Ex.** Prove that $\overline{A} \times (\overline{B} \times \overline{C}) + \overline{B} \times (\overline{C} \times \overline{A}) + \overline{C} \times (\overline{A} \times \overline{B}) = \overline{0}$

Proof: Consider

LHS =
$$\overline{A} \times (\overline{B} \times \overline{C}) + \overline{B} \times (\overline{C} \times \overline{A}) + \overline{C} \times (\overline{A} \times \overline{B})$$

= $(\overline{A} \cdot \overline{C})\overline{B} - (\overline{A} \cdot \overline{B})\overline{C} + (\overline{A} \cdot \overline{B})\overline{C} - (\overline{B} \cdot \overline{C})\overline{A} + (\overline{B} \cdot \overline{C})\overline{A} - (\overline{A} \cdot \overline{C})\overline{B}$
= $\overline{0}$
Hence proved.

Ex. Show that $\overline{\iota} \times (\overline{a} \times \overline{\iota}) + \overline{j} \times (\overline{a} \times \overline{j}) + \overline{k} \times (\overline{a} \times \overline{k}) = 2\overline{a}$ **Proof:** Consider

LHS =
$$\overline{i} \times (\overline{a} \times \overline{i}) + \overline{j} \times (\overline{a} \times \overline{j}) + k \times (\overline{a} \times k)$$

= $(\overline{i} \cdot \overline{i})\overline{a} - (\overline{i} \cdot \overline{a})\overline{i} + (\overline{j} \cdot \overline{j})\overline{a} - (\overline{j} \cdot \overline{a})\overline{j} + (\overline{k} \cdot \overline{k})\overline{a} - (\overline{k} \cdot \overline{a})\overline{k}$
= $\overline{a} - (\overline{i} \cdot \overline{a})\overline{i} + \overline{a} - (\overline{j} \cdot \overline{a})\overline{j} + \overline{a} - (\overline{k} \cdot \overline{a})\overline{k}$
= $3\overline{a} - [(\overline{i} \cdot \overline{a})\overline{i} + (\overline{j} \cdot \overline{a})\overline{j} + (\overline{k} \cdot \overline{a})\overline{k}]$
= $3\overline{a} - \overline{a}$
= $2\overline{a}$
= RHS.
Hence proved.

Ex. Find the value of $\overline{a} \times (\overline{b} \times \overline{c})$ if $\overline{a} = \overline{i} - 2\overline{j} + \overline{k}$, $\overline{b} = 2\overline{i} + \overline{j} + \overline{k}$ and $\overline{c} = \overline{i} + 2\overline{j} - \overline{k}$ **Solution:** Let $\overline{a} = \overline{i} - 2\overline{j} + \overline{k}$, $\overline{b} = 2\overline{i} + \overline{j} + \overline{k}$ and $\overline{c} = \overline{i} + 2\overline{j} - \overline{k}$

$$\dot{\overline{b}} \times \overline{c} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & 1 & 1 \\ 1 & 2 & -1 \end{vmatrix} = -3\overline{i} + 3\overline{j} + 3\overline{k} \dot{\overline{k}} = -3\overline{i} + 3\overline{j} + 3\overline{k} \dot{\overline{k}} = -3\overline{i} + 3\overline{j} + 3\overline{k}$$

Ex. Find the value of $\overline{a} \times (\overline{b} \times \overline{c})$ if

$$\overline{a} = 2\overline{i} - 10\overline{j} + 2\overline{k}, \overline{b} = 3\overline{i} + \overline{j} + 2\overline{k}$$
 and $\overline{c} = 2\overline{i} + \overline{j} + 3\overline{k}$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 7

Solution: Let $\overline{a} = 2\overline{i} - 10\overline{j} + 2\overline{k}$, $\overline{b} = 3\overline{i} + \overline{j} + 2\overline{k}$ and $\overline{c} = 2\overline{i} + \overline{j} + 3\overline{k}$ $\therefore \ \overline{\mathbf{b}} \times \overline{\mathbf{c}} = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \mathbf{k} \\ \mathbf{3} & \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{1} & \mathbf{2} \end{vmatrix} = \overline{\mathbf{i}} - 5\overline{\mathbf{j}} + \overline{\mathbf{k}}$ $\therefore \overline{\mathbf{a}} \times (\overline{\mathbf{b}} \times \overline{\mathbf{c}}) = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ 2 & -10 & 2 \\ 1 & \overline{\mathbf{c}} & 1 \end{vmatrix} = 0\overline{\mathbf{i}} - 0\overline{\mathbf{j}} + 0\overline{\mathbf{k}} = \overline{\mathbf{0}}$ **Ex.** If $\overline{a} = 3\overline{i} + 2\overline{j} - 4\overline{k}$, $\overline{b} = 5\overline{i} - 3\overline{j} + 6\overline{k}$ and $\overline{c} = 5\overline{i} - \overline{j} + 2\overline{k}$, find i) $\overline{a} \times (\overline{b} \times \overline{c})$ ii) $(\overline{a} \times \overline{b}) \times \overline{c}$ and show that they are not equal. **Solution:** Let $\overline{a} = 3\overline{i} + 2\overline{j} - 4\overline{k}$, $\overline{b} = 5\overline{i} - 3\overline{j} + 6\overline{k}$ and $\overline{c} = 5\overline{i} - \overline{j} + 2\overline{k}$ $i) \overline{b} \times \overline{c} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 5 & -3 & 6 \\ 5 & -1 & 2 \end{vmatrix} = 0\overline{i} + 20\overline{j} + 10\overline{k}$ $\therefore \overline{a} \times (\overline{b} \times \overline{c}) = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 3 & 2 & -4 \\ 0 & 20 & 10 \end{vmatrix} = 100\overline{i} - 30\overline{j} + 60\overline{k} = 10(10\overline{i} - 3\overline{j} + 6\overline{k})$ $ii) \overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 3 & 2 & -4 \\ 5 & -3 & 6 \end{vmatrix} = 0\overline{i} - 38\overline{j} - 19\overline{k}$ $\therefore (\overline{a} \times \overline{b}) \times \overline{c} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 0 & -38 & -19 \\ 5 & -1 & 2 \end{vmatrix} = -95\overline{i} - 95\overline{j} + 190\overline{k} = -95(\overline{i} + \overline{j} - 2\overline{k})$ From (i) and (ii) $\overline{a} \times (\overline{b} \times \overline{c}) \neq (\overline{a} \times \overline{b}) \times \overline{c}$ is proved. **Ex.** Verify that $\bar{a} \times (\bar{b} \times \bar{c}) = (\bar{a} \cdot \bar{c})\bar{b} - (\bar{a} \cdot \bar{b})\bar{c}$ for $\overline{a} = \overline{1} + 2\overline{1} + 3\overline{k}$, $\overline{b} = 2\overline{1} - \overline{1} + \overline{k}$ and $\overline{c} = 3\overline{1} + 2\overline{1} - 5\overline{k}$

Proof: Let $\overline{a} = \overline{1} + 2\overline{j} + 3\overline{k}$, $\overline{b} = 2\overline{1} - \overline{j} + \overline{k}$ and $\overline{c} = 3\overline{1} + 2\overline{j} - 5\overline{k}$.

$$\therefore \bar{b} \times \bar{c} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ 2 & -1 & 1 \\ 3 & 2 & -5 \end{vmatrix} = (5-2)\bar{i} - (-10-3)\bar{j} + (4+3)\bar{k} = 3\bar{i} + 13\bar{j} + 7\bar{k} \therefore \bar{a} \times (\bar{b} \times \bar{c}) = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ 1 & 2 & 3 \\ 3 & 13 & 7 \end{vmatrix} = (14-39)\bar{i} - (7-9)\bar{j} + (13-6)\bar{k} = -25\bar{i} + 2\bar{j} + 7\bar{k} \dots (1) Now \bar{a} \cdot \bar{c} = (\bar{i} + 2\bar{j} + 3\bar{k}) \cdot (3\bar{i} + 2\bar{j} - 5\bar{k}) = 3 + 4 - 15 = -8 \& \bar{a} \cdot \bar{b} = (\bar{i} + 2\bar{j} + 3\bar{k}) \cdot (2\bar{i} - \bar{j} + \bar{k}) = 2 - 2 + 3 = 3 \therefore (\bar{a} \cdot \bar{c})\bar{b} - (\bar{a} \cdot \bar{b})\bar{c} = (-8)(2\bar{i} - \bar{j} + \bar{k}) - 3(3\bar{i} + 2\bar{j} - 5\bar{k}) = -16\bar{i} + 8\bar{j} - 8\bar{k} - 9\bar{i} - 6\bar{j} + 15\bar{k} = -25\bar{i} + 2\bar{j} + 7\bar{k} \dots (2)$$

: from (1) and (2) $\bar{a} \times (\bar{b} \times \bar{c}) = (\bar{a} \cdot \bar{c})\bar{b} - (\bar{a} \cdot \bar{b})\bar{c}$ is verified.

Scalar Product of Four Vectors: Let \overline{A} , \overline{B} , \overline{C} and \overline{D} are any four vectors, then $(\overline{A} \times \overline{B}).(\overline{C} \times \overline{D})$ is called scalar product of four vectors.

Vector Product of Four Vectors: Let \overline{A} , \overline{B} , \overline{C} and \overline{D} are any four vectors, then

 $(\overline{A} \times \overline{B}) \times (\overline{C} \times \overline{D})$ is called vector product of four vectors.

Lagrange's Identity: Let \overline{A} , \overline{B} , \overline{C} and \overline{D} are any four vectors, then

$$(\overline{A} \times \overline{B}).(\overline{C} \times \overline{D}) = \begin{vmatrix} A. C \\ \overline{A}. \overline{D} \end{vmatrix}$$
 is called Lagrange's identity.

Ex. Prove that $(\overline{B} \times \overline{C}).(\overline{A} \times \overline{D}) + (\overline{C} \times \overline{A}).(\overline{B} \times \overline{D}) + (\overline{A} \times \overline{B}).(\overline{C} \times \overline{D}) = 0$

Proof: Consider

LHS =($\overline{B} \times \overline{C}$).($\overline{A} \times \overline{D}$)+($\overline{C} \times \overline{A}$).($\overline{B} \times \overline{D}$)+($\overline{A} \times \overline{B}$).($\overline{C} \times \overline{D}$)

 $= \begin{vmatrix} \overline{B}.\overline{A} & \overline{C}.\overline{A} \\ \overline{B}.\overline{D} & \overline{C}.\overline{D} \end{vmatrix} + \begin{vmatrix} \overline{C}.\overline{B} & \overline{A}.\overline{B} \\ \overline{C}.\overline{D} & \overline{A}.\overline{D} \end{vmatrix} + \begin{vmatrix} \overline{A}.\overline{C} & \overline{B}.\overline{C} \\ \overline{A}.\overline{D} & \overline{B}.\overline{D} \end{vmatrix}$ by Lagrange's identity $= (\overline{A}.\overline{B})(\overline{C}.\overline{D}) - (\overline{A}.\overline{C})(\overline{B}.\overline{D}) + (\overline{B}.\overline{C})(\overline{A}.\overline{D}) - (\overline{A}.\overline{B})(\overline{C}.\overline{D}) + (\overline{A}.\overline{C})(\overline{B}.\overline{D}) - (\overline{B}.\overline{C})(\overline{A}.\overline{D})$ = 0Hence proved.

Ex. If $\overline{A} = \overline{\iota} + 2\overline{\jmath} - \overline{k}$, $\overline{B} = 2\overline{\iota} + \overline{\jmath} + 3\overline{k}$, $\overline{C} = \overline{\iota} - \overline{\jmath} + \overline{k}$ and $\overline{D} = 3\overline{\iota} + \overline{\jmath} + 2\overline{k}$, evaluate i) $(\overline{A} \times \overline{B}).(\overline{C} \times \overline{D})$ and ii) $(\overline{A} \times \overline{B}) \times (\overline{C} \times \overline{D})$

Solution: Let $\overline{A} = \overline{\iota} + 2\overline{j} - \overline{k}$, $\overline{B} = 2\overline{\iota} + \overline{j} + 3\overline{k}$, $\overline{C} = \overline{\iota} - \overline{j} + \overline{k}$ and $\overline{D} = 3\overline{\iota} + \overline{j} + 2\overline{k}$

$$\therefore \overline{A} \times \overline{B} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & 2 & -1 \\ 2 & 1 & 3 \end{vmatrix} = 7\overline{i} - 5\overline{j} - 3\overline{k}$$

$$\& \overline{C} \times \overline{D} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & -1 & 1 \\ 3 & 1 & 2 \end{vmatrix} = -3\overline{i} + \overline{j} + 4\overline{k}$$
Here are an equation of the equation of t

Ex. If $\overline{a} = 2\overline{i} + \overline{j} - \overline{k}$, $\overline{b} = -\overline{i} + 2\overline{j} - 4\overline{k}$ and $\overline{c} = \overline{i} + \overline{j} + \overline{k}$, find $(\overline{a} \times \overline{b}).(\overline{a} \times \overline{c})$ **Solution:** Let $\overline{a} = 2\overline{i} + \overline{j} - \overline{k}$, $\overline{b} = -\overline{i} + 2\overline{j} - 4\overline{k}$ and $\overline{C} = \overline{i} + \overline{j} + \overline{k}$

$$\therefore \overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & k \\ 2 & 1 & -1 \\ -1 & 2 & -4 \end{vmatrix} = -2\overline{i} + 9\overline{j} + 5\overline{k}$$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 9

Reciprocal System of Vector: If \bar{a} , \bar{b} and \bar{c} are any three non-coplanar vectors so that $[\bar{a} \ \bar{b} \ \bar{c}] \neq 0$, then the three vectors $\bar{a'}$, $\bar{b'}$ and $\bar{c'}$ defined by

$$\overline{a'} = \frac{\overline{b} \times \overline{c}}{[\overline{a} \ \overline{b} \ \overline{c}]}, \ \overline{b'} = \frac{\overline{c} \times \overline{a}}{[\overline{a} \ \overline{b} \ \overline{c}]} \text{ and } \overline{c'} = \frac{\overline{a} \times \overline{b}}{[\overline{a} \ \overline{b} \ \overline{c}]} \text{ are called reciprocal system of vectors.}$$

Properties of Reciprocal System of Vector:

i) If $\bar{a}, \bar{b}, \bar{c}$ and $\bar{a}', \bar{b}', \bar{c}'$ are reciprocal system of vectors, then $\bar{a}.\bar{a}'=\bar{b}.\bar{b}'=\bar{c}.\bar{c}'=1$ **Proof :** Consider $\bar{a}.\bar{a}'=\bar{a}.\frac{\bar{b}\times\bar{c}}{[\bar{a}\,\bar{b}\,\bar{c}]}=\frac{\bar{a}.(\bar{b}\times\bar{c})}{\bar{a}.(\bar{b}\times\bar{c})}=1$ Similarly $\bar{b}.\bar{b}'=1$ and $\bar{c}.\bar{c}'=1$ $\therefore \bar{a}.\bar{a}'=\bar{b}.\bar{b}'=\bar{c}.\bar{c}'=1$ is proved.

ii) If $\bar{a}, \bar{b}, \bar{c}$ and $\bar{a'}, \bar{b'}, \bar{c'}$ are reciprocal system of vectors, then $\bar{a} \times \bar{a'} + \bar{b} \times \bar{b'} + \bar{c} \times \bar{c'} = \bar{0}$

Proof: Let \bar{a} , \bar{b} , \bar{c} and $\bar{a'}$, $\bar{b'}$, $\bar{c'}$ are reciprocal system of vectors.

$$\therefore \overline{a} \times \overline{a'} + \overline{b} \times \overline{b'} + \overline{c} \times \overline{c'} = \overline{a} \times \frac{b \times \overline{c}}{[\overline{a} \ \overline{b} \ \overline{c}]} + \overline{b} \times \frac{\overline{c} \times \overline{a}}{[\overline{a} \ \overline{b} \ \overline{c}]} + \overline{c} \times \frac{\overline{a} \times \overline{b}}{[\overline{a} \ \overline{b} \ \overline{c}]}$$

$$= \frac{\overline{a} \times (\overline{b} \times \overline{c}) + \overline{b} \times (\overline{c} \times \overline{a}) + \overline{c} \times (\overline{a} \times \overline{b})}{[\overline{a} \ \overline{b} \ \overline{c}]}$$

$$= \frac{\overline{a}}{[\overline{a} \ \overline{b} \ \overline{c}]}$$

$$= \frac{\overline{a}}{[\overline{a} \ \overline{b} \ \overline{c}]}$$

$$= \frac{\overline{a}}{[\overline{a} \ \overline{b} \ \overline{c}]}$$

$$= \overline{a} \times \overline{a'} + \overline{b} \times \overline{a'} + \overline{b} \times \overline{a'} + \overline{b'} \times \overline{a'} + \overline{a'} + \overline{b'} \times \overline{a'} + \overline{a'} + \overline{b'}$$

iii) If \bar{a} , \bar{b} , \bar{c} and $\bar{a'}$, $\bar{b'}$, $\bar{c'}$ are reciprocal system of vectors, then \bar{a} . $\bar{a'} + \bar{b}$. $\bar{b'} + \bar{c}$. $\bar{c'} = 3$

Proof: Let \overline{a} , \overline{b} , \overline{c} and $\overline{a'}$, $\overline{b'}$, $\overline{c'}$ are reciprocal system of vectors.

$$\therefore \, \overline{a} . \, \overline{a'} + \, \overline{b} . \, \overline{b'} + \, \overline{c} . \, \overline{c'} = \, \overline{a} . \frac{\overline{b} \times \overline{c}}{[\overline{a} \ \overline{b} \ \overline{c}]} + \, \overline{b} . \frac{\overline{c} \times \overline{a}}{[\overline{a} \ \overline{b} \ \overline{c}]} + \, \overline{c} . \frac{\overline{a} \times b}{[\overline{a} \ \overline{b} \ \overline{c}]}$$

$$= \frac{\overline{a} . (\overline{b} \times \overline{c}) + \overline{b} . (\overline{c} \times \overline{a}) + \overline{c} . (\overline{a} \times \overline{b})}{[\overline{a} \ \overline{b} \ \overline{c}]}$$

$$= \frac{\overline{a} . (\overline{b} \times \overline{c}) + \overline{b} . (\overline{c} \times \overline{a}) + \overline{c} . (\overline{a} \times \overline{b})}{[\overline{a} \ \overline{b} \ \overline{c}]}$$

$$= \frac{\overline{a} . (\overline{b} \times \overline{c}) + \overline{b} . (\overline{c} \times \overline{a}) + \overline{c} . (\overline{a} \times \overline{b})}{[\overline{a} \ \overline{b} \ \overline{c}]}$$

$$=\frac{3[\bar{a} b \bar{c}]}{[\bar{a} \bar{b} \bar{c}]}$$
$$=3$$

Hence proved.

iv) The product of any vector of one system with a vector of reciprocal system which does not correspond to it is zero i.e. $\bar{a}.\bar{b}'=\bar{a}.\bar{c}'=\bar{b}.\bar{a}'=\bar{b}.\bar{c}'=\bar{c}.\bar{a}'=\bar{c}.\bar{b}'=0$ **Proof :** Consider $\bar{a}.\bar{b}'=\bar{a}.\frac{\bar{c}\times\bar{a}}{[\bar{a}\ \bar{b}\ \bar{c}]}=\frac{\bar{a}.(\bar{c}\times\bar{a})}{\bar{a}.(\bar{b}\times\bar{c})}=\frac{0}{\bar{a}.(\bar{b}\times\bar{c})}=0$ Similarly $\bar{a}.\bar{c}'=0$, $\bar{b}.\bar{a}'=0$, $\bar{b}.\bar{c}'=0$, $\bar{c}.\bar{a}'=0$, $\bar{c}.\bar{b}'=0$ $\therefore \bar{a}.\bar{b}'=\bar{a}.\bar{c}'=\bar{b}.\bar{a}'=\bar{b}.\bar{c}'=\bar{c}.\bar{a}'=\bar{c}.\bar{b}'=0$ is proved.

v) The orthogonal triad of vectors $\bar{\iota}$, $\bar{\jmath}$, \bar{k} is self reciprocal. i.e. $\bar{\iota'} = \bar{\iota}, \bar{\jmath'} = \bar{\jmath}, \bar{k'} = \bar{k}$. **Proof :** Let $\bar{\iota'}, \bar{\jmath'}, \bar{k'}$ be the reciprocal system to $\bar{\iota}, \bar{\jmath}, \bar{k}$ then

$$\overline{\iota'} = \frac{\overline{J} \times \overline{k}}{[\overline{\iota} \, \overline{J} \, \overline{k}]} = \frac{\overline{\iota}}{1} = \overline{\iota}$$
Similarly $\overline{J'} = \overline{J}$ and $\overline{k'} = \overline{k}$
 \therefore The orthogonal triad of vectors $\overline{\iota}$, \overline{J} , \overline{k} is self reciprocal is proved.

Ex. Find the set of vectors reciprocal to the set $-\overline{\iota} + \overline{j} + \overline{k}$, $\overline{\iota} + \overline{j} + \overline{k}$, $\overline{\iota} + \overline{j} - \overline{k}$ **Solution :** Let $\overline{a'}$, $\overline{b'}$, $\overline{c'}$ be the reciprocal system to

$$\bar{a} = -\bar{\iota} + \bar{j} + \bar{k}, \bar{b} = \bar{\iota} + \bar{j} + \bar{k}, \bar{c} = \bar{\iota} + \bar{j} - \bar{k}.$$

$$\therefore \bar{a}' = \frac{\bar{b} \times \bar{c}}{[\bar{a} \ \bar{b} \ \bar{c}]}, \bar{b}' = \frac{\bar{c} \times \bar{a}}{[\bar{a} \ \bar{b} \ \bar{c}]} \text{ and } \bar{c}' = \frac{\bar{a} \times \bar{b}}{[\bar{a} \ \bar{b} \ \bar{c}]} \dots (1)$$
Now $[\bar{a} \ \bar{b} \ \bar{c}] = \begin{vmatrix} -1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 2 + 2 + 0 = 4$

$$\bar{b} \times \bar{c} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ 1 & 1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = -2\bar{\iota} + 2\bar{j} + 0\bar{k} = -2\bar{\iota} + 2\bar{j}$$

$$\bar{c} \times \bar{a} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{vmatrix} = 2\bar{\iota} + 0\bar{j} + 2\bar{k} = 2\bar{\iota} + 2\bar{k}$$

$$\bar{a} \times \bar{b} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0\bar{\iota} + 2\bar{j} - 2\bar{k} = 2\bar{j} - 2\bar{k}$$
From (1), we get set of vectors reciprocal as
$$\bar{a}' = \frac{-2\bar{\iota} + 2\bar{j}}{4} = \frac{1}{2}(-\bar{\iota} + \bar{j}),$$

$$\overline{b'} = \frac{2\overline{\iota} + 2\overline{k}}{4} = \frac{1}{2} (\overline{\iota} + \overline{k})$$

and $\overline{c'} = \frac{2\overline{j} - 2\overline{k}}{4} = \frac{1}{2} (\overline{j} - \overline{k})$

Ex. Find the set of vectors reciprocal to the set $2\overline{i} + 3\overline{j} - \overline{k}$, $\overline{i} - \overline{j} - 2\overline{k}$, $-\overline{i} + 2\overline{j} + 2\overline{k}$ **Solution :** Let $\overline{a'}$, $\overline{b'}$, $\overline{c'}$ be the reciprocal system to

$$\bar{a} = 2\bar{\iota} + 3\bar{j} - \bar{k}, \bar{b} = \bar{\iota} - \bar{j} - 2\bar{k}, \bar{c} = -\bar{\iota} + 2\bar{j} + 2\bar{k}.$$

$$\therefore \bar{a}' = \frac{\bar{b} \times \bar{c}}{[\bar{a} \ \bar{b} \ \bar{c}]}, \bar{b}' = \frac{c \times \bar{a}}{[\bar{a} \ \bar{b} \ \bar{c}]} \text{ and } \bar{c}' = \frac{a \times \bar{b}}{[\bar{a} \ \bar{b} \ \bar{c}]} \dots (1)$$
Now $[\bar{a} \ \bar{b} \ \bar{c}] = \begin{vmatrix} 2 & 3 & -1 \\ 1 & -1 & -2 \\ -1 & 2 & 2 \end{vmatrix} = 4 - 0 - 1 = 3$

$$\bar{b} \times \bar{c} = \begin{vmatrix} \bar{1} & \bar{j} & \bar{k} \\ 1 & -1 & -2 \\ -1 & 2 & 2 \end{vmatrix} = 2\bar{\iota} + 0\bar{j} + \bar{k} = 2\bar{\iota} + \bar{k}$$

$$\bar{c} \times \bar{a} = \begin{vmatrix} \bar{1} & \bar{j} & \bar{k} \\ -1 & 2 & 2 \\ 2 & 3 & -1 \end{vmatrix} = -8\bar{\iota} + 3\bar{j} - 7\bar{k}$$

$$\bar{a} \times \bar{b} = \begin{vmatrix} \bar{1} & \bar{j} & \bar{k} \\ 2 & 3 & -1 \\ 1 & -1 & -2 \end{vmatrix} = -7\bar{\iota} + 3\bar{j} - 5\bar{k}$$
From (1), we get set of vectors reciprocal as
$$\bar{a}' = \frac{2\bar{\iota} + \bar{k}}{3} = \frac{2}{3}\bar{\iota} + \frac{1}{3}\bar{k},$$

$$\bar{b}' = \frac{-8\bar{\iota} + 3\bar{j} - 7\bar{k}}{3} = -\frac{8}{3}\bar{\iota} + \bar{j} - \frac{7}{3}\bar{k}$$
and $\bar{c}' = \frac{-7\bar{\iota} + 3\bar{j} - 5\bar{k}}{3} = -\frac{7}{3}\bar{\iota} + \bar{j} - \frac{5}{3}\bar{k}$

MULTIPLE CHOICE QUESTIONS [MCQ'S]

11) The scalar product is also called A) dot product B) vector product C) box product D) None of these 2) If θ is angle between the vectors \overline{A} and \overline{B} with $|\overline{A}| = A$, $|\overline{B}| = B$, then scalar product of two vectors \overline{A} and \overline{B} is denoted by \overline{A} . \overline{B} and defined as \overline{A} . $\overline{B} = \dots$ B) AB $\cos\theta$ D) None of these A) AB $\cot\theta$ C) AB $\sin\theta$ 3) The scalar product of two vectors is a C) both scalar and vector D) None of these A) scalar B) vector 4) If \bar{i} , \bar{j} , \bar{k} are unit vectors along x, y, z axis respectively, then $\bar{i} \cdot \bar{i} = \bar{j} \cdot \bar{j} = \bar{k} \cdot \bar{k} = \dots$ A) 0 D) None of these B) 1 C) -1

5) If \bar{i} , \bar{j} , k are unit vec	tors along x, y, z ax	is respectively, the	$\mathbf{n} \overline{\mathbf{I}} . \overline{\mathbf{J}} = \overline{\mathbf{J}} . \mathbf{k} = \mathbf{k} . \overline{\mathbf{I}} = \dots$						
A) 0	B) 1	C) -1	D) None of these						
6) If $\overline{A} = A_1 \overline{i} + A_2 \overline{j} + A_3 \overline{k}$ a	and $\overline{B} = B_1 \overline{i} + B_2 \overline{j} + B_2 \overline{j}$	$_{3}\overline{\mathbf{k}}$ then $\overline{\mathbf{A}}$ $.\overline{\mathbf{B}} = \dots$							
	ĪJĪ								
A) 0	$\begin{array}{c cccc} B) & A_1 & A_2 & A_3 \\ & B_1 & B_2 & B_3 \end{array}$	C) $A_1B_1 + A_2B_2 + A_3$	$_{3}B_{3}$ D) None of these						
7) Non-zero vectors \overline{A} and \overline{B} are perpendicular if and only if $\overline{A} \cdot \overline{B} = \dots$									
A) 0	B) 1	C) -1	D) None of these						
8) The scalar product of	two vectors is com	mutative is							
A) true	B) false	पंपळलेर -							
9) If $\bar{a} = \bar{1} - 2\bar{j} + \bar{k}$ and \bar{k}	$\overline{\mathbf{p}} = 4\overline{\mathbf{i}} - 4\overline{\mathbf{j}} + 7\overline{\mathbf{k}}$, then	ā. b =							
A) 2	B) 7	C) 19	D) 0						
10) If $\bar{a} = \bar{j} + 2\bar{k}$ and \bar{b}	$= 2\overline{i} + \overline{k}$, then $\overline{a} \cdot \overline{b} =$	1159 CA. 2	3.94						
A) 2	B) 7	C) 19	D) 0						
11) If $\bar{a} = \bar{j} - 2\bar{k}$ and $\bar{b} =$	$= 2\overline{i} + 3\overline{j} - 2\overline{k}$, then \overline{k}	ā. b =	A S						
A) 2	B) 7	C) 19	D) 0						
12) The vectors $\bar{a} = m\bar{l}$	$ + 2\overline{j} + \overline{k} \text{ and } \overline{b} = 4\overline{j}$	- 9 5 + 2k are perper	ndicular to each other						
if m =		Law Long							
A) 2	B) 0	C) 4	D) 3						
13) The angle between t	he vectors $\overline{a} = \overline{1} - \overline{j}$	and $\overline{b} = \overline{j} - \overline{k}$ is							
A) $\frac{2\pi}{3}$	B) $\frac{\pi}{3}$	C) $\frac{\pi}{2}$	D) π						
14) If \overline{a} and \overline{b} are two v	ectors such that $ \bar{a} $	$=4, \overline{b} =3$ and \overline{a} .	$\overline{b} = 6$, then the angle						
between the vectors	\overline{a} and \overline{b} is	12							
A) $\frac{2\pi}{2}$	B) $\frac{\pi}{2}$	C) $\frac{\pi}{2}$	D) π						
15) For any two vectors \overline{a} and \overline{b} $ \overline{a} + \overline{b} ^2 + \overline{a} - \overline{b} ^2 = 0$									
A) $2(\bar{a} ^2 - \bar{b} ^2)$	B) $(\bar{a} ^2 + \bar{b} ^2)$	C) $2(\bar{a} ^2 + \bar{b} ^2)$	D) $ \bar{a} ^2 - \bar{b} ^2$						
16)The vector product is also called									
A) dot product	B) cross product	C) box product	D) None of these						
17) If θ is angle between the vectors \overline{A} and \overline{B} with $ \overline{A} = A$. $ \overline{B} = B$ and \hat{u} is unit vector									
indicating the direction of $\overline{A} \times \overline{B}$, then vector product of two vectors \overline{A} and \overline{B} is									
denoted by $\overline{A} \times \overline{B}$ and defined as $\overline{A} \times \overline{B} = \dots$									
A) AB sinθ	B) AB cosθ	C) AB sinθ û	D) None of these						
18) The vector product of two vectors is a									
A) scalar	B) vector	C) both scalar and	vector D) None of these						
19) The vector product of two vectors is commutative is									

A) true	B) false						
20) If $\overline{A} = A_1 \overline{i} + A_2 \overline{j} + A_3 \overline{k}$	and $\overline{B} = B_1 \overline{i} + B_2 \overline{j} + B_2 \overline{j}$	$B_3\overline{k}$ then $\overline{A} \times \overline{B} = \dots$					
A) 0	B) $\begin{vmatrix} \overline{I} & \overline{J} & \overline{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix}$	C) $A_1B_1 + A_2B_2 + A_3$	$_{3}B_{3}$ D) None of these				
21) Non-zero vectors \overline{A}	and \overline{B} are parallel to	b each other if and o	only if $\overline{A} \times \overline{B} = \dots$				
A) 0	B) 1	C) π	D) -π				
22) If \bar{i} , \bar{j} , \bar{k} are unit ve	ctors along x, y, z a	xis respectively, the	en				
$\overline{i} \times \overline{i} = \overline{j} \times \overline{j} = \overline{k} \times \overline{k}$	=						
Α) π	B) 0	C) 1	D) –π				
23) Area of parallelogram	n with sides \overline{A} and	$\overline{B} = \frac{1}{2}$					
A) \overline{A} . \overline{B}	B) $\overline{A} \times \overline{B}$	C) $ \overline{A} \times \overline{B} $	D) None of these				
24) If $\bar{a} = \bar{j} - 2\bar{k}$ and $\bar{b} =$	$2\overline{i} + 3\overline{j} - 2\overline{k}$, then \overline{a}	$\mathbf{x} \times \overline{b} = \dots$	199 A.				
A) $\overline{i} - 4\overline{j} - 2\overline{k}$	B)4ī - 4j - $2\overline{k}$	C) 4ī - j - 2k	D) None of these				
25) If $\overline{p} = -3\overline{i} + 4\overline{j} - 7\overline{k}$ a	nd $\overline{q} = 6\overline{1} + 2\overline{j} - 3\overline{k}$, then $\overline{\mathbf{p}} \times \overline{\mathbf{q}} = \dots$					
A) 2ī - 51j - 30k	B)2ī - 5j - 30k	C) 2ī - 51 <u>ī</u> - 3 k	D) None of these				
26) If \bar{a} and \bar{b} are two vertex is \bar{b} are two vertex is \bar{b} and \bar{b} are two vertex is \bar{b} and \bar{b} are two vertex is \bar{b} are two vertex is \bar{b} and \bar{b} are two vertex is \bar{b} and \bar{b} are two vertex is \bar{b} are two vertex is \bar{b} and \bar{b} are two vertex is \bar{b} are two vertex is \bar{b} and \bar{b} are two vertex is \bar{b} and \bar{b} are two vertex is \bar{b} are two vertex is \bar{b} and \bar{b} are two vertex is \bar{b} and \bar{b} are two vertex is \bar{b} are two vertex is \bar{b} and \bar{b} are two vertex is \bar{b} are two vertex is \bar{b} and \bar{b} are two vertex is \bar{b}	ector <mark>s, the</mark> n prove th	$\operatorname{nat} \left \overline{\mathbf{a}} \times \overline{b} \right ^2 + \left(\overline{\mathbf{a}} \cdot \overline{b} \right)^2 =$	- <u>-</u>				
A) $ \bar{a} ^2 + \bar{b} ^2$	B) $2 \bar{a} ^2 \bar{b} ^2$	C) $ \overline{a} ^2 \overline{b} ^2$	D) None of these				
27) If $ \bar{a} = 13$, $ \bar{b} = 5$ as	nd $\overline{a}.\overline{b} = 60$ then fir	$\operatorname{nd} \left \overline{a} \times \overline{b} \right $	<i>ਜ਼</i>				
A) 10	B) 25	C) 18	D) None of these				
28) The scalar triple prod	duct is also called		4				
A) dot product	B) vector product	C) box product	D) None of these				
29) The scalar triple product of three vectors is a							
A) scalar	B) vector C) bo	oth scalar and vector	D) None of these				
30) If $\overline{A} = A_1\overline{i} + A_2\overline{j} + A_3\overline{k}$, $\overline{B} = B_1\overline{i} + B_2\overline{j} + B_3\overline{k}$ and $\overline{C} = C_1\overline{i} + C_2\overline{j} + C_3\overline{k}$, then							
$[\overline{A} \ \overline{B} \ \overline{C}] = \overline{A} \ . \ (\overline{B} \times \overline{C}) = \dots$							
A) $A_1B_1 + A_2B_2 + A_3B_3$	$ \begin{array}{c} A_3B_3 B \end{array} \begin{vmatrix} A_1 & A_2 \\ B_1 & B_2 \\ C_1 & C_2 \end{vmatrix} $	$ \begin{array}{c c} A_3 \\ B_3 \\ C_3 \end{array} \begin{array}{c} \overline{1} & \overline{J} \\ A_1 & A_2 \\ B_1 & B_2 \end{array} $	$\begin{bmatrix} \bar{k} \\ A_3 \\ B_3 \end{bmatrix}$ D) None of these				
31) If $\overline{a} = \overline{\iota} - 2\overline{\jmath} + \overline{k}$, $\overline{b} =$	$2\overline{\iota} + \overline{j} + \overline{k}$ and $\overline{c} =$	$=\overline{\iota}+2\overline{\jmath}-\overline{k}$, then \overline{a} .	$(\overline{\mathbf{b}} \times \overline{\mathbf{c}}) = \dots$				
A) 0	B) 1	C) -6	D) None of these				
32) \overline{A} , \overline{B} and \overline{C} are coplanar if and only if \overline{A} . ($\overline{B} \times \overline{C}$) =							
A) 0	B) 1	C) -1	D) None of these				
33) Volume of parallele	piped with sides \overline{A} ,	, B and C = \dots					
A) A \times (B \times C)	B) $ A \cdot (B \times C) $	$C) A . (B \times C)$	D) None of these				

34)	34) If the edges $\overline{a} = -3\overline{i} + 7\overline{j} + 5k$, $b = -5\overline{i} + 7\overline{j} - 3k$ and $\overline{c} = 7\overline{i} - 5\overline{j} - 3k$ meet at						
	vertex point, then t	the volume of the pa	arallelopiped is				
	A) 264	B) -264	C) 0	D) None of these			
35)	$\overline{A} \cdot (\overline{A} \times \overline{C}) = \dots$						
	A) 0	B) C	C) A	D) None of these			
36)	Let \overline{A} , \overline{B} and \overline{C} be a	ny three vectors, the	en $\overline{\mathbf{A}} \times (\overline{\mathbf{B}} \times \overline{\mathbf{C}})$ is ca	illed the			
	A) vector produc	t B) so	calar triple product				
	C) vector triple p	roduct D) N	lone of these				
37)	$\overline{A} \times (\overline{B} \times \overline{C}) = \dots$						
	A) \overline{A} (\overline{B} . \overline{C}) B)	$(\overline{A} . \overline{C})\overline{B} - (\overline{A} . \overline{B})\overline{C}$	C) $(\overline{A} \cdot \overline{B}) \overline{C} - (\overline{A}) \overline{C}$	$\overline{A} \cdot \overline{C} \overline{B}$ D) None of these			
38)	If $\overline{a} = 2\overline{\iota} - 10\overline{\jmath} + 2\overline{k}$,	$\overline{\mathbf{b}} = 3\overline{\imath} + \overline{\jmath} + 2\overline{\mathbf{k}}$	and $\bar{c} = 2\bar{\iota} + \bar{\jmath} + 3\bar{k}$,	then $\overline{a} \times (\overline{b} \times \overline{c}) = \dots$			
	A) 0	B) 0	C) $\bar{\iota} + \bar{j} + \bar{k}$	D) None of these			
39)	Let \overline{A} , \overline{B} , \overline{C} and \overline{D} a	are any four vectors	, then $(\overline{A} \times \overline{B}).(\overline{C} \times$	\overline{D}) is calledof four			
	vectors.		19/2	e B			
	A) vector produc	t B) scalar product	C) scalar triple pr	oduct D) None of these			
40)	Let \overline{A} , \overline{B} , \overline{C} and \overline{D} a	are any four vectors	, then $(\overline{A} \times \overline{B}) \times (\overline{C} \times \overline{C})$	\overline{D}) is calledof four			
	vectors.	5 3 8	NAL D	E			
	A) vector produc	t B) scalar product	C) scalar triple pr	oduct D) None of these			
41)	Let \overline{A} , \overline{B} , \overline{C} and \overline{D} and \overline{D}	are a <mark>ny four vectors</mark>	, then $(\overline{A} \times \overline{B}).(\overline{C} \times$	$\overline{\mathrm{D}}) = \dots$			
	is called Lagrange's	s identity.	all and it	3			
	A) $\begin{bmatrix} \overline{A}, \overline{B} & 0 \end{bmatrix}$	B) $\begin{bmatrix} 1 & \overline{C} & \overline{D} \end{bmatrix}$	C) $\left \overline{\overline{A}}, \overline{\overline{C}} \right = \overline{\overline{B}}, \overline{\overline{C}} \right $	D) None of these			
10)			IA.D B.DI				
42)	II a = 2l + j - K,	D = -l + 2J - 4K and $D = -l + 2J - 4K$	C = l + j + K, then ($(a \times b) \cdot (a \times c) = \dots$			
12)	$(\overline{\mathbf{P}} \times \overline{\mathbf{C}}) (\overline{\mathbf{A}} \times \overline{\mathbf{D}}) + (\overline{\mathbf{C}})$	\mathbf{D}) -20	$\overline{\mathbf{D}}$ $(\overline{\mathbf{C}} \times \overline{\mathbf{D}}) =$	D) None of these			
43)	$(\mathbf{D} \times \mathbf{C}).(\mathbf{A} \times \mathbf{D}) + (\mathbf{C} \times \mathbf{D})$	$(D \times D) + (A \times D)$	$(C \times D) = \dots$	D) None of these			
11)	A = 0 If \bar{a} , \bar{b} and \bar{a} are an	D) I	C) -1	\overline{D} None of these \overline{D}			
44) If a, b and c are any three non-coplanar vectors so that $[a \ b \ c] \neq 0$, then the three							
vectors a' , b' and c' defined by $a' = \frac{b \times c}{[\overline{a} \ \overline{b} \ \overline{c}]}$, $b' = \frac{c \times a}{[\overline{a} \ \overline{b} \ \overline{c}]}$ and $c' = \frac{a \times b}{[\overline{a} \ \overline{b} \ \overline{c}]}$ are called							
	system of vectors.						
	A) homogeneous	B) non-homogene	eous C) reciproc	al D) None of these			
45) If $\bar{a}, \bar{b}, \bar{c}$ and $\bar{a'}, \bar{b'}, \bar{c'}$ are reciprocal system of vectors, then $\bar{a}.\bar{a'}=\bar{b}.\bar{b'}=\bar{c}.\bar{c'}=$							
	A) 0	B) 1	C) -1	D) None of these			
46) If $\bar{a}, \bar{b}, \bar{c}$ and $\bar{a}', \bar{b}', \bar{c}'$ are reciprocal system of vectors, then							
$\bar{a} imes \bar{a'} + \bar{b} imes \bar{b'} + \bar{c} imes \bar{c'} = \dots$							
	A) 0	B) 1	C) 3	D) None of these			

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCHNCE SR. COLLEGE, PIMPALNER 15

1

UNIT-2: VECTOR FUNCTIONS

Vector functions of a single variable: A function \overline{v} : $R \rightarrow R^3$ defined by

 $\bar{v} = v_1(t)\bar{i} + v_2(t)\bar{j} + v_3(t)\bar{k}$ is called a vector function of a single variable t.

Limit of Vector Function: Let $\bar{v}(t) = v_1(t)\bar{i} + v_2(t)\bar{j} + v_3(t)\bar{k}$ be a vector function of a

scalar variable t. If for small $\varepsilon > 0$, there exist $\delta > 0$ depends on ε such that $|\bar{v}(t) - \bar{l}|$

 $< \varepsilon$ whenever $0 < |t - a| < \delta$. Then \overline{l} is said to be limit of $\overline{v}(t)$

as $t \to a$. Denoted by $\lim_{t \to a} \overline{v}(t) = \overline{l}$.

Algebra of Limits:

If $\lim_{t \to a} \overline{v}(t) = \overline{l}$ and $\lim_{t \to a} \overline{u}(t) = \overline{m}$ then

- i) $\lim_{t \to a} [\bar{v}(t) \pm \bar{u}(t)] = \bar{l} \pm \bar{m}$
- ii) $\lim_{t \to a} [\overline{v}(t), \overline{u}(t)] = \overline{l}, \overline{m}$
- iii) $\lim_{t \to a} [\bar{v}(t) \times \bar{u}(t)] = \bar{l} \times \bar{m}$
- iv) $\lim_{t \to a} \left[\frac{\bar{v}(t)}{\bar{u}(t)} \right] = \frac{\bar{l}}{\bar{m}} \text{ provided } \bar{m} \neq \bar{0}$

Continuity of Vector Function: A vector function $\bar{v} = \bar{v}(t)$ of a scalar variable t is said to be continuous at $t = t_0$ if $\lim_{t \to t_0} \bar{v}(t) = \bar{v}(t_0)$.

Remark: A vector function $\bar{v} = \bar{v}(t)$ of a scalar variable t is said to be continuous in an interval (a, b) if it is continuous at every point in (a, b).

Differentiability of Vector Function: Let $\bar{v}(t) = v_1(t)\bar{i} + v_2(t)\bar{j} + v_3(t)\bar{k}$ be a vector

function of a scalar variable t and $\overline{\delta v}$ be change in \overline{v} corresponding to small

change δt in t. If $\lim_{\delta t \to 0} \frac{\overline{\delta v}}{\delta t} = \lim_{\delta t \to 0} \frac{\overline{v}(t+\delta t) - \overline{v}(t)}{\delta t}$ exist and finite, then $\overline{v}(t)$ is said to be differentiable w.r.t.t and $\frac{\overline{dv}}{dt} = \lim_{\delta t \to 0} \frac{\overline{\delta v}}{\delta t}$ is called derivative of \overline{v} w.r.t.t.

Remark: i) $\overline{v'}(t_0) = (\frac{\overline{dv}}{dt})_{t=t0} = \lim_{\delta t \to 0} \frac{\overline{v}(t_0 + \delta t) - \overline{v}(t_0)}{\delta t} = \lim_{t \to t_0} \frac{\overline{v}(t) - \overline{v}(t_0)}{t - t_0}$

is called derivative of $\bar{v}(t)$ at point $t = t_0$.

ii) $\frac{d^2 \bar{v}}{dt^2} = \frac{d}{dt} (\frac{d\bar{v}}{dt})$ is called second order derivative of \bar{v} w.r.t.t. iii) $\frac{d^3 \bar{v}}{dt^3} = \frac{d}{dt} (\frac{d^2 \bar{v}}{dt^2})$ is called third order derivative of \bar{v} w.r.t.t. **Theorem:** If $\bar{v}(t)$ is differentiable at $t = t_0$, then $\bar{v}(t)$ is continuous at $t = t_0$.

Proof: Let $\bar{v}(t)$ is differentiable at $t = t_0$

$$\Rightarrow \overline{v'}(t_0) = \lim_{t \to t_0} \frac{\overline{v}(t) - \overline{v}(t_0)}{t - t_0} \text{ is exists and finite } \dots \dots (1)$$

Consider

$$\lim_{t \to t_0} [\bar{v}(t) - \bar{v}(t_0)] = \lim_{t \to t_0} \frac{\bar{v}(t) - \bar{v}(t_0)}{t - t_0} \times (t - t_0)$$

$$= \lim_{t \to t_0} \frac{\bar{v}(t) - \bar{v}(t_0)}{t - t_0} \times \lim_{t \to t_0} (t - t_0)$$

$$= \bar{v}'(t_0) \times 0$$

$$\therefore \lim_{t \to t_0} \bar{v}(t) - \bar{v}(t_0) = \bar{0}$$

$$\therefore \lim_{t \to t_0} \bar{v}(t) = \bar{v}(t_0)$$
i.e. $\bar{v}(t)$ is continuous at $t = t_0$.

Ex.: Show that $\overline{v}(t) = t\overline{1} + |t|\overline{j}$ is continuous but not differentiable at point t = 0.

Proof : Let
$$\bar{v}(t) = t\bar{i} + |t|\bar{j}$$

 $\therefore \bar{v}(0) = 0\bar{i} + |0|\bar{j} = \bar{0}$
and $\lim_{t \to 0} \bar{v}(t) = \lim_{t \to 0} (t\bar{i} + |t|\bar{j}) = 0\bar{i} + |0|\bar{j} = \bar{0} = \bar{v}(0)$
 $\therefore \bar{v}(t) = t\bar{i} + |t|\bar{j}$ is continuous at point $t = 0$.
Now $\lim_{t \to 0} \frac{\bar{v}(t) - \bar{v}(0)}{t - 0} = \lim_{t \to 0} \frac{t\bar{i} + |t|\bar{j} - 0}{t}$
 $= \lim_{t \to 0} (\bar{i} + \frac{|t|}{t}\bar{j})$
 $= \bar{i} + \lim_{t \to 0^+} \frac{|t|}{t} = 1$ and $\lim_{t \to 0^-} \frac{|t|}{t} = \lim_{t \to 0^-} \frac{-t}{t} = -1$
 $\therefore \lim_{t \to 0} \frac{\bar{v}(t) - \bar{v}(0)}{t - 0}$ does not exist.
Hence $\bar{v}(t) = t\bar{i} + |t|\bar{j}$ is continuous but not differentiable at point
 $t = 0$ is proved.

3

Theorem: If \bar{u} and \bar{v} are differentiable vector functions of scalar variable t then

 $\frac{d}{dt}(\bar{u}+\bar{v}) = \frac{d\bar{u}}{dt} + \frac{d\bar{v}}{dt}.$

Proof: Let $\overline{w} = \overline{u} + \overline{v}$

Let $\overline{\delta u}$, $\overline{\delta v}$ and $\overline{\delta w}$ are the changes in \overline{u} , \overline{v} and \overline{w} corresponding to small change δt

in t respectively.

$$\therefore \overline{w} + \delta \overline{w} = (\overline{u} + \delta \overline{u}) + (\overline{v} + \delta \overline{v}) \therefore \delta \overline{w} = \delta \overline{u} + \delta \overline{v} \qquad (i) \text{Dividing (i) by δt and taking limit as $\delta t \to 0$, we get,

$$\lim_{\delta t \to 0} \frac{\delta \overline{w}}{\delta t} = \lim_{\delta t \to 0} \left(\frac{\delta \overline{u}}{\delta t} + \frac{\delta \overline{v}}{\delta t} \right) = \lim_{\delta t \to 0} \frac{\delta \overline{u}}{\delta t} + \lim_{\delta t \to 0} \frac{\delta \overline{v}}{\delta t} \therefore \frac{d \overline{w}}{d t} = \frac{d \overline{u}}{d t} + \frac{d \overline{v}}{d t} \qquad \because \overline{u} \text{ and } \overline{v} \text{ are differentiable vector functions.} \text{i.e. } \frac{d}{d t} (\overline{u} + \overline{v}) = \frac{d \overline{u}}{d t} + \frac{d \overline{v}}{d t} \qquad \text{Hence proved.}$$$$

Theorem: If \bar{u} and \bar{v} are differentiable vector functions of scalar variable t then

 $\frac{d}{dt}(\bar{u}-\bar{v}) = \frac{d\bar{u}}{dt} + \frac{d\bar{v}}{dt}$

Proof: Let $\overline{w} = \overline{u} - \overline{v}$

Let $\overline{\delta u}$, $\overline{\delta v}$ and $\overline{\delta w}$ are the changes in \overline{u} , \overline{v} and \overline{w} corresponding to small change δt in t respectively.

$$\therefore \overline{w} + \delta \overline{w} = (\overline{u} + \delta \overline{u}) - (\overline{v} + \delta \overline{v})$$

$$\therefore \delta \overline{w} = \delta \overline{u} - \delta \overline{v} \quad (i)$$
Dividing (i) by δt and taking limit as $\delta t \to 0$, we get,
$$\lim_{\delta t \to 0} \frac{\delta \overline{w}}{\delta t} = \lim_{\delta t \to 0} \left(\frac{\delta \overline{u}}{\delta t} - \frac{\delta \overline{v}}{\delta t} \right)$$

$$= \lim_{\delta t \to 0} \frac{\delta \overline{u}}{\delta t} - \lim_{\delta t \to 0} \frac{\delta \overline{v}}{\delta t}$$

$$\therefore \frac{d \overline{w}}{dt} = \frac{d \overline{u}}{dt} - \frac{d \overline{v}}{dt} \quad \because \overline{u} \text{ and } \overline{v} \text{ are differentiable vector functions.}$$

$$i.e. \frac{d}{dt} (\overline{u} - \overline{v}) = \frac{d \overline{u}}{dt} - \frac{d \overline{v}}{dt} \qquad Hence proved.$$

4

Theorem: If \bar{u} and \bar{v} are differentiable vector functions of scalar variable t then

 $\frac{d}{dt}(\bar{u}.\,\bar{v}) = \bar{u}.\frac{d\bar{v}}{dt} + \bar{v}.\frac{d\bar{u}}{dt}$

Proof: Let $\phi = \overline{u} \cdot \overline{v}$

Let $\overline{\delta u}$, $\overline{\delta v}$ and $\delta \phi$ are the changes in \overline{u} , \overline{v} and ϕ corresponding to small change δt in t respectively.

$$\hat{\cdot} \phi + \delta \phi = (\bar{u} + \delta \bar{u}). (\bar{v} + \delta \bar{v})
\hat{\cdot} \bar{u}. \bar{v} + \delta \phi = \bar{u}. \bar{v} + \bar{u}. \delta \bar{v} + \delta \bar{u}. \delta \bar{v}
\hat{\cdot} \delta \phi = \bar{u}. \delta \bar{v} + \bar{v}. \delta \bar{u} + \delta \bar{u}. \delta \bar{v} \dots (i)
Dividing (i) by δt and taking limit as $\delta t \to 0$, we get,

$$\lim_{\delta t \to 0} \frac{\delta \phi}{\delta t} = \lim_{\delta t \to 0} (\bar{u}. \frac{\delta \bar{v}}{\delta t} + \bar{v}. \frac{\delta \bar{u}}{\delta t} + \delta \bar{u}. \frac{\delta \bar{v}}{\delta t})
= \bar{u}. \lim_{\delta t \to 0} \frac{\delta \bar{v}}{\delta t} + \bar{v}. \lim_{\delta t \to 0} \frac{\delta \bar{u}}{\delta t} + \lim_{\delta t \to 0} \delta \bar{u}. \frac{\delta \bar{v}}{\delta t}
As \bar{u} and \bar{v} are differentiable vector functions and $\delta t \to 0 \Rightarrow \delta \bar{u} \to 0$, we get,

$$\hat{\cdot} \frac{d\phi}{dt} = \bar{u}. \frac{d\bar{v}}{dt} + \bar{v}. \frac{d\bar{u}}{dt}
i.e. \frac{d}{dt} (\bar{u}. \bar{v}) = \bar{u}. \frac{d\bar{v}}{dt} + \bar{v}. \frac{d\bar{u}}{dt}$$
Hence proved.$$$$

Corollary: If \bar{u} is differentiable vector function of scalar variable t then

$$\frac{d\overline{u}^2}{dt} = 2\overline{u}.\frac{d\overline{u}}{dt} \text{ and } \overline{u}.\frac{d\overline{u}}{dt} = u\frac{du}{dt}, \text{ where } u = |\overline{u}|$$
Proof: As $\overline{u}^2 = \overline{u}.\overline{u} = u^2$ where $u = |\overline{u}|$

$$\therefore \frac{d\overline{u}^2}{dt} = \frac{d}{dt}(\overline{u}.\overline{u}) = \overline{u}.\frac{d\overline{u}}{dt} + \overline{u}.\frac{d\overline{u}}{dt} = 2\overline{u}.\frac{d\overline{u}}{dt} \dots (1)$$

$$\& \frac{d\overline{u}^2}{dt} = \frac{du^2}{dt} = 2u\frac{du}{dt} \dots (2)$$
From (1) and (2), we get,
 $2\overline{u}.\frac{d\overline{u}}{dt} = 2u\frac{du}{dt}$
i.e. $\overline{u}.\frac{d\overline{u}}{dt} = u\frac{du}{dt}$ Hence proved.

Theorem: If \bar{u} and \bar{v} are differentiable vector functions of scalar variable t then

$$\frac{d}{dt}(\bar{u}\times\bar{v})=\bar{u}\times\frac{d\bar{v}}{dt}+\frac{d\bar{u}}{dt}\times\bar{v}$$

Proof: Let $\overline{w} = \overline{u} \times \overline{v}$

Let $\overline{\delta u}$, $\overline{\delta v}$ and $\delta \overline{w}$ are the changes in \overline{u} , \overline{v} and \overline{w} corresponding to small change

δt in t respectively.

- $\therefore \overline{w} + \delta \overline{w} = (\overline{u} + \delta \overline{u}) \times (\overline{v} + \delta \overline{v})$
- $\therefore \bar{u} \times \bar{v} + \delta \bar{w} = \bar{u} \times \bar{v} + \bar{u} \times \delta \bar{v} + \delta \bar{u} \times \bar{v} + \delta \bar{u} \times \delta \bar{v}$

 $\therefore \delta \overline{w} = \overline{u} \times \delta \overline{v} + \delta \overline{u} \times \overline{v} + \delta \overline{u} \times \delta \overline{v} \quad \dots \dots \quad (i)$

Dividing (i) by δt and taking limit as $\delta t \rightarrow 0$, we get,

$$\lim_{\delta t \to 0} \frac{\delta \bar{w}}{\delta t} = \lim_{\delta t \to 0} \left(\bar{u} \times \frac{\delta \bar{v}}{\delta t} + \frac{\delta \bar{u}}{\delta t} \times \bar{v} + \delta \bar{u} \times \frac{\delta \bar{v}}{\delta t} \right)$$

$$= \bar{u} \times \lim_{\delta t \to 0} \frac{\delta \bar{v}}{\delta t} + \lim_{\delta t \to 0} \frac{\delta \bar{u}}{\delta t} \times \bar{v} + \lim_{\delta t \to 0} \delta \bar{u} \times \frac{\delta \bar{v}}{\delta t}$$

As \bar{u} and \bar{v} are differentiable vector functions and $\delta t \to 0 \Rightarrow \delta \bar{u} \to 0$, we get,

$$\therefore \frac{d \bar{w}}{d t} = \bar{u} \times \frac{d \bar{v}}{d t} + \frac{d \bar{u}}{d t} \times \bar{v}$$

i.e. $\frac{d}{d t} (\bar{u} \times \bar{v}) = \bar{u} \times \frac{d \bar{v}}{d t} + \frac{d \bar{u}}{d t} \times \bar{v}$
Hence proved.

1 Para - 5

Corollary:
$$\frac{d}{dt} \, \bar{u} \times (\bar{v} \times \bar{w}) = \frac{d\bar{u}}{dt} \times (\bar{v} \times \bar{w}) + \bar{u} \times (\frac{d\bar{v}}{dt} \times \bar{w}) + \bar{u} \times (\bar{v} \times \frac{d\bar{w}}{dt})$$

Proof: Consider

$$\frac{d}{dt} \,\overline{u} \times (\overline{v} \times \overline{w}) = \frac{d\overline{u}}{dt} \times (\overline{v} \times \overline{w}) + \overline{u} \times \frac{d}{dt} (\overline{v} \times \overline{w})$$
$$= \frac{d\overline{u}}{dt} \times (\overline{v} \times \overline{w}) + \overline{u} \times [\frac{d\overline{v}}{dt} \times \overline{w} + \overline{v} \times \frac{d\overline{w}}{dt}]$$
$$= \frac{d\overline{u}}{dt} \times (\overline{v} \times \overline{w}) + \overline{u} \times (\frac{d\overline{v}}{dt} \times \overline{w}) + \overline{u} \times (\overline{v} \times \frac{d\overline{w}}{dt})$$

Hence proved.

Corollary:
$$\frac{d}{dt} [\bar{u} \ \bar{v} \ \bar{w}] = [\frac{d\bar{u}}{dt} \ \bar{v} \ \bar{w}] + [\bar{u} \ \frac{d\bar{v}}{dt} \ \bar{w}] + [\bar{u} \ \bar{v} \ \frac{d\bar{w}}{dt}]$$

Proof: Consider

$$\frac{d}{dt} [\bar{u} \ \bar{v} \ \bar{w}] = \frac{d}{dt} \ \bar{u}. (\bar{v} \times \bar{w})$$

$$= \frac{d\bar{u}}{dt}. (\bar{v} \times \bar{w}) + \bar{u}. \frac{d}{dt} (\bar{v} \times \bar{w})$$

$$= \frac{d\bar{u}}{dt}. (\bar{v} \times \bar{w}) + \bar{u}. [\frac{d\bar{v}}{dt} \times \bar{w} + \bar{v} \times \frac{d\bar{w}}{dt}]$$

$$= \frac{d\bar{u}}{dt}. (\bar{v} \times \bar{w}) + \bar{u}. [\frac{d\bar{v}}{dt} \times \bar{w}] + \bar{u}. (\bar{v} \times \frac{d\bar{w}}{dt}]$$

$$= \frac{d\bar{u}}{dt}. (\bar{v} \times \bar{w}) + \bar{u}. [\frac{d\bar{v}}{dt} \times \bar{w}] + \bar{u}. (\bar{v} \times \frac{d\bar{w}}{dt}]$$

Hence proved.

Theorem: If a vector function \overline{u} and a scalar function ϕ are differentiable functions of

scalar variable t then
$$\frac{a}{dt}(\Phi \bar{u}) = \Phi \frac{au}{dt} + \frac{a\Phi}{dt} \bar{u}$$

Proof: Let $\overline{w} = \varphi \overline{u}$

Let $\delta \overline{u}$, $\delta \phi$ and $\delta \overline{w}$ are the changes in \overline{u} , ϕ and \overline{w} corresponding to small change δt in t respectively.

$$\begin{aligned} &\dot{w} + \delta \overline{w} = (\Phi + \delta \Phi)(\overline{u} + \delta \overline{u}) \\ &\dot{v} + \delta \overline{w} = \Phi \overline{u} + \Phi \delta \overline{u} + \delta \Phi \overline{u} + \delta \Phi \delta \overline{u} \\ &\dot{v} + \delta \overline{w} = \Phi \delta \overline{u} + \delta \Phi \overline{u} + \delta \Phi \delta \overline{u} \quad \dots \quad (i) \\ &\text{Dividing (i) by } \delta t \text{ and taking limit as } \delta t \to 0, \text{ we get,} \\ &\lim_{\delta t \to 0} \frac{\delta \overline{w}}{\delta t} = \lim_{\delta t \to 0} \left(\Phi \frac{\delta \overline{u}}{\delta t} + \frac{\delta \Phi}{\delta t} \overline{u} + \frac{\delta \Phi}{\delta t} \delta \overline{u} \right) \\ &= \Phi \lim_{\delta t \to 0} \frac{\delta \overline{u}}{\delta t} + \lim_{\delta t \to 0} \frac{\delta \Phi}{\delta t} \overline{u} + \lim_{\delta t \to 0} \frac{\delta \Phi}{\delta t} \delta \overline{u} \\ &\text{As a vector function } \overline{u} \text{ and a scalar function } \Phi \text{ are differentiable functions of scalar variable t and } \delta t \to 0 \Rightarrow \delta \overline{u} \to 0, \text{ we get,} \\ &\dot{v} = \frac{d \overline{u}}{dt} = \Phi \frac{d \overline{u}}{dt} + \frac{d \Phi}{dt} \overline{u} \\ &\text{i.e. } \frac{d}{dt} (\Phi \overline{u}) = \Phi \frac{d \overline{u}}{dt} + \frac{d \Phi}{dt} \overline{u} \\ &\text{Hence proved.} \end{aligned}$$

Corollary: If k is constant scalar then $\frac{d}{dt}(k\bar{u}) = k\frac{d\bar{u}}{dt}$

Proof: Consider

$$\frac{d}{dt}(k\bar{u}) = k\frac{d\bar{u}}{dt} + \frac{dk}{dt}\bar{u} = k\frac{d\bar{u}}{dt} + 0\bar{u} = k\frac{d\bar{u}}{dt}$$

Hence proved.

Theorem: If \bar{u} a differentiable vector function of a scalar s and s is the differentiable

scalar function of scalar variable t then $\frac{d\overline{u}}{dt} = \frac{ds}{dt}\frac{d\overline{u}}{ds}$

Proof: Let $\delta \bar{u}$ and δs are the changes in \bar{u} and s corresponding to change δt in t, then

$$\frac{\delta u}{\delta t} = \frac{\delta s}{\delta t} \frac{\delta u}{\delta s}$$
By taking limit as $\delta t \to 0$, we get,

$$\lim_{\delta t \to 0} \frac{\delta \overline{u}}{\delta t} = \lim_{\delta t \to 0} \left(\frac{\delta s}{\delta t} \frac{\delta \overline{u}}{\delta t} \right)$$

$$= \lim_{\delta t \to 0} \frac{\delta s}{\delta t} \lim_{\delta t \to 0} \frac{\delta \overline{u}}{\delta s}$$
As $\delta t \to 0 \Rightarrow \delta s \to 0$, we get,

$$\therefore \lim_{\delta t \to 0} \frac{\delta \overline{u}}{\delta t} = \lim_{\delta t \to 0} \frac{\delta s}{\delta t} \lim_{\delta s \to 0} \frac{\delta \overline{u}}{\delta s}$$

$$\therefore \frac{d \overline{u}}{d t} = \frac{d s}{d t} \frac{d \overline{u}}{d s} \qquad \because \overline{u} \text{ and s are differentiable functions.}$$
Hence proved.

Theorem: If $\overline{f}(t) = f_1(t)\overline{i} + f_2(t)\overline{j} + f_3(t)\overline{k}$ is a differentiable vector function of a scalar variable t, then $\frac{d}{dt}\overline{f}(t) = \frac{df_1(t)}{dt}\overline{i} + \frac{df_2(t)}{dt}\overline{j} + \frac{df_3(t)}{dt}\overline{k}$ **Proof:** Let $\overline{f} = f_1\overline{i} + f_2\overline{j} + f_3\overline{k}$. Let $\delta f_1, \delta f_2, \delta f_3$ and $\delta \overline{f}$ are the changes in f_1, f_2, f_3 and \overline{f} corresponding to change δt in t. $\therefore \overline{f} + \delta \overline{f} = (f_1 + \delta f_1)\overline{i} + (f_2 + \delta f_2)\overline{j} + (f_3 + \delta f_3)\overline{k}$ $\therefore f_1\overline{i}\overline{i}+f_2\overline{j}+f_3\overline{k}+\delta \overline{f}=f_1\overline{i}\overline{i}+f_2\overline{j}+f_3\overline{k}+\delta f_1\overline{i}\overline{i}+\delta f_2\overline{j}+\delta f_3\overline{k}$ $\therefore \delta \overline{f} = \delta f_1\overline{i}\overline{i}+\delta f_2\overline{j}+\delta f_3\overline{k}$(i) Dividing equation (i) by δt and taking limit as $\delta t \to 0$, we get, $\lim_{\delta t \to 0} \frac{\delta \overline{f}}{\delta t} = \lim_{\delta t \to 0} (\frac{\delta f_1}{\delta t}\overline{i} + \frac{\delta f_2}{\delta t}\overline{j} + \frac{\delta f_3}{\delta t}\overline{k})$ $= \lim_{\delta t \to 0} \frac{\delta f_1}{\delta t}\overline{i} + \lim_{\delta t \to 0} \frac{\delta f_2}{\delta t}\overline{j} + \lim_{\delta t \to 0} \frac{\delta f_3}{\delta t}\overline{k}$ As \overline{f} is differentiable \Rightarrow limit of LHS is exists \Rightarrow limit of RHS is also exists $\therefore \frac{d}{dt}\overline{f}(t) = \frac{df_1(t)}{dt}\overline{i} + \frac{df_2(t)}{dt}\overline{j} + \frac{df_3(t)}{dt}\overline{k}$ Hence proved.

Ex.: Show that $\bar{u}(t)$ is constant vector function on [a, b] iff $\frac{d\bar{u}}{dt} = \bar{0}$ on [a, b]

Proof: Suppose
$$\bar{u}(t) = \bar{c}$$
, $\forall t \in [a, b]$

$$\therefore \frac{d\bar{u}}{dt} = \lim_{\delta t \to 0} \frac{\bar{u}(t+\delta t) - \bar{u}(t)}{\delta t}$$

$$= \lim_{\delta t \to 0} \frac{\bar{c} - \bar{c}}{\delta t}$$

$$\therefore \frac{d\bar{u}}{dt} = \bar{0} \quad \forall t \in [a, b]$$
Conversely: Suppose $\frac{d\bar{u}}{dt} = \bar{0} \quad \forall t \in [a, b]$
Let $\bar{u}(t) = u_1(t)\bar{i} + u_2(t)\bar{j} + u_3(t)\bar{k}$ for the force of the tendent is $\frac{d\bar{u}}{dt} = \frac{du_1}{dt} \bar{i} + \frac{du_2}{dt} \bar{j} + \frac{du_3}{dt} \bar{k}$

$$\therefore \frac{d\bar{u}}{dt} = \bar{0} \Rightarrow \frac{du_1}{dt} \bar{i} + \frac{du_2}{dt} \bar{j} + \frac{du_3}{dt} \bar{k}$$

$$\therefore \frac{d\bar{u}}{dt} = \bar{0} \Rightarrow \frac{du_1}{dt} \bar{i} + \frac{du_2}{dt} \bar{j} + \frac{du_3}{dt} \bar{k} = \bar{0}$$

$$\Rightarrow \frac{du_1}{dt} = 0, \frac{du_2}{dt} = 0 \text{ and } \frac{du_3}{dt} = 0$$

$$\Rightarrow u_1, u_2 \text{ and } u_3 \text{ are constants.}$$
Let $u_1(t) = c_1, u_2(t) = c_2 \text{ and } u_3(t) = c_3$

$$\bar{u}(t) = c_1\bar{i} + c_2\bar{i} + c_3\bar{k} = \bar{c} \text{ a constant vector } \forall t \in [a, b]$$

Hence proved.

8

Ex.: Show that a differentiable vector function $\overline{u}(t)$ is of constant magnitude iff $\overline{u} \cdot \frac{d\overline{u}}{dt} = 0 \forall t \in [a, b]$ **Proof:** Let \overline{u} is of constant magnitude $\forall t \in [a, b]$ $\Leftrightarrow |\overline{u}| = u$ is constant $\forall t \in [a, b]$ $\Leftrightarrow \overline{u}.\overline{u} = u^2$ is constant $\forall t \in [a, b]$ $\Leftrightarrow \frac{d}{dt}(\bar{\mathbf{u}},\bar{\mathbf{u}}) = 0 \;\forall \; \mathbf{t} \in [\mathbf{a},\mathbf{b}]$ $\Leftrightarrow 2\overline{u}.\frac{d\overline{u}}{dt} = 0 \forall t \in [a, b]$ $\Leftrightarrow \overline{\mathbf{u}} \cdot \frac{d\overline{\mathbf{u}}}{dt} = 0 \forall t \in [a, b]$ Hence proved. **Ex.:** Show that a non-constant vector function $\overline{u}(t)$ is of constant direction iff $\overline{\mathbf{u}} \times \frac{d\overline{\mathbf{u}}}{dt} = \overline{\mathbf{0}} \forall t \in [a, b]$ **Proof:** Let $\bar{u} = u\hat{u}$, where \hat{u} is unit vector along \bar{u} . $\therefore \ \overline{\mathbf{u}} \times \frac{d\overline{\mathbf{u}}}{dt} = (\mathbf{u}\hat{u}) \times \frac{d}{dt} (\mathbf{u}\hat{u})$ $= (u\hat{u}) \times [u\frac{d\hat{u}}{dt} + \hat{u}\frac{du}{dt}]$ $= (u\hat{u}) \times (u\frac{d\hat{u}}{dt}) + (u\hat{u}) \times \hat{u}\frac{du}{dt}$ $= u^{2}(\hat{u} \times \frac{d\hat{u}}{dt}) + u \frac{du}{dt} (\hat{u} \times \hat{u})^{u}$ $\therefore \ \overline{\mathbf{u}} \times \frac{d\overline{\mathbf{u}}}{dt} = \mathbf{u}^2(\hat{u} \times \frac{d\hat{u}}{dt}) \qquad \dots \dots (1) \qquad \because \hat{u} \times \hat{u} = \overline{\mathbf{0}}$ Suppose \overline{u} is of constant direction $\forall t \in [a, b]$ $\therefore \hat{u}$ is of constant direction $\forall t \in [a, b]$ $\therefore \hat{u}$ is constant vector $\forall t \in [a, b] \because$ magnitude of \hat{u} is constant $\therefore \frac{d\hat{u}}{dt} = \bar{0} \forall t \in [a, b]$ $\therefore \text{ From (1)} \, \overline{u} \times \frac{d\overline{u}}{dt} = u^2(\hat{u} \times \overline{0}) = \overline{0} \, \forall \, t \in [a, b]$ Conversely: Suppose $\overline{u} \times \frac{d\overline{u}}{dt} = \overline{0} \forall t \in [a, b]$ $\therefore \text{ From (1) } u^2(\hat{u} \times \frac{d\hat{u}}{dt}) = \overline{0} \forall t \in [a, b]$ $\therefore \hat{u} \times \frac{d\hat{u}}{dt} = \bar{0} \forall t \in [a, b] \dots (2) \qquad \because u \neq 0 \text{ as } \bar{u} \text{ is non-constant vector.}$ Also $\hat{u} \cdot \frac{d\hat{u}}{dt} = \bar{0} \forall t \in [a, b] \dots (3)$ \because magnitude of \hat{u} is constant. $\therefore \text{ From (2) and (3)} \frac{d\hat{u}}{dt} = \overline{0} \forall t \in [a, b]$ $\therefore \hat{u}$ is constant vector $\forall t \in [a, b]$ $\therefore \hat{u}$ and hence \bar{u} is of constant direction $\forall t \in [a, b]$ Hence proved.

Ex.: Evaluate
$$\lim_{t \to 0} [(t^2 + 1)\overline{i} + (\frac{3^{2t}-1}{t})\overline{j} + (1+2t)^{\frac{1}{t}}\overline{k}]$$

Sol. Consider $\lim_{t \to 0} [(t^2 + 1)\overline{i} + (\frac{3^{2t}-1}{t})\overline{j} + (1+2t)^{\frac{1}{t}}\overline{k}]$
 $= \lim_{t \to 0} (t^2 + 1)\overline{i} + \lim_{t \to 0} (\frac{3^{2t}-1}{t})\overline{j} + \lim_{t \to 0} (1+2t)^{\frac{1}{t}}\overline{k}$
 $= (0+1)\overline{i} + \log^3 \overline{j} + \lim_{t \to 0} [(1+2t)^{\frac{1}{2t}}]^2\overline{k} \qquad : \lim_{t \to 0} (\frac{a^t-1}{t}) = \log a$
 $= \overline{i} + 2\log^3 \overline{j} + e^2\overline{k} \qquad : \lim_{t \to 0} (1+t)^{\frac{1}{t}} = e$

Ex.: If $\overline{f}(t) = \frac{\sin 2t}{t}\overline{i} + \cot \overline{j}$, $t \neq 0$ and $\overline{f}(0) = x\overline{i} + \overline{j}$ is continuous at t = 0, then find the value of x.

Sol. Let $\overline{f}(t) = \frac{\sin 2t}{t}\overline{i} + \cot \overline{j}$, $t \neq 0$ and $\overline{f}(0) = x\overline{i} + \overline{j}$ is continuous at t = 0 $\therefore \lim_{t \to 0} \overline{f}(t) = \overline{f}(0)$ $\therefore \overline{f}(0) = \lim_{t \to 0} (\frac{\sin 2t}{t}\overline{i} + \cot \overline{j})$ $\therefore x\overline{i} + \overline{j} = \lim_{t \to 0} (\frac{\sin 2t}{t})\overline{i} + \lim_{t \to 0} \cot \overline{j}$ $\therefore x\overline{i} + \overline{j} = \lim_{t \to 0} 2(\frac{\sin 2t}{2t})\overline{i} + \cos 0\overline{j}$ $\therefore x\overline{i} + \overline{j} = 2(1)\overline{i} + \overline{j}$ $\therefore x\overline{i} + \overline{j} = 2\overline{i} + \overline{j}$

Ex.: If $\overline{f}(t) = cost\overline{i} + sint\overline{j} + tant\overline{k}$, find $\overline{f'}(t)$ and $\left|\overline{f'}(\frac{\pi}{4})\right|$. Solution: Let $\overline{f}(t) = cost\overline{i} + sint\overline{j} + tant\overline{k}$ $\therefore \overline{f'}(t) = -sint\overline{i} + cos\overline{j} + sec^2t\overline{k}$ $\therefore \overline{f'}(\frac{\pi}{4}) = -sin\frac{\pi}{4}\overline{i} + cos\frac{\pi}{4}\overline{j} + sec^2\frac{\pi}{4}\overline{k} = -\frac{1}{\sqrt{2}}\overline{i} + \frac{1}{\sqrt{2}}\overline{j} + 2\overline{k}$ $\therefore \left|\overline{f'}(\frac{\pi}{4})\right| = \sqrt{(-\frac{1}{\sqrt{2}})^2 + (\frac{1}{\sqrt{2}})^2 + 2^2} = \sqrt{5}$

Ex.: If $\bar{r} = (t^2+1)\bar{i} + (4t-3)\bar{j} + (2t^2 - 6t)\bar{k}$, find i) $\frac{d\bar{r}}{dt}$, ii) $\left|\frac{d\bar{r}}{dt}\right|$, iii) $\frac{d^2\bar{r}}{dt^2}$ iv) $\left|\frac{d^2\bar{r}}{dt^2}\right|$ at t = 2. **Solution:** Let $\bar{r} = (t^2+1)\bar{i} + (4t-3)\bar{j} + (2t^2 - 6t)\bar{k}$ $\therefore \frac{d\bar{r}}{dt} = (2t)\bar{i} + (4)\bar{j} + (4t - 6)\bar{k}$ and

$$\frac{d^{2}\bar{r}}{dt^{2}} = 2\bar{I} + 0\bar{J} + 4\bar{k}$$

At t = 2, we have,
i) $\frac{d\bar{r}}{dt} = 4\bar{I} + 4\bar{J} + 2\bar{k} = 2(2\bar{I} + 2\bar{J} + \bar{k})$
ii) $\left|\frac{d\bar{r}}{dt}\right| = 2\sqrt{2^{2} + 2^{2} + 1^{2}} = 6$
iii) $\frac{d^{2}\bar{r}}{dt^{2}} = 2\bar{I} + 4\bar{k} = 2(\bar{I} + 2\bar{k})$
iv) $\left|\frac{d^{2}\bar{r}}{dt^{2}}\right| = 2\sqrt{1^{2} + 2^{2}} = 2\sqrt{5}$

Ex.: If $\bar{r} = (t+1)\bar{i} + (t^2+t+1)\bar{j} + (t^3+t^2+t+1)\bar{k}$, find $\frac{d\bar{r}}{dt}$ and $\frac{d^2\bar{r}}{dt^2}$

Solution: Let
$$\bar{r} = (t+1)\bar{i} + (t^2+t+1)\bar{j} + (t^3+t^2+t+1)\bar{k}$$

$$\therefore \frac{d\bar{r}}{dt} = \bar{i} + (2t+1)\bar{j} + (3t^2+2t+1)\bar{k} \text{ and}$$

$$\frac{d^2\bar{r}}{dt^2} = 0\bar{i} + 2\bar{j} + (6t+2)\bar{k}$$
i.e. $\frac{d^2\bar{r}}{dt^2} = 2[\bar{j} + (3t+1)\bar{k}]$

Ex.: If $\bar{r} = e^{-t}\bar{r} + \log(t^2+1)\bar{j} - \tanh\bar{k}$, find i) $\frac{d\bar{r}}{dt}$, ii) $\frac{d\bar{r}}{dt^2}$, ii) $\left|\frac{d\bar{r}}{dt}\right|$, iv) $\left|\frac{d^2\bar{r}}{dt^2}\right|$ at t = 0. Solution: Let $\bar{r} = e^{-t}\bar{r} + \log(t^2+1)\bar{j} - \tanh\bar{k}$ $\therefore \frac{d\bar{r}}{dt} = -e^{-t}\bar{r} + \frac{2t}{t^2+1}\bar{j} - \sec^2t\bar{k}$ and $\frac{d^2\bar{r}}{dt^2} = e^{-t}\bar{r} + 2[\frac{t^2+1-t(2t)}{(t^2+1)^2}]\bar{j} - 2\sec t$. sect. $\tanh\bar{k}$ $=e^{-t}\bar{r} + 2[\frac{1-t^2}{(t^2+1)^2}]\bar{j} - 2\sec^2t$. $\tanh\bar{k}$ At t = 0, we have, i) $\frac{dr}{dt} = -\bar{r} + 0\bar{j} - \bar{k} = -\bar{r} - \bar{k}$ if all and find for the final field. ii) $\frac{d^2\bar{r}}{dt^2} = \bar{r} + 2\bar{j} - 0\bar{k} = \bar{r} + 2\bar{j}$ iii) $\left|\frac{d\bar{r}}{dt}\right| = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$ iv) $\left|\frac{d^2\bar{r}}{dt^2}\right| = \sqrt{(1)^2 + (2)^2} = \sqrt{5}$

Ex.: If
$$\bar{r} = sint\bar{i} + cost\bar{j} + t\bar{k}$$
, find i) $\frac{d\bar{r}}{dt}$, ii) $\frac{d^2\bar{r}}{dt^2}$, ii) $\left|\frac{d\bar{r}}{dt}\right|$, iv) $\left|\frac{d^2\bar{r}}{dt^2}\right|$.
Solution: Let $\bar{r} = sint\bar{i} + cost\bar{j} + t\bar{k}$
i) $\frac{d\bar{r}}{dt} = cost\bar{i} - sint\bar{j} + \bar{k}$

ii)
$$\frac{d^2 \bar{\mathbf{r}}}{dt^2} = -sint\bar{\mathbf{l}} - \cos t \bar{\mathbf{j}} + 0\bar{\mathbf{k}}$$
$$= -(sint\bar{\mathbf{l}} + \cos t \bar{\mathbf{j}})$$
iii)
$$\left|\frac{d\bar{\mathbf{r}}}{dt}\right| = \sqrt{(cost)^2 + (-sint)^2 + 1^2} = \sqrt{2}$$
iv)
$$\left|\frac{d^2 \bar{\mathbf{r}}}{dt^2}\right| = \sqrt{(-sint)^2 + (-cost)^2} = 1$$

Ex.: If $\bar{r} = e^{kt}\bar{a} + e^{-kt}\bar{b}$, where \bar{a}, \bar{b} are constant vectors and k is constant scalar, then show that $\ddot{r} = k^2\bar{r}$, where $\ddot{r} = \frac{d^2\bar{r}}{dt^2}$ Proof: Let $\bar{r} = e^{kt}\bar{a} + e^{-kt}\bar{b}$, where \bar{a}, \bar{b} are constant vectors and k is constant scalar. $\therefore \frac{d\bar{r}}{dt} = ke^{kt}\bar{a} - ke^{-kt}\bar{b}$ $\therefore \frac{d^2\bar{r}}{dt^2} = k^2e^{kt}\bar{a} + k^2e^{-kt}\bar{b}$ $= k^2(e^{kt}\bar{a} + e^{-kt}\bar{b})$ $\therefore \ddot{r} = k^2\bar{r}$ Hence proved.

Ex.: If $\bar{r} = (sinht)\bar{a} + (cosht)\bar{b}$, where \bar{a} , \bar{b} are constant vectors,

then show that $\frac{d^2\bar{r}}{dt^2} = \bar{r}$ **Proof:** Let $\bar{r} = (sinht)\bar{a} + (cosht)\bar{b}$, where \bar{a} , \bar{b} are constant vectors. $\therefore \frac{d\bar{r}}{dt} = (cosht)\bar{a} + (sinht)\bar{b}$ $\therefore \frac{d^2\bar{r}}{dt^2} = (sinht)\bar{a} + (cosht)\bar{b}$ $\therefore \frac{d^2\bar{r}}{dt^2} = \bar{r}$ Hence proved. **Ex.:** If $\bar{r} = cosnt\bar{1} + sinnt \bar{j}$, where n is constant, then show that

i)
$$\bar{r} \cdot \frac{d\bar{r}}{dt} = 0$$
 ii) $\bar{r} \times \frac{d\bar{r}}{dt} = n\bar{k}$ iii) $\frac{d^2\bar{r}}{dt^2} = -n^2\bar{r}$

Proof: Let $\bar{r} = cosnt\bar{i} + sinnt\bar{j}$, where n is constant.

$$\therefore \frac{ar}{dt} = -nsinnt\bar{1} + ncosnt\bar{j}$$
i) $\bar{r}.\frac{d\bar{r}}{dt} = (cosnt\bar{1} + sinnt\bar{j})(-nsinnt\bar{1} + ncosnt\bar{j})$

$$= -ncosntsinnt + nsinntcosnt$$

$$\therefore \bar{r}.\frac{d\bar{r}}{dt} = 0$$

ii)
$$\bar{r} \times \frac{d\bar{r}}{dt} = \begin{vmatrix} \bar{I} & \bar{J} & k \\ cosnt & sinnt & 0 \\ -nsinnt & ncosnt & 0 \end{vmatrix}$$

$$= 0\bar{I} + 0\bar{J} + (ncos^2nt + nsin^2nt)\bar{k}$$

$$= n\bar{k}$$
and iii) As $\frac{dr}{dt} = -nsinnt\bar{I} + ncosnt \bar{J}$

$$\therefore \frac{d^2\bar{r}}{dt^2} = -n^2cosnt\bar{I} - n^2sinnt \bar{J}$$

$$= -n^2(cosnt\bar{I} + sinnt \bar{J})$$

$$\therefore \frac{d^2\bar{r}}{dt^2} = -n^2\bar{r}$$
Hence proved.

Ex.: If $\bar{r} = \bar{a} \cos\omega t + \bar{b} \sin\omega t$, where \bar{a}, \bar{b} are constant vectors and ω is constant scalar, then prove that i) $\bar{r} \times \frac{d\bar{r}}{dt} = \omega(\bar{a} \times \bar{b})$ (ii) $\frac{d^2\bar{r}}{dt^2} = -\omega^2 \bar{r}$

Proof: Let
$$\bar{r} = \bar{a} \cos \omega t + \bar{b} \sin \omega t$$
, where \bar{a} , \bar{b} are constant vectors and ω is constant scalar.

$$\begin{array}{l} \therefore \frac{d\bar{r}}{dt} = -\omega\bar{a}\sin\omega t + \omega\bar{b}\cos\omega t \\ \text{i)} \ \bar{r} \times \frac{d\bar{r}}{dt} = (\bar{a}\cos\omega t + \bar{b}\sin\omega t) \times (-\omega\bar{a}\sin\omega t + \omega\bar{b}\cos\omega t) \\ = \omega[-(\bar{a}\times\bar{a})\cos\omega t\sin\omega t + (\bar{a}\times\bar{b})\cos^2\omega t - (\bar{b}\times\bar{a})\sin^2\omega t \\ + (\bar{b}\times\bar{b})\sin\omega t\cos\omega t] \\ = \omega[\bar{0} + (\bar{a}\times\bar{b})\cos^2\omega t + (\bar{a}\times\bar{b})\sin^2\omega t + \bar{0}] \\ \therefore \bar{a}\times\bar{a} = \bar{b}\times\bar{b} = \bar{0} \text{ and } \bar{b}\times\bar{a} = -\bar{a}\times\bar{b} \\ = \omega(\bar{a}\times\bar{b}) \\ \text{ii)} \text{ As } \frac{d\bar{r}}{dt} = -\omega\bar{a}\sin\omega t + \omega\bar{b}\cos\omega t \text{ for all } \mathbf{u} + \mathbf{d} \\ \therefore \frac{d^2\bar{r}}{dt^2} = -\omega^2\bar{a}\cos\omega t - \omega^2\bar{b}\sin\omega t \\ = -\omega^2(\bar{a}\cos\omega t + \bar{b}\sin\omega t) \\ \therefore \ddot{r} = -\omega^2\bar{r} \text{ Hence proved.} \end{array}$$

Ex.: If $\overline{A} = 5t^2\overline{i} + t\overline{j} - t^3\overline{k}$ and $\overline{B} = sint\overline{i} - cost\overline{j}$, then find $\frac{d}{dt}(\overline{A}, \overline{B})$ and $\frac{d}{dt}(\overline{A}, \overline{A})$ **Solution:** Let $\overline{A} = 5t^2\overline{i} + t\overline{j} - t^3\overline{k}$ and $\overline{B} = sint\overline{i} - cost\overline{j}$. $\therefore \overline{A}, \overline{B} = 5t^2sint - tcost$ $\therefore \frac{d}{dt}(\overline{A}, \overline{B}) = 10tsint + 5t^2cost - cost + tsint$

$$\begin{aligned} &: \frac{d}{dt} (\bar{A}, \bar{B}) = 11 \operatorname{tsint} + 5t^2 \operatorname{cost} - \operatorname{cost.} \\ &: \operatorname{Now} \bar{A}, \bar{A} = 25t^4 + t^2 + t^6 \\ &: \frac{d}{dt} (\bar{A}, \bar{A}) = 100t^3 + 2t + 6t^5 \end{aligned}$$

Ex.: If $\bar{a} = t^2\bar{1} + t\bar{j} + (2t+1)\bar{k}$ and $\bar{b} = (2t-3)\bar{1} + \bar{j} + t\bar{k}$, then find i) $\frac{d}{dt} (\bar{a}, \bar{b})$, ii) $\frac{d}{dt} (\bar{a} \times \bar{b})$
Solution: Let $\bar{a} = t^2\bar{1} + t\bar{j} + (2t+1)\bar{k}$ and $\bar{b} = (2t-3)\bar{1} + \bar{j} + t\bar{k}$.
 $\therefore \bar{a}, \bar{b} = t^2(2t-3) + t - t(2t+1) = 2t^3 - 3t^2 + t - 2t^2 - t = 2t^3 - 5t^2$
 $\bar{a} \times \bar{b} = \begin{vmatrix} \bar{1} & \bar{j} & \bar{k} \\ t^2 & t & 2t+1 \\ 2t-3 & 1 & -t \end{vmatrix}$
 $= (-t^2 - 2t - 1)\bar{1} - (-t^3 - 4t^2 - 2t + 6t + 3)\bar{1} + (t^2 - 2t^2 + 3t)\bar{k}$
 $= (-t^2 - 2t - 1)\bar{1} + (t^3 + 4t^2 - 4t - 3)\bar{1} + (t^2 - 2t^2 + 3t)\bar{k}$
 $i) \frac{d}{dt} (\bar{a}, \bar{b}) = 6t^2 - 10t$
At $t = 1$, we have
 $\therefore \frac{d}{dt} (\bar{a}, \bar{b}) = 6 - 10 = -4$
 $ii) \frac{d}{dt} (\bar{a} \times \bar{b}) = \frac{d}{dt} [(-t^2 - 2t - 1)\bar{1} + (t^3 + 4t^2 - 4t - 3)\bar{1} + (-t^2 + 3t)\bar{k}]$
 $= (-2t - 2)\bar{1} + (3t^2 + 8t - 4)\bar{1} + (-2t + 3)\bar{k}$
At $t = 1$, we have,
 $\frac{d}{dt} (\bar{a} \times \bar{b}) = -4\bar{1} + 7\bar{1} + \bar{k}$
Ex.: Prove that $\frac{d}{dt} (\bar{t}, \frac{d\bar{t}}{dt} \times \frac{d^2\bar{t}}{dt^2} = \bar{t}, \frac{d\bar{t}}{dt} \times \frac{d^3\bar{t}}{dt^3}$

Ex.: Prove that $\frac{d}{dt} (\bar{r}, \frac{d\bar{r}}{dt} \times \frac{d-1}{dt^2}) = \bar{r}, \frac{d\bar{r}}{dt} \times \frac{d-1}{dt^3}$ Proof: Consider LHS = $\frac{d}{dt} (\bar{r}, \frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2})$ = $\frac{d\bar{r}}{dt} \cdot \frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2} + \bar{r}, \frac{d^2\bar{r}}{dt^2} \times \frac{d^2\bar{r}}{dt^2} + \bar{r}, \frac{d\bar{r}}{dt} \times \frac{d^3\bar{r}}{dt^3}$ = $0 + 0 + \bar{r}, \frac{d\bar{r}}{dt} \times \frac{d^3\bar{r}}{dt^3}$ = $\bar{r}, \frac{d\bar{r}}{dt} \times \frac{d^3\bar{r}}{dt^3}$ = RHS Hence proved.

Ex.: Find $\frac{d}{dt} [\bar{r} \ \frac{d\bar{r}}{dt} \ \frac{d^2\bar{r}}{dt^2}]$ and $\frac{d^2}{dt^2} [\bar{r} \ \frac{d\bar{r}}{dt} \ \frac{d^2\bar{r}}{dt^2}]$ **Proof:** Consider

_

$$i) \frac{d}{dt} \left[\bar{r} \ \frac{d\bar{r}}{dt} \ \frac{d^{2}\bar{r}}{dt^{2}} \right] = \frac{d}{dt} \left(\bar{r} . \frac{d\bar{r}}{dt} \times \frac{d^{2}\bar{r}}{dt^{2}} \right)$$

$$= \frac{d\bar{r}}{dt} . \frac{d\bar{r}}{dt} \times \frac{d^{2}\bar{r}}{dt^{2}} + \bar{r} . \frac{d^{2}\bar{r}}{dt^{2}} \times \frac{d^{2}\bar{r}}{dt^{2}} + \bar{r} . \frac{d\bar{r}}{dt} \times \frac{d^{3}\bar{r}}{dt^{3}}$$

$$= 0 + 0 + \bar{r} . \frac{d\bar{r}}{dt} \times \frac{d^{3}\bar{r}}{dt^{3}}$$

$$= \bar{r} . \frac{d\bar{r}}{dt} \times \frac{d^{3}\bar{r}}{dt^{3}}$$

$$= [\bar{r} \frac{d\bar{r}}{dt} \frac{d^{3}\bar{r}}{dt^{3}}]$$

$$= [\bar{r} \frac{d\bar{r}}{dt} \frac{d^{3}\bar{r}}{dt^{3}}]$$

$$ii) \frac{d^{2}}{dt^{2}} \left[\bar{r} \ \frac{d\bar{r}}{dt} \ \frac{d^{2}\bar{r}}{dt^{2}} \right] = \frac{d}{dt} \left\{ \frac{d}{dt} \left[\bar{r} \ \frac{d\bar{r}}{dt} \ \frac{d^{2}\bar{r}}{dt^{2}} \right] \right\} = \frac{d}{dt} \left[\bar{r} \ \frac{d\bar{r}}{dt} \ \frac{d^{3}\bar{r}}{dt^{3}} \right]$$

$$= \left[\frac{d\bar{r}}{dt} \ \frac{d\bar{r}}{dt^{3}} - \left[\bar{r} \ \frac{d\bar{r}}{dt} \ \frac{d^{3}\bar{r}}{dt^{3}} \right] + \left[\bar{r} \ \frac{d\bar{r}}{dt^{2}} \ \frac{d^{3}\bar{r}}{dt^{3}} \right] + \left[\bar{r} \ \frac{d\bar{r}}{dt} \ \frac{d^{3}\bar{r}}{dt^{3}} \right]$$

$$= \left[\frac{d\bar{r}}{dt} \ \frac{d\bar{r}}{dt} \ \frac{d^{3}\bar{r}}{dt^{3}} \right] + \left[\bar{r} \ \frac{d\bar{r}}{dt^{2}} \ \frac{d^{3}\bar{r}}{dt^{3}} \right] + \left[\bar{r} \ \frac{d\bar{r}}{dt} \ \frac{d^{3}\bar{r}}{dt^{3}} \right]$$

$$= \left[\frac{d\bar{r}}{dt} \ \frac{d\bar{r}}{dt} \ \frac{d\bar{r}}{dt^{3}} - \left[\bar{r} \ \frac{d\bar{r}}{dt^{3}} \ \frac{d\bar{r}}{dt^{3}} - \left[\bar{r} \ \frac{d\bar{r}}{dt^{2}} \ \frac{d\bar{r}}{dt^{3}} - \left[\bar{r} \ \frac{d\bar{r}}{d\bar{r}} \ \frac{d\bar{r}}{dt^{3}} - \left[\bar{r} \ \frac{d\bar{r}}{dt^{2}} \ \frac{d\bar{r}}{dt^{3}} - \left[\bar{r} \ \frac{d\bar{r}}{dt^{3}} \ \frac{d\bar{r}}{dt^{3}} - \left[\bar{r} \ \frac{d\bar{r}}{dt^{3}} - \left[\bar{r} \ \frac{d\bar{r}}{dt^{2}} \ \frac{d\bar{r}}{dt^{3}} - \left[\bar{r} \ \frac{d\bar{r}}{dt^{3}} \ \frac{d\bar{r}}{dt^{3}} - \left[\bar{r} \ \frac{d\bar{r}}{dt^{3}} - \left[\bar{r} \ \frac{d\bar{r}}{dt^{3}} - \left[\bar{r} \ \frac{d\bar$$

Curves in Space: Let $\overline{r(t)} = x(t)\overline{i} + y(t)\overline{j} + z(t)\overline{k}$ be a position vector of a point

P(t), then
i)
$$\frac{d\bar{r}}{dt} = \frac{dx}{dt}\bar{1} + \frac{dy}{dt}\bar{j} + \frac{dz}{dt}\bar{k}$$
 is the tangent to the curve in space at P.
i) $\bar{T} = \frac{d\bar{r}}{ds} = \frac{d\bar{r}}{dt}$ is called unit tangent vector to the curve in space at P.
Where $\frac{ds}{dt} = \left|\frac{d\bar{r}}{dt}\right| = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2}$
ii) $\frac{d\bar{T}}{ds} = \frac{d\bar{T}}{dt}$ is the normal vector to the curve in space at P.
iii) $\bar{N} = \frac{d\bar{T}}{\frac{d\bar{T}}{ds}}$ is an unit normal vector to the curve in space at P.
iv) $k = \left|\frac{d\bar{T}}{ds}\right|$ is the curvature of the curve in space at P.
v) $\rho = \frac{1}{k}$ is the radius of curvature at P.
Velocity: Let $\bar{r}(t) = x(t)\bar{r} + y(t)\bar{j} + z(t)\bar{k}$ be a position of a particle moving along a
curve at time t, then $\bar{v} = \frac{d\bar{T}}{dt} = \frac{dx}{dt}\bar{1} + \frac{dy}{dt}\bar{j} + \frac{dz}{dt}\bar{k}$ is called the velocity of a particle
at time t.
Acceleration: Let $\bar{r}(t) = x(t)\bar{1} + y(t)\bar{j} + z(t)\bar{k}$ be a position of a particle moving along
a curve at time t, then $\bar{a} = \frac{d\bar{v}}{dt} = \frac{d^2\bar{r}}{dt^2}$ is called an acceleration of a particle at time t.
Speed: Let $\bar{v} = \frac{d\bar{r}}{dt} = \frac{dx}{dt}\bar{1} + \frac{dy}{dt}\bar{j} + \frac{dz}{dt}\bar{k}$ is velocity of a particle at time t,
then $v = |\bar{v}|$ is called speed of a particle at time t.

Ex.: Find the tangential and normal components of acceleration of a particle. **Solution:** Let $\overline{r(t)} = x(t)\overline{i} + y(t)\overline{j} + z(t)\overline{k}$ be a position vector of a particle at time t, then $\bar{v} = \frac{d\bar{r}}{dt} = \frac{dx}{dt}\bar{i} + \frac{dy}{dt}\bar{j} + \frac{dz}{dt}\bar{k}$ is the velocity of a particle at time t. Now $\bar{v} = \frac{d\bar{r}}{dt} = \frac{d\bar{r}}{ds} \frac{ds}{dt} = \frac{ds}{dt} \bar{T} = v\bar{T}$ where $v = |\bar{v}| = \frac{ds}{dt}$ is speed of particle. Which shows that velocity is always along the tangent to the curve. i.e. Tangential component of velocity = v and normal component of velocity = 0. Now $\bar{a} = \frac{d\bar{v}}{dt} = \frac{d}{dt} (v\bar{T})$ $=\frac{dv}{dt}\overline{T}+v\frac{d\overline{T}}{dt}$ $=\frac{dv}{dt}\overline{T}+v\frac{d\overline{T}}{ds}\frac{ds}{dt}$ $\therefore \frac{d\bar{T}}{ds} = k\bar{N} \text{ and } \frac{ds}{dt} = v$ $=\frac{dv}{dt}\overline{T}+v(k\overline{N})v$ $=\frac{dv}{dt}\overline{T}+kv^2\overline{N}$ \therefore Tangential component of acceleration = $\frac{dv}{dt}$ and normal component of acceleration = kv^2 **Remark:** i) As \overline{T} is perpendicular to $\overline{N} := |\overline{a}|^2 = (\frac{dv}{dt})^2 + (kv^2)^2$ i.e. $(Magnitude of acceleration)^2 = (Tangential component of acceleration)^2$ $+(Normal component of acceleration)^2$ ii) Unit Tangent $\overline{T} = \frac{\frac{dT}{dt}}{\frac{d\overline{T}}{dt}}$ iii) Tangential component of acceleration = $\ddot{r}.\bar{T}$ iv) Normal component of acceleration = $\sqrt{|\bar{a}|^2 - (\bar{r}, \bar{T})^2}$ **Ex.:** Find unit tangent vector to any point on the curve x = acost, y = asint, z = bt**Solution:** The position vector of any point P(x, y, z) for the given curve x = acost, y = asint, z = bt is $\bar{r} = x\bar{i} + y\bar{i} + z\bar{k} = acost \bar{i} + asint \bar{i} + bt\bar{k}$ \therefore The tangent vector to the curve at point P(x, y, z) is $\frac{d\bar{r}}{dt}$ = -asint \bar{i} + acost \bar{j} + b \bar{k} $\therefore \frac{ds}{dt} = \left|\frac{d\bar{r}}{dt}\right| = \sqrt{(-asint)^2 + (acost)^2 + b^2} = \sqrt{a^2 + b^2}$ \therefore The unit tangent vector to the curve at point P(x, y, z) is

$$\overline{T} = \frac{\frac{ar}{dt}}{\frac{ds}{dt}} = \frac{1}{\sqrt{a^2 + b^2}} (-\operatorname{asint} \overline{1} + \operatorname{acost} \overline{j} + b\overline{k})$$

Ex.: A curve is given by the equations $\mathbf{x} = t^2 + 1$, $\mathbf{y} = 4t-3$, $\mathbf{z} = 2t^2 + 6t$. Find the angle between tangents at t = 1 and at t = 2Solution: The position vector of a point $P(\mathbf{x}, \mathbf{y}, \mathbf{z})$ for the given curve $\mathbf{x} = t^2 + 1$, $\mathbf{y} = 4t-3$, $\mathbf{z} = 2t^2 + 6t$ is $\overline{r} = \mathbf{x}\overline{\mathbf{i}} + \mathbf{y}\overline{\mathbf{j}} + \mathbf{z}\overline{\mathbf{k}} = (t^2+1)\overline{\mathbf{i}} + (4t-3)\overline{\mathbf{j}} + (2t^2+6t)\overline{\mathbf{k}}$ \therefore The tangent vector to the curve at point $P(\mathbf{x}, \mathbf{y}, \mathbf{z})$ is $\frac{d\overline{r}}{dt} = 2t \overline{\mathbf{i}} + 4 \overline{\mathbf{j}} + (4t+6)\overline{\mathbf{k}}$ \therefore Tangents at t = 1 and at t = 2 are $\overline{T_1} = [\frac{d\overline{r}}{dt}]_{t=1} = 2\overline{\mathbf{i}} + 4\overline{\mathbf{j}} + 10\overline{\mathbf{k}} = 2(\overline{\mathbf{i}} + 2\overline{\mathbf{j}} + 5\overline{\mathbf{k}})$ and $\overline{T_2} = [\frac{d\overline{r}}{dt}]_{t=2} = 4\overline{\mathbf{i}} + 4\overline{\mathbf{j}} + 14\overline{\mathbf{k}} = 2(2\overline{\mathbf{i}} + 2\overline{\mathbf{j}} + 7\overline{\mathbf{k}})$ \therefore $T_1 = |\overline{T_1}| = 2\sqrt{1^2 + 2^2 + 5^2} = 2\sqrt{30}$ and $T_2 = |\overline{T_2}| = 2\sqrt{2^2 + 2^2 + 7^2} = 2\sqrt{57}$ \therefore The angle θ between this tangents $\overline{T_1}$ and $\overline{T_2}$ is given by $\cos \theta = \frac{\overline{T_1}.\overline{T_2}}{T_1T_2} = \frac{4[2+4+35]}{4\sqrt{30\sqrt{57}}} = \frac{41}{3\sqrt{190}}$ i.e. $\theta = \cos^{-1}(\frac{41}{3\sqrt{190}})$

- **Ex.:** If \bar{a} , \bar{b} , \bar{c} are constant vectors, then $\bar{r} = t^2\bar{a} + t\bar{b} + \bar{c}$ is the path of a particle moving with constant acceleration.
- **Proof:** Let $\bar{r} = t^2\bar{a} + t\bar{b} + \bar{c}$ be the path of a particle, where \bar{a} , \bar{b} , \bar{c} are constant vectors.

: Velocity and acceleration of particle are

$$\bar{v} = \frac{d\bar{r}}{dt} = 2t \,\bar{a} + \bar{b}$$
 and $\bar{a} = \frac{d\bar{v}}{dt} = 2\bar{a}$

Here the acceleration of particle is constant.

Thus the particle with path $\bar{r} = t^2\bar{a} + t\bar{b} + \bar{c}$ is moving with constant acceleration is proved.

Ex.: For the curve $x = e^t \text{cost}$, $y = e^t \text{sint}$, $z = e^t$. Find the velocity and acceleration of the particle moving along the curve at t = 0.

Solution: Let a particle moves along the curve $x = e^{t} cost$, $y = e^{t} sint$, $z = e^{t}$

 \therefore The position vector of a particle is

 $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k} = e^{t} \text{cost } \overline{i} + e^{t} \text{sint } \overline{j} + e^{t}\overline{k}$

 \therefore The velocity and acceleration of a particle at any time t are

components of acceleration at any time t.

Solution: Let a particle moves along the curve x = cost+tsint, y = sint - tcost

 \therefore The position vector of a particle is

 $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k} = (\text{cost+tsint})\bar{i} + (\text{sint} - \text{tcost})\bar{j}$

: The velocity and acceleration of a particle at any time t are $\bar{v} = \frac{d\bar{r}}{dt} = (-\sinh+\sinh+\cosh)\bar{1} + (\cos t - \cos t + \sinh)\bar{j} = \cosh\bar{1} + \sinh\bar{1}\bar{j}$ and

$$\bar{a} = \frac{d\bar{v}}{dt} = (\text{cost-tsint})\,\bar{i} + (\text{sint} + \text{tcost})\,\bar{j}$$
Now $\frac{ds}{dt} = \left|\frac{d\bar{r}}{dt}\right| = \sqrt{(t\cos t)^2 + (t\sin t)^2} = t$

 \therefore The unit tangent vector is
$$\bar{T} = \frac{d\bar{t}}{\frac{d\bar{t}}{ds}} = \frac{1}{t}(\text{tcost}\bar{i} + \text{tsint}\bar{j}) = \text{cost}\bar{i} + \text{sint}\bar{j}$$

 \therefore The tangential component of acceleration at any time $t = \bar{a}.\bar{T}$

$$= [(\text{cost-tsint})\,\bar{i} + (\text{sint} + \text{tcost})\,\bar{j}].(\cos t\bar{i} + \sin t\bar{j})$$

$$= \cos^2 t - \text{tsintcost} + \sin^2 t + \text{tcostsint}$$

$$= 1$$
And the normal component of acceleration at any time $t = \sqrt{|\bar{a}|^2 - (\bar{a}.\bar{T})^2}$

$$= \sqrt{(\cos t - t\sin t)^2 + (\sin t + t\cos t)^2 - 1}$$

$$= \sqrt{\cos^2 t - 2\text{tcostsint} + t^2 \sin^2 t + t \sin^2 t + t \sin t \cos t + t^2 \cos^2 t - 1}$$

$$= \sqrt{1 + t^2 - 1}$$

$$= t$$

Ex.: For the curve $x = t^3+1$, $y = t^2$, z = t. Find the magnitude of tangential and normal components of acceleration for a particle moving on the curve at t = 1. **Solution:** Let a particle moves along the curve $x = t^3+1$, $y = t^2$, z = t.

∴ The position vector of a particle at time t is

$$\bar{r} = x\bar{i} + y\bar{j} + z\bar{k} = (t^3+1)\bar{i} + t^2\bar{j} + t\bar{k}$$

∴ The velocity and acceleration of a particle at any time t are
 $\bar{v} = \frac{d\bar{r}}{dt} = 3t^2\bar{i} + 2t\bar{j} + \bar{k}$ and $\bar{a} = \frac{d\bar{v}}{dt} = 6t\bar{i} + 2\bar{j}$
∴ The velocity and acceleration of a particle at time t = 1 are
 $\bar{v} = \frac{d\bar{r}}{dt} = 3\bar{i} + 2\bar{j} + \bar{k}$ and $\bar{a} = \frac{d\bar{v}}{dt} = 6\bar{i} + 2\bar{j}$
Now $\frac{ds}{dt} = \left|\frac{d\bar{r}}{dt}\right| = \sqrt{9 + 4 + 1} = \sqrt{14}$
∴ The unit tangent vector to the curve at t = 1 is
 $\bar{T} = \frac{d\bar{r}}{\frac{d\bar{s}}{dt}} = \frac{1}{\sqrt{14}}(3\bar{i} + 2\bar{j} + \bar{k})$
∴ The tangential component of acceleration = \bar{a} . \bar{T}
 $= (6\bar{i} + 2\bar{j})$. $\frac{1}{\sqrt{14}}(3\bar{i} + 2\bar{j} + \bar{k})$

And the normal component of acceleration at any time $t = \sqrt{|\bar{a}|^2 - (\bar{a}.\bar{T})^2}$

 $= \frac{1}{\sqrt{14}}$
$$= \sqrt{6^2 + 2^2 - (\frac{22}{\sqrt{14}})^2}$$
$$= \sqrt{40 - \frac{484}{14}}$$
$$= \sqrt{\frac{76}{14}}$$
$$= \sqrt{\frac{38}{7}}$$

Vector functions of two and three variables:

i)Let A and B be the non-empty subsets of set of real numbers R and W be a nonempty subset of R³, then a function $\bar{v} : A \times B \rightarrow W$ defined by $\bar{v} = v_1(x, y)\bar{i}+v_2(x, y) \bar{j}+v_3(x, y) \bar{k}$ is called a vector function of two variables x, y. ii)Let A, B and C be the non-empty subsets of set of real numbers R and W be a non-empty subset of R³, then a function $\bar{v} : A \times B \times C \rightarrow W$ defined by $\bar{v} = v_1(x, y, z)\bar{i}+v_2(x, y, z) \bar{j}+v_3(x, y, z) \bar{k}$ is called a vector function of three variables x, y and z.

Limit of Vector Function of Two Variables:

Let $\bar{v}(x, y) = v_1(x, y)\bar{i} + v_2(x, y)\bar{j} + v_3(x, y)\bar{k}$ be a vector function of two variables x, y. If for small $\varepsilon > 0$, there exist $\delta > 0$ depends on ε such that $|\bar{v}(x, y) - \bar{l}| < \varepsilon$ whenever $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$. Then \bar{l} is said to be limit of $\bar{v}(x, y)$ as $(x, y) \rightarrow (a, b)$. Denoted by $\lim_{(x,y) \rightarrow (a,b)} \bar{v}(x, y) = \bar{l}$.

Continuity: A vector function $\bar{v} = \bar{v}(x, y)$ of a scalar variables x, y is said to be continuous at (a, b) if $\bar{v}(a, b)$ is defined, $\lim_{(x,y) \to (a,b)} \bar{v}(x, y)$ is exists and

 $\lim_{(x,y)\to(a,b)} \bar{v}(x,y) = \bar{v}(a,b).$

- **Remark:** A vector function $\overline{v}(x, y) = v_1(x, y)\overline{i} + v_2(x, y)\overline{j} + v_3(x, y)\overline{k}$ is continuous at (a, b) if $v_1(x, y)$, $v_2(x, y)$, $v_3(x, y)$ are continuous at (a, b).
- **Partial Derivatives:** Let $\bar{v} = \bar{v}(x, y)$ be a vector function of scalar variables x, y and $\overline{\delta v}$ be change in \bar{v} corresponding to small changes δx in x.

If $\lim_{\delta x \to 0} \frac{\overline{\delta v}}{\delta x} = \lim_{\delta x \to 0} \frac{\overline{v}(x + \delta x, y) - \overline{v}(x, y)}{\delta x}$ exist and finite, then $\overline{v}(x, y)$ is said to be partially differentiable w.r.t.x and $\frac{\overline{\partial v}}{\partial x} = \lim_{\delta x \to 0} \frac{\overline{v}(x + \delta x, y) - \overline{v}(x, y)}{\delta x}$ is called partial derivative of \overline{v} w.r.t.x.

Remark: If
$$\bar{v}(x,y) = v_1(x,y)\bar{v} + v_2(x,y)\bar{v} + v_3(x,y)\bar{k}$$
, then $\frac{\overline{\partial v_1}}{\partial x} = \frac{\overline{\partial v_1}}{\partial x}\bar{v} + \frac{\overline{\partial v_2}}{\partial x}\bar{v} + \frac{\overline{\partial v_3}}{\partial x}\bar{k}$

Results: i) $\frac{\partial}{\partial x}(\bar{u} \pm \bar{v}) = \frac{\partial \bar{u}}{\partial x} \pm \frac{\partial \bar{v}}{\partial x}$ ii) $\frac{\partial}{\partial x}(\bar{u},\bar{v}) = \bar{u}.\frac{\partial\bar{v}}{\partial x} + \bar{v}.\frac{\partial\bar{u}}{\partial x}$ iii) $\frac{\partial}{\partial x}(\bar{u} \times \bar{v}) = \bar{u} \times \frac{\partial \bar{v}}{\partial x} + \frac{\partial \bar{u}}{\partial v} \times \bar{v}$ iv) $\frac{\partial}{\partial \mathbf{x}} (\phi \bar{u}) = \phi \frac{\partial \bar{u}}{\partial \mathbf{x}} + \frac{\partial \phi}{\partial \mathbf{x}} \bar{u}$ **Total Differential:** If $\bar{v} = \bar{v}(x, y, z)$ be a vector function of scalar variables x, y and z, then it's total differential is $d\bar{v} = \frac{\partial \bar{v}}{\partial x} dx + \frac{\partial \bar{v}}{\partial y} dy + \frac{\partial \bar{v}}{\partial z} dz$. Note: If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ and $d\overline{r} = dx\overline{i} + dy\overline{j} + dz\overline{k}$ then \overline{r} . $d\overline{r} = xdx + ydy + zdz$ **Ex.:** If $\bar{r} = x\cos y \bar{i} + x\sin y \bar{j} + ae^{my} \bar{k}$, find i) $\frac{\partial \bar{r}}{\partial x}$ ii) $\frac{\partial \bar{r}}{\partial y}$ iii) $\frac{\partial^2 \bar{r}}{\partial x^2}$ iv) $\frac{\partial^2 \bar{r}}{\partial y^2}$ v) $\frac{\partial^2 \bar{r}}{\partial x \partial y}$ **Solution:** Let $\bar{r} = x \cos y \bar{i} + x \sin y \bar{j} + a e^{my} \bar{k}$, i) $\frac{\partial \bar{r}}{\partial x} = \cos y \bar{1} + \sin y \bar{j}$ ii) $\frac{\partial \bar{r}}{\partial x} = -x \sin y \,\bar{1} + x \cos y \,\bar{j} + ame^{my} \,\bar{k}$ iii) $\frac{\partial^2 \bar{\mathbf{r}}}{\partial x^2} = \frac{\partial}{\partial x} (\frac{\partial \bar{\mathbf{r}}}{\partial x}) = \frac{\partial}{\partial x} (\cos y \bar{\mathbf{I}} + \sin y \bar{\mathbf{J}}) = \bar{\mathbf{0}}$ iv) $\frac{\partial^2 \bar{\mathbf{r}}}{\partial v^2} = \frac{\partial}{\partial v} (\frac{\partial \bar{r}}{\partial v}) = \frac{\partial}{\partial v} (-x \sin v \bar{\mathbf{i}} + x \cos v \bar{\mathbf{j}} + ame^{mv} \bar{\mathbf{k}})$ $= -x\cos y \,\overline{i} - x\sin y \,\overline{j} + am^2 e^{my} \,\overline{k}$ iv) $\frac{\partial^2 \bar{\mathbf{r}}}{\partial x \partial y} = \frac{\partial}{\partial x} (\frac{\partial \bar{r}}{\partial y}) = \frac{\partial}{\partial x} (-x \sin y \bar{\mathbf{I}} + x \cos y \bar{\mathbf{J}} + \operatorname{ame}^{my} \bar{\mathbf{k}})$ $= -siny \overline{1} + cosy \overline{1}$ **Ex.:** If $\bar{r} = \frac{a}{2}(x+y)\bar{1} + \frac{b}{2}(x-y)\bar{1} + \frac{xy}{2}\bar{k}$, find i) $\frac{\partial \bar{r}}{\partial x}$ ii) $\frac{\partial \bar{r}}{\partial y}$ iii) $\frac{\partial^2 \bar{r}}{\partial x^2}$ iv) $\frac{\partial^2 \bar{r}}{\partial y^2}$ $v) \frac{\partial^2 \bar{r}}{\partial r \partial v}$ Solution: Let $\overline{r} = \frac{a}{2}(x+y)\overline{1} + \frac{b}{2}(x-y)\overline{1} + \frac{xy}{2}\overline{k}$, ii) $\frac{\partial \bar{r}}{\partial x} = \frac{a}{2}\bar{1} + \frac{b}{2}\bar{1} + \frac{y}{2}\bar{k}$ in a ward with local with the local with the local line in the local line ii) $\frac{\partial \bar{r}}{\partial x} = \frac{a}{2} \bar{1} - \frac{b}{2} \bar{1} + \frac{x}{2} \bar{k}$ iii) $\frac{\partial^2 \bar{\mathbf{r}}}{\partial \mathbf{r}^2} = \frac{\partial}{\partial \mathbf{v}} \left(\frac{\partial \bar{\mathbf{r}}}{\partial \mathbf{v}} \right) = \frac{\partial}{\partial \mathbf{v}} \left(\frac{a}{2} \bar{\mathbf{1}} + \frac{b}{2} \bar{\mathbf{j}} + \frac{y}{2} \bar{\mathbf{k}} \right) = \bar{\mathbf{0}}$ iv) $\frac{\partial^2 \bar{\mathbf{r}}}{\partial v^2} = \frac{\partial}{\partial v} (\frac{\partial \bar{r}}{\partial v}) = \frac{\partial}{\partial v} (\frac{a}{2} \bar{\mathbf{l}} - \frac{b}{2} \bar{\mathbf{j}} + \frac{x}{2} \bar{\mathbf{k}}) = \bar{\mathbf{0}}$ $\mathbf{v})\frac{\partial^2 \bar{\mathbf{r}}}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial \bar{r}}{\partial y}\right) = \frac{\partial}{\partial x} \left(\frac{a}{2} \bar{\mathbf{I}} - \frac{b}{2} \bar{\mathbf{J}} + \frac{x}{2} \bar{\mathbf{k}}\right) = \frac{1}{2} \bar{\mathbf{k}}$ **Ex.:** If $\bar{r} = \frac{a}{2}(x+y)\bar{1} + \frac{b}{2}(x-y)\bar{j} + xy\bar{k}$, find i) $\left[\frac{\partial \bar{r}}{\partial v} \frac{\partial \bar{r}}{\partial v^2} \frac{\partial^2 \bar{r}}{\partial r^2}\right]$ ii) $\left[\frac{\partial \bar{r}}{\partial x} \frac{\partial \bar{r}}{\partial v} \frac{\partial^2 \bar{r}}{\partial x \partial y}\right]$

Solution: Let
$$\overline{r} = \frac{a}{2}(x+y)\overline{1} + \frac{b}{2}(x-y)\overline{1} + xy\overline{k}$$
,
 $\therefore \frac{\partial \overline{r}}{\partial x} = \frac{a}{2}\overline{1} + \frac{b}{2}\overline{1} + y\overline{k}$
 $\frac{\partial \overline{r}}{\partial y} = \frac{a}{2}\overline{1} - \frac{b}{2}\overline{1} + x\overline{k}$
 $\frac{\partial^{2}\overline{r}}{\partial x^{2}} = \frac{\partial}{\partial x}(\frac{\partial \overline{r}}{\partial x}) = \frac{\partial}{\partial x}(\frac{a}{2}\overline{1} + \frac{b}{2}\overline{1} + y\overline{k}) = \overline{0}$
 $\frac{\partial z^{2}\overline{r}}{\partial x\partial y} = \frac{\partial}{\partial x}(\frac{\partial \overline{r}}{\partial y}) = \frac{\partial}{\partial x}(\frac{a}{2}\overline{1} - \frac{b}{2}\overline{1} + x\overline{k}) = \overline{k}$
vi) $\left[\frac{\partial \overline{r}}{\partial x}\frac{\partial \overline{r}}{\partial y}\frac{\partial^{2}\overline{r}}{\partial x^{2}}\right] = \begin{vmatrix} \frac{a}{2} & \frac{b}{2} & y\\ \frac{a}{2} & -\frac{b}{2} & x\\ 0 & 0 & 0\end{vmatrix} = 0$
ii) $\left[\frac{\partial \overline{r}}{\partial x}\frac{\partial \overline{r}}{\partial y}\frac{\partial^{2}\overline{r}}{\partial x\partial y}\right] = \begin{vmatrix} \frac{a}{2} & \frac{b}{2} & y\\ \frac{a}{2} & -\frac{b}{2} & x\\ 0 & 0 & 1\end{vmatrix} = \frac{a}{2}(-\frac{b}{2} - 0) - \frac{b}{2}(\frac{a}{2} - 0) + y(0 - 0)$
 $= -\frac{ab}{4} - \frac{ab}{4}$

Ex.: If
$$\overline{u} = x^2 yz \overline{i} - 2xz^3 \overline{j} + xz^2 \overline{k}$$
 and $\overline{v} = 2z \overline{i} + y \overline{j} - x^2 \overline{k}$

find $\frac{\partial^2}{\partial x \, \partial y} (\bar{u} \times \bar{v})$ at (1, 0, 2)

Solution: Let $\overline{u} = x^2 yz \overline{i} - 2xz^3 \overline{j} + xz^2 \overline{k}$ and $\overline{v} = 2z \overline{i} + y \overline{j} - x^2 \overline{k}$

$$\begin{split} \dot{\cdot} \, \bar{u} \times \bar{v} &= \begin{vmatrix} \bar{i} & \bar{j} & k \\ x^2 yz & -2xz^3 & xz^2 \\ 2z & y & -x^2 \end{vmatrix} \\ &= (2x^3 z^3 - xyz^2) \, \bar{i} - (-x^4 yz - 2xz^3) \, \bar{j} + (x^2 y^2 z + 4xz^4) \, \bar{k} \\ &= (2x^3 z^3 - xyz^2) \, \bar{i} + (x^4 yz + 2xz^3) \, \bar{j} + (x^2 y^2 z + 4xz^4) \, \bar{k} \\ \dot{\cdot} \, \frac{\partial}{\partial y} (\bar{u} \times \bar{v}) &= (0 - xz^2) \, \bar{i} + (x^4 z + 0) \, \bar{j} + (2x^2 yz + 0) \, \bar{k} \\ \dot{\cdot} \, \frac{\partial}{\partial y} (\bar{u} \times \bar{v}) &= -xz^2 \, \bar{i} + x^4 z \, \bar{j} + 2x^2 yz \, \bar{k} \\ \dot{\cdot} \, \frac{\partial^2}{\partial x \, \partial y} (\bar{u} \times \bar{v}) &= -z^2 \, \bar{i} + 4x^3 z \, \bar{j} + 4xyz \, \bar{k} \\ \dot{\cdot} \, \left[\frac{\partial^2}{\partial x \, \partial y} (\bar{u} \times \bar{v}) \right]_{(1, 0, 2)} &= -4 \, \bar{i} + 8 \, \bar{j} + 0 \, \bar{k} = -4(\bar{i} - 2 \, \bar{j}) \end{split}$$

Ex.: If $\bar{u} = z^3 \bar{i} - x^2 \bar{k}$, $\bar{v} = 2xyz \bar{j}$ and $\bar{w} = 5xy \bar{i} + 3z \bar{j}$, then find $\frac{\partial^3}{\partial x \partial y \partial z} (\bar{u} \times \bar{v}.\bar{w})$ **Solution:** Let $\bar{u} = z^3 \bar{i} - x^2 \bar{k}$, $\bar{v} = 2xyz \bar{j}$ and $\bar{w} = 5xy \bar{i} + 3z \bar{j}$

$$\therefore \bar{u} \times \bar{v} . \bar{w} = \begin{vmatrix} z^3 & 0 & -x^2 \\ 0 & 2xyz & 0 \\ 5xy & 3z & 0 \end{vmatrix}$$
$$= z^3(0 - 0) - 0 - x^2(0 - 10x^2y^2z)$$
$$= 10x^4y^2z$$
$$\therefore \frac{\partial}{\partial z} (\bar{u} \times \bar{v} . \bar{w}) = 10x^4y^2$$
$$\therefore \frac{\partial^2}{\partial y \partial z} (\bar{u} \times \bar{v} . \bar{w}) = 20x^4y$$
$$\therefore \frac{\partial^3}{\partial x \partial y \partial z} (\bar{u} \times \bar{v} . \bar{w}) = 80x^3y$$

Ex.: If
$$\phi = xy^2 z$$
 and $\overline{u} = xz \overline{1} - xy^2 \overline{1} + yz^2 \overline{k}$, then find $\frac{\partial^3}{\partial x^2 \partial z} (\phi \overline{u})$ at (2, -1, 1)
Solution: Let $\phi = xy^2 z$ and $\overline{u} = xz \overline{1} - xy^2 \overline{1} + yz^2 \overline{k}$
 $\therefore \phi \overline{u} = (xy^2 z)(xz \overline{1} - xy^2 \overline{1} + yz^2 \overline{k})$
 $= x^2 y^2 z^2 \overline{1} - x^2 y^4 z \overline{1} + xy^3 z^3 \overline{k}$
 $\therefore \frac{\partial}{\partial z} (\phi \overline{u}) = 2x^2 y^2 z \overline{1} - x^2 y^4 \overline{1} + 3xy^3 z^2 \overline{k}$
 $\therefore \frac{\partial^2}{\partial x \partial z} (\phi \overline{u}) = 4xy^2 z \overline{1} - 2xy^4 \overline{1} + 3y^3 z^2 \overline{k}$
 $\therefore \frac{\partial^3}{\partial x^2 \partial z} (\phi \overline{u}) = 4y^2 z \overline{1} - 2y^4 \overline{1} + 0\overline{k}$
 $\therefore \frac{\partial^3}{\partial x^2 \partial z} (\phi \overline{u}) = 4y^2 z \overline{1} - 2y^4 \overline{1}$
 $\therefore [\frac{\partial^3}{\partial x^2 \partial z} (\phi \overline{u})]_{(2, -1, 1)} = 4\overline{1} - 2\overline{1} = 2(2\overline{1} - \overline{1})$

MULTIPLE CHOICE QUESTIONS (MCQ'S)

1) A function \bar{v} : $R \rightarrow R^3$ defined by $\bar{v} = v_1(t)\bar{i} + v_2(t)\bar{j} + v_3(t)\bar{k}$ is called a function of a single variable t. A) scalar B) vector C) analytic D) None of these 2) If for small $\varepsilon > 0$, there exist $\delta > 0$ depends on ε such that $|\bar{v}(t) - \bar{l}| < \varepsilon$ whenever $0 < |t-a| < \delta$, then $\lim_{t \to a} \overline{v}(t) = \dots$ A) \overline{l} **B**) 0 C) a D) None of these 3) If $\lim_{t \to a} \bar{u}(t) = \bar{l}$ and $\lim_{t \to a} \bar{v}(t) = \bar{m}$, then $\lim_{t \to a} [\bar{u}(t) \pm \bar{v}(t)] = \dots$ A) $\frac{l}{\overline{m}}$ C) $\overline{l} \pm \overline{m}$ B) $\overline{l}.\overline{m}$ D) None of these 4) If $\lim_{t \to a} \bar{u}(t) = \bar{l}$ and $\lim_{t \to a} \bar{v}(t) = \bar{m}$, then $\lim_{t \to a} [\bar{u}(t), \bar{v}(t)] = \dots$ C) $\bar{l} \pm \bar{m}$ A) $\frac{\iota}{\overline{m}}$ B) $\overline{l}.\overline{m}$ D) None of these

5) If $\lim_{t \to a} \bar{u}(t) = \bar{l}$ and $\lim_{t \to a} \bar{v}(t) = \bar{m}$, then $\lim_{t \to a} [\frac{\bar{u}(t)}{\bar{v}(t)}] = \frac{\bar{l}}{\bar{m}}$ provided				
A) $\overline{m} \neq \overline{0}$	B) $\bar{l} \neq \bar{0}$	C) $\overline{m} = \overline{0}$	D) $\overline{l} = \overline{0}$	
6) A vector function $\bar{v} =$	$\bar{v}(t)$ of a scalar va	riable t is said to be	continuous at $t = t_0$	
$\inf \lim_{t \to t_0} \bar{v}(t) = \dots$				
A) $\bar{v}(t)$	B) $\bar{v}(t_0)$	C) t ₀	D) None of these	
7) A vector function $\bar{v} =$	$\bar{v}(t)$ of a scalar var	iable t is said to be	continuous in	
an interval (a, b) if it	is continuous at	point in (a, b)		
A) every	B) some	C) a and b only $\bar{r}(t + St)$	D) None of these $\overline{D}(t)$	
8) Vector $\bar{v}(t)$ is said to	be differentiable w	r.t.t, if $\lim_{\delta t \to 0} \frac{\nu(t+\delta t)}{\delta t}$	$\frac{-\nu(t)}{2}$ is	
A) exist and finite	B) exist and infinit	te C) not exist	D) None of these	
9) If $\lim_{t \to t_0} \frac{\overline{v}(t) - \overline{v}(t_0)}{t - t_0}$ is explicitly as $\frac{\overline{v}(t) - \overline{v}(t_0)}{t - t_0} = 0$.	kists and finite then	it is denoted by	-Par	
A) $\overline{v}'(t)$	B) $\overline{v}'(t_0)$	C) $\bar{v}(t_0)$	D) None of these	
10) $\frac{d^2 \bar{v}}{dt^2} = \frac{d}{dt} \left(\frac{\overline{dv}}{dt} \right)$ is called	order derivati	ve of \bar{v} w.r.t.t.		
A) first	B) second	C) third	D) None of these	
11) $\frac{d^3\bar{v}}{dt^3} = \frac{d}{dt} \left(\frac{d^2\bar{v}}{dt^2} \right)$ is called	d <mark></mark> order der <mark>iv</mark> at	tive of \bar{v} w.r.t.t.	74	
A) first	B) second	C) third	D) None of these	
12) Statement 'Every differentiable vector function is continuous' is				
A) true	B) false	C) both true and fa	alse D) None of these	
13) Statement 'Every continuous vector function is differentiable' is				
A) true	B) false	C) both true and fa	alse D) None of these	
14) At point $t = 0$, $\bar{v}(t) = t\bar{1} + t \bar{j}$ is				
A) both continuous and differentiable B) differentiable				
C) continuous but not differentiable D) None of these				
15) If \bar{u} and \bar{v} are differentiable vector functions of scalar variable t,				
then $\frac{d}{dt}(\bar{u},\bar{v}) = \dots$				
A) $\frac{d\overline{u}}{dt} \cdot \frac{d\overline{v}}{dt}$	B) $\overline{u}.\frac{d\overline{v}}{dt} + \overline{v}.\frac{d\overline{u}}{dt}$	C) $\overline{u}.\frac{d\overline{v}}{dt} - \overline{v}.\frac{d\overline{u}}{dt}$	D) None of these	
16) If \bar{u} is differentiable vector function of scalar variable t, then $\frac{d\bar{u}^2}{dt} = \dots$				
A) $2\overline{u}.\frac{d\overline{u}}{dt}$	B) $2\bar{u} \times \frac{d\bar{u}}{dt}$	C) $2\bar{u} + \frac{d\bar{u}}{dt}$	D) None of these	
17) If \bar{u} is differentiable vector function of scalar variable t with $u = \bar{u} $,				
then $\overline{u}. \frac{d\overline{u}}{dt} = \dots$				
A) u. $\frac{du}{dt}$	B) u $\frac{du}{dt}$	C) $u \times \frac{du}{dt}$	D) None of these	

18) If
$$\bar{u}$$
 and \bar{v} are differentiable vector functions of scalar variable t,
then $\frac{d}{dt}(\bar{u} \times \bar{v}) = \dots$.
A) $\frac{d\bar{u}}{dt} \times \frac{d\bar{v}}{dt}$ B) $\bar{u} \times \frac{d\bar{v}}{dt} + \bar{v} \times \frac{d\bar{u}}{dt}$ C) $\bar{u} \times \frac{d\bar{v}}{dt} + \frac{d\bar{u}}{dt} \times \bar{v}$ D) None of these
19) $\frac{d}{dt}(\bar{u} \times (\bar{v} \times \bar{w}) = \dots$.
A) $\frac{d\bar{u}}{dt} \times (\bar{v} \times \bar{w}) + \bar{u} \times (\frac{d\bar{v}}{dt} \times \bar{w}) + \bar{u} \times (\bar{v} \times \frac{d\bar{w}}{dt})$
B) $\frac{d\bar{u}}{dt} + \frac{d\bar{v}}{dt} + \frac{d\bar{w}}{dt}$ C) $(\frac{d\bar{u}}{dt} \times \frac{d\bar{v}}{dt} \times \frac{d\bar{w}}{dt})$ D) None of these
20) $\frac{d}{dt}[\bar{u} \bar{v} \bar{w}] = \dots$.
A) $\frac{d\bar{u}}{dt} + \frac{d\bar{v}}{dt} + \frac{d\bar{w}}{dt}$ C) $(\frac{d\bar{u}}{dt} \times \frac{d\bar{v}}{dt} \times \frac{d\bar{w}}{dt} + \bar{u})$ D) None of these
21) If a vector function \bar{u} and a scalar function ϕ are differentiable functions of scalar variable t, then $\frac{d}{dt} (\Phi\bar{u}) = \dots$.
A) $\frac{d\bar{u}}{dt} + \frac{d\bar{w}}{dt} + \bar{u}$ B) $\frac{d\bar{w}}{dt} + \frac{d\bar{w}}{dt} \times \bar{u}$ C) $\frac{d\bar{w}}{dt} + \frac{d\bar{w}}{dt} \bar{u}$ D) None of these
22) If k is constant scalar, then $\frac{d}{dt}(k\bar{u}) = \dots$.
A) $\frac{d\bar{u}}{dt} - \frac{d\bar{u}}{dt} + \bar{u}$ B) $\frac{k}{du} + \frac{d\bar{w}}{dt} \times \bar{u}$ C) 0 D) None of these
23) If \bar{u} a differentiable vector function of a scalar s and s is the differentiable scalar variable t, then $\frac{d\bar{u}}{dt} + \frac{d\bar{w}}{dt} \bar{u}$ C) 0 D) None of these
24) If $\bar{l}(t) = f_1(t)\bar{l} + f_2(t)\bar{l} + f_3(t)\bar{k}$ is a differentiable vector function of a scalar variable scalar variable t, then $\frac{d}{dt} f(t) = \dots$.
A) $\frac{d\bar{u}}{dt} - \frac{d\bar{u}}{dt} \bar{d} = \dots$.
A) $\frac{d\bar{u}}{dt} - \frac{d\bar{u}}{dt} \bar{d} = \dots$.
A) $\frac{d\bar{u}}{dt} - \frac{d\bar{u}}{dt} \bar{d} = 0$ D) $\frac{d\bar{u}}{dt} = 0$ D) None of these
25) If $\bar{u}(t)$ is constant vector on [a, b], then on [a, b].
A) $\frac{d\bar{u}}{dt} = \bar{0} = 0$ $\frac{d\bar{u}}{dt} = \bar{0}$ C) $\frac{d\bar{u}}{dt} = \bar{1}$ D) None of these
26) If $\frac{d\bar{u}}{dt} = \bar{0} = 0$ $\frac{d\bar{u}}{dt} \neq \bar{0}$ C) $\frac{d\bar{u}}{dt} = \bar{1}$ D) None of these
27) If a differentiable vector $\bar{u}(t)$ is of constant magnitude, then $\forall t \in [a, b]$
A) $\bar{u}, \frac{d\bar{u}}{dt} \neq 0$ B) $\bar{u}, \frac{d\bar{u}}{dt} = 0$ C) $\bar{u}, \frac{d\bar{u}}{$

28) If $\overline{u} \cdot \frac{d\overline{u}}{dt} = 0 \forall t \in [a, b]$, then $\overline{u}(t)$ is on [a, b]B) of constant direction A) of constant magnitude C) constant vector D) None of these 29) If a non-constant vector $\overline{u}(t)$ is of constant direction, then $\forall t \in [a, b]$ A) $\bar{u} \times \frac{d\bar{u}}{dt} \neq \bar{0}$ B) $\bar{u} \times \frac{d\bar{u}}{dt} = \bar{0}$ C) $\bar{u} \cdot \frac{d\bar{u}}{dt} = 0$ D) None of these 30) If $\bar{u} \times \frac{d\bar{u}}{dt} = \bar{0} \forall t \in [a, b]$, then a non – constant vector $\bar{u}(t)$ is on [a, b]B) of constant direction A) of constant magnitude C) constant vector D) None of these 31) $\lim_{t \to 0} \left[(t^2 + 1)\overline{i} + (\frac{3^{2t} - 1}{t})\overline{j} + (1 + 2t)^{\frac{1}{t}}\overline{k} \right] = \dots$ A) $\overline{i} + 2\log 3 \overline{j} + e^2 \overline{k}$ B) $\overline{i} + \log 3 \overline{j} + e^2 \overline{k}$ C) \overline{i} + 2log3 \overline{i} + ek D) None of these 32) If $\overline{f}(t) = \frac{\sin 2t}{t}\overline{1} + \cos t\overline{j}$, $t \neq 0$ and $\overline{f}(0) = x\overline{1} + \overline{j}$ is continuous at t = 0, then $x = \dots$ C) 2 D) None of these A) 0 **B**) 1 33) If $\overline{f}(t) = cost\overline{i} + sint\overline{j} + tant\overline{k}$, find $\overline{f}'(t) = \dots$ A) $cost\overline{i} + sint\overline{j} + tant\overline{k}$ B) $-sint\overline{i} + cost\overline{j} + sec^2t\overline{k}$ D) None of these C) $cost\bar{1} + sint\bar{1}$ 34) If $\bar{r} = (t^2+1)\bar{i} + (4t-3)\bar{j} + (2t^2-6t)\bar{k}$, then $\frac{d\bar{r}}{dt}$ at t = 2 is A) $4\overline{i} + 4\overline{j} + 2\overline{k}$ B) $4\overline{i} + \overline{j} + 2\overline{k}$ C) $4\overline{i} + 4\overline{j} + \overline{k}$ D) None of these 35) If $\bar{r} = (t^2+1)\bar{i} + (4t-3)\bar{j} + (2t^2 - 6t)\bar{k}$, then $\frac{d^2\bar{r}}{dt^2}$ at t = 2 is A) $\overline{i} + 4 \overline{i} + 2\overline{k}$ B) $2\overline{i} + 4\overline{k}$ C) $4\overline{i} + \overline{j} + 2\overline{k}$ D) None of these 36) If $\bar{r} = (t+1)\bar{i} + (t^2+t+1)\bar{j} + (t^3+t^2+t+1)\bar{k}$, then $\frac{d\bar{r}}{dt} = \dots$ A) $\bar{1} + 2\bar{1} + (6t + 2)\bar{k}$ B) $\overline{1} + 2\overline{1}$ C) $\bar{i} + (2t+1)\bar{j} + (3t^2 + 2t + 1)\bar{k}$ D) None of these 37) If $\bar{r} = (t+1)\bar{i} + (t^2+t+1)\bar{j} + (t^3+t^2+t+1)\bar{k}$, then $\frac{d^2\bar{r}}{dt^2} = \dots$ A) $2\bar{i} + (6t + 2)\bar{k}$ B) $2\bar{i} + (6t + 2)\bar{k}$ C) $2\overline{i} + 6t\overline{k}$ D) None of these 38) If $\bar{r} = sint\bar{i} + cost\bar{j} + t\bar{k}$, then $\frac{d\bar{r}}{dt} = \dots$ A) $cost\bar{i} - sint\bar{i} + \bar{k}$ B) $-sint\bar{1} + cost\bar{1}$ C) $cost\bar{i} + sint\bar{j} + \bar{k}$ D) None of these

39) If $\bar{r} = sint\bar{i} + cost\bar{j} + t\bar{k}$, then $\frac{d^2\bar{r}}{dt^2} = \dots$ A) $sint\bar{1} - cost\bar{1}$ B) $sint\bar{1} + cost\bar{1}$ C) $-sint\bar{1} - cost\bar{1}$ D) None of these 40) If $\bar{r} = e^{-t}\bar{i} + \log(t^2+1)\bar{j} - \tanh\bar{k}$, find $\frac{d\bar{r}}{dt}$ at t = 0. A) $-\overline{\mathbf{i}} - \overline{\mathbf{k}}$ B) $\overline{\mathbf{i}} + \overline{\mathbf{j}} - \overline{\mathbf{k}}$ C) $-\overline{\mathbf{i}} + \overline{\mathbf{j}} + \overline{\mathbf{k}}$ D) None of these 41) If $\bar{r} = e^{-t}\bar{i} + \log(t^2+1)\bar{j} - \tanh\bar{k}$, find $\left|\frac{d\bar{r}}{dt}\right|$ at t = 0. A) $\sqrt{5}$ B) $\sqrt{3}$ C) $\sqrt{2}$ D) None of these 42) $\frac{d}{dt} \left(\bar{\mathbf{r}} \cdot \frac{d\bar{\mathbf{r}}}{dt} \times \frac{d^2 \bar{\mathbf{r}}}{dt^2} \right) = \dots$ A) $\bar{r}.\frac{d\bar{r}}{dt} \times \frac{d^2\bar{r}}{dt^2}$ B) $\bar{r}.\frac{d\bar{r}}{dt} \times \frac{d^3\bar{r}}{dt^3}$ C) $\bar{r}.\frac{d\bar{r}}{dt} \times \frac{d^4\bar{r}}{dt^4}$ D) None of these 43) If $\bar{r} = (sinht)\bar{a} + (cosht)\bar{b}$, where \bar{a}, \bar{b} are constant vectors, then $\frac{d^2\bar{r}}{dt^2} = \dots$ B) r D) None of these A) $-\bar{r}$ $C) \overline{2r}$ 44) If $\bar{r} = cosnt\bar{i} + sinnt\bar{j}$, where n is constant, then $\bar{r} \cdot \frac{d\bar{r}}{dt} = \dots$ C) -1 D) None of these A) 0 **B**) 1 45) Let $\overline{r(t)} = x(t)\overline{i} + y(t)\overline{j} + z(t)\overline{k}$ be a position vector of a point P(t), then $\frac{d\bar{r}}{dt} = \frac{dx}{dt}\bar{1} + \frac{dy}{dt}\bar{1} + \frac{dz}{dt}\bar{k}$ is the to the curve in space at P. C) tangent A) unit tangent B) normal D) None of these 46) Let $\overline{r(t)} = x(t)\overline{i} + y(t)\overline{j} + z(t)\overline{k}$ be a position vector of a point P(t), then $\frac{d\bar{r}}{ds}$ is the to the curve in space at P. A) unit tangent B) normal C) tangent D) None of these 47) Let $\overline{r(t)} = x(t)\overline{i} + y(t)\overline{j} + z(t)\overline{k}$ be a position vector of a point P(t) and \overline{T} is unit tangent vector to the curve at point P(t), then $\frac{d\bar{T}}{ds}$ is the to the curve in space at P. B) normal C) tangent A) unit normal D) None of these 48) If $\frac{d\bar{T}}{ds}$ is normal to the curve at point P(t), then $\left|\frac{d\bar{T}}{ds}\right|$ is the of the curve. B) radius of curvature C) curvature D) None of these A) unit normal 49) If $k = \left| \frac{d\bar{T}}{ds} \right|$ is the curvature of the curve, then $\frac{1}{k}$ is the..... of the curve. B) radius of curvature C) curvature D) None of these A) unit normal 50) If $\overline{r(t)} = x(t)\overline{i} + y(t)\overline{j} + z(t)\overline{k}$ is the position of a particle at time t, then $\frac{ar}{dt}$ is the of a particle at time t. C) speed D) None of these A) velocity B) acceleration

51) If $\bar{v} = \frac{d\bar{r}}{dt}$ is the velocity of a particle at time t, then $v = \left \frac{d\bar{r}}{dt}\right $ is the of a				
particle at time t.				
	A) velocity	B) acceleration	C) speed	D) None of these
52)	If $\overline{r(t)} = \mathbf{x}(t)\overline{\mathbf{i}} + \mathbf{y}(t)\overline{\mathbf{j}}$	$+ z(t)\overline{k}$ is the positive	tion of a particle at	time t, then
	$\frac{d^2\bar{\mathbf{r}}}{dt^2}$ is the of a particular of a particular term	article at time t.		
	A) velocity	B) acceleration	C) speed	D) None of these
53)	Tangential and norm	al component of ve	locity are and	respectively.
	A) v and 0	B) 0 and v	C) $\frac{dv}{dt}$ and kv^2	D) None of these
54)	Velocity of a particle	is always along the	e to the curve.	
	A) normal	B) tangent C) bo	th normal and tange	ent D) None of these
55)	Tangential and norm	al component of ac	celeration are	and respectively.
	A) k and v	B) 0 and v	C) $\frac{dv}{dt}$ and kv^2	D) None of these
56)	Velocity of a particle	moving along the	$curve x = e^{t} cost, y =$	$= e^{t}sint, z = e^{t}$
	at time $t = 0$ is	8 / 1		212
	A) $\overline{i} + \overline{j} + \overline{k}$	B) $\overline{i} + \overline{j} - \overline{k}$	C) $\overline{i} - \overline{j} + \overline{k}$	D) None of these
57)	Acceleration of a par	ticl <mark>e mo</mark> ving along	the curve $\mathbf{x} = \mathbf{e}^{\mathrm{t}} \mathbf{cost}$	$z, y = e^t sint, z = e^t$
	at time $t = 0$ is			<u>a</u>
	A) $\overline{i} + \overline{j} + k$	B) $\overline{i} + \overline{j} - k$	C) $2\overline{j} + k$	D) None of these
58) Velocity of a particle moving along the curve $x = 4cost$, $y = 4sint$, $z = 6t$				
	at time $t = 0$ is	18. V-1-1-4		9
	A) $\overline{i} + \overline{j} + k$	B) $4\overline{j} + 6k$	C) $\overline{i} - \overline{j} + k$	D) None of these
59)	Acceleration of a par	ticle moving along	the curve $x = 4cost$	y = 4sint, z = 6t
	at time $t = 0$ is			
	A) -4ī	B) $2\overline{j} + \overline{k}$	C) $\overline{i} + \overline{j} + \overline{k}$	D) None of these
60)	If \overline{T} is unit tangent ve	ector to the curve an	nd $\bar{a} = \ddot{r}$ is accelerated as $\bar{a} = \ddot{r}$	tion of a particle, then
tangential component of acceleration =				
	A) 0	B) $\sqrt{ \bar{a} ^2 - (\ddot{\bar{r}}.\bar{T})^2}$	$\overline{\overline{2}}$ C) $\ddot{\overline{r}}.\overline{\overline{T}}$	D) None of these
61)	If \overline{T} is unit tangent ve	ector to the curve an	nd $\bar{a} = \ddot{r}$ is accelerated as $\bar{a} = \ddot{r}$	tion of a particle, then
normal component of acceleration =				
	A) 0	B) $\sqrt{ \bar{a} ^2 - (\ddot{r}.\bar{T})^2}$	2 C) $\ddot{r}.ar{T}$	D) None of these
62)	$\frac{\partial}{\partial \mathbf{x}}(\bar{u}.\bar{v}) = \dots$			
	A) $\frac{\partial \overline{u}}{\partial x} \cdot \frac{\partial \overline{v}}{\partial x}$	B) $\overline{u}.\frac{\partial\overline{v}}{\partial x} + \overline{v}.\frac{\partial\overline{u}}{\partial x}$	C) $\overline{u}.\frac{\partial\overline{v}}{\partial x} - \overline{v}.\frac{\partial\overline{u}}{\partial x}$	D) None of these

$63) \frac{\partial}{\partial x} (\bar{u} \times \bar{v}) = \dots$				
(A) $\bar{u} \times \frac{\partial \bar{v}}{\partial x} + \frac{\partial \bar{u}}{\partial x} \times \bar{v}$ B) $\bar{u} \times \frac{\partial \bar{v}}{\partial x} + \bar{v} \times$	$(\frac{\partial \overline{u}}{\partial x}C)\frac{\partial \overline{u}}{\partial x} \times \frac{\partial \overline{v}}{\partial x}$	D) None of these		
$64)\frac{\partial}{\partial \mathbf{x}}(\mathbf{\Phi}\bar{u}) = \dots$				
$A) \frac{\partial \phi}{\partial x} \frac{\partial \overline{u}}{\partial x} \qquad B) \phi \frac{\partial \overline{u}}{\partial x}$	C) $\oint_{\partial \bar{u}} \frac{\partial \bar{u}}{\partial x} + \frac{\partial \phi}{\partial x} \bar{u}$	D) None of these		
65) If $\bar{r} = \frac{a}{2}(x+y)\bar{1} + \frac{b}{2}(x-y)\bar{1} + xy\bar{k}$,	then $\frac{\partial T}{\partial x} = \dots$			
A) $\frac{a}{2}\overline{I} + \frac{b}{2}\overline{J} + x\overline{k}B$) $\frac{a}{2}\overline{I} + \frac{b}{2}\overline{J} + y\overline{k}$	$\mathbf{C} = \mathbf{C} \frac{a}{2} \overline{\mathbf{I}} - \frac{b}{2} \overline{\mathbf{J}} + x \overline{\mathbf{k}}$	D) None of these		
66) If $\bar{r} = \frac{a}{2}(x+y)\bar{1} + \frac{b}{2}(x-y)\bar{1} + xy\bar{k}$,	then $\frac{\partial T}{\partial y} = \dots$			
A) $\frac{a}{2}\overline{1} + \frac{b}{2}\overline{1} + x\overline{k}B$) $\frac{a}{2}\overline{1} + \frac{b}{2}\overline{1} + y\overline{k}$	$\overline{\mathbf{x}}$ C) $\frac{a}{2}\overline{\mathbf{i}} - \frac{b}{2}\overline{\mathbf{j}} + x\overline{\mathbf{k}}$	D) None of these		
67) If $\bar{r} = \frac{a}{2}(x+y)\bar{1} + \frac{b}{2}(x-y)\bar{1} + xy\bar{k}$,	then $\frac{\partial^2 \mathbf{r}}{\partial x^2} = \dots$			
A) $\overline{0}^2$ B) $\frac{a}{2}\overline{1} + \frac{b}{2}\overline{1}$	C) $\frac{a}{2}\overline{1} - \frac{b}{2}\overline{1}$	D) None of these		
68) If $\bar{r} = \frac{a}{2}(x+y)\bar{1} + \frac{b}{2}(x-y)\bar{1} + xy\bar{k}$,	then $\frac{\partial^2 \mathbf{r}}{\partial v^2} = \dots$	8 2 2		
A) $\overline{0}$ B) $\frac{a}{2}\overline{1} + \frac{b}{2}\overline{1}$	$C)\frac{a}{2}\overline{1}-\frac{b}{2}\overline{J}$	D) None of these		
69) If $\bar{r} = \frac{a}{2}(x+y)\bar{1} + \frac{b}{2}(x-y)\bar{1} + xy\bar{k}$,	then $\frac{\partial^2 \bar{\mathbf{r}}}{\partial x \partial y} = \dots$	-		
A) $\overline{0}$ B) \overline{k}	C) $\frac{a}{2}\overline{1} - \frac{b}{2}\overline{3}$	D) None of these		
70) If $\bar{r} = x\cos v \bar{i} + x\sin v \bar{i} + ae^{mv} \bar{k}$, then	$\frac{\partial \bar{r}}{d\bar{r}}$	a l		
A) $\cos y \overline{1} + \sin y \overline{1}$	∂x B) $-rsiny \bar{i} + xcc$	$v_{\rm N} v_{\rm I} + ame^{my} \bar{k}$		
$C)\overline{0}$	D) None of these	sy f and k		
71) If $\bar{r} = r\cos v \bar{i} + v \sin v \bar{i} + a e^{mv} \bar{k}$ then	$\frac{\partial \bar{r}}{\partial \bar{r}}$	20 / 6		
$(1) = x \cos y + x \sin y + a \cos x, \ \text{then}$	ду	- my I		
A) $\cos y 1 + \sin y]$	B) $-xsiny 1 + xco$	$sy j + ame^{my} k$		
	D) None of these $\partial^2 \bar{r}$			
72) If $\bar{r} = x\cos y \bar{1} + x\sin y \bar{j} + ae^{iny} k$, then	$\frac{\partial x^2}{\partial x^2}$	ानवः।		
A) $cosy \bar{i} + siny \bar{j}$	B) $-xsiny \bar{1} + xcc$	$\overline{\mathbf{j}}$ sy $\overline{\mathbf{j}}$ + ame ^{my} $\overline{\mathbf{k}}$		
C) 0	D) None of these			
73) If $\bar{r} = x\cos y \bar{i} + x\sin y \bar{j} + ae^{my} \bar{k}$, then $\frac{\partial^2 r}{\partial y^2} = \dots$				
A) $-siny \bar{i} + cosy \bar{j}$	B) – <i>xcosy</i> ī - xsii	$ry \bar{j} + am^2 e^{my} \bar{k}$		
C) $-x\cos y \bar{1} - x\sin y \bar{j}$	D) None of these			
74) If $\bar{r} = x\cos y \bar{i} + x\sin y \bar{j} + ae^{my} \bar{k}$, then	$\frac{\partial^2 \bar{\mathbf{r}}}{\partial x \partial y} = \dots$			
A) $-sinv \overline{1} + cosv \overline{1}$	B) $-xcosv \overline{1} - xsin$	$1 \sqrt{1} + am^2 e^{my} \overline{k}$		
C) $-xcosy \bar{1} - xsiny \bar{J}$	D) None of these	, · ·····		

UNIT-3: THE VECTOR OPERATOR DEL

- **Scalar Point Function:** A scalar valued function ϕ defined on a region R of a space is called scalar point function.
- **Remark:** A scalar point function together with region R is called scalar field.

e.g. The temperature at a point in a room is a scalar point function.

- **Surface:** If $\varphi = \varphi(x, y, z)$ is a scalar point function φ defined on a region R, then $\varphi(x, y, z) = c$, where c is parameter, defines family of surfaces in R, such surfaces are called level surfaces in R w.r.t. φ .
 - e.g. If $\phi(x, y, z)$ denotes the temperature at a point P(x, y, z) in a room, then

 $\phi(x, y, z) = 25^{\circ}$ is a level surfaces in a room at any point on this surface, the temperature will be 25° .

- **Vector Point Function:** A vector valued function $\overline{v}(P)$ defined on a region R of a space is called vector point function.
- **Remark:** A vector point function together with region R is called vector field.

e.g. The velocity of particle at a time t is a vector point function.

Gradient of a Scalar Point Function: Let $\varphi(x, y, z)$ be scalar point function defined and differentiable in a region R of a space, then gradient of φ is denoted by $\nabla \varphi$ or grad φ and defined as $\nabla \varphi = \frac{\partial \varphi}{\partial x} \overline{1} + \frac{\partial \varphi}{\partial y} \overline{1} + \frac{\partial \varphi}{\partial z} \overline{k}$

or grad ϕ and defined as $\psi \phi = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}$

Remark: i) $\nabla \phi = \frac{\partial \phi}{\partial x} \bar{\mathbf{i}} + \frac{\partial \phi}{\partial y} \bar{\mathbf{j}} + \frac{\partial \phi}{\partial z} \bar{\mathbf{k}}$ is a vector point function with components along

x, y, z axis are $\frac{\partial \varphi}{\partial x}$, $\frac{\partial \varphi}{\partial y}$, $\frac{\partial \varphi}{\partial z}$ respectively.

ii) The gradient of a scalar point function is a vector point function.

iii)
$$\nabla \phi = \frac{\partial \phi}{\partial x} \overline{i} + \frac{\partial \phi}{\partial y} \overline{j} + \frac{\partial \phi}{\partial z} \overline{k} = (\overline{i} \frac{\partial}{\partial x} + \overline{j} \frac{\partial}{\partial y} + \overline{k} \frac{\partial}{\partial z}) \phi \therefore \nabla = \overline{i} \frac{\partial}{\partial x} + \overline{j} \frac{\partial}{\partial y} + \overline{k} \frac{\partial}{\partial z}$$

iv) If
$$\nabla \phi = \frac{\partial \phi}{\partial x} \overline{i} + \frac{\partial \phi}{\partial y} \overline{j} + \frac{\partial \phi}{\partial z} \overline{k}$$
, then

$$\begin{split} \phi(x, y, z) = & \int_{y, z \text{ constant}}^{\cdot} \frac{\partial \phi}{\partial x} \, dx + \int_{z \text{ constant}}^{\cdot} [\text{Terms in} \frac{\partial \phi}{\partial y} \text{ not containing x}] dy \\ &+ \int [\text{Terms in} \frac{\partial \phi}{\partial z} \text{ containing neither x nor y}] dz + c \end{split}$$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 1

Theorem-1: If φ and ψ are scalar point functions and if $\nabla \varphi$ and $\nabla \psi$ exist in a given

region R, then $\nabla(\phi \pm \psi) = \nabla\phi \pm \nabla\psi$ i.e. grad $(\phi \pm \psi) = \text{grad }\phi \pm \text{grad }\psi$ **Proof:** Consider

$$grad(\varphi \pm \psi) = \nabla(\varphi \pm \psi)$$

= $(\bar{\imath}\frac{\partial}{\partial x} + \bar{\jmath}\frac{\partial}{\partial y} + \bar{k}\frac{\partial}{\partial z})(\varphi \pm \psi)$
= $\bar{\imath}\frac{\partial}{\partial x}(\varphi \pm \psi) + \bar{\jmath}\frac{\partial}{\partial y}(\varphi \pm \psi) + \bar{k}\frac{\partial}{\partial z}(\varphi \pm \psi)$
= $\bar{\imath}\frac{\partial\varphi}{\partial x}\pm\frac{\partial\psi}{\partial x} + \bar{\jmath}\frac{\partial\varphi}{\partial y}\pm\frac{\partial\psi}{\partial y} + \bar{k}[\frac{\partial\varphi}{\partial z}\pm\frac{\partial\psi}{\partial z}]$
= $[\bar{\imath}\frac{\partial\varphi}{\partial x} + \bar{\jmath}\frac{\partial\varphi}{\partial y} + \bar{k}\frac{\partial\varphi}{\partial z}] \pm [\bar{\imath}\frac{\partial\psi}{\partial x} + \bar{\jmath}\frac{\partial\psi}{\partial y} + \bar{k}\frac{\partial\psi}{\partial z}]$
= $\nabla\varphi \pm \nabla\psi$
= $grad \ \varphi \pm grad \ \psi$

Theorem-2: A necessary and sufficient condition for a scalar point function φ to be constant is that $\nabla \varphi = \overline{0}$.

Proof: Necessary Condition:

Let φ be a constant function.

$$\therefore \frac{\partial \varphi}{\partial x} = 0, \frac{\partial \varphi}{\partial y} = 0, \frac{\partial \varphi}{\partial z} = 0$$

$$\therefore \nabla \varphi = \frac{\partial \varphi}{\partial x} \overline{i} + \frac{\partial \varphi}{\partial y} \overline{j} + \frac{\partial \varphi}{\partial z} \overline{k} = 0 \overline{i} + 0 \overline{j} + 0 \overline{k} = \overline{0}$$

Sufficient Condition:

Let
$$\nabla \phi = \overline{0}$$

 $\therefore \frac{\partial \phi}{\partial x}\overline{1} + \frac{\partial \phi}{\partial y}\overline{J} + \frac{\partial \phi}{\partial z}\overline{k} = 0\overline{1} + 0\overline{J} + 0\overline{k}$
 $\therefore \frac{\partial \phi}{\partial x} = 0, \frac{\partial \phi}{\partial y} = 0, \frac{\partial \phi}{\partial z} = 0$ and the first brack with the difference of x, y, z .
 $\therefore \phi$ is independent of x, y, z .

Theorem-3: If φ and ψ are scalar point functions and if $\nabla \varphi$ and $\nabla \psi$ exist in a given region R, then $\nabla(\varphi \psi) = \varphi \nabla \psi + \psi \nabla \varphi$ i.e. grad $(\varphi \psi) = \varphi$ grad $\psi + \psi$ grad φ **Proof:** Consider

grad(
$$\phi \psi$$
) = $\nabla(\phi \psi)$
= $(\overline{i} \frac{\partial}{\partial x} + \overline{j} \frac{\partial}{\partial y} + \overline{k} \frac{\partial}{\partial z})(\phi \psi)$

MTH-403: VECTOR CALCULUS

$$= \overline{i} \frac{\partial}{\partial x} (\varphi \psi) + \overline{j} \frac{\partial}{\partial y} (\varphi \psi) + \overline{k} \frac{\partial}{\partial z} (\varphi \psi)$$

$$= \overline{i} \left[\varphi \frac{\partial \psi}{\partial x} + \psi \frac{\partial \varphi}{\partial x} \right] + \overline{j} \left[\varphi \frac{\partial \psi}{\partial y} + \psi \frac{\partial \varphi}{\partial y} \right] + \overline{k} \left[\varphi \frac{\partial \psi}{\partial z} + \psi \frac{\partial \varphi}{\partial z} \right]$$

$$= \varphi \left[\overline{i} \frac{\partial \psi}{\partial x} + \overline{j} \frac{\partial \psi}{\partial y} + \overline{k} \frac{\partial \psi}{\partial z} \right] + \psi \left[\overline{i} \frac{\partial \varphi}{\partial x} + \overline{j} \frac{\partial \varphi}{\partial y} + \overline{k} \frac{\partial \varphi}{\partial z} \right]$$

$$= \varphi \nabla \psi + \psi \nabla \varphi$$

$$= \varphi \operatorname{grad} \psi + \psi \operatorname{grad} \varphi$$
Corrolary: If φ is scalar point function and k is constant, then $\nabla(k\varphi) = k\nabla \varphi$
i.e. $\operatorname{grad}(k\varphi) = k \operatorname{grad} \varphi$
Proof: Consider

 $grad(k\phi) = \nabla(k\phi)$ = $\phi\nabla k + k\nabla\phi$ = $\phi(0) + k\nabla\phi$ = $k\nabla\phi$ = $k \operatorname{grad} \phi$

Theorem-3: If φ and ψ are scalar point functions and if $\nabla \varphi$ and $\nabla \psi$ exist in a given region R, then $\nabla \left(\frac{\varphi}{\psi}\right) = \frac{\psi \nabla \varphi - \varphi \nabla \psi}{\psi^2}$ i.e. $\operatorname{grad}\left(\frac{\varphi}{\psi}\right) = \frac{\psi \operatorname{grad} \varphi - \varphi \operatorname{grad} \psi}{\psi^2}$ provided $\psi \neq 0$ **Proof:** Consider

$$grad(\frac{\varphi}{\psi}) = \nabla(\frac{\varphi}{\psi})$$

$$= (\bar{i}\frac{\partial}{\partial x} + \bar{j}\frac{\partial}{\partial y} + \bar{k}\frac{\partial}{\partial z})(\frac{\varphi}{\psi}) \text{ and fitted for efficient quantum quantum$$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 3

Ex.: If $\overline{r} = x \overline{i} + y\overline{j} + z\overline{k}$, $|\overline{r}| = r$, then prove that

i)
$$\nabla \varphi(\mathbf{r}) = \varphi'(\mathbf{r}) \nabla \mathbf{r}$$
 ii) $\nabla \mathbf{r}$ is the unit vector $\hat{\mathbf{r}}$ iii) $\nabla \log \mathbf{r} = \frac{\overline{\mathbf{r}}}{\mathbf{r}^2}$

Proof: Consider

i)
$$\nabla \varphi(\mathbf{r}) = (\overline{i} \frac{\partial}{\partial x} + \overline{j} \frac{\partial}{\partial y} + \overline{k} \frac{\partial}{\partial z})\varphi(\mathbf{r})$$

$$= \overline{i} \frac{\partial}{\partial x}\varphi(\mathbf{r}) + \overline{j} \frac{\partial}{\partial y}\varphi(\mathbf{r}) + \overline{k} \frac{\partial}{\partial z}\varphi(\mathbf{r})$$

$$= [\overline{i} \varphi'(\mathbf{r}) \frac{\partial \mathbf{r}}{\partial x} + \overline{j} \varphi'(\mathbf{r}) \frac{\partial \mathbf{r}}{\partial y} + \overline{k} \varphi'(\mathbf{r}) \frac{\partial \mathbf{r}}{\partial z}]$$

$$= \varphi'(\mathbf{r}) [\overline{i} \frac{\partial \mathbf{r}}{\partial x} + \overline{j} \frac{\partial \mathbf{r}}{\partial y} + \overline{k} \frac{\partial \mathbf{r}}{\partial z}]$$

$$: \nabla \varphi(\mathbf{r}) = \varphi'(\mathbf{r}) \nabla \mathbf{r}$$
Hence proved.
ii) As $\mathbf{r} = |\overline{\mathbf{r}}| = \sqrt{x^2 + y^2 + z^2}$

$$: \frac{\partial \mathbf{r}}{\partial x} = \frac{1}{2\sqrt{x^2 + y^2 + z^2}} (2x) = \frac{x}{\mathbf{r}}$$
Similarly $\frac{\partial \mathbf{r}}{\partial y} = \frac{y}{\mathbf{r}}$ and $\frac{\partial z}{\partial z} = \frac{z}{\mathbf{r}}$

$$: \nabla \nabla \mathbf{r} = \overline{i} \frac{\partial \mathbf{r}}{\partial x} + \overline{j} \frac{\partial \mathbf{r}}{\partial y} + \overline{k} \frac{\partial \mathbf{r}}{\partial z}$$

$$= \frac{x}{\mathbf{r}} \mathbf{i} + \frac{y}{\mathbf{r}} \mathbf{j} + \frac{z}{\mathbf{k}} \overline{k}$$

$$= \frac{x \mathbf{i} + y \mathbf{j} + z\overline{k}}{\mathbf{r}}$$

$$= \frac{\overline{r}}{\mathbf{r}}$$

$$= \frac{\overline{r}}{\mathbf{r}}$$

$$= \frac{\overline{r}}{\mathbf{r}}$$

$$= \frac{\overline{r}}{\mathbf{r}}$$

$$= \frac{\overline{r}}{\mathbf{r}}$$

$$= \frac{\overline{r}}{\mathbf{r}}$$

$$= \frac{\nabla \varphi(\mathbf{r}) = \log \mathbf{r}}$$

$$: \nabla \varphi(\mathbf{r}) = \varphi'(\mathbf{r}) \nabla \mathbf{r}$$
 gives

$$\nabla \log \mathbf{r} = \frac{1}{\mathbf{r}} (\frac{\overline{r}}{\mathbf{r}}) : \nabla \mathbf{r} = \widehat{\mathbf{r}} = \frac{\overline{r}}{\mathbf{r}}$$

$$: \nabla \log \mathbf{r} = \frac{1}{\mathbf{r}} \frac{\overline{r}}{\mathbf{r}}$$
Hence proved.

Ex.: Prove that
$$\nabla r^n = nr^{n-2}\overline{r}$$
, where $\overline{r} = x \overline{i} + y\overline{j} + z\overline{k}$
Proof: Let $\varphi(r) = r^n$
 $\therefore \varphi'(r) = nr^{n-1}$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 4

$$\therefore \nabla \phi(\mathbf{r}) = \phi'(\mathbf{r}) \nabla \mathbf{r} \text{ gives}$$

$$\nabla \mathbf{r}^{n} = n\mathbf{r}^{n-1}(\frac{\overline{\mathbf{r}}}{\mathbf{r}}) \qquad \because \nabla \mathbf{r} = \hat{\mathbf{r}} = \frac{\overline{\mathbf{r}}}{\mathbf{r}}$$

$$\therefore \nabla \mathbf{r}^{n} = n\mathbf{r}^{n-2}\overline{\mathbf{r}} \qquad \text{Hence proved.}$$

Ex.: If $\overline{\mathbf{r}} = \mathbf{x} \ \overline{\mathbf{i}} + y\overline{\mathbf{j}} + z\overline{\mathbf{k}}$, and $\overline{\mathbf{a}}$, $\overline{\mathbf{b}}$ are constant vectors, then show that i) $\nabla(\overline{\mathbf{r}}, \overline{\mathbf{a}}) = \overline{\mathbf{a}}$ ii) $\nabla[\overline{\mathbf{r}}, \overline{\mathbf{a}}, \overline{\mathbf{b}}] = \overline{\mathbf{a}} \times \overline{\mathbf{b}}$ Proof: Let $\overline{\mathbf{a}} = a_1\overline{\mathbf{i}} + a_2\overline{\mathbf{j}} + a_3\overline{\mathbf{k}}$ $\therefore \overline{\mathbf{r}}, \overline{\mathbf{a}} = (\mathbf{x} \ \overline{\mathbf{i}} + y\overline{\mathbf{j}} + z\overline{\mathbf{k}}).(a_1\overline{\mathbf{i}} + a_2\overline{\mathbf{j}} + a_3\overline{\mathbf{k}})$ $= xa_1 + ya_2 + za_3$ $\therefore \nabla(\overline{\mathbf{r}}, \overline{\mathbf{a}}) = (\overline{\mathbf{i}}\frac{\partial}{\partial x} + \overline{\mathbf{j}}\frac{\partial}{\partial y} + \overline{\mathbf{k}}\frac{\partial}{\partial z})(xa_1 + ya_2 + za_3)$ $= (\overline{\mathbf{i}} a_1 + \overline{\mathbf{j}}a_2 + \overline{\mathbf{k}}a_3)$ $= a_1\overline{\mathbf{i}} + a_2\overline{\mathbf{j}} + a_3\overline{\mathbf{k}}$ $\therefore \nabla(\overline{\mathbf{r}}, \overline{\mathbf{a}}) = \overline{\mathbf{a}}$ ii) As $\overline{\mathbf{a}}$, $\overline{\mathbf{b}}$ are constant vectors. $\therefore \overline{\mathbf{a}} \times \overline{\mathbf{b}}$ is constant vector. $\therefore \nabla[\overline{\mathbf{r}}. (\overline{\mathbf{a}} \times \overline{\mathbf{b}})] = \overline{\mathbf{a}} \times \overline{\mathbf{b}}$ by (i) i.e. $\nabla[\overline{\mathbf{r}}, \overline{\mathbf{a}}, \overline{\mathbf{b}}] = \overline{\mathbf{a}} \times \overline{\mathbf{b}}$ Hence proved.

Ex.: If
$$u = 3x^2y$$
 and $v = xz^2 - 2y$, then find grad[(gradu).(gradv)]
Solution: Let $u = 3x^2y$ and $v = xz^2 - 2y$
 \therefore grad $u = \nabla u = (\overline{i}\frac{\partial}{\partial x} + \overline{j}\frac{\partial}{\partial y} + \overline{k}\frac{\partial}{\partial z})(3x^2y)$
 $= 6xy\overline{i} + 3x^2\overline{j} + 0\overline{k}$
& grad $v = \nabla v = (\overline{i}\frac{\partial}{\partial x} + \overline{j}\frac{\partial}{\partial y} + \overline{k}\frac{\partial}{\partial z})(xz^2 - 2y)$
 $= z^2\overline{i} - 2\overline{j} + 2xz\overline{k}$
 \therefore grad u. grad $v = (6xy\overline{i} + 3x^2\overline{j} + 0\overline{k}).(z^2\overline{i} - 2\overline{j} + 2xz\overline{k})$
 $= 6xyz^2 - 6x^2 + 0$
 $= 6xyz^2 - 6x^2$
 \therefore grad[(gradu).(gradv)] = $(\overline{i}\frac{\partial}{\partial x} + \overline{j}\frac{\partial}{\partial y} + \overline{k}\frac{\partial}{\partial z})(6xyz^2 - 6x^2)$
 $= (6yz^2 - 12x)\overline{i} + 6xz^2\overline{j} + 12xyz\overline{k}$

Ex.: Find f(x, y, z) if f(0, 0, 0) = 1 and $\nabla f = (y^2 - 2xyz^3) \overline{r} + (3 + 2xy - x^2z^3)\overline{j} + (8z^3 - 3x^2yz^2)\overline{k}$ Solution: Let $\nabla f = (y^2 - 2xyz^3) \overline{r} + (3 + 2xy - x^2z^3)\overline{j} + (8z^3 - 3x^2yz^2)\overline{k}$ Comparing it with $\nabla f = \frac{\partial f}{\partial x}\overline{r} + \frac{\partial f}{\partial y}\overline{j} + \frac{\partial f}{\partial z}\overline{k}$, we get, $\frac{\partial f}{\partial x} = y^2 - 2xyz^3$, $\frac{\partial f}{\partial y} = 3 + 2xy - x^2z^3$ and $\frac{\partial f}{\partial z} = 8z^3 - 3x^2yz^2$ Now $f(x, y, z) = \int_{y,z \text{ constant}}^{\cdot} \frac{\partial f}{\partial x} dx + \int_{z \text{ constant}}^{\cdot} [\text{Terms in } \frac{\partial f}{\partial y} \text{ not containing x}] dy$ $+ \int [\text{Terms in } \frac{\partial f}{\partial z} \text{ containing neither x nor y}] dz + c, \text{ gives}$ $f(x, y, z) = \int_{y,z \text{ constant}}^{\cdot} (y^2 - 2xyz^3) dx + \int_{z \text{ constant}}^{\cdot} (3) dy + \int (8z^3) dz + c$ i.e. $f(x, y, z) = y^2x - x^2yz^3 + 3y + 2z^4 + c$ (i) But f(0, 0, 0) = 1 i.e. c = 1Putting c = 1 in (i), we get, $f(x, y, z) = y^2x - x^2yz^3 + 3y + 2z^4 + 1$

Geometric Meaning of the gradient $\nabla \varphi$:

i) Normal to the surface $\varphi(x, y, z) = c$ at point $P(x, y, z) = (\nabla \varphi)_P$ ii) Unit normal to the surface $\varphi(x, y, z) = c$ at point $P(x, y, z) = \frac{(\nabla \varphi)_P}{|(\nabla \varphi)_P|}$ iii) $\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}$ are the d.r.s. of normal to the surface $\varphi(x, y, z) = c$. iv) If a, b, c are the d.r.s. of normal, then equation of normal passing through $P(x_1, y_1, z_1)$ is $\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$ v) Equation of tangent plane to the surface $\varphi(x, y, z) = c$ at $P(x_1, y_1, z_1)$ is $a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$

Ex.: Find the unit vector normal to the surface $x^3 + y^3 + 3xyz = 3$ at the point P(1, 2, -1) **Solution:** Let $\varphi(x, y, z) = x^3 + y^3 + 3xyz = 3$ be the given surface.

$$\therefore \nabla \varphi = \frac{\partial \varphi}{\partial x} \overline{\mathbf{i}} + \frac{\partial \varphi}{\partial y} \overline{\mathbf{j}} + \frac{\partial \varphi}{\partial z} \overline{\mathbf{k}}$$

$$= (3x^{2} + 3yz) \overline{\mathbf{i}} + (3y^{2} + 3xz) \overline{\mathbf{j}} + 3xy\overline{\mathbf{k}}$$
At the point P(1, 2, -1), we have
$$(\nabla \varphi)_{P} = (3 - 6) \overline{\mathbf{i}} + (12 - 3) \overline{\mathbf{j}} + 6\overline{\mathbf{k}} = -3\overline{\mathbf{i}} + 9\overline{\mathbf{j}} + 6\overline{\mathbf{k}} = 3(-\overline{\mathbf{i}} + 3\overline{\mathbf{j}} + 2\overline{\mathbf{k}})$$

$$\therefore \text{ the unit vector normal to the surface } \varphi = 3 \text{ at point P is}$$

$$\overline{N} = \frac{(\nabla \varphi)_{P}}{|(\nabla \varphi)_{P}|} = \frac{3(-\overline{\mathbf{i}} + 3\overline{\mathbf{j}} + 2\overline{\mathbf{k}})}{3\sqrt{(-1)^{2} + 3^{2} + 2^{2}}} = \frac{(-\overline{\mathbf{i}} + 3\overline{\mathbf{j}} + 2\overline{\mathbf{k}})}{\sqrt{14}}$$

Ex.: Find the equation of tangent plane and equation of normal to the surface $xz^2 + x^2y - z + 1 = 0$ at the point P(1, -3, 2)

Solution: Let $\varphi(x, y, z) = xz^2 + x^2y - z = -1$ be the given surface.

$$\therefore \frac{\partial \phi}{\partial x} = z^2 + 2xy, \ \frac{\partial \phi}{\partial y} = x^2, \frac{\partial \phi}{\partial z} = 2xz - 1$$

At the point P(1, -3, 2), we have

$$a = (\frac{\partial \varphi}{\partial x})_{P} = -2, b = (\frac{\partial \varphi}{\partial y})_{P} = 1, c = (\frac{\partial \varphi}{\partial z})_{P} = 3$$

i.e -2, 1, 3 i.e. 2, -1, -3 are the d.r.s. of normal at point P.

: Equation of tangent plane to the surface $\varphi(x, y, z) = -1$ at P(1, -3, 2) is

$$2(x-1) - (y+3) - 3(z-2) = 0$$

i.e.
$$2x - y - 3z + 1 = 0$$

The equation of normal at P(1, -3, 2) is $\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-2}{-3}$

Divergence of a Vector Point Function: Let $\overline{\mathbf{v}} = \overline{\mathbf{v}}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ be a differentiable vector point function defined in a region R, then the divergence of $\overline{\mathbf{v}}$ is defined as $\operatorname{div}.\overline{\mathbf{v}} = \overline{\mathbf{I}} \cdot \frac{\partial \overline{\mathbf{v}}}{\partial \mathbf{x}} + \overline{\mathbf{J}} \cdot \frac{\partial \overline{\mathbf{v}}}{\partial \mathbf{y}} + \overline{\mathbf{k}} \cdot \frac{\partial \overline{\mathbf{v}}}{\partial \mathbf{z}}$ **Note:** i) $\operatorname{div}.\overline{\mathbf{v}} = \overline{\mathbf{I}} \cdot \frac{\partial \overline{\mathbf{v}}}{\partial \mathbf{x}} + \overline{\mathbf{J}} \cdot \frac{\partial \overline{\mathbf{v}}}{\partial \mathbf{y}} + \overline{\mathbf{k}} \cdot \frac{\partial \overline{\mathbf{v}}}{\partial \mathbf{z}} = (\overline{\mathbf{I}} \cdot \frac{\partial}{\partial \mathbf{x}} + \overline{\mathbf{J}} \cdot \frac{\partial}{\partial \mathbf{y}} + \overline{\mathbf{k}} \cdot \frac{\partial}{\partial \mathbf{z}}) \cdot \overline{\mathbf{v}} = \overline{\mathbf{v}} \cdot \overline{\mathbf{v}}$

ii) The divergence of vector point function is a scalar point function.

iii) If
$$\overline{\mathbf{v}} = \mathbf{v}_1 \overline{\mathbf{i}} + \mathbf{v}_2 \overline{\mathbf{j}} + \mathbf{v}_3 \overline{\mathbf{k}}$$
, then div. $\overline{\mathbf{v}} = \nabla$. $\overline{\mathbf{v}} = (\overline{\mathbf{i}} \frac{\partial}{\partial x} + \overline{\mathbf{j}} \frac{\partial}{\partial y} + \overline{\mathbf{k}} \frac{\partial}{\partial z})$. $(\mathbf{v}_1 \overline{\mathbf{i}} + \mathbf{v}_2 \overline{\mathbf{j}} + \mathbf{v}_3 \overline{\mathbf{k}})$

 $= \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z}$

Solenoidal: A vector point function \overline{v} is called solenoidal if div. $\overline{v} = 0$.

Ex.: Find divergence of
$$\overline{\mathbf{v}} = (\mathbf{x}^2 + \mathbf{y}\mathbf{z})\mathbf{i} + (\mathbf{y}^2 + \mathbf{z}\mathbf{x})\mathbf{j} + (\mathbf{z}^2 + \mathbf{x}\mathbf{y})\mathbf{k}$$

Solution: Let $\overline{\mathbf{v}} = (\mathbf{x}^2 + \mathbf{y}\mathbf{z})\mathbf{i} + (\mathbf{y}^2 + \mathbf{z}\mathbf{x})\mathbf{j} + (\mathbf{z}^2 + \mathbf{x}\mathbf{y})\mathbf{k}$ be the given surface.
 $\therefore \operatorname{div}.\overline{\mathbf{v}} = \nabla.\overline{\mathbf{v}} = (\overline{\mathbf{i}}\frac{\partial}{\partial \mathbf{x}} + \overline{\mathbf{j}}\frac{\partial}{\partial \mathbf{y}} + \overline{\mathbf{k}}\frac{\partial}{\partial \mathbf{z}}).[(\mathbf{x}^2 + \mathbf{y}\mathbf{z})\mathbf{i} + (\mathbf{y}^2 + \mathbf{z}\mathbf{x})\mathbf{j} + (\mathbf{z}^2 + \mathbf{x}\mathbf{y})\mathbf{k}]$
 $= \frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^2 + \mathbf{y}\mathbf{z}) + \frac{\partial}{\partial \mathbf{y}}(\mathbf{y}^2 + \mathbf{z}\mathbf{x}) + \frac{\partial}{\partial \mathbf{z}}(\mathbf{z}^2 + \mathbf{x}\mathbf{y})$
 $= 2\mathbf{x} + 2\mathbf{y} + 2\mathbf{z}$
 $= 2(\mathbf{x} + \mathbf{y} + \mathbf{z})$

Ex.: Show that $\overline{v} = x^2z\overline{i} + y^2z\overline{j} - (xz^2+yz^2)\overline{k}$ is solenoidal. **Proof:** Let $\overline{v} = x^2z\overline{i} + y^2z\overline{j} - (xz^2+yz^2)\overline{k}$ be the given surface. $\therefore \operatorname{div}.\overline{v} = \nabla.\overline{v} = (\overline{i}\frac{\partial}{\partial x} + \overline{j}\frac{\partial}{\partial y} + \overline{k}\frac{\partial}{\partial z}).[x^2z\overline{i} + y^2z\overline{j} - (xz^2+yz^2)\overline{k}]$ $= \frac{\partial}{\partial x}(x^2z) + \frac{\partial}{\partial y}(y^2z) - \frac{\partial}{\partial z}(xz^2+yz^2)$ = 2xz + 2yz - 2xz - 2yz = 0 $\therefore \overline{v}$ is solenoidal is proved. **Ex.:** Determine the constant a so that the vector function $\overline{v} = (x+3y)\overline{i} + (y-2z)\overline{j} + (x+az)\overline{k}$ is solenoidal. Solution: Let $\overline{v} = (x+3y)\overline{i} + (y-2z)\overline{j} + (x+az)\overline{k}$ is solenoidal. $\therefore \operatorname{div}.\overline{v} = 0$ i.e. $\nabla.\overline{v} = 0$ $\therefore (\overline{i}\frac{\partial}{\partial x} + \overline{j}\frac{\partial}{\partial y} + \overline{k}\frac{\partial}{\partial z}).[(x+3y)\overline{i} + (y-2z)\overline{j} + (x+az)\overline{k}] = 0$ $\therefore \frac{\partial}{\partial x}(x+3y) + \frac{\partial}{\partial y}(y-2z) + \frac{\partial}{\partial z}(x+az) = 0$ $\therefore 1 + 1 + a = 0$ $\therefore a = -2$

Laplacian of a Scalar Point Function:

Let φ be scalar point function, then divergence of $\nabla \varphi$ i.e. $\nabla \cdot \nabla \varphi = \nabla^2 \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2}$ is called Laplacian of scalar point function φ Laplacian Equation: $\nabla^2 \varphi = 0$ is called Laplacian equation of scalar point function φ . Harmonic Function: A scalar point function φ is said to be Harmonic function if it satisfies Laplacian equation $\nabla^2 \varphi = 0$.

Curl of a Vector Point Function: Let $\overline{v} = \overline{v}(x, y, z)$ be a differentiable vector point function defined in a region R, then the curl (or rotation) of \overline{v} is defined as

$$\operatorname{curl}.\overline{\mathbf{v}} = \overline{\mathbf{i}} \times \frac{\partial \overline{\mathbf{v}}}{\partial \mathbf{x}} + \overline{\mathbf{j}} \times \frac{\partial \overline{\mathbf{v}}}{\partial \mathbf{y}} + \overline{\mathbf{k}} \times \frac{\partial \overline{\mathbf{v}}}{\partial \mathbf{z}}$$

Note: i) curl. $\overline{\mathbf{v}} = \overline{\mathbf{i}} \times \frac{\partial \overline{\mathbf{v}}}{\partial \mathbf{x}} + \overline{\mathbf{j}} \times \frac{\partial \overline{\mathbf{v}}}{\partial \mathbf{y}} + \overline{\mathbf{k}} \times \frac{\partial \overline{\mathbf{v}}}{\partial \mathbf{z}} = (\overline{\mathbf{i}} \frac{\partial}{\partial \mathbf{x}} + \overline{\mathbf{j}} \frac{\partial}{\partial \mathbf{y}} + \overline{\mathbf{k}} \frac{\partial}{\partial \mathbf{z}}) \times \overline{\mathbf{v}} = \nabla \times \overline{\mathbf{v}}$

ii) Curl of vector point function is again a vector point function.

iii) If
$$\overline{v} = v_1\overline{v} + v_2\overline{v} + v_3\overline{k}$$
, then $\operatorname{curl} \times \overline{v} = \nabla \times \overline{v} = \begin{vmatrix} \overline{v} & \overline{v} & \overline{d} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_1 & v_2 & v_3 \end{vmatrix}$
iv) If $\overline{v} = \nabla \varphi = \frac{\partial \varphi}{\partial x}\overline{1} + \frac{\partial \varphi}{\partial x}\overline{j} + \frac{\partial \varphi}{\partial x}\overline{k}$, then
 $\varphi(x, y, z) = \int_{y,z}^{z} constant \frac{\partial \varphi}{\partial x} dx + \int_{z}^{z} constant} [\operatorname{Terms in} \frac{\partial \varphi}{\partial y} \text{ not containing x}]dy$
 $+ \int [\operatorname{Terms in} \frac{\partial \varphi}{\partial z} \operatorname{containing neither x nor y}]dz + c$
Irrotational: A vector point function \overline{v} is called irrotational if $\operatorname{curl} \cdot \overline{v} = \overline{0}$.
Ex.: Find curl of $\overline{v} = xz^3\overline{1} - 2x^2yz\overline{j} + 2yz^4\overline{k}$
Solution: Let $\overline{v} = xz^3\overline{1} - 2x^2yz\overline{j} + 2yz^4\overline{k}$
 $\therefore \operatorname{curl} \cdot \overline{v} = \left| \frac{\overline{v}}{\frac{\partial}{\partial x}} \quad \frac{\partial}{\frac{\partial}{\partial y}} \quad \frac{\partial}{\frac{\partial}{z_1}} \right|$
 $= \overline{1}(2z^4 + 2x^2y) - \overline{j}(0 - 3xz^2) + \overline{k}(-4xyz - 0)$
 $= 2(z^4 + x^2y)\overline{1} + 3xz^2\overline{1} - 4xyz\overline{k}$
Ex.: Show that $\overline{v} = x^2\overline{1} + y^2\overline{1} + z^2\overline{k}$ is irrotational.
Proof: Let $\overline{v} = x^2\overline{1} + y^2\overline{1} + z^2\overline{k}$
 $\therefore \operatorname{curl} \cdot \overline{v} = \left| \frac{\overline{v}}{\frac{\partial}{\partial x}} \quad \frac{\partial}{\partial y} \quad \frac{\partial}{\partial z_1} \right|$
 $= \overline{1}(0 - 0) - \overline{j}(0 - 0) + \overline{k}(0 - 0)$
 $= 0\overline{v} + 0\overline{j} + 0\overline{k}$
 $= \overline{0}$ [Vertex unificational is proved.

Ex.: Show that $\overline{v} = (\sin y + z)\overline{i} + (x\cos y - z)\overline{j} + (x - y)\overline{k}$ is irrotational. **Proof:** Let $\overline{v} = (\sin y + z)\overline{i} + (x\cos y - z)\overline{j} + (x - y)\overline{k}$

$$\therefore \operatorname{curl.} \overline{\mathbf{v}} = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \mathbf{k} \\ \frac{\partial}{\partial \mathbf{x}} & \frac{\partial}{\partial \mathbf{y}} & \frac{\partial}{\partial \mathbf{z}} \\ \operatorname{siny} + \mathbf{z} & \operatorname{xcosy} - \mathbf{z} & \mathbf{x} - \mathbf{y} \end{vmatrix}$$
$$= \overline{\mathbf{i}} (-1+1) - \overline{\mathbf{j}} (1-1) + \overline{\mathbf{k}} (\operatorname{cosy-cosy})$$
$$= 0\overline{\mathbf{i}} + 0\overline{\mathbf{j}} + 0\overline{\mathbf{k}}$$
$$= \overline{\mathbf{0}}$$

 $\therefore \overline{v}$ is irrotational is proved.

Ex.: If $\overline{f} = (y+\sin z)\overline{i} + x\overline{j} + x\cos z\overline{k}$, then show that \overline{f} is irrotational and find φ such that $\nabla \varphi = \overline{f}$.

Proof: Let $\overline{f} = (y+\sin z)\overline{i} + x\overline{j} + x\cos z\overline{k}$

$$\therefore \operatorname{curl} \overline{f} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y + \sin z & x \cos z \end{vmatrix}$$

= $\overline{i} (0 - 0) - \overline{j} (\cos z - \cos z) + \overline{k} (1 - 1)$
= $0\overline{i} + 0\overline{j} + 0\overline{k}$
= $\overline{0}$
$$\therefore \overline{f} \text{ is irrotational is proved.}$$

As $\nabla \phi = \overline{f} \text{ i.e. } \frac{\partial \phi}{\partial x} \overline{i} + \frac{\partial \phi}{\partial y} \overline{j} + \frac{\partial \phi}{\partial z} \overline{k} = (y + \sin z)\overline{i} + x\overline{j} + x \cos z\overline{k}$
$$\therefore \frac{\partial \phi}{\partial x} = y + \sin z, \frac{\partial \phi}{\partial y} = x, \frac{\partial \phi}{\partial z} = x \cos z$$

$$\therefore \phi(x, y, z) = \int_{y,z \text{ constant}}^{\cdot} \frac{\partial \phi}{\partial x} dx + \int_{z \text{ constant}}^{\cdot} [\operatorname{Terms} in \frac{\partial \phi}{\partial y} \text{ not containing x}] dy$$

$$+ \int [\operatorname{Terms} in \frac{\partial \phi}{\partial z} \operatorname{containing neither x nor y}] dz + c$$

$$\therefore \phi(x, y, z) = \int_{y,z \text{ constant}}^{\cdot} (y + \sin z) dx + \int_{z \text{ constant}}^{\cdot} 0 dy + \int 0 dz + c$$

$$\therefore \phi(x, y, z) = (y + \sin z)x + c$$

Ex.: Verify that the vector point function $\overline{a} = (6xy + z^3)\overline{I} + (3x^2 - z)\overline{J} + (3xz^2 - y)\overline{k}$ is irrotational. Find a scalar point function φ such that $\overline{a} = \nabla \varphi$.

Proof: Let
$$\overline{a} = (6xy + z^3)\overline{I} + (3x^2 - z)\overline{J} + (3xz^2 - y)\overline{k}$$

$$\therefore \operatorname{curl} \overline{a} = \begin{vmatrix} \overline{i} & \overline{j} & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 6xy + z^3 & 3x^2 - z & 3xz^2 - y \end{vmatrix}$$
$$= \overline{i} (-1+1) - \overline{j} (3z^2 - 3z^2) + \overline{k}(6x - 6x)$$
$$= 0\overline{i} + 0\overline{j} + 0\overline{k}$$
$$= \overline{0}$$

 $\therefore \overline{a}$ is irrotational is proved.

As
$$\bar{a} = \nabla \phi$$
 i.e. $\frac{\partial \phi}{\partial x} \bar{i} + \frac{\partial \phi}{\partial y} \bar{j} + \frac{\partial \phi}{\partial z} \bar{k} = (6xy + z^3)\bar{i} + (3x^2 - z)\bar{j} + (3xz^2 - y)\bar{k}$
 $\therefore \frac{\partial \phi}{\partial x} = 6xy + z^3, \frac{\partial \phi}{\partial y} = 3x^2 - z, \frac{\partial \phi}{\partial z} = 3xz^2 - y$
 $\therefore \phi(x, y, z) = \int_{y,z \text{ constant}}^{\cdot} \frac{\partial \phi}{\partial x} dx + \int_{z \text{ constant}}^{\cdot} [\text{Terms in } \frac{\partial \phi}{\partial y} \text{ not containing x}]dy$
 $+ \int [\text{Terms in } \frac{\partial \phi}{\partial z} \text{ containing neither x nor y}]dz + c$
 $\therefore \phi(x, y, z) = \int_{y,z \text{ constant}}^{\cdot} (6xy + z^3) dx + \int_{z \text{ constant}}^{\cdot} (-z)dy + \int 0dz + c$
 $\therefore \phi(x, y, z) = 3x^2y + xz^3 - yz + c$

Ex.: Find the constants a, b, c so that the vector function

 $\overline{\mathbf{v}} = (x+2y+az)\overline{\mathbf{i}} + (bx-3y-z)\overline{\mathbf{j}} + (4x+cy+2z)\overline{\mathbf{k}}$ is irrotational.

Solution: Let $\overline{v} = (x+2y+az)\overline{i} + (bx-3y-z)\overline{j} + (4x+cy+2z)\overline{k}$ is irrotational

$$\therefore \text{ curl.} \mathbf{v} = \mathbf{0}$$

$$\therefore \begin{vmatrix} \overline{\mathbf{I}} & \overline{\mathbf{J}} & \overline{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \mathbf{x} + 2\mathbf{y} + \mathbf{az} & \mathbf{bx} - 3\mathbf{y} - \mathbf{z} & 4\mathbf{x} + \mathbf{cy} + 2\mathbf{z} \end{vmatrix} = \overline{\mathbf{0}}$$

$$\therefore \overline{\mathbf{I}} (\mathbf{c}+1) - \overline{\mathbf{J}} (4-\mathbf{a}) + \overline{\mathbf{k}} (\mathbf{b}-2) = \mathbf{0}\overline{\mathbf{I}} + \mathbf{0}\overline{\mathbf{J}} + \mathbf{0}\overline{\mathbf{k}}$$

$$\therefore \mathbf{c} + 1 = \mathbf{0}, \mathbf{a} - 4 = \mathbf{0} \text{ and } \mathbf{b} - 2 = \mathbf{0}$$

$$\therefore \mathbf{a} = 4, \mathbf{b} = 2 \text{ and } \mathbf{c} = -1 \text{ be the required values.}$$

Ex.: If $\overline{f} = x^2 y \overline{i} - 2xz \overline{j} + 2yz \overline{k}$, then find div \overline{f} and curl \overline{f} Solution: Let $\overline{f} = x^2 y \overline{i} - 2xz \overline{j} + 2yz \overline{k}$

$$\therefore \operatorname{div} \overline{\mathbf{f}} = \nabla. \overline{\mathbf{f}} = (\overline{\mathbf{i}} \frac{\partial}{\partial x} + \overline{\mathbf{j}} \frac{\partial}{\partial y} + \overline{\mathbf{k}} \frac{\partial}{\partial z}) \cdot [x^2 y \,\overline{\mathbf{i}} - 2xz \,\overline{\mathbf{j}} + 2yz \,\overline{\mathbf{k}}]$$

$$= \frac{\partial}{\partial x} (x^2 y) - \frac{\partial}{\partial y} (2xz) + \frac{\partial}{\partial z} (2yz)$$

$$= 2xy - 0 + 2y$$

$$= 2y(x + 1)$$

$$\& \operatorname{curl} \overline{\mathbf{f}} = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 y & -2xz & 2yz \end{vmatrix}$$

$$= \overline{\mathbf{i}} (2z + 2x) - \overline{\mathbf{j}} (0 - 0) + \overline{k} (-2z - x^2)$$

$$= 2(x + z)\overline{\mathbf{i}} - (x^2 + 2z)\overline{k}$$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 11

Ex.: If
$$\bar{f} = (y^2 + z^2 - x^2)\bar{i} + (z^2 + x^2 - y^2)\bar{j} + (x^2 + y^2 - z^2)\bar{k}$$
, then find div \bar{f} and curl \bar{f}
Solution: Let $\bar{f} = (y^2 + z^2 - x^2)\bar{i} + (z^2 + x^2 - y^2)\bar{j} + (x^2 + y^2 - z^2)\bar{k}$
 \therefore div $\bar{f} = \nabla \cdot \bar{f} = (\bar{\iota} \frac{\partial}{\partial x} + \bar{j} \frac{\partial}{\partial y} + \bar{k} \frac{\partial}{\partial z}) \cdot [(y^2 + z^2 - x^2)\bar{\iota} + (z^2 + x^2 - y^2)\bar{j} + (x^2 + y^2 - z^2)\bar{k}]$
 $= \frac{\partial}{\partial x} (y^2 + z^2 - x^2) + \frac{\partial}{\partial y} (z^2 + x^2 - y^2) + \frac{\partial}{\partial z} (x^2 + y^2 - z^2)$
 $= -2x - 2y - 2z$
 $= -2(x + y + z)$
& curl $\bar{f} = \begin{vmatrix} \bar{\iota} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 + z^2 - x^2 & z^2 + x^2 - y^2 & x^2 + y^2 - z^2 \end{vmatrix}$
 $= \bar{\iota} (2y - 2z) - \bar{j} (2x - 2z) + \bar{k} (2x - 2y)$
 $= 2[(y - z)\bar{\iota} + (z - x)\bar{j} + (x - y)\bar{k}]$

Ex.: If \bar{a} is constant vector, then find div $(\bar{r} \times \bar{a})$ and curl $(\bar{r} \times \bar{a})$. **Solution:** Let $\bar{a} = a_1\bar{\iota} + a_2\bar{j} + a_3\bar{k}$ be a constant vector and $\bar{r} = x\bar{\iota} + y\bar{j} + z\bar{k}$

$$\therefore \bar{r} \times \bar{a} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ x & y & z \\ a_1 & a_2 & a_3 \end{vmatrix}$$

$$= \bar{i} (a_3 y - a_2 z) - \bar{j} (a_3 x - a_1 z) + \bar{k} (a_2 x - a_1 y)$$

$$\therefore \operatorname{div} (\bar{r} \times \bar{a}) = \nabla . (\bar{r} \times \bar{a})$$

$$= (\bar{i} \frac{\partial}{\partial x} + \bar{j} \frac{\partial}{\partial y} + \bar{k} \frac{\partial}{\partial z}) . [\bar{i} (a_3 y - a_2 z) - \bar{j} (a_3 x - a_1 z) + \bar{k} (a_2 x - a_1 y)]$$

$$= \frac{\partial}{\partial x} (a_3 y - a_2 z) - \frac{\partial}{\partial y} (a_3 x - a_1 z) + \frac{\partial}{\partial z} (a_2 x - a_1 y)$$

$$= 0 - 0 - 0$$

$$= 0$$

$$\& \operatorname{curl} (\bar{r} \times \bar{a}) = \nabla \times (\bar{r} \times \bar{a}) = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_3 y - a_2 z - a_1 z - a_3 x - a_2 x - a_1 y \end{vmatrix}$$

$$= (-a_1 - a_1)\bar{i} - (a_2 + a_2)\bar{j} + (-a_3 - a_3)\bar{k}$$

$$= -2(a_1\bar{i} + a_2)\bar{j} + a_3\bar{k})$$

$$= -2\bar{a}$$

Theorem-1: If \bar{u} and \bar{v} are vector point functions, then

 $div.(\bar{u} \pm \bar{v}) = div.\bar{u} \pm div.\bar{v}$ i.e $\nabla.(\bar{u} \pm \bar{v}) = \nabla.\bar{u} \pm \nabla.\bar{v}$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 12

Proof: Consider

$$div. (\bar{u} \pm \bar{v}) = \nabla . (\bar{u} \pm \bar{v})$$

$$= (\bar{\iota} \frac{\partial}{\partial x} + \bar{J} \frac{\partial}{\partial y} + \bar{k} \frac{\partial}{\partial z}) . (\bar{u} \pm \bar{v})$$

$$= \bar{\iota} \frac{\partial}{\partial x} . (\bar{u} \pm \bar{v}) + \bar{J} \frac{\partial}{\partial y} . (\bar{u} \pm \bar{v}) + \bar{k} \frac{\partial}{\partial z} . (\bar{u} \pm \bar{v})$$

$$= \bar{\iota} . [\frac{\partial \bar{u}}{\partial x} \pm \frac{\partial \bar{v}}{\partial x}] + \bar{J} . [\frac{\partial \bar{u}}{\partial y} \pm \frac{\partial \bar{v}}{\partial y}] + \bar{k} . [\frac{\partial \bar{u}}{\partial z} \pm \frac{\partial \bar{v}}{\partial z}]$$

$$= [\bar{\iota} . \frac{\partial \bar{u}}{\partial x} + \bar{J} . \frac{\partial \bar{u}}{\partial y} + \bar{k} . \frac{\partial \bar{u}}{\partial z}] \pm [\bar{\iota} . \frac{\partial \bar{v}}{\partial x} + \bar{J} . \frac{\partial \bar{v}}{\partial y} + \bar{k} . \frac{\partial \bar{v}}{\partial z}]$$

$$= \nabla . \bar{u} \pm \nabla . \bar{v}$$

$$= div. \bar{u} \pm div. \bar{v}$$

Theorem-2: If \bar{u} and \bar{v} are vector point functions, then

 $curl. (\bar{u} \pm \bar{v}) = curl. \bar{u} \pm curl. \bar{v} \qquad \text{i.e } \nabla \times (\bar{u} \pm \bar{v}) = \nabla \times \bar{u} \pm \nabla \times \bar{v}$

Proof: Consider

$$curl. (\bar{u} \pm \bar{v}) = \nabla \times (\bar{u} \pm \bar{v})$$

$$= (\bar{\iota}\frac{\partial}{\partial x} + \bar{J}\frac{\partial}{\partial y} + \bar{k}\frac{\partial}{\partial z}) \times (\bar{u} \pm \bar{v})$$

$$= \bar{\iota}\frac{\partial}{\partial x} \times (\bar{u} \pm \bar{v}) + \bar{J}\frac{\partial}{\partial y} \times (\bar{u} \pm \bar{v}) + \bar{k}\frac{\partial}{\partial z} \times (\bar{u} \pm \bar{v})$$

$$= \bar{\iota} \times \left[\frac{\partial \bar{u}}{\partial x} \pm \frac{\partial \bar{v}}{\partial x}\right] + \bar{J} \times \left[\frac{\partial \bar{u}}{\partial y} \pm \frac{\partial \bar{v}}{\partial y}\right] + \bar{k} \times \left[\frac{\partial \bar{u}}{\partial z} \pm \frac{\partial \bar{v}}{\partial z}\right]$$

$$= [\bar{\iota} \times \frac{\partial \bar{u}}{\partial x} + \bar{J} \times \frac{\partial \bar{u}}{\partial y} + \bar{k} \times \frac{\partial \bar{u}}{\partial z}] \pm [\bar{\iota} \times \frac{\partial \bar{v}}{\partial x} + \bar{J} \times \frac{\partial \bar{v}}{\partial y} + \bar{k} \times \frac{\partial \bar{v}}{\partial z}]$$

$$= \nabla \times \bar{u} \pm \nabla \times \bar{v}$$

$$= curl \, \bar{u} \pm curl \, \bar{v}$$

Theorem-3: If φ is a scalar point function and \overline{u} is vector point function, then $div. (\varphi \overline{u}) = (grad \varphi). \overline{u} + \varphi div. \overline{u}$ i.e $\nabla. (\varphi \overline{u}) = (\nabla \varphi). \overline{u} + \varphi (\nabla. \overline{u})$

Proof: Consider

$$div. (\varphi \overline{u}) = \nabla . (\varphi \overline{u})$$

$$= (\overline{\iota} \frac{\partial}{\partial x} + \overline{j} \frac{\partial}{\partial y} + \overline{k} \frac{\partial}{\partial z}) . (\varphi \overline{u})$$

$$= \overline{\iota} \frac{\partial}{\partial x} . (\varphi \overline{u}) + \overline{j} \frac{\partial}{\partial y} . (\varphi \overline{u}) + \overline{k} \frac{\partial}{\partial z} . (\varphi \overline{u})$$

$$= \overline{\iota} . [\frac{\partial \varphi}{\partial x} \overline{u} + \varphi \frac{\partial \overline{u}}{\partial x}] + \overline{j} . [\frac{\partial \varphi}{\partial y} \overline{u} + \varphi \frac{\partial \overline{u}}{\partial y}] + \overline{k} . [\frac{\partial \varphi}{\partial z} \overline{u} + \varphi \frac{\partial \overline{u}}{\partial z}]$$

$$= \left[\frac{\partial \varphi}{\partial x}\overline{\iota} + \frac{\partial \varphi}{\partial y}\overline{j} + \frac{\partial \varphi}{\partial z}\overline{k}\right].\overline{u} + \varphi\left[\overline{\iota}.\frac{\partial \overline{u}}{\partial x} + \overline{j}.\frac{\partial \overline{u}}{\partial y} + \overline{k}.\frac{\partial \overline{u}}{\partial z}\right]$$
$$= (\nabla \varphi).\overline{u} + \varphi(\nabla.\overline{u})$$
$$= (grad \varphi).\overline{u} + \varphi div.\overline{u}$$

Corollary: If k is constant and \overline{u} is vector point function, then

$$div. (k\overline{u}) = kdiv. \overline{u} \text{ i.e } \nabla. (k\overline{u}) = k(\nabla. \overline{u})$$
Proof: Consider
$$div. (k\overline{u}) = \nabla. (k\overline{u})$$

$$= (\nabla k). \overline{u} + k(\nabla. \overline{u})$$

$$= (0). \overline{u} + k(\nabla. \overline{u})$$

$$= k(\nabla. \overline{u})$$

$$= kdiv. \overline{u}$$

Theorem-4: If φ is a scalar point function and \overline{u} is vector point function, then

$$curl(\varphi \bar{u}) = (\operatorname{grad} \varphi) \times \bar{u} + \varphi curl \bar{u}$$

i.e
$$\nabla \times (\varphi \bar{u}) = (\nabla \varphi) \times \bar{u} + \varphi (\nabla \times \bar{u})$$

Proof: Consider

$$curl(\varphi \bar{u}) = \nabla \times (\varphi \bar{u})$$

$$= (\bar{\iota} \frac{\partial}{\partial x} + \bar{J} \frac{\partial}{\partial y} + \bar{k} \frac{\partial}{\partial z}) \times (\varphi \bar{u})$$

$$= \bar{\iota} \frac{\partial}{\partial x} \times (\varphi \bar{u}) + \bar{J} \frac{\partial}{\partial y} \times (\varphi \bar{u}) + \bar{k} \frac{\partial}{\partial z} \times (\varphi \bar{u})$$

$$= \bar{\iota} \times [\frac{\partial \varphi}{\partial x} \bar{u} + \varphi \frac{\partial \bar{u}}{\partial x}] + \bar{J} \times [\frac{\partial \varphi}{\partial y} \bar{u} + \varphi \frac{\partial \bar{u}}{\partial y}] + \bar{k} \times [\frac{\partial \varphi}{\partial z} \bar{u} + \varphi \frac{\partial \bar{u}}{\partial z}]$$

$$= [\frac{\partial \varphi}{\partial x} \bar{\iota} + \frac{\partial \varphi}{\partial y} \bar{J} + \frac{\partial \varphi}{\partial z} \bar{k}] \times \bar{u} + \varphi [\bar{\iota} \times \frac{\partial \bar{u}}{\partial x} + \bar{J} \times \frac{\partial \bar{u}}{\partial y} + \bar{k} \times \frac{\partial \bar{u}}{\partial z}]$$

$$= (\nabla \varphi) \times \bar{u} + \varphi (\nabla \times \bar{u})$$

$$= (grad \varphi) \times \bar{u} + \varphi curl \bar{u}$$

Corollary: If k is constant and \bar{u} is vector point function, then $curl(k\bar{u}) = kdcurl \bar{u}$ i.e $\nabla \times (k\bar{u}) = k(\nabla \times \bar{u})$

Proof: Consider

 $curl(k\bar{u}) = \nabla \times (k\bar{u})$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 14

$$= (\nabla k) \times \overline{u} + k(\nabla \times \overline{u})$$
$$= (0) \times \overline{u} + k(\nabla \times \overline{u})$$
$$= k(\nabla \times \overline{u})$$
$$= kcurl \overline{u}$$

Theorem-5: If
$$\bar{u}$$
 and \bar{v} are vector point functions, then

$$div. (\bar{u} \times \bar{v}) = \bar{v}. curl \bar{u} - \bar{u}. curl \bar{v}$$
i.e $\nabla. (\bar{u} \times \bar{v}) = \bar{v}. (\nabla \times \bar{u}) - \bar{u}. (\nabla \times \bar{v})$
Proof: Consider

$$div. (\bar{u} \times \bar{v}) = \nabla. (\bar{u} \times \bar{v})$$

$$= (\bar{t}\frac{\partial}{\partial x} + \bar{j}\frac{\partial}{\partial y} + \bar{k}\frac{\partial}{\partial z}). (\bar{u} \times \bar{v})$$

$$= \bar{t}\frac{\partial}{\partial x}. (\bar{u} \times \bar{v}) + \bar{j}\frac{\partial}{\partial y}. (\bar{u} \times \bar{v}) + \bar{k}\frac{\partial}{\partial z}. (\bar{u} \times \bar{v})$$

$$= \bar{t}. [\frac{\partial \bar{u}}{\partial x} \times \bar{v} + \bar{u} \times \frac{\partial \bar{v}}{\partial x}] + \bar{j}. [\frac{\partial \bar{u}}{\partial y} \times \bar{v} + \bar{u} \times \frac{\partial \bar{v}}{\partial y}] + \bar{k}. [\frac{\partial \bar{u}}{\partial z} \times \bar{v} + \bar{u} \times \frac{\partial \bar{v}}{\partial z}]$$

$$= \bar{t}. (\frac{\partial \bar{u}}{\partial x} \times \bar{v}) + \bar{t}. (\bar{u} \times \frac{\partial \bar{v}}{\partial x}) + \bar{j}. (\bar{u} \times \frac{\partial \bar{v}}{\partial y}] + \bar{j}. (\bar{u} \times \frac{\partial \bar{v}}{\partial y}]$$

$$+ \bar{k}. (\frac{\partial \bar{u}}{\partial x} \times \bar{v}) + \bar{k}. (\bar{u} \times \frac{\partial \bar{v}}{\partial z})$$

$$= [(\bar{v} \times \frac{\partial \bar{u}}{\partial x}). \bar{v} + (\bar{j} \times \frac{\partial \bar{v}}{\partial y}). \bar{v} + (\bar{k} \times \frac{\partial \bar{u}}{\partial z}). \bar{v}]$$

$$- [(\bar{v} \times \frac{\partial \bar{v}}{\partial x}). \bar{u} + (\bar{j} \times \frac{\partial \bar{v}}{\partial y}). \bar{u} + (\bar{k} \times \frac{\partial \bar{v}}{\partial x}). \bar{u}]$$

$$= \bar{v}. [\bar{v} \times \frac{\partial \bar{u}}{\partial x} + \bar{j} \times \frac{\partial \bar{u}}{\partial y} + \bar{k} \times \frac{\partial \bar{u}}{\partial z}] \times \bar{v} - \bar{u}. [\bar{v} \times \frac{\partial \bar{v}}{\partial x} + \bar{j} \times \frac{\partial \bar{v}}{\partial y} + \bar{k} \times \frac{\partial \bar{v}}{\partial z}]$$

$$= \bar{v}. curl \bar{u} - \bar{u}. curl \bar{v}$$
Theorem 6: If a is a scalar point function, then curl (arrad $av) = \bar{0}$ i.e. $\nabla \times (\nabla av) = \bar{0}$

Theorem-6: If φ is a scalar point function, then curl $(\operatorname{grad} \varphi) = 0$ i.e. $V \times (V\varphi) = 0$ **Proof:** Let φ is a scalar point function, then $\nabla \varphi = \frac{\partial \varphi}{\partial x} \overline{\iota} + \frac{\partial \varphi}{\partial y} \overline{J} + \frac{\partial \varphi}{\partial z} \overline{k}$

$$\therefore \operatorname{curl} (\operatorname{grad} \varphi) = \nabla \times (\nabla \varphi) = \begin{vmatrix} \overline{\iota} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial \varphi}{\partial y} & \frac{\partial \varphi}{\partial z} \end{vmatrix}$$

$$= \left(\frac{\partial^{2}\varphi}{\partial y\partial z} - \frac{\partial^{2}\varphi}{\partial z\partial y}\right)\bar{\iota} - \left(\frac{\partial^{2}\varphi}{\partial x\partial z} - \frac{\partial^{2}\varphi}{\partial z\partial x}\right)\bar{J}\frac{\partial}{\partial y} + \left(\frac{\partial^{2}\varphi}{\partial x\partial y} - \frac{\partial^{2}\varphi}{\partial y\partial x}\right)\bar{k}$$
$$= 0\bar{\iota} + 0\bar{J} + 0\bar{k} \qquad \because \frac{\partial^{2}\varphi}{\partial y\partial z} = \frac{\partial^{2}\varphi}{\partial z\partial y}, \quad \frac{\partial^{2}\varphi}{\partial x\partial z} = \frac{\partial^{2}\varphi}{\partial z\partial x} \text{ and } \quad \frac{\partial^{2}\varphi}{\partial x\partial y} = \frac{\partial^{2}\varphi}{\partial y\partial x}$$
$$= \bar{0}$$

Hence proved.

= 0

Theorem-7: If \bar{u} is a vector point functions, then div (curl \bar{u}) = 0 i.e. $\nabla \cdot (\nabla \times \bar{u}) = 0$ **Proof:** Let $\bar{u} = u_1 \bar{\iota} + u_2 \bar{J} + u_3 \bar{k}$ is a vector point function, then $\therefore \operatorname{curl} \bar{u} = \nabla \times \bar{u} = \begin{vmatrix} \bar{\iota} & \bar{J} & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$ $= \left(\frac{\partial u_3}{\partial u} - \frac{\partial u_2}{\partial z}\right) \bar{\iota} - \left(\frac{\partial u_3}{\partial x} - \frac{\partial u_1}{\partial z}\right) \bar{J} \frac{\partial}{\partial v} + \left(\frac{\partial u_2}{\partial x} - \frac{\partial u_1}{\partial v}\right) \bar{k}$ \therefore div (curl \overline{u}) = ∇ . ($\nabla \times \overline{u}$) $=(\bar{\iota}\frac{\partial}{\partial x}+\bar{J}\frac{\partial}{\partial y}+\bar{k}\frac{\partial}{\partial z})\cdot[(\frac{\partial u_3}{\partial y}-\frac{\partial u_2}{\partial z})\bar{\iota}-(\frac{\partial u_3}{\partial x}-\frac{\partial u_1}{\partial z})\bar{J}\frac{\partial}{\partial y}+(\frac{\partial u_2}{\partial x}-\frac{\partial u_1}{\partial y})\bar{k}]$ $=\frac{\partial}{\partial x}\left(\frac{\partial u_3}{\partial y}-\frac{\partial u_2}{\partial z}\right)-\frac{\partial}{\partial y}\left(\frac{\partial u_3}{\partial x}-\frac{\partial u_1}{\partial z}\right)+\frac{\partial}{\partial z}\left(\frac{\partial u_2}{\partial x}-\frac{\partial u_1}{\partial y}\right)$ $=\frac{\partial^2 u_3}{\partial x \partial y} - \frac{\partial^2 u_2}{\partial x \partial z} - \frac{\partial^2 u_3}{\partial y \partial x} + \frac{\partial^2 u_1}{\partial y \partial z} + \frac{\partial^2 u_2}{\partial z \partial y} - \frac{\partial^2 u_1}{\partial z \partial y}$ = 0Hence proved. **Ex.:** If $\bar{r} = x \bar{\iota} + y \bar{\iota} + z \bar{k}$, then find i) div \bar{r} ii) curl \bar{r} iii) div ($r^n \bar{r}$) iv) curl ($r^n \bar{r}$) v) Laplacian of r^n Solution: Let $\bar{r} = x \bar{\iota} + y \bar{\jmath} + z \bar{k}$ 8193: $\therefore i) \operatorname{div} \bar{r} = \nabla \cdot \bar{r} = (\bar{\iota} \frac{\partial}{\partial x} + \bar{\jmath} \frac{\partial}{\partial y} + \bar{k} \frac{\partial}{\partial z}) \cdot (x \,\bar{\iota} + y \,\bar{\jmath} + z \,\bar{k})$ $=\frac{\partial}{\partial x}(\mathbf{x})+\frac{\partial}{\partial v}(\mathbf{y})+\frac{\partial}{\partial z}(\mathbf{z})$ = 1 + 1 + 1= 3ii) curl $\bar{r} = \nabla \times \bar{r} = \begin{bmatrix} \bar{\iota} & \bar{J} & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ r & y & z \end{bmatrix}$ $= \overline{\iota} (0 - 0) - \overline{\iota} (0 - 0) + \overline{k} (0 - 0)$

iii) div
$$(r^{n}\bar{r}) = \nabla (r^{n}\bar{r}) = (\nabla r^{n}) \cdot \bar{r} + r^{n}(\nabla, \bar{r})$$

 $= (nr^{n-2}\bar{r}) \cdot \bar{r} + r^{n}(3)$
 $= nr^{n-2}(\bar{r}, \bar{r}) + 3r^{n}$
 $= nr^{n-2}(r^{2}) + 3r^{n}$
 $= nr^{n} + 3r^{n}$
 $= (n + 3) r^{n}$
iii) curl $(r^{n}\bar{r}) = \nabla \times (r^{n}\bar{r}) = (\nabla r^{n}) \times \bar{r} + r^{n}(\nabla \times \bar{r})$
 $= (nr^{n-2}\bar{r}) \times \bar{r} + r^{n}(\bar{0})$
 $= nr^{n-2}(\bar{r} \times \bar{r}) + \bar{0}$
 $= nr^{n-2}(\bar{r} \times \bar{r}) + \bar{0}$
 $= \bar{0}$
iii) Laplacian of $r^{n} = \nabla^{2}(r^{n}) = \nabla \cdot (\nabla r^{n})$
 $= \nabla \cdot (mr^{n-2}\bar{r})$
 $= nr^{n-2}(3) + n(r-2) r^{n-4}\bar{r} \cdot \bar{r}$
 $= 3nr^{n-2} + n(n-2) r^{n-4}r^{2}$
 $= 3nr^{n-2} + n(n-2) r^{n-2}$
 $= n(n+1) r^{n-2}$

Ex.: If $\overline{f} = x^2y \,\overline{\iota} + xz \,\overline{j} + 2yz \,\overline{k}$, then verify that div (curl \overline{f}) = 0 **Proof:** Let $\overline{f} = x^2y \,\overline{\iota} + xz \,\overline{j} + 2yz \,\overline{k}$

$$\therefore \operatorname{curl} \bar{f} = \nabla \times \bar{f} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 y & xz & 2yz \end{vmatrix}$$
$$= \bar{i} (2z - x) \cdot \bar{j} (0 - 0) + \bar{k}(z - x^2)$$
$$= (2z - x)\bar{i} - 0\bar{j} + (z - x^2)\bar{k}$$
$$\therefore \operatorname{div} (\operatorname{curl} \bar{f}) = \nabla \cdot \bar{r} = (\bar{i} \frac{\partial}{\partial x} + \bar{j} \frac{\partial}{\partial y} + \bar{k} \frac{\partial}{\partial z}) \cdot [(2z - x)\bar{i} - 0\bar{j} + (z - x^2)\bar{k}]$$
$$= \frac{\partial}{\partial x} (2z - x) - \frac{\partial}{\partial y} (0) + \frac{\partial}{\partial z} (z - x^2)$$
$$= -1 - 0 + 1$$
$$= 0$$

Hence verified.

Ex.: Prove that the vector function $f(r)\overline{r}$ is irrotational **Proof:** Consider

8) If φ and ψ are scalar	r point functions and	if $\nabla \varphi$ and $\nabla \psi$ exis	t in a given region R,
then $\nabla(\varphi \psi) = \ldots$			
A) $\nabla \varphi + \nabla \psi$	B) $\varphi \nabla \psi - \psi \nabla \varphi$	C) $\varphi \nabla \psi + \psi \nabla \varphi$	D) None of these
9) If φ is scalar point f	functions and k is con	nstant, then grad(k	$x \varphi) = \dots$
A) k grad φ		B) φ grad $k - k$ grad φ	
C) φ grad k +	k grad φ	D) None of	f these
10) If φ is scalar point	functions and k is co	constant, then $\nabla(k\varphi)$) =
A) $k \nabla \varphi$	B) $\varphi \nabla k - k \nabla \varphi$	C) $\varphi \nabla k + k \nabla \varphi$	D) None of these
11) If φ and ψ are scal	ar point functions an	d if $grad \varphi$ and $grad \varphi$	$rad \ \psi$ exist in a given
region R with $\psi \neq$	0, then $grad(\frac{\varphi}{ }) =$		
A) $\frac{\psi grad \varphi - \varphi g}{\varphi^2}$	rad ψ	B) $\frac{\psi grad \varphi - \varphi gr}{\psi^2}$	$ad\psi$
C) $\frac{\psi grad \varphi + \varphi g}{\psi^2}$	radψ	D) None of these	3.
12) If φ and ψ are scal	ar point functions an	d if Vφ and V ψ exi	st in a given region R
with $\psi \neq 0$, then ∇	$\left(\frac{\varphi}{\Psi}\right) = \dots$	1.2	3
A) $\frac{\psi \nabla \varphi - \varphi \nabla \psi}{\varphi^2}$	$\frac{\nabla \varphi}{\psi^2} = \frac{\psi \nabla \varphi - \varphi \nabla \psi}{\psi^2}$	$C) \frac{\psi \nabla \varphi + \varphi \nabla \psi}{\psi^2}$	D) None of these
13) If $\bar{r} = x\bar{\iota} + y\bar{j} + z\bar{k}$	$ \bar{r} = r \text{ then } \nabla \varphi(r)$		æ
A) 0	B) $\nabla \varphi'(r)$	C) $\nabla \varphi'(r) \nabla r$	D) None of these
14) If $\bar{r} = x\bar{\iota} + y\bar{j} + z\bar{k}$	$ \bar{r} = r$ then $\nabla r =$		
A) \hat{r}	B) <i>r</i>	C) 0	D) None of these
15) $\nabla \log r = \dots$	140	24	
A) \hat{r}	B) <i>r</i>	C) $\frac{r}{r^2}$	D) None of these
16) If $\bar{r} = x\bar{\iota} + y\bar{j} + z\bar{k}$, \bar{a} , \bar{b} are constant ve	ctors, then $\nabla(\bar{r},\bar{a})$	
A) \bar{r}	B) ā	C) 0	D) None of these
17) If $\bar{r} = x\bar{\iota} + y\bar{j} + z\bar{k}$, \overline{a} , \overline{b} are constant ve	ectors, then $\nabla[\bar{r} \ \bar{a} \ \bar{b}]$	<i>b</i>] =
A) \bar{r}	B) <i>ā</i>	C) \overline{b}	D) $\bar{a} \times \bar{b}$
18) If $\bar{r} = x\bar{\iota} + y\bar{j} + z\bar{k}$	$ \bar{r} = r$ then $\nabla r^n = .$		
A) $nr^{n-1}ar{r}$	B) $nr^{n-2}\bar{r}$	C) $n(n-1)r^{n-2}\bar{r}$	D) None of these
19) Components along	x, y, z axis of a vect	tor point function V	φ are
respectively.			
A) $\frac{\partial \varphi}{\partial x}$, $\frac{\partial \varphi}{\partial y}$, $\frac{\partial \varphi}{\partial z}$	B) $\frac{\partial \varphi}{\partial z}$, $\frac{\partial \varphi}{\partial x}$, $\frac{\partial \varphi}{\partial y}$	C) $\frac{\partial \varphi}{\partial y}$, $\frac{\partial \varphi}{\partial z}$, $\frac{\partial \varphi}{\partial x}$	D) $\frac{\partial \varphi}{\partial y}$, $\frac{\partial \varphi}{\partial z}$, $\frac{\partial \varphi}{\partial x}$
20) Normal to the surface	ace $\varphi(x, y, z) = c$ at j	point $P(x, y, z)$ is	

A)
$$(\nabla \varphi)_{F}$$
 B) $\frac{(\nabla \varphi)_{F}}{|(\nabla \varphi)_{F}|}$ C) 0 D) None of these
21) Unit normal to the surface $\varphi(x, y, z) = c$ at point P(x, y, z) is
A) $(\nabla \varphi)_{F}$ B) $\frac{(\nabla \varphi)_{F}}{|(\nabla \varphi)_{F}|}$ C) 0 D) None of these
22) The equation of normal with d.r.s. a, b, c and passing through the point
P(x₁, y₁, z₁) is
A) $a(x - x_{1}) + b(y - y_{1}) + c(z - z_{1}) = 0$ B) $\frac{x - x_{1}}{a} + \frac{y - y_{1}}{b} + \frac{z - z_{1}}{c} = 0$
C) $\frac{x - x_{1}}{a} = \frac{y - y_{1}}{c} = \frac{z - z_{1}}{c}$ D) None of these
23) If a, b, c are the d.r.s. of normal, then the equation of plane passing through the point P(x₁, y₁, z₁) is
A) $a(x - x_{1}) + b(y - y_{1}) + c(z - z_{1}) = 0$ B) $\frac{x - x_{1}}{a} + \frac{y - y_{1}}{b} + \frac{z - z_{1}}{c} = 0$
C) $\frac{x - x_{1}}{a} = \frac{y - y_{1}}{b} = \frac{z - z_{1}}{c}$ D) None of these
23) If a, b, c are the d.r.s. of normal, then the equation of plane passing through the point P(x₁, y₁, z₁) is
A) $a(x - x_{1}) + b(y - y_{1}) + c(z - z_{1}) = 0$ B) $\frac{x - x_{1}}{a} + \frac{y - y_{1}}{b} + \frac{z - z_{1}}{c} = 0$
C) $\frac{x - x_{1}}{a} = \frac{y - y_{1}}{b} = \frac{z - z_{1}}{c}$ D) None of these
24) The divergence of a vector point function \bar{v} is denoted by ∇, \bar{v} or div \bar{v} and defined as $\nabla, \bar{v} =$
A) $\frac{\partial \bar{v}_{1}}{\partial x} + \frac{\partial \bar{v}_{2}}{\partial y} + \bar{k} \times \frac{\partial \bar{v}}{\partial z}$ D) None of these
25) If $\bar{v} = v_{1}\bar{t} + v_{2}\bar{t} + v_{3}\bar{k}$, then div, $\bar{v} = \nabla, \bar{v} =$
A) $\frac{\partial w_{1}}{\partial x} + \frac{\partial w_{2}}{\partial x} = 0$; $\frac{\partial w_{1}}{\partial y} + \bar{k} \frac{\partial w}{\partial z}$ C) $\frac{\partial w_{1}}{\partial x} + \frac{\partial w_{2}}{\partial y} + \frac{\partial w_{3}}{\partial z}$ D) None of these
26) If $\bar{f} = x^{2}y \bar{i} - 2x\bar{x} \bar{j} + 2yz \bar{k}$, then div, $\bar{f} =$
A) 0 B) 1 C) $2x(y+1)$ D) $2x(x+y)$
27) If $\bar{f} = (x^{2} + yz) \bar{i} + (x^{2} + xy) \bar{j}$, then find div $\bar{f} =$
A) 0 B) $\bar{0}$ C) $\bar{3}$ D) None of these
29) If $\bar{v} = x\bar{i} + y\bar{j} + z\bar{k}$, then div, $\bar{v} = \nabla, \bar{v} =$
A) 0 B) $\bar{0}$ C) $\bar{3}$ D) None of these
30) If divergence of a vector point function is a 0.....
A) irrotational B) solenoidal

MTH-403: VECTOR CALCULUS

A) div $\bar{v} = 0$	B) curl $\bar{v} = \bar{0}$	C) grad $v = \overline{0}$	D) None of these		
32) A vector point funct	ion $\bar{v} = x^2 z \bar{\iota} + y^2 z$	$\overline{J} - (\mathbf{x}z^2 + yz^2)\overline{k}$ is	• • • • • • • •		
A) irrotational	B) solenoidal	C) rotational	D) None of these		
33) If a vector point fund	ction $\bar{v} = (x + 3y)\bar{z}$	$\overline{u} + (y - 2z)\overline{j} + (x + z)\overline{j}$	$(az)\overline{k}$ is solenoidal,		
then a =					
A) 0	B) -1	C) -2	D) -3		
34) $\nabla^2 \varphi$ is called o	f scalar point functi	on φ .			
A) gradient	B) divergence	C) curl	D) Laplacian		
35) If $\nabla^2 \varphi = 0$, then a sc	alar point function	φ is calledfund	ction		
A) Homogeneous	B) Harmonic	C) Regular	D) None of these		
36) The curl of a vector	point function \bar{v} is c	denoted by $\nabla \times \overline{v}$ o	r curl \bar{v} and		
defined as $\nabla \times \overline{v} = .$		······································	A.		
A) $\frac{\partial v}{\partial x}\overline{\iota} + \frac{\partial v}{\partial x}\overline{J} + \frac{\partial v}{\partial x}$	k 🖉	B) $\overline{\iota} \cdot \frac{\partial \overline{v}}{\partial x} + \overline{J} \cdot \frac{\partial \overline{v}}{\partial y} + \overline{k} \cdot \overline{k}$	$\frac{\partial \overline{v}}{\partial z}$		
C) $\bar{\iota} \times \frac{\partial \bar{v}}{\partial x} + \bar{J} \times \frac{\partial \bar{v}}{\partial y}$	$+\overline{k} imes rac{\partial \overline{v}}{\partial z}$	D) None of these			
37) The curl of a vector	point function is a .		<u>a</u>		
A) scalar point function B) vector point function					
C) neither scalar nor vector D) None of these					
38) If $\bar{v} = v_1 \bar{\iota} + v_2 \bar{j} + v_3 \bar{k}$, then curl $\bar{v} = \nabla \times \bar{v} = \dots$					
A) $\begin{vmatrix} \bar{\iota} & \bar{J} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_1 & v_2 & v_3 \end{vmatrix}$	B) $\begin{vmatrix} \bar{\iota} & \bar{J} & \bar{k} \\ v_1 & v_2 & v_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$	C) $\begin{bmatrix} \bar{\iota} & \bar{J} & \bar{k} \\ v_1 & v_2 & v_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$	D) None of these		
39) A vector point function \bar{v} , is said to be irrotational if					
A) grad $v = \overline{0}$	B) div $\bar{v} = 0$	C) curl $\bar{v} = \bar{0}$	D) None of these		
40) A vector point function	ion \bar{v} , is said to be .	if curl $\bar{v} = \bar{0}$.			
A) irrotational	B) solenoidal	C) rotational	D) None of these		
41) If $\bar{r} = x\bar{\iota} + y\bar{\jmath} + z\bar{k}$, then curl $\bar{r} = \nabla \times \bar{r} = \dots$					
A) 0	B) 0	C) 3	D) None of these		
42) A vector point function $\bar{v} = x^2 \bar{\iota} + y^2 \bar{\jmath} + z^2 \bar{k}$ is					
A) irrotational	B) solenoidal	C) rotational	D) None of these		
43) A vector point function $\bar{v} = (siny + z)\bar{\iota} + (xcosy - z)\bar{\jmath} + (x - y)\bar{k}$ is					

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCHENCE SR. COLLEGE, PIMPALNER 21

	A) irrotational	B) solenoidal	C) rotational	D) None of these	
44) A vector point function $\bar{v} = (y + \sin z)\bar{\iota} + x\bar{j} + x\cos z\bar{k}$ is					
	A) irrotational	B) solenoidal	C) rotational	D) None of these	
45) If	φ is a scalar point	function and \bar{u} is v	ector point function	n, then $div(\varphi \bar{u}) = \dots$	
	A) $(grad \varphi) \times \overline{u}$	+ $\varphi div. \bar{u}$	B) (grad φ). \bar{u} +	$arphi div. ar{u}$	
	C) (grad φ). \bar{u} +	$arphi$ curl $ar{u}$	D) None of these		
46) If	$\mathbf{\hat{k}}$ is constant and \bar{u}	is vector point fun	ction, then $\nabla . (k\bar{u})$ =	=	
	A) $k(\nabla, \bar{u})$	B) $\overline{u}(\nabla . k)$	C) $k(\nabla \times \overline{u})$	D) None of these	
====			Map -		
47) If	φ is a scalar point	function and \overline{u} is v	ector point function	n, then $\operatorname{curl}(\varphi \overline{u}) = \dots$	
	A) (grad ϕ) × \bar{u} -	⊦ φcurlū	B) (grad φ). \bar{u} +	φcurl ū	
	C) (grad φ). \bar{u} +	φcurl ū	D) None of these	84	
48) If	\overline{u} and \overline{v} are vector	point functions, the	$\operatorname{in}\operatorname{div}\left(\overline{\mathbf{u}}\times\overline{\mathbf{v}}\right)=\dots$	··· 🎭 🔪	
	A) \bar{u} . curl $\bar{v} - \bar{v}$ cu	rl ū	B) v . curl ū — ū. c	url 🔻	
	C) \overline{v} . curl $\overline{u} + \overline{u}$. c	url v	D) None of these	A I I	
49) If	$f \phi$ is a scalar point	function, then curl($\operatorname{grad} \varphi) = \dots$	3	
	A) grad φ	B) 0	C) 0	D) None of these	
50) If	\overline{u} is a vector point	function, then div (curl ū) =	<i>ਜ਼</i>	
	A) grad φ	B) 0	C) 0	D) None of these	
	A) B) C)	D)	52/2		
51) If	$\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ and	lā is constant then	$\operatorname{div}(\overline{\mathbf{r}}\times\overline{\mathbf{a}})=\ldots$		
	A) 0	B) ā	C) r	D) None of these	
52) If $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$ and \bar{a} is constant then curl $(\bar{r} \times \bar{a}) = \dots$					
	A) r	(B) वर्ष तमभयत्वयं वि	C) -2a द्वि मान	D) None of these	
53) div $(\nabla \phi \times \nabla \psi) = \dots$					
	A) 0	B) ∇φ	С) ∇ψ	D) None of these	
54) $f(r) \bar{r}$ is					
	A) scalar	B) solenoidal	C) irrotational	D) None of these	
55) c	curl is also called				
	A) scalar	B) rotation	C) divergence	D) None of these	

UNIT-4: VECTOR INTEGRATION

An infinite Integral of Vector: Let $\overline{f}(t)$ be a vector valued function of a single scalar variable t. If there exists a vector function $\overline{F}(t)$ such that $\frac{d}{dt}[\overline{F}(t)] = \overline{f}(t)$, then $\overline{F}(t)$ is called an infinite integral or antiderivative of $\overline{f}(t)$. Denoted by $\int \overline{f}(t)dt = \overline{F}(t) + \overline{c}$, where \overline{c} is constant of integration.

Finite Integral of Vector: Let $\overline{f}(t)$ be a vector valued function of a single scalar

variable t. If there exists a vector function $\overline{F}(t)$ such that $\frac{d}{dt}[\overline{F}(t)] = \overline{f}(t)$, then $\int_a^b \overline{f}(t) dt =$

 $\overline{F}(b)$ - $\overline{F}(a)$ is called a finite integral.

Remark: i) If $\overline{f}(t) = f_1(t) \overline{i} + f_2(t) \overline{j} + f_3(t) \overline{k}$, then $\int \overline{f}(t) dt = \overline{i} \int f_1(t) dt + \overline{j} \int f_2(t) dt + \overline{k} \int f_3(t) dt$ ii) $\int [\overline{f}(t) \pm \overline{g}(t)] dt = \int [\overline{f}(t) dt \pm \int \overline{g}(t)] dt$

iii)
$$\int c\overline{f}(t)dt = c\int [\overline{f}(t)dt]$$

iv)
$$\int \left[\frac{df}{dt}, \overline{g} + \overline{f}, \frac{dg}{dt}\right] dt = \overline{f}, \overline{g} + c$$

$$v) \int [\bar{f} x \frac{\overline{d^2 f}}{dt^2}] dt = \bar{f} x \frac{\overline{df}}{dt} + \bar{c}$$
$$vi) \int [\bar{a} x \frac{\overline{df}}{dt}] dt = \bar{a} x \bar{f} + c$$

Ex. If $\overline{f}(t) = \operatorname{sint} \overline{i} + \operatorname{cost} \overline{j} + 3\overline{k}$, then evaluate $\int_0^{\frac{n}{2}} \overline{f}(t) dt$

Solution: Let
$$\overline{f}(t) = \operatorname{sint} \overline{i} + \operatorname{cost} \overline{j} + 3\overline{k}$$

$$\therefore \int_0^{\frac{\pi}{2}} \overline{f}(t) dt = \int_0^{\frac{\pi}{2}} [\operatorname{sint} \overline{i} + \operatorname{cost} \overline{j} + 3\overline{k}] dt$$

$$= [-\operatorname{cost} \overline{i} + \operatorname{sint} \overline{j} + 3t\overline{k}]_0^{\frac{\pi}{2}}$$

$$= [0\overline{i} + \overline{j} + \frac{3\pi}{2}\overline{k}] - [-\overline{i} + 0\overline{j} + 0\overline{k}]$$

$$=\overline{1}+\overline{j}+\frac{3\pi}{2}\overline{l}$$

Ex. If $\overline{f}(t) = (t - t^2)\overline{i} + 2t^3\overline{j} - 3\overline{k}$, then evaluate $\int_1^2 \overline{f}(t)dt$ **Solution:** Let $\overline{f}(t) = (t - t^2)\overline{i} + 2t^3\overline{i} - 3\overline{k}$

$$\therefore \int_{1}^{2} \overline{f}(t) dt = \int_{0}^{\frac{\pi}{2}} [(t - t^{2})\overline{i} + 2t^{3}\overline{j} - 3\overline{k}] dt = [\left(\frac{t^{2}}{2} - \frac{t^{3}}{3}\right)\overline{i} + \frac{t^{4}}{2}\overline{j} - 3t\overline{k}]_{1}^{2} = [\left(2 - \frac{8}{3}\right)\overline{i} + 8\overline{j} - 6\overline{k}] - [\left(\frac{1}{2} - \frac{1}{3}\right)\overline{i} + \frac{1}{2}\overline{j} - 3\overline{k}]$$

2

$$= \left[\left(-\frac{2}{3} \right) \overline{i} + 8\overline{j} - 6\overline{k} \right] - \left[\left(\frac{1}{6} \right) \overline{i} + \frac{1}{2} \overline{j} - 3\overline{k} \right] \\ = \left(-\frac{2}{3} - \frac{1}{6} \right) \overline{i} + \left(8 - \frac{1}{2} \right) \overline{j} + (-6 + 3)\overline{k} \right] \\ = \frac{-5}{6} \overline{i} + \frac{15}{2} \overline{j} - 3\overline{k}$$

Ex. Evaluate $\int_0^1 (e^t \bar{i} + e^{-2t}\bar{j} + t\bar{k}) dt$

Solution: Consider

$$\begin{aligned} \int_0^1 (e^t \,\overline{i} + e^{-2t} \overline{j} + t \,\overline{k}) dt \\ &= [e^t \overline{i} + \frac{e^{-2t}}{-2} \overline{j} + \frac{t^2}{2} \overline{k}]_0^1 \\ &= [e\overline{i} - \frac{e^{-2}}{2} \overline{j} + \frac{1}{2} \overline{k}] - [\overline{i} - \frac{1}{2} \overline{j} + 0\overline{k}] \\ &= (e - 1) \,\overline{i} - \frac{1}{2} (e^{-2} - 1) \overline{j} + \frac{1}{2} \overline{k} \end{aligned}$$

Ex. If $\overline{f} = t\overline{i} - t^2\overline{j} + (t-1)\overline{k}$ and $\overline{g} = 2t^2\overline{i} + 6t\overline{k}$, then find $\int_0^1 \overline{f}$. \overline{g} dt Solution: Let $\overline{f} = t\overline{i} - t^2\overline{j} + (t-1)\overline{k}$ and $\overline{g} = 2t^2\overline{i} + 6t\overline{k}$ $\therefore \overline{f}$. $\overline{g} = t(2t^2) + (-t^2)(0) + (t-1)(6t) = 2t^3 + 6t^2 - 6t$ $\therefore \int_0^1 \overline{f}$. \overline{g} dt $= \int_0^1 (2t^3 + 6t^2 - 6t)dt$ $= [\frac{2t^4}{4} + \frac{6t^3}{3} - \frac{6t^2}{2}]_0^1$ $= [\frac{1}{2} + 2 - 3] - [0]$ $= -\frac{1}{2}$

Ex. If $\bar{u} = t\bar{i} - t^2\bar{j} + (t-1)\bar{k}$ and $\bar{v} = 2t^2\bar{i} + 6t\bar{k}$, then find $\int_0^2 \bar{u}.\bar{v} dt$ Solution: Let $\bar{u} = t\bar{i} - t^2\bar{j} + (t-1)\bar{k}$ and $\bar{v} = 2t^2\bar{i} + 6t\bar{k}$ $\therefore \bar{u}.\bar{v} = t(2t^2) + (-t^2)(0) + (t-1)(6t) = 2t^3 + 6t^2 - 6t$ $\therefore \int_0^2 \bar{u}.\bar{v} dt = \int_0^2 (2t^3 + 6t^2 - 6t)dt$ $= [\frac{2t^4}{4} + \frac{6t^3}{3} - \frac{6t^2}{2}]_0^2$ = [8 + 16 - 12] - [0]= 12

Ex. If $\overline{f} = t\overline{i} - t^2\overline{j} + (t-1)\overline{k}$ and $\overline{g} = 2t^2\overline{i} + 6t\overline{k}$, then find $\int_0^1 \overline{f}x\overline{g} dt$

Solution: Let $\overline{f} = t\overline{i} - t^2\overline{j} + (t-1)\overline{k}$ and $\overline{g} = 2t^2\overline{i} + 6t\overline{k}$

$$\begin{split} \dot{\cdot} \, \bar{f} x \bar{g} &= \begin{vmatrix} \bar{\iota} & \bar{J} & \bar{k} \\ t & -t^2 & t-1 \\ 2t^2 & 0 & 6t \end{vmatrix} = \bar{\iota} (-6t^3 - 0) - \bar{\jmath} (6t^2 - 2t^3 + 2t^2) + \bar{k} (0 + 2t^4) \\ &= (-6t^3) \bar{\iota} + (2t^3 - 8t^2) \bar{\jmath} + 2t^4 \bar{k} \\ \dot{\cdot} \, \int_0^1 \bar{f} x \bar{g} \, dt = \int_0^1 [(-6t^3) \bar{\iota} + (2t^3 - 8t^2) \bar{\jmath} + 2t^4 \bar{k}] dt \\ &= [\left(-\frac{6t^4}{4}\right) \bar{\iota} + \left(\frac{2t^4}{4} - \frac{8t^3}{3}\right) \bar{\jmath} + \frac{2t^5}{5} \bar{k}]_0^1 \\ &= [-\frac{3}{2} \bar{\iota} + \left(\frac{1}{2} - \frac{8}{3}\right) \bar{\jmath} + \frac{2}{5} \bar{k}] - [0\bar{\iota} + 0\bar{\jmath} + 0\bar{k}] \\ &= -\frac{3}{2} \bar{\iota} - \frac{13}{3} \bar{\jmath} + \frac{2}{5} \bar{k} \end{split}$$

Ex. If $\overline{u} = t\overline{i} - t^2\overline{j} + (t-1)\overline{k}$ and $\overline{v} = 2t^2\overline{i} + 6t\overline{k}$, then find $\int_0^2 \overline{u}x\overline{v} dt$ Solution: Let $\overline{u} = t\overline{i} - t^2\overline{j} + (t-1)\overline{k}$ and $\overline{v} = 2t^2\overline{i} + 6t\overline{k}$

$$\therefore \bar{u}x\bar{v} = \begin{vmatrix} \bar{\iota} & \bar{J} & \bar{k} \\ t & -t^2 & t-1 \\ 2t^2 & 0 & 6t \end{vmatrix} = \bar{\iota}(-6t^3 - 0) - \bar{\jmath}(6t^2 - 2t^3 + 2t^2) + \bar{k}(0 + 2t^4) = (-6t^3)\bar{\iota} + (2t^3 - 8t^2)\bar{\jmath} + 2t^4\bar{k} \therefore \int_0^2 \bar{u}x\bar{v} dt = \int_0^2 [(-6t^3)\bar{\iota} + (2t^3 - 8t^2)\bar{\jmath} + 2t^4\bar{k}]dt = [(-\frac{6t^4}{4})\bar{\iota} + (\frac{2t^4}{4} - \frac{8t^3}{3})\bar{\jmath} + \frac{2t^5}{5}\bar{k}]_0^2 = [-24\bar{\iota} + (8 - \frac{64}{3})\bar{\jmath} + \frac{64}{5}\bar{k}] - [0\bar{\iota} + 0\bar{\jmath} + 0\bar{k}] = -24\bar{\iota} - \frac{40}{3}\bar{\jmath} + \frac{64}{5}\bar{k}$$

Ex. Prove that $\int_0^{\frac{\pi}{2}} (\operatorname{asint} \overline{i} + \operatorname{bcost} \overline{j}) dt = a \overline{i} + b \overline{j}$

Proof: Consider

$$\int_0^{\frac{\pi}{2}} (\operatorname{asint} \overline{i} + \operatorname{bcost} \overline{j}) dt$$
$$= [-a \cos t \overline{i} + \operatorname{bsint} \overline{j}]_0^{\frac{\pi}{2}}$$
$$= [0\overline{i} + b\overline{j}] - [-a\overline{i} + 0\overline{j}]$$
$$= a \overline{i} + b \overline{j}$$

Ex. The acceleration of a particle at time t is given by $\bar{a} = 12\cos 2t \bar{i} - 8\sin 2t \bar{j} + 16t \bar{k}$.

If velocity
$$\overline{v}$$
 and displacement \overline{r} are zero at $t = 0$, find \overline{v} and \overline{r} at time t.
Solution: We have $\overline{a} = \frac{\overline{av}}{dt} = 12\cos 2t \,\overline{i} - 8\sin 2t \,\overline{j} + 16t \,\overline{k}$
 $\therefore \overline{v} = \int [12\cos 2t \,\overline{i} - 8\sin 2t \,\overline{j} + 16t \,\overline{k}] \, dt$
 $= 6\sin 2t \,\overline{i} + 4\cos 2t \,\overline{j} + 8t^2 \,\overline{k} + \overline{c}$
When $t = 0$, $\overline{v} = \overline{0}$
 $\therefore 0 \,\overline{i} + 4 \,\overline{j} + 0 \,\overline{k} + \overline{c} = \overline{0}$
 $\therefore \overline{c} = -4 \,\overline{j}$
 $\therefore \overline{v} = 6\sin 2t \,\overline{i} + (4\cos 2t - 4) \,\overline{j} + 8t^2 \,\overline{k}$
As $\overline{v} = \frac{\overline{ar}}{dt} = 6\sin 2t \,\overline{i} + (4\cos 2t - 4) \,\overline{j} + 8t^2 \,\overline{k}$
 $\therefore \overline{r} = \int [6\sin 2t \,\overline{i} + (4\cos 2t - 4) \,\overline{j} + 8t^2 \,\overline{k}] \, dt$
 $= -3\cos 2t \,\overline{i} + (2\sin 2t - 4t) \,\overline{j} + \frac{8}{3}t^3 \,\overline{k} + \overline{c}$
When $t = 0$, $\overline{r} = \overline{0}$
 $\therefore -3 \,\overline{i} + 0 \,\overline{j} + 0 \,\overline{k} + \overline{c} = \overline{0}$
 $\therefore \overline{c} = 3 \,\overline{i}$
 $\therefore \overline{r} = 3(1 - \cos 2t) \,\overline{i} + 2(\sin 2t - 2t) \,\overline{j} + \frac{8}{3}t^3 \,\overline{k}$

Ex. The acceleration of a particle at time t is given by $\bar{a} = e^{-t}\bar{i} - 6(t+1)\bar{j} + 3\sin t\bar{k}$. If velocity \bar{v} and displacement \bar{r} are zero at t = 0, find \bar{v} and \bar{r} at time t.

Solution: We have
$$\bar{a} = \frac{dv}{dt} = e^{-t}\bar{1} - 6(t+1)\bar{1} + 3\sin t\bar{k}$$

$$\therefore \overline{\mathbf{v}} = \int [e^{-t} \overline{\mathbf{i}} - 6(t+1) \overline{\mathbf{j}} + 3\sin t \overline{\mathbf{k}}] dt$$

$$= -e^{-t} \overline{\mathbf{i}} - 6\left(\frac{t^2}{2} + t\right) \overline{\mathbf{j}} - 3\cos t \overline{\mathbf{k}} + \overline{\mathbf{c}}$$
When $t = 0$, $\overline{\mathbf{v}} = \overline{0}$

$$\therefore -\overline{\mathbf{i}} - 0 \overline{\mathbf{j}} - 3\overline{\mathbf{k}} + \overline{\mathbf{c}} = \overline{0}$$

$$\therefore \overline{\mathbf{c}} = \overline{\mathbf{i}} + 3\overline{\mathbf{k}}$$

$$\therefore \overline{\mathbf{v}} = -e^{-t} \overline{\mathbf{i}} - 6\left(\frac{t^2}{2} + t\right) \overline{\mathbf{j}} - 3\cos t \overline{\mathbf{k}} + \overline{\mathbf{i}} + 3\overline{\mathbf{k}}$$

$$= (1 - e^{-t})\overline{\mathbf{i}} - (3t^2 + 6t)\overline{\mathbf{j}} + 3(1 - \cos t) \overline{\mathbf{k}}$$
As $\overline{\mathbf{v}} = \frac{d\overline{r}}{dt} = (1 - e^{-t})\overline{\mathbf{i}} - (3t^2 + 6t)\overline{\mathbf{j}} + 3(1 - \cos t) \overline{\mathbf{k}}$

$$\therefore \overline{\mathbf{r}} = \int [(1 - e^{-t})\overline{\mathbf{i}} - (3t^2 + 6t)\overline{\mathbf{j}} + 3(1 - \cos t) \overline{\mathbf{k}}] dt$$
$$= (t + e^{-t})\overline{i} - (t^3 + 3t^2)\overline{j} + 3(t - \sin t)\overline{k} + \overline{c}$$

When $t = 0$, $\overline{r} = \overline{0}$
 $\therefore \overline{i} - 0\overline{j} + 0\overline{k} + \overline{c} = \overline{0}$
 $\therefore \overline{c} = -\overline{i}$
 $\therefore \overline{r} = (t + e^{-t})\overline{i} - (t^3 + 3t^2)\overline{j} + 3(t - \sin t)\overline{k} - \overline{i}$
 $= (e^{-t} + t - 1)\overline{i} - (t^3 + 3t^2)\overline{j} + 3(t - \sin t)\overline{k}$

Line Integral : The line integral of \overline{f} along any curve C lies in a region in which \overline{f} is defined, is the integral of tangential component of \overline{f} along C

i.e. Line integral =
$$\int_{C}^{\cdot} \overline{f} \cdot \overline{T} \, ds = \int_{C}^{\cdot} \overline{f} \cdot \frac{\overline{dr}}{ds} \, ds = \int_{C}^{\cdot} \overline{f} \cdot \overline{dr}$$

Remark: i) If $\overline{f} = f_1\overline{i} + f_2\overline{j} + f_3\overline{k}$, then line integral of \overline{f} along C is

$$\int_C^{\cdot} \overline{\mathbf{f}} \cdot \overline{\mathbf{dr}} = \int_C^{\cdot} (f_1 \overline{\mathbf{i}} + f_2 \overline{\mathbf{j}} + f_3 \overline{\mathbf{k}}) \cdot (dx \overline{\mathbf{i}} + dy \overline{\mathbf{j}} + dz \overline{\mathbf{k}}) = \int_C^{\cdot} \cdot f_1 dx + f_2 dy + f_3 dz$$

ii) If \overline{f} represents the force on a particle moving along C, then the line integral represents the **work done** by the force.

- iii) If C is simple closed curve, then the line integral of \overline{f} along C is denoted by $\oint_C \overline{f} \cdot \overline{dr}$
- iv) Line integral may or may not depend upon the path of integration.
- v) If C is any arc APB in a given region, then $\int_{\text{arcAPB}}^{\cdot} \overline{f} \cdot \overline{dr} = -\int_{\text{arcPPA}}^{\cdot} \overline{f} \cdot \overline{dr}$
- **Ex.** Evaluate $\int_{C}^{\cdot} \overline{f} \cdot d\overline{r}$, where $\overline{f} = x^2\overline{i} + y^3\overline{j}$ and curve C is the arc of the parabola $y = x^2$ in the xy plane from (0, 0) to (1, 1).

Solution: Along the curve C, which is the arc of the parabola $y = x^2$ in the xy plane from (0, 0) to (1, 1), we have $y = x^2$ i.e. dy = 2xdx, where x varies from 0 to 1.

$$\int_{C}^{\cdot} \overline{f} \cdot \overline{dr} = \int_{C}^{\cdot} (x^{2}\overline{i} + y^{3}\overline{j}) \cdot (dx\overline{i} + dy\overline{j} + dz\overline{k})$$

$$= \int_{C}^{\cdot} (x^{2}dx + y^{3}dy)$$

$$= \int_{x=0}^{1} \cdot [x^{2}dx + x^{6}(2x)dx]$$

$$= \int_{x=0}^{1} \cdot (x^{2} + 2x^{7})dx]$$

$$= [\frac{x^{3}}{3} + \frac{2x^{8}}{8}]_{0}^{1}$$

$$= (\frac{1}{3} + \frac{1}{4}) - 0$$

 $=\frac{7}{12}$

Ex. Evaluate $\int_{C}^{\cdot} [(x^2 + y^2)\overline{i} + (x^2 - y^2)\overline{j}] \cdot d\overline{r}$, where C is the straight line joining the points (0, 0) to (1, 1)

Solution: Along the straight C, line joining the points (0, 0) to (1, 1)

we have
$$y = x$$
 i.e. $dy = dx$, where x varies from 0 to 1.

$$\int_{C}^{\cdot} \overline{f} \cdot d\overline{r} = \int_{C}^{\cdot} [(x^{2} + y^{2})\overline{i} + (x^{2} - y^{2})\overline{j}] \cdot (dx\overline{i} + dy\overline{j} + dz\overline{k})$$

$$= \int_{C}^{\cdot} \cdot (x^{2} + y^{2})dx + (x^{2} - y^{2})dy$$

$$= \int_{x=0}^{1} \cdot [2x^{2}dx + (0)dx]$$

$$= [\frac{2x^{3}}{3}]_{0}^{1}$$

$$= \frac{2}{3} - 0$$

$$= \frac{2}{3}$$

Ex. Evaluate $\int_{C} [(x^2 + y^2)\overline{i} + (x^2 - y^2)\overline{j}] \cdot d\overline{r}$, where C is the parabola $y^2 = x$ from (0, 0) to (1, 1)

Solution: Along the straight C, the parabola $y^2 = x$ from (0, 0) to (1, 1)

we have
$$x = y^2$$
 i.e. $dx = 2ydy$, where y varies from 0 to 1.

$$\int_C \overline{f} \cdot d\overline{r} = \int_C [(x^2 + y^2)\overline{i} + (x^2 - y^2)\overline{j}] \cdot (dx\overline{i} + dy\overline{j} + dz\overline{k})$$

$$= \int_C \cdot (x^2 + y^2)dx + (x^2 - y^2)dy$$

$$= \int_C \cdot (y^4 + y^2)(2ydy) + (y^4 - y^2)dy$$

$$= \int_{x=0}^1 \cdot (2y^5 + 2y^3 + y^4 - y^2)dy$$

$$= \int_{x=0}^1 \cdot (2y^5 + 2y^3 + y^4 - y^2)dy$$

$$= [\frac{2y^6}{6} + \frac{2y^4}{4} + \frac{y^5}{5} - \frac{y^3}{3}]_0^1$$

$$= (\frac{1}{3} + \frac{1}{2} + \frac{1}{5} - \frac{1}{3}) - 0$$

$$= \frac{7}{10}$$

26) If $\overline{F} = \sqrt{y} \overline{i} + 2x \overline{j} + 3y \overline{k}$ and curve C is given by $\overline{r} = t \overline{i} + t^2 \overline{j} + t^3 \overline{k}$ from t = 0 to t = 1, then $\int_C^{\cdot} \overline{F} \cdot d\overline{r} = \dots$ A) $\frac{109}{30}$ B) $-\frac{109}{30}$ C) 0 D) None of these

27) $\int (xdy - ydx)$ are	bund the circle $x^2 + y^2$	= 1 is	
A) -2π	B) 2π	C) -π	D) π
28) If $\overline{f} = 2xy \overline{i} + x^2$	$2\overline{j}$ and curve C is the s	straight line joining	the points (0, 0) to (1, 1),
then $\int_{\mathbf{C}}^{\cdot} \overline{\mathbf{f}} \cdot \overline{\mathbf{dr}} = .$			
A) 1	B) -1	C) 0	D) None of these
29) If $\overline{f} = 2xy \overline{i} + x^2$	$2\overline{j}$ and curve C is the a	arc of the parabola y	$y^2 = x$ from (0, 0) to (1, 1),
then $\int_{\mathbf{C}}^{\cdot} \overline{\mathbf{f}} \cdot \overline{\mathbf{dr}} = .$			
A) 1	B) -1	C) 0	D) None of these
30) The total work	done by a particle mov	ving in a force field	$\overline{F} = 3xy\overline{i} - 5z\overline{j} + 10x\overline{k}$
along the curve	C: $x = t^2 + 1$, $y = 2t^2$, z	$z = t^3$ from $t = 0$ to t	t = 2 is
A) 101	B) 202	C) 303	D) None of these
31) If the line integr	ral of a vector field \overline{f} is	s independent of pa	th of integration in a given
region, then \overline{f} is	said to be	0	2121
A) non conse	rvative B) conservativ	ve C) solenoidal	D) None of these
32) If a vector field	$\overline{\mathbf{f}}$ conservative, then the	ne circulation of \overline{f} a	bout any closed curve in
the		Law En	3
region is	E		a
A) zero	B) not zero	C) 1	D) None of these
33) If the circulation	n of f abo <mark>ut a</mark> ny close	d curve in the region	on is zero, then
a vector field \overline{f} i	s	~~~	\$ <u>?</u>
A) non conse	rvative B) conservativ	ve C) solenoidal	D) None of these
34) If a continuousl	y differentiable vector	r field \overline{f} is the gradie	ent of some scalar point
function φ i.e. \overline{f}	$= \nabla \varphi$, then \overline{f} is	n the given region F	यानवः॥
A) conservati	ive B) not conserva	tive C) solenoidal	D) None of these
35) If $\overline{f} = \nabla \varphi$, then ϕ	φ is calledof \overline{f} .		
A) normal	B) scalar potent	ial C) vector poten	tial D) None of these
36) If a continuousl	y differentiable vector	r field \overline{f} is conservat	tive, then \overline{f} is
A) solenoidal	B) rotational	C) irrotational	D) None of these
37) If a continuousl	y differentiable vector	r field \overline{f} is irrotation	al i.e. curl $\overline{f} = \overline{0}$,
then \overline{f} is	-		
A) non conse	ervative B) conservativ	ve C) solenoidal	D) None of these

38) Ī	$= (y^2 \cos x + z^3)\overline{i}$	$ + (2ysinx - 4)\bar{j} +$	- $(3xz^2 + 2)\bar{k}$ is a	force field.	
	A) conservative	B) non conservati	ve C) solenoidal	D) None of these	
39) A vector field $\overline{f} = (2xz^3 + 6y)\overline{i} + (6x - 2yz)\overline{j} + (3x^2z^2 - y^2)\overline{k}$ is					
	A) non conservati	ive B) conservative	C) solenoidal	D) None of these	
40) If \hat{n} is the unit normal vector to an element ds, then the surface integral of a vector					
p	oint function F ove	er the surface S is			
	A) ∬ _S (Ē. îi)ds	B) $\iint_{S} (\overline{F} \times \hat{n}) ds$	C) ∬ _S Fds	D) ∬ _S îids	
41) I	f \overline{F} represents the v	elocity of a liquid, t	hen the surface inte	gral of \overline{F} over the surface	
S i.e. $\iint_{S}^{\cdot}(\overline{F}, \hat{n})$ ds is called					
	A) velocity	B) acceleration	C) flux	D) None of these	
42) If $\iint_{S}^{\cdot}(\overline{F}, \hat{n}) ds = 0$, then \overline{F} is said to be vector point function.					
	A) rotational	B) solenoidal	C) irrotational	D) None of these	
43) If $\phi(x, y)$, $\psi(x, y)$, $\frac{\partial \phi}{\partial y}$ and $\frac{\partial \psi}{\partial x}$ are continuous functions over a region R bounded by					
5	simple closed curve	e C i <mark>n xy</mark> plane, t <mark>h</mark> en	i ∮ <mark>c</mark> Ødx + ψdy = ∬	$\int_{R}^{\cdot} \left(\frac{\partial \Psi}{\partial x} - \frac{\partial \phi}{\partial y}\right) dx dy$	
is the statement of					
A) Lagrange's theorem			B) Euler's theorem		
C) Green's theorem			D) Stokes theorem		
44) By Green's theorem, if $\phi(x, y)$, $\psi(x, y)$, $\frac{\partial \phi}{\partial y}$ and $\frac{\partial \psi}{\partial x}$ are continuous functions over a					
1	region R bounded b	y simple closed cur	ve C in xy plane, th	$en \oint_C \emptyset dx + \psi dy = \dots$	
	A) $\iint_{R}^{\cdot} \left(\frac{\partial \psi}{\partial x} - \frac{\partial \phi}{\partial y}\right) dx$	^{lxdy} ार्ण तसभयर्च्य	B) $\iint_{R}^{\cdot} \left(\frac{\partial \phi}{\partial y} - \frac{\partial \psi}{\partial x}\right) d$	xdy	
	C) $\iint_{R}^{\cdot} \left(\frac{\partial \psi}{\partial x} + \frac{\partial \phi}{\partial y}\right) dx$	lxdy	D) $\iint_{\mathrm{R}}^{\cdot} \left(\frac{\partial \Psi}{\partial y} - \frac{\partial \phi}{\partial x}\right) \mathrm{d}$	xdy	
45) If S is a surface bounded by a simple closed curve C and \overline{F} is continuously					
differentiable vector function, then $\oint_{C}^{\cdot} \overline{F} \cdot \overline{dr} = \iint_{S}^{\cdot} (\operatorname{curl} \overline{F}) \cdot \widehat{n} ds = \iint_{S}^{\cdot} (\nabla \times \overline{F}) \cdot \widehat{n} ds$					
is	s the statement of				
A) Lagrange's theorem		B) Euler's theorem			
C) Green's theorem		D) Stokes theorem			
46) If S is a surface bounded by a simple closed curve C and F is continuously					
differentiable vector function, then $\oint_C F dr = \dots$					

MTH-403: VECTOR CALCULUS

॥ अंतरी पेटवू ज्ञानज्योत ॥

विद्यापीठ गीत

मंत्र असो हा एकच हृदयी 'जीवन म्हणजे ज्ञान' ज्ञानामधूनी मिळो मुक्ती अन मुक्तीमधूनी ज्ञान ॥धृ ॥ कला, ज्ञान, विज्ञान, संस्कृती साधू पुरूषार्थ साफल्यास्तव सदा 'अंतरी पेटवू ज्ञानज्योत' मंगल पावन चराचरातून स्त्रवते अक्षय ज्ञान ॥१ ॥ उत्तम विद्या, परम शक्ति ही आमुची ध्येयासक्ती शील, एकता, चारित्र्यावर सदैव आमुची भक्ती सत्य शिवाचे मंदिर सुंदर, विद्यापीठ महान ॥२ ॥ समता, ममता, स्वातंत्र्याचे नांदो जगी नाते, आत्मबलाने होऊ आम्ही आमुचे भाग्यविधाते, ज्ञानप्रभुची लाभो करूणा आणि पायसदान ॥३ ॥ – कै.प्रा. राजा महाजन

THE NATIONAL INTERGRATION PLEDGE

"I solemnly pledge to work with dedication to preserve and strengthen the freedom and integrity of the nation.

I further affirm that I shall never resort to violence and that all differences and disputes relating to religion, language, region or other political or economic grievance should be settled by peaceful and constitutional means."