Pimpalner Education Society's

Karm. A. M. Patil Arts, Commerce and Kai. Annasaheb N. K. Patil Science Senior College Pimpalner, Tal.- Sakri, Dist.- Dhule.

CLASS: S.Y.B.SC SEM.-IV

SUBJECT: MTH-403: PR承CTICAL COURSE

PREPARED BY: PROF. K. D. KADAM

PRACTICAL NO.-1: COMPLEX NUMBERS

1) Find the modulus and principle value of the argument of $\frac{(1+i \sqrt{3})^{13}}{(\sqrt{3}-i)^{11}}$

Solution:Let $\mathrm{z}=\frac{(1+\mathrm{i} \sqrt{3})^{13}}{(\sqrt{3}-\mathrm{i})^{11}}=\frac{\left(-\mathrm{i}^{2}+\mathrm{i} \sqrt{3}\right)^{13}}{(\sqrt{3}-\mathrm{i})^{11}}$

$$
\begin{aligned}
& =\frac{i^{13}(\sqrt{3}-i)^{13}}{(\sqrt{3}-i)^{11}} \\
& =\left(i^{2}\right)^{6} \mathrm{i}(\sqrt{3}-\mathrm{i})^{2} \\
& =\mathrm{i}(3-2 \sqrt{3} \mathrm{i}-1) \\
& =\mathrm{i}(-2 \sqrt{3} \mathrm{i}+2) \\
& =2 \sqrt{3}+2 \mathrm{i}
\end{aligned}
$$

$\therefore \mathrm{x}=2 \sqrt{3}$ and $\mathrm{y}=2$
$\therefore r=|z|=\sqrt{(2 \sqrt{3})^{2}+(2)^{2}}=\sqrt{12+4}=4$
$\therefore \theta=\operatorname{argz}=\tan ^{-1} \frac{y}{x}=\tan ^{-1} \frac{2}{2 \sqrt{3}}=\tan ^{-1} \frac{1}{\sqrt{3}}=\frac{\pi}{6} \in(-\pi, \pi)$ is the principal argument.
2) If z_{1}, z_{2}, z_{3} represents vertices of an equilateral triangle, prove that

$$
\mathrm{z}_{1}^{2}+\mathrm{z}_{2}^{2}+\mathrm{z}_{3}^{2}=\mathrm{z}_{1} \mathrm{z}_{2}+\mathrm{z}_{2} \mathrm{z}_{3}+\mathrm{z}_{3} \mathrm{z}_{1}
$$

Proof: Let A, B and C are the vertices of an equilateral triangle represented by the complex numbers Z_{1}, Z_{2} and z_{3} respectively,
$\therefore 1(\mathrm{AB})=\left|\mathrm{z}_{2}-\mathrm{z}_{1}\right|, 1(\mathrm{BC})=\left|\mathrm{z}_{3}-\mathrm{z}_{2}\right|, 1(\mathrm{AC})=\left|\mathrm{z}_{3}-\mathrm{z}_{1}\right|$ and
$\mathrm{m} \angle \mathrm{A}=\arg \left(\frac{\mathrm{z}_{3}-\mathrm{z}_{1}}{\mathrm{z}_{2}-\mathrm{z}_{1}}\right), \mathrm{m} \angle \mathrm{B}=\arg \left(\frac{\mathrm{z}_{1}-\mathrm{z}_{2}}{\mathrm{z}_{3}-\mathrm{z}_{2}}\right), \mathrm{m} \angle \mathrm{C}=\arg \left(\frac{\mathrm{z}_{2}-\mathrm{z}_{3}}{\mathrm{z}_{1}-\mathrm{z}_{3}}\right)$
As $\triangle \mathrm{ABC}$ is an equilateral triangle
$\therefore \mathrm{l}(\mathrm{AB})=\mathrm{l}(\mathrm{BC})=\mathrm{l}(\mathrm{AC})$ i.e. $\left|\mathrm{z}_{2}-\mathrm{z}_{1}\right|=\left|\mathrm{z}_{3}-\mathrm{z}_{2}\right|=\left|\mathrm{z}_{3}-\mathrm{z}_{1}\right|$
$\therefore\left|\frac{z_{3}-\mathrm{z}_{1}}{\mathrm{z}_{2}-\mathrm{z}_{1}}\right|=\left|\frac{\mathrm{z}_{1}-\mathrm{z}_{2}}{\mathrm{z}_{3}-\mathrm{z}_{2}}\right|=1$.
and $\mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{B}=\mathrm{m} \angle \mathrm{C}=\frac{\pi}{3}$
i.e. $\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)=\arg \left(\frac{z_{1}-z_{2}}{z_{3}-z_{2}}\right)=\arg \left(\frac{z_{2}-z_{3}}{z_{1}-z_{3}}\right)=\frac{\pi}{3}$.

By (1) and (2)
$\frac{z_{3}-z_{1}}{z_{2}-z_{1}}=\frac{z_{1}-z_{2}}{z_{3}-z_{2}}$
i.e. $\mathrm{Z}_{3}{ }^{2}-\mathrm{Z}_{3} \mathrm{Z}_{2}-\mathrm{Z}_{1} \mathrm{Z}_{3}+\mathrm{Z}_{1} \mathrm{Z}_{2}=\mathrm{Z}_{1} \mathrm{Z}_{2}-\mathrm{Z}_{1}{ }^{2}-\mathrm{z}_{2}{ }^{2}+\mathrm{Z}_{2} \mathrm{Z}_{1}$
$\therefore \mathrm{z}_{1}^{2}+\mathrm{z}_{2}^{2}+\mathrm{z}_{3}{ }^{2}=\mathrm{Z}_{1} \mathrm{Z}_{2}+\mathrm{Z}_{2} \mathrm{Z}_{3}+\mathrm{Z}_{3} \mathrm{Z}_{1}$
Hence proved.
3) If $\cos \alpha+\cos \beta+\cos \gamma=0$ and $\sin \alpha+\sin \beta+\sin \gamma=0$, then show that
i) $\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=3 \cos (\alpha+\beta+\gamma)$ and

$$
\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)
$$

ii) $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=0$ and

$$
\begin{equation*}
\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma=0 \tag{1}
\end{equation*}
$$

Proof: Given $\cos \alpha+\cos \beta+\cos \gamma=0$ and $\sin \alpha+\sin \beta+\sin \gamma=0$
Let $\mathrm{a}=\cos \alpha+\mathrm{i} \sin \alpha, \mathrm{b}=\cos \beta+\mathrm{i} \sin \beta$ and $\mathrm{c}=\cos \gamma+\mathrm{i} \sin \gamma$
$\therefore \mathrm{a}+\mathrm{b}+\mathrm{c}=\cos \alpha+\mathrm{i} \sin \alpha+\cos \beta+\mathrm{i} \sin \beta+\cos \gamma+\mathrm{i} \sin \gamma$

$$
\begin{align*}
& =(\cos \alpha+\cos \beta+\cos \gamma)+i(\sin \alpha+\sin \beta+\sin \gamma) \\
& =0+i 0 \quad \text { by }(1) \tag{2}
\end{align*}
$$

$\therefore \mathrm{a}+\mathrm{b}+\mathrm{c}=0$
and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\cos \alpha-i \sin \alpha+\cos \beta-i \sin \beta+\cos \gamma-i \sin \gamma$

$$
=(\cos \alpha+\cos \beta+\cos \gamma)-i(\sin \alpha+\sin \beta+\sin \gamma)
$$

$$
\begin{equation*}
\therefore \frac{\mathrm{bc}+\mathrm{ac}+\mathrm{ab}}{\mathrm{abc}}=0+\mathrm{i} 0 \quad \text { by }(1) \tag{3}
\end{equation*}
$$

$\therefore \mathrm{ab}+\mathrm{bc}+\mathrm{ac}=0$
i) $\mathrm{As} \mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}-3 \mathrm{abc}=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{ab}-\mathrm{bc}-\mathrm{ca}\right)$
$\therefore \mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}-3 \mathrm{abc}=0$ by (2)
$\therefore \mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}=3 \mathrm{abc}$
$\therefore \cos 3 \alpha+\mathrm{i} \sin 3 \alpha+\cos 3 \beta+\mathrm{i} \sin 3 \beta+\cos 3 \gamma+\mathrm{i} \sin 3 \gamma$
$=3[\cos (\alpha+\beta+\gamma)+i \sin (\alpha+\beta+\gamma)]$
$\therefore(\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma)+\mathrm{i}(\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma$
$=3 \cos (\alpha+\beta+\gamma)+i 3 \sin (\alpha+\beta+\gamma)$
Equating real and imaginary parts, we get,
$\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=3 \cos (\alpha+\beta+\gamma)$ and
$\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)$
ii) $\mathrm{As} \mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=(\mathrm{a}+\mathrm{b}+\mathrm{c})^{2}-2(\mathrm{ab}+\mathrm{bc}+\mathrm{ca})=0 \quad$ by (2) and (3)
$\therefore \cos 2 \alpha+\mathrm{i} \sin 2 \alpha+\cos 2 \beta+\mathrm{i} \sin 2 \beta+\cos 2 \gamma+\mathrm{i} \sin 2 \gamma=0$
$\therefore(\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma)+\mathrm{i}(\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma)=0$
Equating real and imaginary parts, we get,
$\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=0$ and
$\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma=0$
4) Find all the values of $(1+i)^{1 / 5}$. Show that their continued product is $1+i$.

Proof: Let $\mathrm{z}=1+\mathrm{i}$

$$
\begin{aligned}
& =\sqrt{2}\left(\frac{1}{\sqrt{2}}+\mathrm{i} \frac{1}{\sqrt{2}}\right) \\
& =2^{1 / 2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) \\
& =2^{1 / 2}\left[\cos \left(\frac{\pi}{4}+2 \mathrm{k} \pi\right)+\mathrm{i} \sin \left(\frac{\pi}{4}+2 \mathrm{k} \pi\right)\right] \\
& =2^{1 / 2}\left[\cos \left(\frac{\pi+8 \mathrm{k} \pi}{4}\right)+\operatorname{isin}\left(\frac{\pi+8 \mathrm{k} \pi}{4}\right)\right] \\
\therefore \omega_{\mathrm{k}} & =\mathrm{z}^{1 / 5}=(1+\mathrm{i})^{1 / 5}=2^{1 / 10}\left[\cos \left(\frac{\pi+8 \mathrm{k} \pi}{4}\right)+\mathrm{i} \sin \left(\frac{\pi+8 \mathrm{k} \pi}{4}\right)\right]^{1 / 5} \\
& =2^{1 / 10}\left[\cos \left(\frac{\pi+8 \mathrm{k} \pi}{20}\right)+\mathrm{i} \sin \left(\frac{\pi+8 \mathrm{k} \pi}{20}\right)\right], \text { where } \mathrm{k}=0,1,2,3,4 .
\end{aligned}
$$

Puting $\mathrm{k}=0,1,2,3,4$. we get all the values of $(1+\mathrm{i})^{1 / 5}$ as
$\omega_{0}=2^{1 / 10}\left[\cos \left(\frac{\pi}{20}\right)+\mathrm{i} \sin \left(\frac{\pi}{20}\right)\right]$,
$\omega_{1}=2^{1 / 10}\left[\cos \left(\frac{9 \pi}{20}\right)+\mathrm{i} \sin \left(\frac{9 \pi}{20}\right)\right]$,
$\omega_{2}=2^{1 / 10}\left[\cos \left(\frac{17 \pi}{20}\right)+i \sin \left(\frac{17 \pi}{20}\right)\right]$,
$\omega_{3}=2^{1 / 10}\left[\cos \left(\frac{25 \pi}{20}\right)+\operatorname{isin}\left(\frac{25 \pi}{20}\right)\right]$,
$\& \omega_{4}=2^{1 / 10}\left[\cos \left(\frac{33 \pi}{20}\right)+i \sin \left(\frac{33 \pi}{20}\right)\right]$.
The continued product of these values is

$$
\begin{aligned}
\omega_{0} \cdot \omega_{1} \cdot \omega_{2} \cdot \omega_{3} \cdot \omega_{4} & =2^{5 / 10}\left[\cos \left(\frac{\pi}{20}+\frac{9 \pi}{20}+\frac{17 \pi}{20}+\frac{25 \pi}{20}+\frac{33 \pi}{20}\right)+i \sin \left(\frac{\pi}{20}+\frac{9 \pi}{20}+\frac{17 \pi}{20}+\frac{25 \pi}{20}+\frac{33 \pi}{20}\right)\right] \\
& =2^{1 / 2}\left[\cos \left(\frac{85 \pi}{20}\right)+i \sin \left(\frac{85 \pi}{20}\right)\right] \\
& =\sqrt{2}\left[\cos \left(\frac{17 \pi}{4}\right)+\operatorname{isin}\left(\frac{17 \pi}{4}\right)\right] \\
& =\sqrt{2}\left[\cos \left(\frac{\pi}{4}\right)+\operatorname{isin}\left(\frac{\pi}{4}\right)\right] \quad \because \frac{17 \pi}{4}=4 \pi+\frac{\pi}{4} \\
& =\sqrt{2}\left(\frac{1}{\sqrt{2}}+\mathrm{i} \frac{1}{\sqrt{2}}\right) \\
& =1+\mathrm{i}
\end{aligned}
$$

Hence proved
5) Solve the equation $x^{8}-x^{4}+1=0$.

Solution: Let $x^{8}-x^{4}+1=0 \ldots \ldots$ (1) be the given equation.
Put $x^{4}=z$, we get,
$\mathrm{z}^{2}-\mathrm{z}+1=0$ having roots $\mathrm{z}=\frac{1 \pm \sqrt{1-4}}{2}=\frac{1}{2} \pm \mathrm{i} \frac{\sqrt{3}}{2}$
$\therefore \mathrm{x}^{4}=\frac{1}{2} \pm \mathrm{i} \frac{\sqrt{3}}{2}==\cos \frac{\pi}{3} \pm \mathrm{i} \sin \frac{\pi}{3}=\cos \left(\frac{\pi}{3}+2 \mathrm{k} \pi\right) \pm \mathrm{i} \sin \left(\frac{\pi}{3}+2 \mathrm{k} \pi\right)$
$\therefore \mathrm{x}_{\mathrm{k}}=\left[\cos \left(\frac{\pi+6 \mathrm{k} \pi}{3}\right) \pm \mathrm{i} \sin \left(\frac{\pi+6 \mathrm{k} \pi}{3}\right)\right]^{1 / 4}$

$$
=\cos \left(\frac{\pi+6 \mathrm{k} \pi}{12}\right) \pm \operatorname{isin}\left(\frac{\pi+6 \mathrm{k} \pi}{12}\right), \quad \text { where } \mathrm{k}=0,1,2,3 .
$$

Puting $\mathrm{k}=0,1,2,3$. we get,
$x_{0}=\cos \left(\frac{\pi}{12}\right) \pm i \sin \left(\frac{\pi}{12}\right), x_{1}=\cos \left(\frac{7 \pi}{12}\right) \pm i \sin \left(\frac{7 \pi}{12}\right)$,
$x_{2}=\cos \left(\frac{13 \pi}{12}\right) \pm i \sin \left(\frac{13 \pi}{12}\right)$, and $x_{3}=\cos \left(\frac{19 \pi}{12}\right) \pm i \sin \left(\frac{19 \pi}{12}\right)$
are the roots of given equation.
6) Determine the region in the z-plane represented by $|z-3|+|z+3|=10$

Proof: Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
$\therefore|\mathrm{z}-3|+|\mathrm{z}+3|=10$ gives
$|x+i y-3|+|x+i y+3|=10$
i.e. $|(x-3)+i y|+|(x+3)+i y|=10$
$\therefore \sqrt{(\mathrm{x}-3)^{2}+\mathrm{y}^{2}}+\sqrt{(\mathrm{x}+3)^{2}+\mathrm{y}^{2}}=10$
$\therefore \sqrt{(\mathrm{x}+3)^{2}+\mathrm{y}^{2}}=10-\sqrt{(\mathrm{x}-3)^{2}+\mathrm{y}^{2}}$
Squaring both sides, we get,

$$
\begin{aligned}
& (\mathrm{x}+3)^{2}+\mathrm{y}^{2}=100-20 \sqrt{(\mathrm{x}-3)^{2}+\mathrm{y}^{2}}+(\mathrm{x}-3)^{2}+\mathrm{y}^{2} \\
& \therefore \mathrm{x}^{2}+6 \mathrm{x}+9+\mathrm{y}^{2}=100-20 \sqrt{(\mathrm{x}-3)^{2}+\mathrm{y}^{2}}+\mathrm{x}^{2}-6 \mathrm{x}+9+\mathrm{y}^{2} \\
& \therefore 12 \mathrm{x}-100=-20 \sqrt{(\mathrm{x}-3)^{2}+\mathrm{y}^{2}} \\
& \therefore-5 \sqrt{\mathrm{x}^{2}-6 \mathrm{x}+9+\mathrm{y}^{2}}=3 \mathrm{x}-25
\end{aligned}
$$

Again squaring both sides, we get,
$25\left(\mathrm{x}^{2}-6 \mathrm{x}+9+\mathrm{y}^{2}\right)=9 \mathrm{x}^{2}-150 \mathrm{x}+625$
$\therefore 25 \mathrm{x}^{2}-150 \mathrm{x}+225+25 \mathrm{y}^{2}=9 \mathrm{x}^{2}-150 \mathrm{x}+625$
$\therefore 16 x^{2}+25 y^{2}=400$
$\therefore \frac{\mathrm{x}^{2}}{25}+\frac{\mathrm{y}^{2}}{16}=1$
i.e.The region in the z-plane is the ellipse.
7) Express $\cos ^{6} \theta$ in terms of cosines of multiples of θ.

Solution: Let $\mathrm{x}=\cos \theta+\mathrm{i} \sin \theta$, then $\frac{1}{\mathrm{x}}=\cos \theta-\mathrm{i} \sin \theta$.
$\therefore \mathrm{x}+\frac{1}{\mathrm{x}}=2 \cos \theta$ and $\mathrm{x}^{\mathrm{m}}+\frac{1}{\mathrm{x}^{\mathrm{m}}}=2 \cos \mathrm{~m} \theta$
$\therefore(2 \cos \theta)^{6}=\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{6}$
$\therefore 64 \cos ^{6} \theta=\mathrm{x}^{6}+6 \mathrm{x}^{5}\left(\frac{1}{\mathrm{x}}\right)+15 \mathrm{x}^{4}\left(\frac{1}{\mathrm{x}}\right)^{2}+20 \mathrm{x}^{3}\left(\frac{1}{\mathrm{x}}\right)^{3}+15 \mathrm{x}^{2}\left(\frac{1}{\mathrm{x}}\right)^{4}+6 \mathrm{x}\left(\frac{1}{\mathrm{x}}\right)^{5}+\left(\frac{1}{\mathrm{x}}\right)^{6}$

$$
=\mathrm{x}^{6}+6 \mathrm{x}^{4}+15 \mathrm{x}^{2}+20+15 \frac{1}{\mathrm{x}^{2}}+6 \frac{1}{\mathrm{x}^{4}}+\frac{1}{\mathrm{x}^{6}}
$$

$$
=\left(x^{6}+\frac{1}{x^{6}}\right)+6\left(x^{4}+\frac{1}{x^{4}}\right)+15\left(x^{2}+\frac{1}{x^{2}}\right)+20
$$

$\therefore 64 \cos ^{6} \theta=(2 \cos 6 \theta)+6(2 \cos 4 \theta)+15(2 \cos 2 \theta)+20$
$\therefore \cos ^{6} \theta=\frac{1}{32}(\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10)$
8) If $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=5$ and $z_{1}+z_{2}+z_{3}=0$ then prove that $\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}=0$

Proof: Let $\left|\mathrm{z}_{1}\right|=\left|\mathrm{z}_{2}\right|=\left|\mathrm{z}_{3}\right|=5$ and $\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}=0 \ldots$...(1)

$$
\begin{aligned}
\text { Consider } & \frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}} \\
& =\frac{\overline{z_{1}}}{z_{1} \overline{z_{1}}}+\frac{\overline{z_{2}}}{z_{2} \overline{z_{2}}}+\frac{\overline{z_{3}}}{z_{3} \overline{z_{3}}} \\
& =\frac{\overline{z_{1}}}{\left|z_{1}\right|^{2}}+\frac{\bar{z}_{2}}{\left|z_{2}\right|^{2}}+\frac{\bar{z}_{3}}{\left|z_{3}\right|^{2}} \\
& =\frac{\overline{\bar{z}_{1}}}{25}+\frac{\overline{z_{2}}}{25}+\frac{\overline{z_{3}}}{25} \quad \text { by }(1) \\
& =\frac{1}{25}\left[\overline{z_{1}}+\overline{z_{2}}+\overline{z_{3}}\right] \\
& =\frac{1}{25}\left[\overline{z_{1}+z_{2}+z_{3}}\right] \\
& =\frac{1}{25}[\overline{0}] \quad \text { by }(1) \\
& =0 \quad
\end{aligned}
$$

Hence proved.

PRACTICAL NO.-2: FUNCTIONS OF COMPLEX VARLABLES

1. Evaluate $\lim _{\mathrm{z} \rightarrow 1+i} \frac{z^{4}+4}{\mathrm{z}-1-\mathrm{i}}$

Sol. Consider $\lim _{\mathrm{z} \rightarrow 1+i} \frac{z^{4}+4}{\mathrm{z}-1-\mathrm{i}}$

$$
\begin{aligned}
& =\lim _{\mathrm{z} \rightarrow 1+i} \frac{\left(z^{2}\right)^{2}-(2 i)^{2}}{\mathrm{z}-1-\mathrm{i}} \\
& =\lim _{\mathrm{z} \rightarrow 1+i} \frac{\left(z^{2}-2 i\right)\left(\mathrm{z}^{2}+2 i\right)}{\mathrm{z}-1-\mathrm{i}} \\
& =\lim _{\mathrm{z} \rightarrow 1+i} \frac{\left[z^{2}-(1+i)^{2}\right]\left(z^{2}+2 i\right)}{\mathrm{z}-1-\mathrm{i}} \\
& =\lim _{\mathrm{z} \rightarrow 1+i} \frac{(\mathrm{z}-1-i)(\mathrm{z}+1+i)\left(\mathrm{z}^{2}+2 i\right)}{\mathrm{z}-1-\mathrm{i}} \\
& =\lim _{\mathrm{z} \rightarrow 1+i} \\
& =(\mathrm{z}+1+i)\left(\mathrm{z}^{2}+2 i\right) \quad \because \mathrm{z}-1-\mathrm{i} \neq 0 \\
& =2(1+i)[1+2 \mathrm{i}-1+2 \mathrm{i}] \\
& =8 \mathrm{i}(1+i) \\
& =8 \mathrm{i}-8 \\
& =-8(1-\mathrm{i})
\end{aligned}
$$

2. If $(z)=\frac{3 z^{4}-2 z^{3}+8 z^{2}-2 z+5}{z-i}, z \neq i$ is continuous at $z=i$, then find the value of $f(i)$

Sol. Let $\mathrm{f}(\mathrm{z})=\frac{3 z^{4}-2 z^{3}+8 z^{2}-2 z+5}{z-i}, z \neq i$ is continuous at $z=i$
$\therefore \lim _{\mathrm{z} \rightarrow i} f(\mathrm{z})=\mathrm{f}(\mathrm{i})$
$\therefore \mathrm{f}(\mathrm{i})=\lim _{\mathrm{z} \rightarrow i} \frac{3 z^{4}-2 z^{3}+8 z^{2}-2 z+5}{z-i}$

$$
=\lim _{z \rightarrow i} \frac{3 z^{4}+3 z^{2}-2 z^{3}-2 z+5 z^{2}+5}{z-i}
$$

$=\lim _{z \rightarrow i} \frac{3 z^{2}\left(z^{2}+1\right)-2 z\left(z^{2}+1\right)+5\left(z^{2}+1\right)}{z-i}$
$=\lim _{\mathrm{z} \rightarrow i} \frac{\left(z^{2}+1\right)\left(3 z^{2}-2 z+5\right)}{z-i}$
$=\lim _{\mathrm{z} \rightarrow i} \frac{(z-i)(z+i)\left(3 z^{2}-2 z+5\right)}{z-i}$
$=\lim _{\mathrm{z} \rightarrow i}(z+i)\left(3 z^{2}-2 z+5\right) \quad \because z-\mathrm{i} \neq 0$
$=2 i(-3-2 i+5)$
$=2 \mathrm{i}(-2 \mathrm{i}+2)$
$=4 i(-i+1)$

$$
\therefore \mathrm{f}(\mathrm{i})=4(1+i)
$$

3. Find an analytic function $f(z)=u+i v$ and express it in terms of z, if $u=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$
Solution. Let $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is an analytic function.
$\therefore \mathrm{u}$ and v are satisfies C-R equations

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \tag{1}
\end{equation*}
$$

As $u=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$ is given

$$
\begin{equation*}
\therefore \frac{\partial u}{\partial x}=3 x^{2}-3 y^{2}+6 x \text { and } \frac{\partial u}{\partial y}=-6 x y-6 y . \tag{2}
\end{equation*}
$$

Now to find an analytic function $f(z)=u+i v$, we have to find v.

Consider

$$
\begin{aligned}
d v & =\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y \\
\therefore d v & =-\frac{\partial u}{\partial y} d x+\frac{\partial u}{\partial x} d y \quad \text { by (1) }
\end{aligned}
$$

$\therefore d v=(6 x y+6 y) d x+\left(3 x^{2}-3 y^{2}+6 x\right) d y \quad$ by (2)
which is an exact equation.
\therefore It's G. S. is

$$
\mathrm{v}=\int_{y-\text { const. }}(6 \mathrm{xy}+6 \mathrm{y}) d x+\int\left(-3 y^{2}\right) d y+\mathrm{c}^{\prime}
$$

i.e. $v=3 x^{2} y+6 x y-y^{3}+c^{\prime}$.
\therefore By using this v and given u , an analytic function is
$f(z)=u+i v=\left(x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1\right)+i\left(3 x^{2} y+6 x y-y^{3}+c^{\prime}\right)$
$\therefore \mathrm{f}(\mathrm{z})=\mathrm{z}^{3}+3 \mathrm{z}^{2}+\mathrm{cobtained}$ by putting $\mathrm{x}=\mathrm{z}$ and $\mathrm{y}=0$ and taking $1+\mathrm{ic}=\mathrm{c}$
Which is the required analytic function in z.
4. Find an analytic function $f(z)=u+i v$ whose imaginary part is $v=e^{x}(x \sin y+y \cos y)$ using Milne Thomson Method.
Solution. Let $\mathrm{v}=\mathrm{e}^{\mathrm{x}}(\mathrm{x} \sin \mathrm{y}+\mathrm{y} \cos \mathrm{y})$

$$
\therefore \mathrm{v}_{\mathrm{x}}=\mathrm{e}^{\mathrm{x}}(\mathrm{x} \sin \mathrm{y}+\mathrm{y} \cos \mathrm{y})+\mathrm{e}^{\mathrm{x}} \sin \mathrm{y}=\mathrm{e}^{\mathrm{x}}(\mathrm{x} \sin \mathrm{y}+\mathrm{y} \cos \mathrm{y}+\sin \mathrm{y})
$$

and $\mathrm{v}_{\mathrm{y}}=\mathrm{e}^{\mathrm{x}}(\mathrm{x} \cos \mathrm{y}+\cos \mathrm{y}-\mathrm{y} \sin \mathrm{y})$
$\therefore \mathrm{v}_{1}(\mathrm{z}, 0)=\mathrm{v}_{\mathrm{x}}(\mathrm{z}, 0)=0$
and $\mathrm{v}_{2}(\mathrm{z}, 0)=\mathrm{v}_{\mathrm{y}}(\mathrm{z}, 0)=\mathrm{e}^{\mathrm{z}}(\mathrm{z}+1)$
By Milne Thomson Method, we get,

$$
\begin{aligned}
\mathrm{f}(\mathrm{z}) & =\int\left[v_{2}(\mathrm{z}, 0)+\mathrm{i} v_{1}(\mathrm{z}, 0)\right] d z+\mathrm{c} \\
& =\int\left[e^{z}(\mathrm{z}+1)+0\right] d z+\mathrm{c} \\
& =\int e^{z}(\mathrm{z}+1) d z+\mathrm{c} \\
& =z e^{z}+\mathrm{c}
\end{aligned}
$$

Which is the required analytic function.
5. Show that the real and imaginary part of the function e^{z} satisfy C-R equations and they are harmonic.
Proof. Let $\mathrm{f}(\mathrm{z})=\mathrm{e}^{\mathrm{z}}=\mathrm{e}^{\mathrm{x}+\mathrm{i} y}=\mathrm{e}^{\mathrm{x}}(\cos \mathrm{y}+\mathrm{isin} \mathrm{y})=\mathrm{e}^{\mathrm{x}} \cos \mathrm{y}+\mathrm{ie}^{\mathrm{x}} \sin \mathrm{y}=\mathrm{u}+\mathrm{iv}$
be a given function with real and imaginary parts are
$u=e^{x} \cos y$ and $v=e^{x} \sin y$
Differentiating partially w.r.t. x and y, we get
$\therefore \mathrm{u}_{\mathrm{x}}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{y}, \mathrm{u}_{\mathrm{y}}=-\mathrm{e}^{\mathrm{x}} \sin \mathrm{y}, \mathrm{v}_{\mathrm{x}}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y}$ and $\mathrm{v}_{\mathrm{y}}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{y}$
We observe that $u_{x}=v_{y}$ and $u_{y}=-v_{x}$
Thus, u and v satisfies C-R equations.
Now $u_{x x}=e^{x} \cos y, u_{y y}=-e^{x} \cos y, v_{x x}=e^{x} \operatorname{siny}$ and $v_{y y}=-e^{x} \sin y$
$\therefore \mathrm{u}_{\mathrm{xx}}+\mathrm{u}_{\mathrm{yy}}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{y}-\mathrm{e}^{\mathrm{x}} \cos \mathrm{y}=0$ and $\mathrm{v}_{\mathrm{xx}}+\mathrm{v}_{\mathrm{yy}}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y}-\mathrm{e}^{\mathrm{x}} \sin \mathrm{y}=0$
i.e. $\nabla^{2} u=0$ and $\nabla^{2} v=0$
i.e. u and v satisfies Laplace differential equation
$\therefore \mathrm{u}$ and v are satisfies C-R equations and they are harmonic.
Hence proved.
6. Show that $\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ satisfies Laplace equation. Finds its harmonic conjugates.

Proof. Let $\mathrm{u}=\frac{1}{2} \log \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$ is an analytic function of z , then
$\therefore \frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\frac{1}{2}\left(\frac{2 x}{x^{2}+y^{2}}\right)=\frac{x}{x^{2}+y^{2}}$ and $\frac{\partial u}{\partial y}=\frac{1}{2}\left(\frac{2 y}{x^{2}+y^{2}}\right)=\frac{y}{x^{2}+y^{2}}$
$\therefore \frac{\partial^{2} u}{\partial x^{2}}=\frac{x^{2}+y^{2}-x(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}$ and $\frac{\partial^{2} u}{\partial y^{2}}=\frac{x^{2}+y^{2}-y(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$
$\therefore \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{y}^{2}}=\frac{\mathrm{y}^{2}-\mathrm{x}^{2}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}+\frac{\mathrm{x}^{2}-\mathrm{y}^{2}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}=0$ i.e. $\nabla^{2} \mathrm{u}=0$
Hence u satisfies Laplace equation is proved.
Now to find harmonic conjugate of u,
Consider
$d v=\frac{\partial v}{\partial \mathrm{x}} \mathrm{dx}+\frac{\partial \mathrm{v}}{\partial \mathrm{y}} \mathrm{dy}$
$\therefore \mathrm{dv}=-\frac{\partial \mathrm{u}}{\partial \mathrm{y}} \mathrm{dx}+\frac{\partial \mathrm{u}}{\partial \mathrm{x}} \mathrm{dy} \quad$ by using C-R equations $\frac{\partial v}{\partial \mathrm{x}}=-\frac{\partial \mathrm{u}}{\partial \mathrm{y}} \& \frac{\partial v}{\partial \mathrm{y}}+\frac{\partial u}{\partial \mathrm{x}}$
$\therefore \mathrm{dv}=-\frac{y}{x^{2}+y^{2}} \mathrm{dx}+\frac{x}{x^{2}+y^{2}}$ dy which is an exact equation.
\therefore It's G. S. is

$$
\mathrm{v}=\int_{y-\text { const. }}\left(-\frac{y}{x^{2}+y^{2}}\right) d x+\int 0 d y+\mathrm{c}
$$

i.e. $v=-\tan ^{-1}\left(\frac{x}{y}\right)+\mathrm{c}$ is the harmonic conjugate of u.
7. If $f(z)$ is analytic function with constant modulus, then show that $f(z)$ is a constant function.
Proof. Let $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is analytic function with constant modulus.
$\therefore \mathrm{u}$ and v are satisfies C-R equations

$$
\begin{equation*}
u_{x}=v_{y} \text { and } u_{y}=-v_{x} . \tag{1}
\end{equation*}
$$

and $|f(z)|=\sqrt{u^{2}+v^{2}}$ is constant say k .
i.e. $\sqrt{u^{2}+v^{2}}=\mathrm{k}$
$\therefore u^{2}+v^{2}=\mathrm{k}^{2} \ldots \ldots$ (2)
Differentiating equation (2) partially w.r.t. x and y, we get,
$2 u u_{x}+2 v v_{x}=0$ i.e. $u u_{x}-v u_{y}=0 \ldots \ldots$. (3) by (1) $v_{x}=-u_{y}$
and $2 \mathrm{uu}_{\mathrm{y}}+2 \mathrm{vv}_{\mathrm{y}}=0$ i.e. $\mathrm{uu}_{\mathrm{y}}+\mathrm{vu}_{\mathrm{x}}=0 \ldots$. (4) by (1) $\mathrm{v}_{\mathrm{y}}=\mathrm{u}_{\mathrm{x}}$
Consider $u(3)+v(4)$, we get,
$u^{2} u_{x}-u v u_{y}+v u u_{y}+v^{2} u_{x}=0$
i.e. $\left(u^{2}+v^{2}\right) u_{x}=0$

Similarly $u(4)-v(3)$ gives $\left(u^{2}+v^{2}\right) u_{y}=0$.
If $u^{2}+v^{2}=0$, then $u=v=0$ and hence $f(z)=0$ is constant function.
But if $u^{2}+v^{2} \neq 0$, then $u_{x}=0$ and $u_{y}=0$
$\therefore \mathrm{f}^{\prime}(\mathrm{z})=\mathrm{u}_{\mathrm{x}}+\mathrm{iv}_{\mathrm{x}}=\mathrm{u}_{\mathrm{x}}-\mathrm{i} \mathrm{u}_{\mathrm{y}}=0-\mathrm{i} 0=0$.
$\therefore \mathrm{f}(\mathrm{z})$ is a constant function is proved.
8. Evaluate $\lim _{z \rightarrow e^{i \pi / 3}} \frac{\left(z-e^{\left.\frac{i \pi}{3}\right) z}\right.}{z^{3}+1}$

Sol. Consider $\lim _{z \rightarrow e^{i \pi / 3}} \frac{\left(z-e^{\frac{i \pi}{3}}\right) z}{z^{3}+1}$
$=\lim _{z \rightarrow e^{i \pi / 3}} \frac{\left(z-e^{\frac{i \pi}{3}}\right) z}{z^{3}-\left(e^{i \pi / 3}\right)^{3}}$
$=\lim _{z \rightarrow e^{i \pi / 3}} \frac{\left(z-e^{\frac{i \pi}{3}}\right) z}{\left(z-e^{i \pi / 3}\right)\left[z^{2}+z e^{i \pi / 3}+\left(e^{i \pi / 3}\right)^{2}\right]}$
$=\lim _{\mathrm{z} \rightarrow e^{\mathrm{i} \pi / 3}} \frac{z}{z^{2}+z e^{\mathrm{i} \pi / 3}+\left(e^{\mathrm{i} \pi / 3}\right)^{2}} \quad \because z-e^{\mathrm{i} \pi / 3} \neq 0$
$=\frac{e^{\mathrm{i} \pi / 3}}{e^{\mathrm{i} 2 \pi / 3}+e^{\mathrm{i} 2 \pi / 3}+e^{\mathrm{i} 2 \pi / 3}}$
$=\frac{e^{i \pi / 3}}{3 e^{i 2 \pi / 3}}$
$=\frac{1}{3} e^{-\mathrm{i} \pi / 3}$
$=\frac{1}{3}\left(\cos \frac{\pi}{3}-\mathrm{i} \sin \frac{\pi}{3}\right)$
$=\frac{1}{3}\left(\frac{1}{2}-\mathrm{i} \frac{\sqrt{3}}{2}\right)$
$=\frac{1}{6}(1-\mathrm{i} \sqrt{3})$

PRACTICAL NO.-3: COMPLEX INTEGRATION

1) Evaluate $\int_{C} f\left(y-x-3 x^{2} i\right) d z$, where C is:
i) The straight line joining $\mathrm{z}=0$ to $\mathrm{z}=1+\mathrm{i}$
ii) The straight line joining $\mathrm{z}=0$ to $\mathrm{z}=\mathrm{i}$ first and then from $\mathrm{z}=\mathrm{i}$ to $\mathrm{z}=1+\mathrm{i}$

Solution: i) Parametric equation of the line segment C : $z=0$ to $z=1+i$ is $x=t, y=t$, so that $z=x+i y=t+i t=(1+i) t, 0 \leq t \leq 1$.
$\therefore \mathrm{f}(\mathrm{z})=\mathrm{y}-\mathrm{x}-3 \mathrm{x}^{2} \mathrm{i}=\mathrm{t}-\mathrm{t}-3 \mathrm{t}^{2} \mathrm{i}=-3 \mathrm{t}^{2} \mathrm{i}$ and $\mathrm{dz}=(1+\mathrm{i}) \mathrm{dt}$

$$
\begin{aligned}
\therefore \int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz} & =\int_{\mathrm{t}=0}^{1}\left(-3 t^{2} i\right)(1+\mathrm{i}) \mathrm{dt} \\
& =-\mathrm{i}(1+\mathrm{i})\left[t^{3}\right]_{0}^{1} \\
& =(-\mathrm{i}+1)[1-0] \\
& =1-\mathrm{i}
\end{aligned}
$$

ii) Let $\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}$, where C_{1} is the straight line segments from $\mathrm{z}=0$ to $\mathrm{z}=\mathrm{i}$ and C_{2} is the straight line segments from $\mathrm{z}=\mathrm{i}$ to $\mathrm{z}=1+\mathrm{i}$
$\therefore \int_{C} f(z) \mathrm{dz}=\int_{C_{1}} f(z) \mathrm{dz}+\int_{C_{2}} f(z) \mathrm{dz}$.
Parametric equation of the line segment $\mathrm{C}_{1}: \mathrm{z}=0$ to $\mathrm{z}=\mathrm{i}$ is $\mathrm{x}=0, \mathrm{y}=\mathrm{t}$,
so that $\mathrm{z}=\mathrm{x}+\mathrm{iy}=0+\mathrm{it}=\mathrm{ti}, 0 \leq t \leq 1$.
$\therefore \mathrm{f}(\mathrm{z})=\mathrm{y}-\mathrm{x}-3 \mathrm{x}^{2} \mathrm{i}=\mathrm{t}-0-0 \mathrm{i}=\mathrm{t}$ and $\mathrm{dz}=\mathrm{idt}$
$\therefore \int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \cdot \mathrm{dz}=\int_{\mathrm{t}=0}^{1} t i d t$

$$
\begin{aligned}
& =i\left[\frac{t^{2}}{2}\right]_{0}^{1} \\
& =i\left[\frac{1}{2}-0\right] \\
& =\frac{1}{2} \mathrm{i}
\end{aligned}
$$

Again parametric equation of the line segment $\mathrm{C}_{2}: \mathrm{z}=\mathrm{i}$ to $\mathrm{z}=1+\mathrm{i}$ is $\mathrm{x}=\mathrm{t}, \mathrm{y}=1$ so that $\mathrm{z}=\mathrm{x}+\mathrm{iy}=\mathrm{t}+\mathrm{i}, 0 \leq t \leq 1$.
$\therefore \mathrm{f}(\mathrm{z})=\mathrm{y}-\mathrm{x}-3 \mathrm{x}^{2} \mathrm{i}=1-\mathrm{t}-3 \mathrm{t}^{2} \mathrm{i}$ and $\mathrm{dz}=\mathrm{dt}$
$\therefore \int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=\int_{\mathrm{t}=0}^{1}\left(1-\mathrm{t}-3 t^{2} \mathrm{i}\right) d t$
$=\left[t-\frac{t^{2}}{2}-t^{3} i\right]_{0}^{1}$
$=\left[1-\frac{1}{2}-i-0\right]$
$=\frac{1}{2}-\mathrm{i}$
Putting in (1), we get,
$\int_{\mathrm{C}} f(\mathrm{z}) \mathrm{dz}=\frac{1}{2} \mathrm{i}+\frac{1}{2}-\mathrm{i}=\frac{1}{2}(1-\mathrm{i})$
2) Use Cauchy Goursat Theorem to obtain the value $\int_{\mathrm{C}} e^{z} \mathrm{dz}$, where C is the circle $|z|=1$ and hence deduce that
i) $\int_{0}^{2 \pi} e^{\cos \theta} \sin (\theta+\sin \theta) \mathrm{d} \theta=0$ and ii) $\int_{0}^{2 \pi} e^{\cos \theta} \cos (\theta+\sin \theta) \mathrm{d} \theta=0$

Proof: Take $f(z)=e^{z}$ which is analytic everywhere in the complex plane, hence it is analytic inside and on the circle $\mathrm{C}:|z|=1$
\therefore By Cauchy's Integral Theorem, $\int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=0$.
i.e. $\int_{C} e^{z} \mathrm{dz}=0$

Now parametric equation of C is $\mathrm{z}=e^{i \theta}, 0 \leq \theta \leq 2 \pi$.
$\therefore \mathrm{dz}=e^{i \theta} i \mathrm{~d} \theta$

$$
\begin{aligned}
\therefore \int_{\mathrm{C}}^{\circ} \mathrm{f}(\mathrm{z}) \mathrm{dz} & =\int_{|z|=1} e^{e^{i \theta}} e^{i \theta} i \mathrm{~d} \theta \\
& =\int_{0}^{2 \pi} e^{\cos \theta+i \sin \theta} e^{i \theta} i \mathrm{~d} \theta \\
& =i \int_{0}^{2 \pi} e^{\cos \theta+i(\theta+\sin \theta)} \mathrm{d} \theta \\
& =i \int_{0}^{2 \pi} e^{\cos \theta} e^{i(\theta+\sin \theta)} \mathrm{d} \theta \\
& =i \int_{0}^{2 \pi} e^{\cos \theta}[\cos (\theta+\sin \theta)+\mathrm{isin}(\theta+\sin \theta)] \mathrm{d} \theta
\end{aligned}
$$

But $\int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=0$
$\therefore \mathrm{i} \int_{0}^{2 \pi} e^{\cos \theta} \cos (\theta+\sin \theta)-\int_{0}^{2 \pi} e^{\cos \theta} \sin (\theta+\sin \theta) \mathrm{d} \theta=0=0+\mathrm{i} 0$
Equating real and imaginary parts, we get,
i) $\int_{0}^{2 \pi} e^{\cos \theta} \sin (\theta+\sin \theta) \mathrm{d} \theta=0$ and ii) $\int_{0}^{2 \pi} e^{\cos \theta} \cos (\theta+\sin \theta) \mathrm{d} \theta=0$ Hence proved.
3) Using Cauchy's Integral formula, evaluate $\int_{C} \frac{d z}{z^{3}(z+4)} d z$, where C is the circle $|z|=2$
Solution: We observe that $\frac{1}{z^{3}(z+4)}$ is not analytic at $z=0$ and $z=-4$, out of these only the point $\mathrm{z}=0$ lies inside circle $\mathrm{C}:|z|=2$.
\therefore We take $\mathrm{f}(\mathrm{z})=\frac{1}{(z+4)}$ which is analytic inside and on the circle $\mathrm{C}:|z|=2$ and the point $\mathrm{z}=0$ lies inside C .
\therefore By Cauchy's integral formula for f "(a), we have,

$$
\begin{aligned}
& \mathrm{f}^{\prime}(0)=\frac{2!}{2 \pi i} \int_{\mathrm{C}} \frac{f(z)}{(z-0)^{3}} \mathrm{dz} \\
& \therefore \int_{\mathrm{C}} \frac{f(z)}{z^{3}} \mathrm{dz}=\pi i \mathrm{f}^{\prime \prime}(0) \\
\text { As } \mathrm{f}(\mathrm{z}) & =\frac{1}{(z+4)} \therefore \mathrm{f}^{\prime}(\mathrm{z})=\frac{-1}{(z+4)^{2}} \quad \& \mathrm{f}^{\prime \prime}(\mathrm{z})=\frac{2}{(z+4)^{3}} \quad \therefore \mathrm{f}^{\prime \prime}(0)=\frac{2}{64}=\frac{1}{32} \\
& \therefore \int_{\mathrm{C}} \frac{1}{z^{3}(z+4)} \mathrm{dz}=\frac{\pi i}{32}
\end{aligned}
$$

4) Obtain the expansion of $(z)=\frac{z^{2}-1}{(z+2)(z+3)}$, in the powers of z in the region
(i) $|z|<2$
(ii) $2<|z|<3$
(iii) $|z|>3$.

Solution: First we express $f(z)=\frac{z^{2}-1}{(z+2)(z+3)}$ into partial fractions as follows

$$
\begin{align*}
& \frac{\mathrm{z}^{2}-1}{(\mathrm{z}+2)(\mathrm{z}+3)}=1+\frac{\mathrm{A}}{(\mathrm{z}+2)}+\frac{\mathrm{B}}{(\mathrm{z}+3)} \ldots \ldots(1) \tag{1}\\
& \text { i.e. } \mathrm{z}^{2}-1=(z+2)(z+3)+\mathrm{A}(z+3)+\mathrm{B}(z+2)
\end{align*}
$$

Putting $\mathrm{z}=-2$ in (2), we get,
$4-1=0+\mathrm{A}+0 \quad \therefore \mathrm{~A}=3$
Again putting $\mathrm{z}=-3$ in (2), we get,
$9-1=0+0-\mathrm{B} \quad \therefore \mathrm{B}=-8$
From (1), we have,

$$
f(z)=1+\frac{3}{(z+2)}-\frac{8}{(z+3)}
$$

(i) $|z|<2 \Rightarrow|z|<3 \Rightarrow\left|\frac{z}{2}\right|<1 \&\left|\frac{z}{3}\right|<1$

$$
\begin{aligned}
\therefore f(z) & =1+\frac{3}{(z+2)}-\frac{8}{(z+3)}=1+\frac{3}{2} \frac{1}{\left(1+\frac{Z}{2}\right)}-\frac{8}{3} \frac{1}{\left(1+\frac{z}{3}\right)} \\
& =1+\frac{3}{2} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{Z}{2}\right)^{n}-\frac{8}{3} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{Z}{3}\right)^{n}
\end{aligned}
$$

by Taylor's series expansion

$$
=1+3 \sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{2^{n+1}}-8 \sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{3^{n+1}}
$$

(ii) $2<|z|<3 \Rightarrow 2<|z| \&|z|<3 \Rightarrow\left|\frac{2}{z}\right|<1 \&\left|\frac{z}{3}\right|<1$

$$
\therefore f(z)=1+\frac{3}{(z+2)}-\frac{8}{(z+3)}=1+\frac{3}{z} \frac{1}{\left(1+\frac{2}{z}\right)}-\frac{8}{3} \frac{1}{\left(1+\frac{z}{3}\right)}
$$

$$
=1+\frac{3}{z} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{2}{z}\right)^{n}-\frac{8}{3} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{z}{3}\right)^{n}
$$

by Taylor's series expansion

$$
=1+3 \sum_{n=0}^{\infty}(-1)^{n} \frac{2^{n}}{z^{n+1}}-8 \sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{3^{n+1}}
$$

(iii) $|z|>3 \Rightarrow|z|>2 \Rightarrow\left|\frac{3}{z}\right|<1 \&\left|\frac{2}{z}\right|<1$

$$
\begin{aligned}
\therefore f(z) & =1+\frac{3}{(z+2)}-\frac{8}{(z+3)}=1+\frac{3}{z} \frac{1}{\left(1+\frac{2}{z}\right)}-\frac{8}{z} \frac{1}{\left(1+\frac{3}{z}\right)} \\
& =1+\frac{3}{z} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{2}{z}\right)^{n}-\frac{8}{z} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{3}{z}\right)^{n}
\end{aligned}
$$

by Taylor's series expansion

$$
=1+3 \sum_{n=0}^{\infty}(-1)^{n} \frac{2^{n}}{z^{n+1}}-8 \sum_{n=0}^{\infty}(-1)^{n} \frac{3^{n}}{z^{n+1}}
$$

5) Prove that $\frac{1}{4 z-z^{2}}=\sum_{n=0}^{\infty} \frac{z^{n-1}}{4^{n+1}}$, where $0<|z|<4$.

Proof : $0<|z|<4 \Rightarrow\left|\frac{z}{4}\right|<1$
Consider L.H.S. $=\frac{1}{4 z-z^{2}}$
$=\frac{1}{4 z\left(1-\frac{z}{4}\right)}$
$=\frac{1}{4 z} \sum_{n=0}^{\infty}\left(\frac{Z}{4}\right)^{n} \quad$ by Taylor's series expansion
$=\sum_{n=0}^{\infty} \frac{z^{n-1}}{4^{n+1}}$
$=$ R.H.S.
Hence proved.
6) Verify is Cauchy's Integral Theorem for $f(z)=z^{2}$ around the circle $|z|=1$.

Proof: Here the closed contour C is the circle $|z|=1$, which is simple closed curve.
As $f(z)=z^{2}$ is analytic everywhere in the complex plane, hence it is analytic inside and on C .
\therefore By Cauchy's Integral Theorem, $\int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=0$.
i.e. $\int_{C} z^{2} d z=0$

Now parametric equation of C is $\mathrm{z}=e^{i \theta}, 0 \leq \theta \leq 2 \pi$.

$$
\therefore \mathrm{dz}=e^{i \theta} i \mathrm{~d} \theta
$$

$$
\therefore \int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=\int_{|z|=1} z^{2} \mathrm{dz}
$$

$$
=\int_{0}^{2 \pi}\left(e^{i \theta}\right)^{2} e^{i \theta} i \mathrm{~d} \theta
$$

$$
=\int_{0}^{2 \pi}\left(e^{3 i \theta}\right) i \mathrm{~d} \theta
$$

$$
=\mathrm{i}\left[\frac{e^{3 i \theta}}{3 i}\right]_{0}^{2 \pi}
$$

$$
=\left(\frac{e^{6 \pi i}}{3}-\frac{e^{0}}{3}\right)
$$

$$
=\frac{1}{3}-\frac{1}{3}
$$

$$
\therefore \int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=0
$$

Hence Cauchy's theorem is verified.
7) Evaluate $\int_{|z|=2} \frac{e^{2 z}}{(z-1)^{4}} \mathrm{dz}$, Using Cauchy's Integral formula.

Solution: We take $\mathrm{f}(\mathrm{z})=e^{2 z}$ which is analytic inside and on the circle $\mathrm{C}:|z|=2$ and the point $\mathrm{z}=1$ lies inside C .
\therefore By Cauchy's integral formula for f '"(a), we have,

$$
\begin{aligned}
& \mathrm{f}^{\prime \prime \prime}(1)=\frac{3!}{2 \pi i} \int_{\mathrm{C}} \frac{f(z)}{(z-1)^{4}} \mathrm{dz} \\
& \therefore \int_{\mathrm{C}} \frac{f(z)}{(z-1)^{4}} \mathrm{dz}=\frac{1}{3} \pi i \mathrm{f}^{\prime \prime \prime}(0)
\end{aligned}
$$

As $\mathrm{f}(\mathrm{z})=e^{2 z} \therefore \mathrm{f}^{\prime}(\mathrm{z})=2 e^{2 z}, \mathrm{f}^{\prime \prime}(\mathrm{z})=4 e^{2 z} \& \mathrm{f}^{\prime \prime \prime}(\mathrm{z})=8 e^{2 z} \therefore \mathrm{f}^{\prime \prime}(1)=8 e^{2}$

$$
\therefore \int_{|z|=2} \frac{e^{2 z}}{(z-1)^{4}} \mathrm{dz}=\frac{8}{3} \pi e^{2} i
$$

8) Find the expansion of $f(z)=\frac{1}{\left(z^{2}+1\right)\left(z^{2}+2\right)}$ in powers of z, when $|z|<1$

Solution: $|z|<1 \Rightarrow\left|z^{2}\right|<1$
Now $f(z)=\frac{1}{\left(z^{2}+1\right)\left(z^{2}+2\right)}=\frac{1}{\left(z^{2}+1\right)}-\frac{1}{\left(z^{2}+2\right)}$

$$
\begin{aligned}
& =\frac{1}{\left(1+z^{2}\right)}-\frac{1}{2\left(1+\frac{z^{2}}{2}\right)} \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left(z^{2}\right)^{n}-\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{z^{2}}{2}\right)^{n}
\end{aligned}
$$

by Taylor's series expansion

$$
=\sum_{n=0}^{\infty}(-1)^{n} z^{2 n}-\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{2^{n}}
$$

$\therefore f(z)=\sum_{n=0}^{\infty}(-1)^{n}\left(1-\frac{1}{2^{n}}\right) z^{2 n}$ be the required expansion, when $|z|<1$

PRACTICAL NO.-4: CALCULUS OF RESIDUES

1) Find the residue of $(z)=\frac{z^{2}+2 z}{(z+1)^{2}(z+4)}$ at its poles.

Solution: Given function $(z)=\frac{z^{2}+2 z}{(z+1)^{2}(z+4)}$ has double pole at $\mathrm{z}=-1$ and simple pole at $\mathrm{z}=-4$.

$$
\begin{aligned}
& \therefore \operatorname{Res}_{z=-1} f(z)=\lim _{z \rightarrow-1} \frac{d}{d z}\left[(z+1)^{2} f(z)\right] \\
&=\lim _{z \rightarrow-1} \frac{d}{d z}\left[\frac{z^{2}+2 z}{(z+4)}\right] \\
&=\lim _{z \rightarrow-1}\left[\frac{(z+4)(2 z+2)-\left(z^{2}+2 z\right)(1)}{(z+4)^{2}}\right] \\
&=\lim _{z \rightarrow-1}\left[\frac{z^{2}+8 z+8}{(z+4)^{2}}\right] \\
&=\frac{1-8+8}{(3)^{2}} \\
&=\frac{1}{9} \\
& \begin{aligned}
\operatorname{Reses}_{z=-4} f(z) & =\lim _{z \rightarrow-4}[(z+4) f(z)] \\
& =\lim _{z \rightarrow-4}\left[\frac{z^{2}+2 z}{(z+1)^{2}}\right] \\
& =\frac{16-8}{(-3)^{2}} \\
& =\frac{8}{9}
\end{aligned}
\end{aligned}
$$

2) Evaluate $\int_{|z|=3} \frac{e^{z}}{z(z-1)^{2}} d z$ by Cauchy's residue

Solution: Given integrant $f(z)=\frac{e^{z}}{\mathrm{z}(\mathrm{z}-1)^{2}}$ has simple pole at $\mathrm{z}=0$ and double pole at $\mathrm{z}=1$. Both these poles lies inside circle $\mathrm{C}:|\mathrm{z}|=3$ and $f(z)$ is analytic inside and on C except these poles.
\therefore By Cauchy's Residue Theorem,

$$
\int_{C} f(z) d z=2 \pi i\left[\operatorname{Res}_{z=0} f(z)+\operatorname{Res}_{z=1} f(z)\right] \ldots \ldots(1)
$$

Now $\operatorname{Res}_{z=0} f(z)=\lim _{z \rightarrow 0}[(z-0) f(z)]$

$$
=\lim _{\mathrm{z} \rightarrow 0}\left[\frac{\mathrm{e}^{\mathrm{z}}}{(\mathrm{z}-1)^{2}}\right]
$$

$$
=\frac{1}{(-1)^{2}}
$$

$$
=1
$$

$$
\begin{aligned}
\& \operatorname{Res}_{\mathrm{z}=1} \mathrm{f}(\mathrm{z}) & =\lim _{\mathrm{z} \rightarrow 1} \frac{\mathrm{~d}}{\mathrm{dz}}\left[(\mathrm{z}-1)^{2} \mathrm{f}(\mathrm{z})\right] \\
& =\lim _{\mathrm{z} \rightarrow 1} \frac{\mathrm{~d}}{\mathrm{dz}}\left[\frac{\mathrm{e}^{\mathrm{z}}}{\mathrm{z}}\right] \\
& =\lim _{\mathrm{z} \rightarrow 1}\left[\frac{\mathrm{ze}^{\mathrm{z}}-\mathrm{e}^{\mathrm{z}}(1)}{\mathrm{z}^{2}}\right] \\
& =\frac{\mathrm{e}-\mathrm{e}}{(1)^{2}} \\
& =0
\end{aligned}
$$

Putting in (1), we get,
$\int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=2 \pi \mathrm{i}[1+0]$
$\therefore \int_{|z|=3} \frac{\mathrm{e}^{\mathrm{z}}}{\mathrm{z}(\mathrm{z}-1)^{2}} \mathrm{dz}=2 \pi \mathrm{i}$
3) Evaluate $\int_{C} \frac{3 z^{2}+2}{(z-1)\left(z^{2}+9\right)} d z$ by Cauchy's residue theorem, where C is
(i) The circle $|z-2|=2$ (ii) The circle $|z|=4$

Solution: Given integrant $f(z)=\frac{3 z^{2}+2}{(z-1)\left(z^{2}+9\right)}=\frac{3 z^{2}+2}{(z-1)(z-3 i)(z+3 i)}$ has simple poles at $\mathrm{z}=1, \mathrm{z}=3 \mathrm{i}$ and $\mathrm{z}=-3 \mathrm{i}$.
Now $\operatorname{Res}_{z=1} f(z)=\lim _{z \rightarrow 1}[(z-1) f(z)]$

$$
\begin{aligned}
& =\lim _{\mathrm{z} \rightarrow 1}\left[\frac{3 \mathrm{z}^{2}+2}{\mathrm{z}^{2}+9}\right] \\
& =\frac{5}{10} \\
& =\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\& \operatorname{Res}_{z=3 i} f(z) & =\lim _{z \rightarrow 3 i}[(z-3 i) f(z)] \\
& =\lim _{z \rightarrow 3 i}\left[\frac{3 z^{2}+2}{(z-1)(z+3 i)}\right] \\
& =\frac{-27+2}{(3 i-1)(6 i)} \\
& =\frac{-25}{6(-3-i)} \\
& =\frac{25}{6(3+i)} \times \frac{(3-i)}{(3-i)} \\
& =\frac{25(3-i)}{6(9+1)} \\
& =\frac{5}{12}(3-i) \\
& =\frac{5}{4}-\frac{5}{12} i
\end{aligned}
$$

Similarly, $\underset{z=-3 i}{\operatorname{Res}} f(z)=\frac{5}{4}+\frac{5}{12} \mathrm{i}$
i) Let C is the circle $|z-2|=2$, then only the pole $\mathrm{z}=1$ lies inside circle C and $f(z)$ is analytic inside and on C except this pole.
\therefore By Cauchy's Residue Theorem,

$$
\begin{aligned}
& \int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=2 \pi \mathrm{i}[\underset{\mathrm{z}=1}{\operatorname{Res} \mathrm{f}}(\mathrm{z})] \\
& \int_{\mathrm{C}} \frac{3 z^{2}+2}{(\mathrm{z}-1)\left(\mathrm{z}^{2}+9\right)} \mathrm{dz}=2 \pi \mathrm{i}\left[\frac{1}{2}\right]=\pi \mathrm{i}
\end{aligned}
$$

ii) Let C is the circle $|z|=4$, then all the poles $\mathrm{z}=1, \mathrm{z}=3 \mathrm{i}$ and $\mathrm{z}=-3 \mathrm{i}$ lies inside circle C and $\mathrm{f}(\mathrm{z})$ is analytic inside and on C except these poles.
\therefore By Cauchy's Residue Theorem,

$$
\begin{aligned}
& \begin{aligned}
\int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz} & =2 \pi i[\underset{\mathrm{z}=1}{\operatorname{Res}} \mathrm{f}(\mathrm{z})+\underset{\mathrm{z}=3 \mathrm{i}}{\operatorname{Res}} \mathrm{f}(\mathrm{z})+\underset{\mathrm{z}=-3 \mathrm{i}}{\operatorname{Res}} \mathrm{f}(\mathrm{z})] \\
& =2 \pi i\left[\frac{1}{2}+\frac{5}{4}-\frac{5}{12} \mathrm{i}+\frac{5}{4}+\frac{5}{12} \mathrm{i}\right] \\
& =2 \pi i(3)
\end{aligned} \\
& \therefore \int_{\mathrm{C}} \frac{3 \mathrm{z}^{2}+2}{(\mathrm{z}-1)\left(\mathrm{z}^{2}+9\right)} \mathrm{dz}=6 \pi \mathrm{i}
\end{aligned}
$$

4) Use the contour integration to evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5+3 \cos \theta}$.

Solution: Let $\mathrm{I}=\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{5+3 \cos \theta}$
Put $\mathrm{z}=\mathrm{e}^{\mathrm{i} \theta} \therefore \mathrm{d} \theta=\frac{\mathrm{dz}}{\mathrm{iz}}$ and $\cos \theta=\frac{1}{2}\left(\mathrm{z}+\frac{1}{\mathrm{z}}\right)$, where $0 \leq \theta \leq 2 \pi$
$\therefore \mathrm{I}=\int_{\mathrm{C}} \frac{1}{5+\frac{3}{2}\left(\mathrm{z}+\frac{1}{\mathrm{z}}\right)} \frac{\mathrm{dz}}{\mathrm{iz}} \quad$ where C is the unit circle $|\mathrm{z}|=1$

$$
\begin{aligned}
& =\int_{C} \frac{-2 i}{5+\frac{3}{2}\left(\mathrm{z}+\frac{1}{z}\right)} \frac{\mathrm{dz}}{2 \mathrm{z}} \\
& =\int_{\mathrm{C}} \frac{-2 \mathrm{i}}{10 \mathrm{z}+3 \mathrm{z}^{2}+3} \mathrm{dz}
\end{aligned}
$$

$\therefore \mathrm{I}=\int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}$
where $f(z)=\frac{-2 \mathrm{i}}{3 \mathrm{z}^{2}+10 \mathrm{z}+3}=\frac{-2 \mathrm{i}}{(3 \mathrm{z}+1)(\mathrm{z}+3)}$ has simple poles at $\mathrm{z}=\frac{-1}{3}$ and $\mathrm{z}=-3$.
Out of these only the pole $z=\frac{-1}{3}$ lies inside the unit circle $C:|z|=1$ and $f(z)$ is analytic inside and on C except this pole.
\therefore By Cauchy's residue theorem,

$$
\begin{aligned}
\int_{C} f(z) d z & =2 \pi i\left[\operatorname{Res}_{z=\frac{-1}{3}} f(z)\right] \\
\therefore I & =2 \pi i \lim _{z \rightarrow \frac{-1}{3}}\left[\left(z+\frac{1}{3}\right) f(z)\right] \\
& =\frac{2}{3} \pi i \lim _{z \rightarrow \frac{-1}{3}}[(3 z+1) f(z)]
\end{aligned}
$$

$$
\begin{aligned}
& \quad=\frac{2}{3} \pi i \lim _{\mathrm{z} \rightarrow \frac{-1}{3}}\left[\frac{-2 \mathrm{i}}{(\mathrm{z}+3)}\right] \\
& =\frac{2}{3} \pi \mathrm{i}\left[\frac{-2 \mathrm{i}}{\left(\frac{-1}{3}+3\right)}\right] \\
& =\frac{4 \pi}{(-1+9)} \\
& \therefore \int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{5+3 \cos \theta}=\frac{\pi}{2}
\end{aligned}
$$

5) Evaluate by contour integration $\int_{-\infty}^{\infty} \frac{1}{x^{4}+13 x^{2}+36} \mathrm{dx}$.

Solution: Let $\mathrm{I}=\int_{-\infty}^{\infty} \frac{1}{\mathrm{x}^{4}+13 \mathrm{x}^{2}+36} \mathrm{dx}$
Then, here $P(x)=1$ and $Q(x)=x^{4}+13 x^{2}+36$ and $f(x)=\frac{P(x)}{Q(x)}$.
i) $P(x)$ and $Q(x)$ are polynomials in x.
ii) degree of $Q(x)$ - degree of $P(x)=4-0=4 \geq 2$
iii) $Q(x)=0$ gives $x^{4}+13 x^{2}+36=0$ i.e. $\left(x^{2}+4\right)\left(x^{2}+9\right)=0$
$\therefore \pm 2 \mathrm{i}$ and $\pm 3 \mathrm{i}$ are the roots of $\mathrm{Q}(\mathrm{x})=0$ i.e. $\mathrm{Q}(\mathrm{x})=0$ has no real roots.
$\therefore \mathrm{I}=2 \pi \mathrm{i}$ [The sum residues of $\mathrm{f}(\mathrm{z})$ at the poles which lies in the upper half of the z -plane]
$\therefore \mathrm{I}=2 \pi \mathrm{i}[\underset{\mathrm{z}=2 \mathrm{i}}{\operatorname{Res}} \mathrm{f}(\mathrm{z})+\underset{\mathrm{z}=3 \mathrm{i}}{\operatorname{Res}} \mathrm{f}(\mathrm{z})]$
Now $f(z)=\frac{1}{z^{4}+13 z^{2}+36}=\frac{1}{\left(z^{2}+4\right)\left(z^{2}+9\right)}=\frac{1}{(z-2 i)(z+2 i)(z-3 i)(z+3 i)}$
$\therefore \operatorname{Res}_{\mathrm{z}=2 \mathrm{i}} \mathrm{f}(\mathrm{z})=\lim _{\mathrm{z} \rightarrow 2 \mathrm{i}}[(\mathrm{z}-2 \mathrm{i}) \mathrm{f}(\mathrm{z})]$

$$
=\lim _{\mathrm{z} \rightarrow 2 \mathrm{i}}\left[\frac{1}{(\mathrm{z}+2 \mathrm{i})\left(\mathrm{z}^{2}+9\right)}\right]
$$

$$
=\frac{1}{4 i(-4+9)}
$$

$$
=\frac{1}{20 \mathrm{i}}
$$

$\& \operatorname{Res}_{z=3 i} f(z)=\lim _{z \rightarrow 3 i}[(z-3 i) f(z)]$

$$
=\lim _{\mathrm{z} \rightarrow 3 \mathrm{i}}\left[\frac{1}{(\mathrm{z}+3 \mathrm{i})\left(\mathrm{z}^{2}+4\right)}\right]
$$

$$
=\frac{1}{6 i(-9+4)}
$$

$$
=\frac{-1}{30 \mathrm{i}}
$$

Putting in (1), we get,
$\mathrm{I}=2 \pi \mathrm{i}\left[\frac{1}{20 \mathrm{i}}-\frac{1}{30 \mathrm{i}}\right]=\pi\left[\frac{1}{10}-\frac{1}{15}\right]$
$\therefore \int_{-\infty}^{\infty} \frac{1}{\mathrm{x}^{4}+13 \mathrm{x}^{2}+36} \mathrm{dx}=\frac{\pi}{30}$
6) Find the sum of residue of $(z)=\frac{e^{z}}{z^{2}+a^{2}}$ at its poles.

Solution: Given function $(z)=\frac{\mathrm{e}^{\mathrm{z}}}{\mathrm{z}^{2}+\mathrm{a}^{2}}=\frac{\mathrm{e}^{\mathrm{z}}}{(\mathrm{z}-\mathrm{ai})(\mathrm{z}+\mathrm{ai})}$ has simple poles at $\mathrm{z}=$ ai and $\mathrm{z}=-\mathrm{ai}$.
$\therefore \operatorname{Res}_{z=a i} f(z)=\lim _{z \rightarrow a i}[(z-a i) f(z)]$

$$
=\lim _{\mathrm{z} \rightarrow \mathrm{ai}}\left[\frac{\mathrm{e}^{\mathrm{z}}}{(\mathrm{z}+\mathrm{ai})}\right]
$$

$$
=\frac{\mathrm{e}^{\mathrm{ai}}}{2 \mathrm{ai}}
$$

Similarly $\operatorname{Res}_{z=-a i} f(z)=\frac{e^{-a i}}{-2 a i}$
\therefore The sum of residues $=\operatorname{Res}_{\mathrm{z}=\mathrm{ai}} \mathrm{f}(\mathrm{z})+\operatorname{Res}_{\mathrm{z}=-\mathrm{ai}} \mathrm{f}(\mathrm{z})$

$$
\begin{aligned}
& =\frac{\mathrm{e}^{\mathrm{ai}}}{2 \mathrm{ai}}-\frac{\mathrm{e}^{-\mathrm{ai}}}{2 \mathrm{ai}} \\
& =\frac{1}{\mathrm{a}}\left(\frac{\mathrm{e}^{\mathrm{ai}}-\mathrm{e}^{-\mathrm{ai}}}{2 \mathrm{i}}\right) \\
& =\frac{\operatorname{sina}}{\mathrm{a}}
\end{aligned}
$$

7) Evaluate $\int_{|z|=2} \frac{d z}{z^{3}(z+4)}$ by Cauchy's residue theorem.

Solution: Given function $(z)=\frac{1}{z^{3}(z+4)}$ has pole of order 3 at $z=0$ and simple pole at $\mathrm{z}=-4$. Out of these only the pole $\mathrm{z}=0$ lies inside the circle $\mathrm{C}:|\mathrm{z}|=2$ and $\mathrm{f}(\mathrm{z})$ is analytic inside and on C except this pole.
\therefore By Cauchy's residue theorem,

$$
\begin{aligned}
& \int_{C} f(z) d z=2 \pi i\left[\operatorname{Res}_{z=0} f(z)\right] \\
& \begin{aligned}
\therefore \int_{|z|=2} \frac{d z}{} & =2 \pi i\left\{\frac{1}{z^{3}(z+4)} \lim _{z \rightarrow 0} \frac{d^{2}}{d z^{2}}\left[(z-0)^{3} f(z)\right]\right\} \\
& =\pi i \lim _{z \rightarrow 0} \frac{d}{d z}\left\{\frac{d}{d z}\left[\frac{1}{(z+4)}\right]\right\} \\
& =\pi i \lim _{z \rightarrow 0} \frac{d}{d z}\left[\frac{-1}{(z+4)^{2}}\right] \\
& =\pi i \lim _{z \rightarrow 0}\left[\frac{2}{(\mathrm{z}+4)^{3}}\right] \\
& =\pi i\left[\frac{2}{(4)^{3}}\right] \\
& =\frac{\pi i}{32}
\end{aligned}
\end{aligned}
$$

8) Evaluate $\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$ by contour integration.

Solution: Let $\mathrm{I}=\int_{0}^{\infty} \frac{\mathrm{x}^{2} \mathrm{dx}}{\left(\mathrm{x}^{2}+1\right)\left(\mathrm{x}^{2}+4\right)}=\frac{1}{2} \int_{-\infty}^{\infty} \frac{\mathrm{x}^{2} \mathrm{dx}}{\left(\mathrm{x}^{2}+1\right)\left(\mathrm{x}^{2}+4\right)}$
Then, here $P(x)=x^{2}$ and $Q(x)=\left(x^{2}+1\right)\left(x^{2}+4\right)$ and $f(x)=\frac{P(x)}{Q(x)}$.
i) $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ are polynomials in x .
ii) degree of $\mathrm{Q}(\mathrm{x})$ - degree of $\mathrm{P}(\mathrm{x})=4-2=2 \geq 2$
iii) $Q(x)=0$ gives $\left(x^{2}+1\right)\left(x^{2}+4\right)=0$
$\therefore \pm i$ and $\pm 2 \mathrm{i}$ are the roots of $\mathrm{Q}(\mathrm{x})=0$ i.e. $\mathrm{Q}(\mathrm{x})=0$ has no real roots.
$\therefore \mathrm{I}=2 \pi \mathrm{i}$ [The sum residues of $\mathrm{f}(\mathrm{z})$ at the poles which lies in the upper half of the z -plane]
$\therefore \mathrm{I}=2 \pi \mathrm{i}[\underset{\mathrm{z}=\mathrm{i}}{\operatorname{Res} \mathrm{f}}(\mathrm{z})+\underset{\mathrm{z}=2 \mathrm{i}}{\operatorname{Resf}}(\mathrm{z})]$
Now $f(z)=\frac{z^{2}}{\left(z^{2}+1\right)\left(z^{2}+4\right)}=\frac{z^{2}}{(z-i)(z+i)(z-2 i)(z+2 i)}$
$\therefore \operatorname{Res}_{z=i} f(z)=\lim _{z \rightarrow i}[(z-i) f(z)]$
$=\lim _{\mathrm{z} \rightarrow \mathrm{i}}\left[\frac{\mathrm{z}^{2}}{(\mathrm{z}+\mathrm{i})\left(\mathrm{z}^{2}+4\right)}\right]$
$=\frac{-1}{2 i(-1+4)}$
$=\frac{-1}{6 \mathrm{i}}$
$\& \operatorname{Res}_{z=2 \mathrm{i}} f(z)=\lim _{z \rightarrow 2 \mathrm{i}}[(\mathrm{z}-2 \mathrm{i}) \mathrm{f}(\mathrm{z})]$

$$
\begin{aligned}
& =\lim _{\mathrm{z} \rightarrow 2 \mathrm{i}}\left[\frac{\mathrm{z}^{2}}{(\mathrm{z}+2 \mathrm{i})\left(\mathrm{z}^{2}+1\right)}\right] \\
& =\frac{-4}{4 \mathrm{i}(-4+1)} \\
& =\frac{1}{3 \mathrm{i}}
\end{aligned}
$$

Putting in (1), we get,
$\mathrm{I}=2 \pi \mathrm{i}\left[\frac{-1}{6 \mathrm{i}}+\frac{1}{3 \mathrm{i}}\right]=\pi\left[-\frac{1}{3}+\frac{2}{3}\right]$
$\therefore \int_{-\infty}^{\infty} \frac{\mathrm{x}^{2} \mathrm{dx}}{\left(\mathrm{x}^{2}+1\right)\left(\mathrm{x}^{2}+4\right)} \mathrm{dx}=\frac{\pi}{3}$
From (1), we get,
$\int_{0}^{\infty} \frac{\mathrm{x}^{2} \mathrm{dx}}{\left(\mathrm{x}^{2}+1\right)\left(\mathrm{x}^{2}+4\right)}=\frac{1}{2}\left(\frac{\pi}{3}\right)=\frac{\pi}{6}$

PRACTICAL NO.-5: THEORY OF ORDINARY DIFFERENTLAL EQUATIONS

1) Show that the function $f(x, y)=x y^{2}$ satisfies Lipchitz's condition on the rectangle $R:|x| \leq 1,|y| \leq 1$, but does not satisfy Lipchitz's condition on strip S: $|x| \leq 1,|y| \leq \infty$.
Proof: Let $f(x, y)=x y^{2}$
i) Let R is a rectangle given by $|x| \leq 1,|y| \leq 1$

Clearly $f(x, y)=x y^{2}$ is continuous function on R and hence bounded on R with $\frac{\partial \mathrm{f}}{\partial \mathrm{y}}=2 \mathrm{xy} \Rightarrow\left|\frac{\partial \mathrm{f}}{\partial \mathrm{y}}\right|=2|x||y| \leq 2(1)(1) \leq 2 \forall(\mathrm{x}, \mathrm{y}) \in \mathrm{R}$
$\therefore \mathrm{f}(\mathrm{x}, \mathrm{y})$ satisfies Lipchitz's condition on R and Lipchitz's constant $\mathrm{K}=2$.
i) Let R is a strip given by $|x| \leq 1,|y| \leq \infty$

Here $f(x, y)=x y^{2}$ is continuous function on S and hence bounded on S
with $\frac{\partial f}{\partial y}=2 x y \Rightarrow\left|\frac{\partial f}{\partial y}\right|=2|x||y| \leq 2(1)(\infty)<\infty \quad \forall(x, y) \in S$
$\Rightarrow \frac{\partial \mathrm{f}}{\partial \mathrm{y}}$ is unbounded on strip S .
$\therefore \mathrm{f}(\mathrm{x}, \mathrm{y})$ does not satisfy Lipchitz's condition on strip S is proved.
2) Prove that $\sin 2 x$ and $\cos 2 x$ are solutions of the $y "+4 y=0$ and these solutions are linearly independent.
Proof: Let $\mathrm{y}_{1}=\sin 2 \mathrm{x}$ and $\mathrm{y}_{2}=\cos 2 \mathrm{x}$
$\therefore y_{1}^{\prime}=2 \cos 2 \mathrm{x}$ and $y_{2}^{\prime}=-2 \sin 2 \mathrm{x}$
$\therefore y_{1}^{\prime \prime}=-4 \sin 2 \mathrm{x}$ and $y_{2}^{\prime \prime}=-4 \cos 2 \mathrm{x}$
$\therefore y_{1}^{\prime \prime}=-4 \mathrm{y}_{1}$ and $y_{2}^{\prime \prime}=-4 \mathrm{y}_{2}$ by (1)
$\therefore y_{1}^{\prime \prime}+4 y_{1}=0$ and $y_{2}^{\prime \prime}+4 y_{2}=0$
$\therefore y_{1}=\sin 2 x$ and $y_{2}=\cos 2 x$ are the solutions of the differential equation $y "+4 y=0$
is proved.
The Wronskian of y_{1} and y_{2} is

$$
\begin{aligned}
\mathrm{W}(\mathrm{x}) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\sin 2 \mathrm{x} & \cos 2 x \\
2 \cos 2 \mathrm{x} & -2 \sin 2 \mathrm{x}
\end{array}\right| \\
& =-2 \sin ^{2} 2 x-2 \cos ^{2} 2 x
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=-2 \neq 0$
\therefore Given solutions are linearly independent is proved.
3) Prove that $1, x, x^{2}$ are linearly independent. Hence form the differential equation whose solutions are $1, x, x^{2}$.
Proof: Let $\mathrm{y}_{1}=1, \mathrm{y}_{2}=\mathrm{x}$ and $\mathrm{y}_{3}=\mathrm{x}^{2}$ are the given functions.
$\therefore y_{1}^{\prime}=0, y_{2}^{\prime}=1$ and $y_{3}^{\prime}=2 \mathrm{x}$
$\therefore y_{1}^{\prime \prime}=0, y_{2}^{\prime \prime}=0$ and $y_{3}^{\prime \prime}=2$
\therefore The Wronskian of $\mathrm{y}_{1}, \mathrm{y}_{2}$ and y_{3} is

$$
\begin{aligned}
\mathrm{W}(\mathrm{x}) & =\left|\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|=\left|\begin{array}{ccc}
1 & x & x^{2} \\
0 & 1 & 2 x \\
0 & 0 & 2
\end{array}\right| \\
& =(2-0)-\mathrm{x}(0-0)+\mathrm{x}^{2}(0-0)
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=2 \neq 0$.
$\therefore 1, \mathrm{x}, \mathrm{x}^{2}$ are linearly independent solutions.
To find differential equation, let $y=c_{1}+c_{2} x+c_{3} x^{2}$
where c_{1}, c_{2}, c_{3} are constants.
Differentiating equation (i) thrice, we get,
$\frac{d y}{d x}=\mathrm{c}_{2}+2 \mathrm{c}_{3} \mathrm{X}$
$\frac{d^{2} y}{d x^{2}}=2 \mathrm{c}_{3}$
$\frac{d^{3} y}{d x^{3}}=0$ which is free from constants $\mathrm{c}_{1}, \mathrm{c}_{2}$ and c_{3}
$\therefore \frac{d^{3} y}{d x^{3}}=0$ be the required differential equation.
4) Examine whether the set of functions $1, x^{2}, x^{3}$ are linearly independent or not.

Solution: Let $\mathrm{y}_{1}=1, \mathrm{y}_{2}=\mathrm{x}^{2}$ and $\mathrm{y}_{3}=\mathrm{x}^{3}$ are the given functions.
$\therefore y_{1}^{\prime}=0, \quad y_{2}^{\prime}=2 \mathrm{x}$ and $y_{3}^{\prime}=3 \mathrm{x}^{2}$
$\therefore y_{1}^{\prime \prime}=0, \quad y_{2}^{\prime \prime}=2$ and $y_{3}^{\prime \prime}=6 \mathrm{x}$
\therefore The Wronskian of $\mathrm{y}_{1}, \mathrm{y}_{2}$ and y_{3} is

$$
\begin{aligned}
\mathrm{W}(\mathrm{x}) & =\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|=\left|\begin{array}{ccc}
1 & x^{2} & x^{3} \\
0 & 2 x & 3 x^{2} \\
0 & 2 & 6 x
\end{array}\right| \\
& =\left(12 \mathrm{x}^{2}-6 \mathrm{x}^{2}\right)-\mathrm{x}^{2}(0-0)+\mathrm{x}^{3}(0-0)
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=6 \mathrm{x}^{2} \neq 0$
\therefore Given set of functions are linearly independent.
5) Solve by method of variation of parameters $\frac{d^{2} y}{d x^{2}}+a^{2} y=\operatorname{cosec}(a x)$

Solution: Let $\frac{d^{2} y}{d x^{2}}+a^{2} y=\operatorname{cosec}(a x)$ i.e. $\left(D^{2}+a^{2}\right) y=\operatorname{cosec}(a x)$
be the given equation is
\therefore Its A.E. is $\mathrm{D}^{2}+\mathrm{a}^{2}=0$ which has roots $\mathrm{D}= \pm$ ai.
\therefore C.F. is $y=A \operatorname{cosax}+B \operatorname{sinax}$
By method of variation of parameter assume that $y=A \operatorname{cosax}+B \operatorname{sinax}$. be the G.S. of the given equation (i).
Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\cos a x \frac{d A}{d x}+\operatorname{sinax} \frac{d B}{d x}=0$.
Differentiating equation (ii) w.r.t. x , we get,
$\frac{d y}{d x}=-a A \sin a x+\cos a x \frac{d A}{d x}+a B \cos a x+\operatorname{sinax} \frac{d B}{d x}$
$\Rightarrow \frac{d y}{d x}=-a A \sin a x+a B \cos a x$..... (iv) using (iii).
Again differentiating equation (iv) w.r.t. x , we get,
$\frac{d^{2} y}{d x^{2}}=-a^{2} A \cos a x-a \sin a x \frac{d A}{d x}-a^{2} B \sin a x+a \cos a x \frac{d B}{d x}$
$\therefore \frac{d^{2} y}{d x^{2}}=-a^{2}(A \cos a x+B \operatorname{sinax})-a \sin a x \frac{d A}{d x}+a \cos a x \frac{d B}{d x}$
$\therefore \frac{d^{2} y}{d x^{2}}=-a^{2} y-a \operatorname{sinax} \frac{d A}{d x}+a \cos a x \frac{d B}{d x} \quad$ by (ii)
$\therefore \frac{d^{2} y}{d x^{2}}+a^{2} y=-a \operatorname{sinax} \frac{d A}{d x}+a \cos a x \frac{d B}{d x}$
$\therefore-\operatorname{asinax} \frac{d A}{d x}+a \cos a x \frac{d B}{d x}=\operatorname{cosec}(\mathrm{ax}) \quad \ldots \ldots$ (v) by (i)
To solve (iii) and (v), consider asinax(iii)+cosax(v), we get, $\operatorname{asinaxcosax} \frac{d A}{d x}+\operatorname{asin}^{2} \mathrm{ax} \frac{d B}{d x}-\operatorname{asinaxcosax} \frac{d A}{d x}+\operatorname{acos}^{2} \mathrm{ax} \frac{d B}{d x}=0+\operatorname{cosaxcosec}(\mathrm{ax})$
$\therefore \mathrm{a} \frac{d B}{d x}=\cot (\mathrm{ax}) \Rightarrow \frac{d B}{d x}=\frac{1}{a} \cot (\mathrm{ax})$
Putting value of $\frac{d B}{d x}$ in (iii), we get,
$\cos a x \frac{d A}{d x}+\operatorname{sinax}\left[\frac{1}{a} \cot (\mathrm{ax})\right]=0$
$\therefore \cos a x \frac{d A}{d x}=-\frac{1}{a} \cos a x \Rightarrow \frac{d A}{d x}=-\frac{1}{a}$
Now $\frac{d A}{d x}=-\frac{1}{a} \Rightarrow \mathrm{~A}=\int\left(-\frac{1}{a}\right) \mathrm{dx}=-\frac{x}{a}+\mathrm{c}_{1}$ and
$\frac{d B}{d x}=\frac{1}{a} \cot (\mathrm{ax}) \Rightarrow \mathrm{B}=\int\left(\frac{1}{a} \operatorname{cotax}\right) \mathrm{dx}=\frac{1}{a^{2}} \log \sin \mathrm{ax}+\mathrm{c}_{2}$
Putting these values of A and B in (iii), we get G.S. of given equation (i) as
$\mathrm{y}=\left(-\frac{x}{a}+\mathrm{c}_{1}\right) \cos a \mathrm{x}+\left(\frac{1}{a^{2}} \log \sin a \mathrm{x}+\mathrm{c}_{2}\right) \operatorname{sinax}$
$\therefore y=c_{1} \cos a x+c_{2} \sin a x-\frac{x}{a} \cos a x+\frac{1}{a^{2}} \sin a x(\log \sin a x)$.
6) Solve by method of variation of parameters $y^{\prime \prime}+y-x=0$

Solution: Let $y^{\prime \prime}+y-x=0$ i.e. $\left(D^{2}+1\right) y=x$
be the given equation is
\therefore Its A.E. is $\mathrm{D}^{2}+1=0$ which has roots $\mathrm{D}= \pm \mathrm{i}$.
\therefore C.F. is $y=A \cos x+B \sin x$
By method of variation of parameter assume that $y=A \cos x+B \sin x$
be the G.S. of the given equation (i).
Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\cos x \frac{d A}{d x}+\sin x \frac{d B}{d x}=0 \ldots$ (iii)

Differentiating equation (ii) w.r.t. x, we get,
$y^{\prime}=-A \sin x+\cos x \frac{d A}{d x}+B \cos x+\sin x \frac{d B}{d x}$
$\Rightarrow y^{\prime}=-A \sin x+B \cos x \ldots \ldots$ (iv) using (iii).
Again differentiating equation (iv) w.r.t. x, we get,
$y^{\prime \prime}=-A \cos x-\sin x \frac{d A}{d x}-B \sin x+\cos x \frac{d B}{d x}$
$\therefore y^{\prime \prime}=-(A \cos x+B \sin x)-\sin x \frac{d A}{d x}+\cos x \frac{d B}{d x}$
$\therefore \mathrm{y}^{\prime \prime}=-y-\sin x \frac{d A}{d x}+\cos x \frac{d B}{d x}$ by (ii)
$\therefore \mathrm{y}^{\prime \prime}+y=-\sin x \frac{d A}{d x}+\cos x \frac{d B}{d x}$
$\therefore-\sin x \frac{d A}{d x}+\cos x \frac{d B}{d x}=\mathrm{x}$
(v) by (i)

To solve (iii) and (v), consider $\sin x(i i i)+\cos x(v)$, we get,
$\sin \mathrm{X} \cos \mathrm{X} \frac{d A}{d x}+\sin ^{2} \mathrm{x} \frac{d B}{d x}-\sin \mathrm{x} \cos \mathrm{X} \frac{d A}{d x}+\cos ^{2} \mathrm{x} \frac{d B}{d x}=0+\mathrm{x} \cos \mathrm{X}$
$\therefore \frac{d B}{d x}=\mathrm{x} \cos \mathrm{x}$
Putting value of $\frac{d B}{d x}$ in (iii), we get,
$\cos \mathrm{x} \frac{d A}{d x}+\sin \mathrm{x}[x \cos x]=0$
$\therefore \cos \mathrm{x} \frac{d A}{d x}=-\mathrm{x} \sin \mathrm{x} \cos \mathrm{x} \Rightarrow \frac{d A}{d x}=-x \sin x$
Now $\frac{d A}{d x}=-x \sin x \Rightarrow \mathrm{~A}=\int(-x \sin x) \mathrm{dx}=\mathrm{x} \cos \mathrm{x}-\int \cos x d x+\mathrm{c}_{1}=\mathrm{x} \cos \mathrm{x}-\sin x+\mathrm{c}_{1} \&$ $\frac{d B}{d x}=\mathrm{x} \cos \mathrm{x} \Rightarrow \mathrm{B}=\int \mathrm{x} \cos \mathrm{xd} \mathrm{x}=\mathrm{x} \sin \mathrm{x}-\int \sin x d x+\mathrm{c}_{2}=\mathrm{x} \sin \mathrm{x}+\cos x+\mathrm{c}_{2}$
Putting these values of A and B in (iii), we get G.S. of given equation (i) as $y=\left(x \cos x-\sin x+c_{1}\right) \cos x+\left(x \sin x+\cos x+c_{2}\right) \sin x$

$$
\begin{aligned}
& \therefore y=c_{1} \cos x+c_{2} \sin x+x \cos ^{2} x-\sin x \cos x+x \sin ^{2} x+\cos x \sin x \\
& \therefore y=c_{1} \cos x+c_{2} \sin x+x .
\end{aligned}
$$

7) Show that the functions $1+x, x^{2}$ and $1+2 x$ are linearly independent.

Proof: Let $y_{1}=1+x, y_{2}=x^{2}$ and $y_{3}=1+2 x$ are the given functions.
$\therefore y_{1}^{\prime}=1, y_{2}^{\prime}=2 \mathrm{x}$ and $y_{3}^{\prime}=2$
$\therefore y_{1}^{\prime \prime}=0, y_{2}^{\prime \prime}=2$ and $y_{3}^{\prime \prime}=0$
\therefore The Wronskian of $\mathrm{y}_{1}, \mathrm{y}_{2}$ and y_{3} is

$$
\begin{aligned}
\mathrm{W}(\mathrm{x}) & =\left|\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|=\left|\begin{array}{ccc}
1+x & x^{2} & 1+2 x \\
1 & 2 x & 2 \\
0 & 2 & 0
\end{array}\right| \\
& =(1+\mathrm{x})(0-4)-\mathrm{x}^{2}(0-0)+(1+2 \mathrm{x})(2-0) \\
& =-4-4 \mathrm{x}+2+4 \mathrm{x}
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=-2 \neq 0$.
\therefore Given functions are linearly independent.
8) Examine whether $e^{2 x}$ and $e^{3 x}$ are linearly independent solutions of the differential equation $y^{\prime \prime}-5 y^{\prime}+6 y=0$ or not?
Solution: Let $\mathrm{y}_{1}=\mathrm{e}^{2 \mathrm{x}}$ and $\mathrm{y}_{2}=\mathrm{e}^{3 \mathrm{x}}$
$\therefore y_{1}^{\prime}=2 \mathrm{e}^{2 \mathrm{x}}$ and $y_{2}^{\prime}=3 \mathrm{e}^{3 \mathrm{x}}$
$\therefore y_{1}^{\prime \prime}=4 \mathrm{e}^{2 \mathrm{x}}$ and $y_{2}^{\prime \prime}=9 \mathrm{e}^{3 \mathrm{x}}$
Consider $y_{1}^{\prime \prime}-5 y_{1}^{\prime}+6 \mathrm{y}_{1}=4 \mathrm{e}^{2 \mathrm{x}}-10 \mathrm{e}^{2 \mathrm{x}}+6 \mathrm{e}^{2 \mathrm{x}}=0$ and
$y_{2}^{\prime \prime}-5 y_{2}^{\prime}+6 y_{2}=9 e^{3 x}-15 e^{3 x}+6 e^{3 x}=0$
$\therefore \mathrm{y}_{1}=\mathrm{e}^{2 \mathrm{x}}$ and $\mathrm{y}_{2}=\mathrm{e}^{3 \mathrm{x}}$ are the solutions of the differential equation $\mathrm{y}^{\prime \prime}-5 \mathrm{y}^{\prime}+6 \mathrm{y}=0$.
Now the Wronskian of y_{1} and y_{2} is

$$
\begin{aligned}
& \mathrm{W}(\mathrm{x})=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{2 x} & e^{3 x} \\
2 e^{2 x} & 3 e^{3 x}
\end{array}\right| \\
& \quad=3 e^{5 x}-2 e^{5 x} \\
& \therefore \mathrm{~W}(\mathrm{x})=e^{5 x} \neq 0 \\
& \therefore \mathrm{y}_{1}=\mathrm{e}^{2 \mathrm{x}} \text { and } \mathrm{y}_{2}=\mathrm{e}^{3 \mathrm{x}} \text { are linearly independent solutions of the differential }
\end{aligned}
$$

equation $y^{\prime \prime}-5 y^{\prime}+6 y=0$.
9) Solve by method of variation of parameters $\frac{d^{2} y}{d x^{2}}+9 y=\sec 3 x$

Solution: Let $\frac{d^{2} y}{d x^{2}}+9 y=\sec 3 x$ i.e. $\left(D^{2}+9\right) y=\sec 3 x$
be the given equation is
\therefore Its A.E. is $\mathrm{D}^{2}+9=0$ which has roots $\mathrm{D}= \pm 3 \mathrm{i}$.
\therefore C.F. is $y=A \cos 3 x+B \sin 3 x$
By method of variation of parameter assume that $y=A \cos 3 x+B \sin 3 x \ldots \ldots$. (ii)
be the G.S. of the given equation (i).
Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\cos 3 \mathrm{x} \frac{d A}{d x}+\sin 3 \mathrm{x} \frac{d B}{d x}=0$
Differentiating equation (ii) w.r.t. x , we get,
$\frac{d y}{d x}=-3 A \sin 3 x+\cos 3 \mathrm{x} \frac{d A}{d x}+3 B \cos 3 x+\sin 3 \mathrm{x} \frac{d B}{d x}$
$\Rightarrow \frac{d y}{d x}=-3 A \sin 3 x+3 B \cos 3 x \ldots \ldots$. (iv) using (iii).
Again differentiating equation (iv) w.r.t. x, we get,
$\frac{d^{2} y}{d x^{2}}=-9 A \cos 3 x-3 \sin 3 x \frac{d A}{d x}-9 B \sin 3 x+3 \cos 3 x \frac{d B}{d x}$
$\therefore \frac{d^{2} y}{d x^{2}}=-9(A \cos 3 x+B \sin 3 x)-3 \sin 3 x \frac{d A}{d x}+3 \cos 3 x \frac{d B}{d x}$
$\therefore \frac{d^{2} y}{d x^{2}}=-9 y-3 \sin 3 x \frac{d A}{d x}+3 \cos 3 x \frac{d B}{d x} \quad$ by (ii)
$\therefore \frac{d^{2} y}{d x^{2}}+9 y=-3 \sin 3 x \frac{d A}{d x}+3 \cos 3 x \frac{d B}{d x}$
$\therefore-3 \sin 3 x \frac{d A}{d x}+3 \cos 3 x \frac{d B}{d x}=\sec 3 x \ldots \ldots$ (v) by (i)
To solve (iii) and (v), consider $3 \sin 3 x($ iii $)+\cos 3 x(v)$, we get,
$3 \sin 3 \mathrm{x} \cos 3 \mathrm{x} \frac{d A}{d x}+3 \sin ^{2} 3 \mathrm{x} \frac{d B}{d x}-3 \sin 3 \mathrm{x} \cos 3 \mathrm{x} \frac{d A}{d x}+3 \cos ^{2} 3 \mathrm{x} \frac{d B}{d x}=0+\cos 3 \mathrm{x} \sec 3 \mathrm{x}$
$\therefore 3 \frac{d B}{d x}=1 \Rightarrow \frac{d B}{d x}=\frac{1}{3}$
Putting value of $\frac{d B}{d x}$ in (iii), we get,
$\cos 3 \mathrm{x} \frac{d A}{d x}+\sin 3 \mathrm{x}\left(\frac{1}{3}\right)=0$
$\therefore \cos 3 \mathrm{x} \frac{d A}{d x}=-\frac{1}{3} \sin 3 \mathrm{x} \Rightarrow \frac{d A}{d x}=-\frac{1}{3} \tan 3 \mathrm{x}$
Now $\frac{d A}{d x}=-\frac{1}{3} \tan 3 \mathrm{x} \Rightarrow \mathrm{A}=\int\left(-\frac{1}{3} \tan 3 x\right) \mathrm{dx}=\frac{1}{9} \log \cos 3 \mathrm{x}+\mathrm{c}_{1}$ and
$\frac{d B}{d x}=\frac{1}{3} \Rightarrow \mathrm{~B}=\int\left(\frac{1}{3}\right) \mathrm{dx}=\frac{x}{3}+\mathrm{c}_{2}$
Putting these values of A and B in (iii), we get G.S. of given equation (i) as
$y=\left(\frac{1}{9} \log \cos 3 x+c_{1}\right) \cos 3 x+\left(\frac{x}{3}+c_{2}\right) \sin 3 x$
$\therefore \mathrm{y}=\mathrm{c}_{1} \cos 3 \mathrm{x}+\mathrm{c}_{2} \sin 3 \mathrm{x}+\frac{1}{9} \cos 3 \mathrm{x}(\log \sin 3 \mathrm{x})+\frac{x}{3} \sin 3 \mathrm{x}$

PR央CTICAL NO.-6: SLMULTANEOUS DIFFERENTLAL EQUATIONS

1) i) Solve $\frac{d x}{x^{2} z}=\frac{d y}{0}=\frac{d z}{-x^{2}}$

Solution: Let $\frac{d x}{x^{2} z}=\frac{d y}{0}=\frac{d z}{-x^{2}}$
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
$\frac{d x}{x^{2} z}=\frac{d y}{0} \Rightarrow \mathrm{dy}=0$
Integrating, we get, $y=c_{1}$ i.e. $y-c_{1}=0$
Now taking first and third ratios of (i), we have
$\frac{d x}{x^{2} z}=\frac{d z}{-x^{2}} \Rightarrow \mathrm{dx}=-\mathrm{zdz} \Rightarrow 2 \mathrm{dx}+2 \mathrm{zdz}=0$
Integrating, we get, $2 x+z^{2}=c_{2}$ i.e. $2 x+z^{2}-c_{2}=0$
$\therefore \mathrm{By}$ (i) and (ii),
$\left(y-c_{1}\right)\left(2 x+z^{2}-c_{2}\right)=0$
be the required general solution of given equation.
ii) Solve $\frac{d x}{\tan x}=\frac{d y}{\tan y}=\frac{d z}{\tan z}$

Solution: Let $\frac{d x}{\tan x}=\frac{d y}{\tan y}=\frac{d z}{\tan z} \ldots$ (i)
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
$\frac{d x}{\tan x}=\frac{d y}{\tan y} \Rightarrow$ cotxdx $=$ cotydy
Integrating, we get, $\log \sin x=\log \sin y+\log _{1}$
i.e. $\sin x=c_{1}$ siny i.e. $\sin x-c_{1} \sin y=0$...... (ii)

Now taking first and third ratios of (i), we have
$\frac{d x}{\tan x}=\frac{d z}{\tan z} \Rightarrow \cot x d \mathrm{x}=\operatorname{cotzd} \mathrm{z}$
Integrating, we get, $\log \sin x=\log \sin z+\log _{2}$
i.e. $\sin x=c_{2} \sin z$ i.e. $\sin x-c_{2} \sin z=0$...... (iii)
\therefore By (i) and (ii),
$\left(\sin x-c_{1} \sin y\right)\left(\sin x-c_{2} \sin z\right)=0$
be the required general solution of given equation.
2) i) Solve $\frac{d x}{x y}=\frac{d y}{y^{2}}=\frac{d z}{x y z-z x^{2}}$

Solution: Let $\frac{d x}{x y}=\frac{d y}{y^{2}}=\frac{d z}{x y z-z x^{2}}$
be the given simultaneous differential equation.
Taking first and second ratios of (i) in which third variable z is absent, we have
$\frac{d x}{x y}=\frac{d y}{y^{2}} \Rightarrow \frac{d x}{x}=\frac{d y}{y}$
Integrating, we get, $\log x=\log y+\log \mathrm{c}_{1}$ i.e. $\mathrm{x}=\mathrm{c}_{1} \mathrm{y}$
Now taking second and third ratios of (i), we have
$\frac{d y}{y^{2}}=\frac{d z}{x y z-z x^{2}} \Rightarrow \frac{d y}{y^{2}}=\frac{d z}{c_{1} y^{2} z-z c_{1}{ }^{2} y^{2}} \quad$ by (ii)
$\Longrightarrow d y=\frac{d z}{\left(c_{1}-c_{1}{ }^{2}\right) z}$
Integrating, we get, $y=\frac{1}{\left(c_{1}-c_{1}{ }^{2}\right)} \log Z+c_{2}$
i.e. $y=\frac{1}{\left[\frac{x}{y}-\left(\frac{x}{y}\right)^{2}\right]} \log z+c_{2}$ by (ii)
i.e. $y=\frac{y^{2}}{\left(x y-x^{2}\right)} \log z+\mathrm{c}_{2}$
be the required general solution of given equation.
ii) Solve $\frac{d x}{y}=\frac{d y}{x}=\frac{d z}{x y z^{2}\left(x^{2}-y^{2}\right)}$

Solution: Let $\frac{d x}{y}=\frac{d y}{x}=\frac{d z}{x y z^{2}\left(x^{2}-y^{2}\right)} \ldots \ldots$ (i)
be the given simultaneous differential equation.
Taking first and second ratios of (i) in which third variable z is absent, we have
$\frac{d x}{y}=\frac{d y}{x} \Rightarrow x d x=y d y \Rightarrow 2 x d x-2 y d y=0$
Integrating, we get, $x^{2}-y^{2}=c_{1}$
Now taking first and third ratios of (i), we have
$\frac{d x}{y}=\frac{d z}{x y z^{2}\left(x^{2}-y^{2}\right)} \Rightarrow x d x=\frac{d z}{c_{1} z^{2}}$
Integrating, we get, $\frac{x^{2}}{2}=-\frac{1}{c_{1} z}+\mathrm{c}_{2}$
i.e. $\frac{x^{2}}{2}=-\frac{1}{z\left(x^{2}-y^{2}\right)}+\mathrm{c}_{2} \quad$ by (ii)
be the required general solution of given equation.
3) Solve $\frac{d x}{y+z}=\frac{d y}{z+x}=\frac{d z}{x+y}$

Solution: Let $\frac{d x}{y+z}=\frac{d y}{z+x}=\frac{d z}{x+y}$.
be the given simultaneous differential equation.
By taking multipliers $1,1,1$, we get,
Each Ratio of (i) $=\frac{\mathrm{dx}+\mathrm{dy}+\mathrm{dz}}{y+z+z+x+x+y}$
i.e. Each Ratio of (i) $=\frac{d x+d y+d z}{2 x+2 y+2 z}$
i.e. Each Ratio of $(i)=\frac{d(x+y+z)}{2(x+y+z)}$

Again by taking multipliers $1,-1,0$ and $0,1,-1$ we get,
Each Ratio of (i) $=\frac{\mathrm{dx}-\mathrm{dy}+0}{y+z-z-x+0}=\frac{0+\mathrm{dy}-\mathrm{dz}}{0+z+x-x-y}$
i.e. Each Ratio of (i) $=\frac{\mathrm{dx}-\mathrm{dy}}{y-x}=\frac{\mathrm{dy}-\mathrm{dz}}{z-y}$
i.e. Each Ratio of $(\mathrm{i})=\frac{\mathrm{d}(\mathrm{x}+\mathrm{y}+\mathrm{z})}{2(x+y+z)}=\frac{\mathrm{dx}-\mathrm{dy}}{y-x}=\frac{\mathrm{dx}-\mathrm{dz}}{z-x}$

Consider $\frac{\mathrm{dx}-\mathrm{dy}}{y-x}=\frac{\mathrm{dy}-\mathrm{dz}}{\mathrm{z}-\mathrm{y}}$
$\Rightarrow \frac{\mathrm{d}(\mathrm{x}-\mathrm{y})}{(x-y)}=\frac{\mathrm{d}(\mathrm{y}-\mathrm{z})}{(y-z)}$
Integrating, we get,
$\log (\mathrm{x}-\mathrm{y})=\log (\mathrm{y}-\mathrm{z})+\log \mathrm{c}_{1}$
i.e. $(x-y)=c_{1}(y-z)$
i.e. $(x-y)-c_{1}(y-z)=0$

Again consider $\frac{\mathrm{d}(\mathrm{x}+\mathrm{y}+\mathrm{z})}{2(x+y+z)}=\frac{\mathrm{dx}-\mathrm{dy}}{y-x}$
$\Rightarrow \frac{\mathrm{d}(\mathrm{x}+\mathrm{y}+\mathrm{z})}{(x+y+z)}=-2 \frac{\mathrm{~d}(\mathrm{x}-\mathrm{y})}{(x-y)}$
$\Rightarrow \frac{\mathrm{d}(\mathrm{x}+\mathrm{y}+\mathrm{z})}{(x+y+z)}+2 \frac{\mathrm{~d}(\mathrm{x}-\mathrm{y})}{(x-y)}=0$
Integrating, we get,
$\log (x+y+z)+2 \log (x-y)=\log _{2}$
i.e. $(x+y+z)(x-y)^{2}=c_{2}$
i.e. $(x+y+z)(x-y)^{2}-c_{2}=0$.

By (ii) and (iii),

$$
\begin{equation*}
\left[(x-y)-c_{1}(y-z)\right]\left[(x+y+z)(x-y)^{2}-c_{2}\right]=0 \tag{iii}
\end{equation*}
$$

be the required general solution of given equation.
4) Solve $\frac{a d x}{y z(b-c)}=\frac{b d y}{z x(c-a)}=\frac{c d z}{x y(a-b)}$

Solution: Let $\frac{a d x}{y z(b-c)}=\frac{b d y}{z x(c-a)}=\frac{c d z}{x y(a-b)} \ldots \ldots$
be the given simultaneous differential equation.
Taking multipliers x, y, z, we get,
Each Ratio of (i) $==\frac{a x \mathrm{dx}+b y \mathrm{dy}+c z \mathrm{dz}}{x y z(b-c+c-a+a-b)}=\frac{a x \mathrm{dx}+b y \mathrm{dy}+c z \mathrm{dz}}{0}$
$\Rightarrow a x \mathrm{dx}+b y \mathrm{dy}+c z \mathrm{dz}=0$
$\Rightarrow 2 a x \mathrm{dx}+2 b y \mathrm{dy}+2 c z \mathrm{dz}=0$
Integrating, we get,
$a x^{2}+b y^{2}+c z^{2}=\mathrm{c}_{1}$
i.e. $a x^{2}+b y^{2}+c z^{2}-c_{1}=0$

Again by taking multipliers $a x, b y, c z$, we get,
Each Ratio of (i) $==\frac{a^{2} \mathrm{xdx}+b^{2} \mathrm{ydy}+c^{2} \mathrm{zdz}}{x y z(a b-a c+b c-b a+c a-c b)}=\frac{a^{2} \mathrm{xdx}+b^{2} \mathrm{ydy}+c^{2} \mathrm{zdz}}{0}$
$\Rightarrow a^{2} \mathrm{xdx}+b^{2} \mathrm{ydy}+c^{2} \mathrm{zdz}=0$
$\Rightarrow a^{2} 2 \mathrm{xdx}+b^{2} 2 \mathrm{ydy}+c^{2} 2 \mathrm{zdz}=0$
Integrating, we get,
$a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}=c_{2}$
i.e. $a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}-c_{2}=0$

By (ii) and (iii),
$\left(a x^{2}+b y^{2}+c z^{2}-\mathrm{c}_{1}\right)\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}-\mathrm{c}_{2}\right)=0$
be the required general solution of given equation.
5) Solve $\frac{d x}{x^{2}-y^{2}-z^{2}}=\frac{d y}{2 x y}=\frac{d z}{2 x z}$

Solution: Let $\frac{d x}{x^{2}-y^{2}-z^{2}}=\frac{d y}{2 x y}=\frac{d z}{2 x z}$.
be the given simultaneous differential equation.
Taking second and third ratios of (i), we have
$\frac{d y}{2 x y}=\frac{d z}{2 x z} \Rightarrow \frac{d y}{y}=\frac{d z}{z}$
Integrating, we get,
$\log y=\log z+\log c_{1}$
i.e. $y=c_{1} z$
i.e. $y-c_{1} z=0 \ldots \ldots$.

Now by taking multipliers x, y, z, we get,

Each Ratio of (i) $=\frac{x d x+y d y+z d z}{x^{3}-x y^{2}-x z^{2}+2 x y^{2}+2 x z^{2}}=\frac{x d x+y d y+z d z}{x^{3}+x y^{2}+x z^{2}}=\frac{x d x+y d y+z d z}{x\left(x^{2}+y^{2}+z^{2}\right)}$
$\frac{d x}{x^{2}-y^{2}-z^{2}}=\frac{d y}{2 x y}=\frac{d z}{2 x z}=\frac{\mathrm{xdx}+\mathrm{ydy}+\mathrm{zdz}}{x\left(x^{2}+y^{2}+z^{2}\right)}$
Taking second and fourth ratios of (iii), we have,
$\frac{d y}{2 x y}=\frac{x d x+y d y+z d z}{x\left(x^{2}+y^{2}+z^{2}\right)}$
$\Rightarrow \frac{d y}{y}=\frac{2 \mathrm{xdx}+2 \mathrm{ydy}+2 \mathrm{zdz}}{\left(x^{2}+y^{2}+z^{2}\right)}$
$\Rightarrow \frac{d y}{y}=\frac{\mathrm{d}\left(x^{2}+y^{2}+z^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)}$
Integrating, we get,
$\log y=\log \left(x^{2}+y^{2}+z^{2}\right)+\log c_{2}$
i.e. $y=c_{2}\left(x^{2}+y^{2}+z^{2}\right)$
i.e. $y-c_{2}\left(x^{2}+y^{2}+z^{2}\right)=0$

By (ii) and (iv),
$\left(y-c_{1} z\right)\left[y-c_{2}\left(x^{2}+y^{2}+z^{2}\right)\right]=0$
be the required general solution of given equation.
6) Solve $\frac{d x}{z(x+y)}=\frac{d y}{z(x-y)}=\frac{d z}{x^{2}+y^{2}}$

Solution: Let $\frac{d x}{z(x+y)}=\frac{d y}{z(x-y)}=\frac{d z}{x^{2}+y^{2}}$.
be the given simultaneous differential equation.
Taking first and second ratios of (i), we have
$\frac{d x}{z(x+y)}=\frac{d y}{z(x-y)}$
$\Rightarrow \frac{d x}{(x+y)}=\frac{d y}{(x-y)}$
$\Rightarrow x d x-y d x=x d y+y d y$
$\Rightarrow x d x-y d x-x d y-y d y=0$
$\Rightarrow 2 x d x-2 y d x-2 x d y-2 y d y=0$
$\Rightarrow d\left(x^{2}-2 x y-y^{2}\right)=0$
Integrating, we get,
$x^{2}-2 x y-y^{2}=\mathrm{c}_{1}$
i.e. $x^{2}-2 x y-y^{2}-\mathrm{c}_{1}=0$

Now by taking multipliers $\mathrm{x},-\mathrm{y},-\mathrm{z}$, we get,
Each Ratio of (i) $=\frac{x d x-y d y-z d z}{x^{2} z+x y z-x y z+y^{2} z-z x^{2}-z y^{2}}=\frac{x d x-y d y-z d z}{0}$
$\therefore \mathrm{xdx}-\mathrm{ydy}-\mathrm{zdz}=0$
$\Rightarrow 2 \mathrm{xdx}-2 \mathrm{ydy}-2 \mathrm{zdz}=0$
$\Rightarrow \mathrm{d}\left(x^{2}-y^{2}-z^{2}\right)=0$
Integrating, we get,
$x^{2}-y^{2}-z^{2}=\mathrm{c}_{2}$
i.e. $x^{2}-y^{2}-z^{2}-\mathrm{c}_{2}=0$

By (ii) and (iii),
$\left(x^{2}-2 x y-y^{2}-\mathrm{c}_{1}\right)\left(x^{2}-y^{2}-z^{2}-\mathrm{c}_{2}\right)=0$
be the required general solution of given equation.
7) Solve $\frac{d x}{\sin (x+y)}=\frac{d y}{\cos (x+y)}=\frac{d z}{z}$

Solution: Let $\frac{d x}{\sin (x+y)}=\frac{d y}{\cos (x+y)}=\frac{d z}{z}$
be the given simultaneous differential equation.
Taking multipliers $1,1,0$ and $1,-1,0$ we get,
Each Ratio of $(\mathrm{i})=\frac{\mathrm{dx}+\mathrm{dy}}{\sin (x+y)+\cos (x+y)}=\frac{\mathrm{dx}-\mathrm{dy}}{\sin (x+y)-\cos (x+y)}$
$\therefore \frac{d z}{z}=\frac{\mathrm{dx}+\mathrm{dy}}{\sin (x+y)+\cos (x+y)}=\frac{\mathrm{dx}-\mathrm{dy}}{\sin (x+y)-\cos (x+y)}$
Taking first and second ratio of (ii), we have,
$\frac{d z}{z}=\frac{d x+\mathrm{dy}}{\sin (x+y)+\cos (x+y)}$
$\Rightarrow \frac{d z}{z}=\frac{\mathrm{dx}+\mathrm{dy}}{\sqrt{2} \sin \left(x+y+\frac{\pi}{4}\right)}$
$\Rightarrow \sqrt{2} \frac{d z}{z}=\operatorname{cosec}\left(x+y+\frac{\pi}{4}\right) \mathrm{d}\left(x+y+\frac{\pi}{4}\right)$
Integrating, we get,
$\sqrt{2} \log \mathrm{z}=\log \left[\tan \frac{1}{2}\left(x+y+\frac{\pi}{4}\right)\right]+\log \mathrm{c}_{1}$
i.e. $z^{\sqrt{2}}=\mathrm{c}_{1} \tan \left(\frac{x}{2}+\frac{y}{2}+\frac{\pi}{8}\right)$
i.e. $z^{\sqrt{2}}-\mathrm{c}_{1} \tan \left(\frac{x}{2}+\frac{y}{2}+\frac{\pi}{8}\right)=0$

Taking second and third ratio of (ii), we have,
$\frac{\mathrm{dx}+\mathrm{dy}}{\sin (x+y)+\cos (x+y)}=\frac{\mathrm{dx}-\mathrm{dy}}{\sin (x+y)-\cos (x+y)}$
$\Rightarrow \frac{\mathrm{dx}+\mathrm{dy}}{\sin (x+y)+\cos (x+y)}=\frac{\mathrm{dy}-\mathrm{dx}}{\cos (x+y)-\sin (x+y)}$
$\Rightarrow \frac{\cos (x+y)-\sin (x+y)}{\sin (x+y)+\cos (x+y)} \mathrm{d}(\mathrm{x}+\mathrm{y})=\mathrm{d}(\mathrm{y}-\mathrm{x})$
Integrating, we get,
$\log [\sin (x+y)+\cos (x+y)]=y-x+\log \mathrm{c}_{2}$
i.e. $\log [\sin (x+y)+\cos (x+y)]=\log \mathrm{e}^{\mathrm{y}-\mathrm{x}}+\log \mathrm{c}_{2}$
i.e. $\log [\sin (x+y)+\cos (x+y)]=\log \mathrm{c}_{2} \mathrm{e}^{y-\mathrm{x}}$
i.e. $\sin (x+y)+\cos (x+y)=\mathrm{c}_{2} \mathrm{e}^{\mathrm{y}-\mathrm{x}}$
i.e. $\sin (x+y)+\cos (x+y)-\mathrm{c}_{2} \mathrm{e}^{y-\mathrm{x}}=0$
\therefore By (iii) and (iv),

$$
\left[z^{\sqrt{2}}-\mathrm{c}_{1} \tan \left(\frac{x}{2}+\frac{y}{2}+\frac{\pi}{8}\right)\right]\left[\sin (x+y)+\cos (x+y)-\mathrm{c}_{2} \mathrm{e}^{\mathrm{y}-\mathrm{x}}\right]=0
$$

be the required general solution of given equation.
8) Solve $\frac{d x}{z^{2}}=\frac{y d y}{x z^{2}}=\frac{d z}{x y}$

Solution: Let $\frac{d x}{z^{2}}=\frac{y d y}{x z^{2}}=\frac{d z}{x y}$.
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
$\frac{d x}{z^{2}}=\frac{y d y}{x z^{2}} \Rightarrow \mathrm{xdx}=\mathrm{ydy} \Rightarrow 2 \mathrm{xdx}-2 \mathrm{ydy}=0$
Integrating, we get,
$x^{2}-y^{2}=c_{1}$ i.e. $x^{2}-y^{2}-c_{1}=0$
Now taking second and third ratios of (i), we have $\frac{y d y}{x z^{2}}=\frac{d z}{x y} \Rightarrow \mathrm{y}^{2} \mathrm{dy}=\mathrm{z}^{2} \mathrm{dz} \Rightarrow 3 \mathrm{y}^{2} \mathrm{dy}-3 \mathrm{z}^{2} \mathrm{dz}=0$
Integrating, we get,
$\mathrm{y}^{3}-\mathrm{z}^{3}=\mathrm{c}_{2}$ i.e. $\mathrm{y}^{3}-\mathrm{z}^{3}-\mathrm{c}_{2}=0$
$\therefore \mathrm{By}$ (ii) and (iii),

$$
\begin{equation*}
\left(x^{2}-y^{2}-c_{1}\right)\left(y^{3}-z^{3}-c_{2}\right)=0 \tag{iii}
\end{equation*}
$$

be the required general solution of given equation.
9) Solve $\frac{d x}{y^{2}(x-y)}=\frac{d y}{-x^{2}(x-y)}=\frac{d z}{z\left(x^{2}+y^{2}\right)}$

Solution: Let $\frac{d x}{y^{2}(x-y)}=\frac{d y}{-x^{2}(x-y)}=\frac{d z}{z\left(x^{2}+y^{2}\right)}$
be the given simultaneous differential equation.
Taking first two ratio of (i), we have
$\frac{d x}{y^{2}(x-y)}=\frac{d y}{-x^{2}(x-y)} \Rightarrow x^{2} d x=-y^{2} \mathrm{dy} \Rightarrow 3 \mathrm{x}^{2} \mathrm{dx}+3 \mathrm{y}^{2} \mathrm{dy}=0$
Integrating, we get,
$x^{3}+y^{3}=c_{1}$ i.e. $x^{3}+y^{3}-c_{1}=0$

By taking multipliers $1,-1,0$, we get,
Each ratio of (i) $=\frac{d x-d y}{y^{2}(x-y)+x^{2}(x-y)}$
$\therefore \frac{d z}{z\left(x^{2}+y^{2}\right)}=\frac{d x-d y}{\left(y^{2}+x^{2}\right)(x-y)}$
$\Rightarrow \frac{d z}{z}=\frac{d(x-y)}{(x-y)}$
Integrating, we get,
$\log z=\log (x-y)+\log c_{2}$
i.e. $z=c_{2}(x-y)$
i.e. $z-c_{2}(x-y)=0$
\therefore By (ii) and (iii),
$\left(\mathrm{x}^{3}+\mathrm{y}^{3}-\mathrm{c}_{1}\right)\left[\mathrm{z}-\mathrm{c}_{2}(\mathrm{x}-\mathrm{y})\right]=0$
be the required general solution of given equation.

PRACTICAL NO.-7: TOTAL DIFFERENTLAL OR PFAFFLAN DIFFERENTLAL EQUATIONS

1) Show that the following differential equations are integrable. Hence solve them
i) $\left(y^{2}+z^{2}-x^{2}\right) d x-2 x y d y-2 x z d z=0$
ii) $2 y z d x+z x d y-x y(1+z) d z=0$

Proof: i) Let $\left(y^{2}+z^{2}-x^{2}\right) d x-2 x y d y-2 x z d z=0$ be the given equation,

$$
\text { comparing it with } \mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0, \text { we get, }
$$

$$
\begin{aligned}
& P=y^{2}+z^{2}-x^{2}, Q=-2 x y \text { and } R=-2 x z \\
& \therefore \frac{\partial P}{\partial y}=2 y, \frac{\partial P}{\partial z}=2 z, \frac{\partial Q}{\partial x}=-2 y, \frac{\partial Q}{\partial z}=0, \frac{\partial R}{\partial x}=-2 z \text { and } \frac{\partial R}{\partial y}=0 \\
& \therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right) \\
& =\left(y^{2}+z^{2}-x^{2}\right)(0-0)-2 x y(-2 z-2 z)-2 x z(2 y+2 y) \\
& =0+8 x y z-8 x y z \\
& =0
\end{aligned}
$$

\therefore The given equation integrable.
Now we rearrange the terms as:
$\left(x^{2}+y^{2}+z^{2}\right) d x-2 x^{2} d x-2 x y d y-2 x z d z=0$
i.e. $\left(x^{2}+y^{2}+z^{2}\right) d x-x(2 x d x+2 y d y+2 z d z=0$
i.e. $\left(x^{2}+y^{2}+z^{2}\right) d x-x d\left(x^{2}+y^{2}+z^{2}\right)=0$

Dividing by $x\left(x^{2}+y^{2}+z^{2}\right)$, we get,
$\therefore \frac{\mathrm{dx}}{\mathrm{x}}-\frac{\mathrm{d}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)}=0$
i.e. $\frac{d x}{x}=\frac{d\left(x^{2}+y^{2}+z^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)}$

Integrating, we get,
$\log x=\log \left(x^{2}+y^{2}+z^{2}\right)+\log c$
$\therefore \mathrm{x}=\mathrm{c}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)$
be the solution of given equation.
ii) Let $2 y z d x+z x d y-x y(1+z) d z=0$ be the given equation, comparing it with $P d x+Q d y+R d z=0$, we get,

$$
\begin{aligned}
& P=2 y z, Q=z x \text { and } R=-x y(1+z) \\
& \therefore \frac{\partial P}{\partial y}=2 z, \frac{\partial P}{\partial z}=2 y, \frac{\partial Q}{\partial x}=z, \frac{\partial Q}{\partial z}=x, \frac{\partial R}{\partial x}=-y(1+z) \text { and } \frac{\partial R}{\partial y}=-x(1+z) \\
& \therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right) \\
& =(2 y z)[x+x(1+z)]+z x[-y(1+z)-2 y)-x y(1+z)(2 z-z) \\
& =(2 y z)(2 x+x z)+z x(-y z-3 y)-x y z(1+z) \\
& =4 x y z+2 x y z^{2}-x y z^{2}-3 x y z-x y z-x y z^{2} \\
& =0
\end{aligned}
$$

\therefore The given equation integrable.
Divide the given equation by xyz, we get,
$\frac{2 d x}{x}+\frac{d y}{y}-\left(\frac{1}{z}+1\right) d z=0$
Integrating, we get,
$2 \log x+\log y-\log z-z=\log c$
i.e. $\log x^{2}+\log y-\log z-\log e^{z}=\log c$
i.e. $\log \left(\frac{x^{2} y}{z^{2}{ }^{2}}\right)=\log c$
$\therefore \frac{\mathrm{x}^{2} \mathrm{y}}{\mathrm{ze}^{\mathrm{z}}}=\mathrm{c}$
i.e. $x^{2} y=c z e^{z}$
be the solution of given equation.
2) Solve $y z^{2}\left(x^{2}-y z\right) d x+z x^{2}\left(y^{2}-x z\right) d y+x y^{2}\left(z^{2}-x y\right) d z=0$

Proof: Let $y z^{2}\left(x^{2}-y z\right) d x+z x^{2}\left(y^{2}-x z\right) d y+x y^{2}\left(z^{2}-x y\right) d z=0$
be the given homogeneous equation, which is integrable with
$P=y z^{2}\left(x^{2}-y z\right), Q=x^{2}\left(y^{2}-x z\right)$ and $R=x y^{2}\left(z^{2}-x y\right)$
$\therefore P x+Q y+R z=x y z^{2}\left(x^{2}-y z\right)+y z x^{2}\left(y^{2}-x z\right)+x^{2} y^{2}\left(z^{2}-x y\right)$

$$
\begin{aligned}
& =x y z\left(x^{2} z-y z^{2}+x y^{2}-x^{2} z+y z^{2}-x y^{2}\right) \\
& =0
\end{aligned}
$$

\therefore To solve the given equation put $\mathrm{x}=\mathrm{zu}$ and $\mathrm{y}=\mathrm{zv}$,
$\therefore \mathrm{dx}=\mathrm{udz}+\mathrm{zdu}$ and $\mathrm{dy}=\mathrm{vdz}+\mathrm{zdv}$
\therefore the given equation becomes
$v z^{3}\left(u^{2} z^{2}-v z^{2}\right)(u d z+z d u)+u^{2} z^{3}\left(v^{2} z^{2}-u z^{2}\right)(v d z+z d v)+u v^{2} z^{3}\left(z^{2}-u v z^{2}\right) d z=0$
i.e. $z^{5}\left[\left(u^{2} v-v^{2}\right)(u d z+z d u)+\left(u^{2} v^{2}-u^{3}\right)(v d z+z d v)+\left(u v^{2}-u^{2} v^{3}\right) d z\right]=0$
i.e. $\left(u^{2} v-v^{2}\right) z d u+\left(u^{2} v^{2}-u^{3}\right) z d v+\left(u^{3} v-u v^{2}+u^{2} v^{3}-u^{3} v+u v^{2}-u^{2} v^{3}\right) d z=0$
i.e. $\left(u^{2}-v\right) v z d u+\left(v^{2}-u\right) u^{2} z d v+(0) d z=0$
i.e. $u^{2} v d u-v^{2} d u+u^{2} v^{2} d v-u^{3} d v=0$
i.e. $u^{2}(v d u-u d v)+u^{2} v^{2} d v-v^{2} d u=0$

Dividing by $u^{2} v^{2}$, we get,
i.e. $\frac{v u-u d v}{v^{2}}+d v-\frac{d u}{u^{2}}=0$
i.e. $d\left(\frac{u}{v}\right)+d v+d\left(\frac{1}{u}\right)=0$

Integrating, we get,
$\frac{\mathrm{u}}{\mathrm{v}}+\mathrm{v}+\frac{1}{\mathrm{u}}=\mathrm{c}$
$\therefore u^{2}+u v^{2}+v=c u v$
i.e. $\left(\frac{x^{2}}{z^{2}}\right)+\frac{x}{z}\left(\frac{y^{2}}{z^{2}}\right)+\frac{y}{z}=c\left(\frac{x}{z}\right)\left(\frac{y}{z}\right)$
i.e. $x^{2} z+x y^{2}+y z^{2}=c x y z$
be the solution of given equation.
3) Solve $\frac{y z}{x^{2}+y^{2}} d x-\frac{x z}{x^{2}+y^{2}} d y-\tan ^{-1} \frac{y}{x} d z=0$

Proof: Let $\frac{y z}{x^{2}+y^{2}} d x-\frac{x z}{x^{2}+y^{2}} d y-\tan ^{-1} \frac{y}{x} d z=0$ be the given equation,
comparing it with $P d x+Q d y+R d z=0$, we get,
$P=\frac{y z}{x^{2}+y^{2}}, Q=-\frac{x z}{x^{2}+y^{2}}$ and $R=-\tan ^{-1} \frac{y}{x}$
$\therefore \frac{\partial \mathrm{P}}{\partial \mathrm{y}}=\mathrm{z} \frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-2 \mathrm{y}^{2}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}=\frac{\mathrm{z}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}, \frac{\partial \mathrm{P}}{\partial \mathrm{z}}=\frac{\mathrm{y}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$,
$\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}=-\mathrm{z} \frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-2 \mathrm{x}^{2}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}=\frac{\mathrm{z}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=-\frac{\mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$,
$\frac{\partial R}{\partial x}=-\frac{1}{1+\left(\frac{y}{x}\right)^{2}}\left(\frac{-y}{x^{2}}\right)=\frac{y}{x^{2}+y^{2}}$ and $\frac{\partial R}{\partial y}=-\frac{1}{1+\left(\frac{y}{x}\right)^{2}}\left(\frac{1}{x}\right)=\frac{-x}{x^{2}+y^{2}}$
$\therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right)$

$$
\begin{aligned}
= & \frac{y z}{x^{2}+y^{2}}\left[-\frac{x}{x^{2}+y^{2}}+\frac{x}{x^{2}+y^{2}}\right]-\frac{x z}{x^{2}+y^{2}}\left[\frac{y}{x^{2}+y^{2}}-\frac{y}{x^{2}+y^{2}}\right] \\
& -\tan ^{-1}\left(\frac{y}{x}\right)\left[\frac{z\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}-\frac{z\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}\right] \\
= & 0
\end{aligned}
$$

\therefore The given equation is integrable.
Rearrange the given equation as:
$z\left[\frac{y d x-x d y}{x^{2}+y^{2}}\right]-\tan ^{-1} \frac{y}{x} d z=0$
i.e. $z\left[\frac{x d y-y d x}{x^{2}+y^{2}}\right]+\tan ^{-1} \frac{y}{x} d z=0$
i. e. $\frac{1}{\tan ^{-1} \frac{y}{x}}\left[\frac{x d y-y d x}{x^{2}+y^{2}}\right]+\frac{d z}{z}=0$
i. e. $\frac{d\left(\tan ^{-1} \frac{y}{x}\right)}{\tan ^{-1} \frac{y}{x}}+\frac{d z}{z}=0$

Integrating, we get,
$\log \tan ^{-1} \frac{y}{x}+\log z=\log c$
$\therefore \operatorname{ztan}^{-1} \frac{\mathrm{y}}{\mathrm{x}}=\mathrm{c}$
be the solution of given equation.
4) Solve $z y d x=z x d y+y^{2} d z$.

Proof: Let $z y d x=z x d y+y^{2} d z$
i.e. $z y d x-z x d y-y^{2} d z=0$ be the given equation,
comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,

$$
\begin{aligned}
& P=z y, Q=-z x \text { and } R=-y^{2} \\
& \begin{aligned}
& \therefore \frac{\partial P}{\partial y}=z, \frac{\partial P}{\partial z}=y, \frac{\partial Q}{\partial x}=-z, \frac{\partial Q}{\partial z}=-x, \frac{\partial R}{\partial x}=0 \text { and } \frac{\partial R}{\partial y}=-2 y \\
& \therefore P\left(\frac{\partial Q}{\partial z}-\frac{\partial R}{\partial y}\right)+Q\left(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z}\right)+R\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)
\end{aligned} \quad=(z y)(-x+2 y)-z x(0-y)-y^{2}(z+z) \\
& \quad=-x y z+2 y^{2} z+x y z-2 y^{2} z \\
& \quad=0
\end{aligned}
$$

\therefore The given equation is integrable.
Divide the given equation by $y^{2} z$, we get,

$$
\frac{y d x-x d y}{y^{2}}-\frac{d z}{z}=0
$$

i. e. $d\left(\frac{x}{y}\right)-\frac{d z}{z}=0$

Integrating, we get,
$\frac{x}{y}-\log z=c$
$\therefore \mathrm{x}-\mathrm{y} \log \mathrm{z}=\mathrm{cy}$
be the solution of given equation.
5) Solve $\left(x^{2}-y z\right) d x+\left(y^{2}-z x\right) d y+\left(z^{2}-x y\right) d z=0$.

Proof: Let $\left(x^{2}-y z\right) d x+\left(y^{2}-z x\right) d y+\left(z^{2}-x y\right) d z=0$ be the given equation,
comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,
$P=x^{2}-y z, Q=y^{2}-z x$ and $R=z^{2}-x y$
$\therefore \frac{\partial \mathrm{P}}{\partial \mathrm{y}}=-\mathrm{z}, \frac{\partial \mathrm{P}}{\partial \mathrm{z}}=-\mathrm{y}, \frac{\partial \mathrm{Q}}{\partial \mathrm{x}}=-\mathrm{z}, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=-\mathrm{x}, \frac{\partial \mathrm{R}}{\partial \mathrm{x}}=-\mathrm{y}$ and $\frac{\partial \mathrm{R}}{\partial \mathrm{y}}=-\mathrm{x}$
$\therefore \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}$ and $\frac{\partial R}{\partial x}=\frac{\partial P}{\partial z}$
\therefore The given equation exact and hence integrable.
Now we rearrange the terms as:
$\left(x^{2} d x+y^{2} d y+z^{2} d z\right)-(y z d x+z x d y+x y d z)=0$
$\therefore\left(3 x^{2} d x+3 y^{2} d y+3 z^{2} d z\right)-3(y z d x+z x d y+x y d z)=0$
$\therefore \mathrm{d}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}\right)-3 \mathrm{~d}(\mathrm{xyz})=0$
Integrating, we get,
$x^{3}+y^{3}+z^{3}-3 x y z=c$
be the solution of given equation.
6) Solve $\left(2 x^{2}+2 x y+2 x z^{2}+1\right) d x+d y+2 z d z=0$.

Proof: Let $\left(2 x^{2}+2 x y+2 x z^{2}+1\right) d x+d y+2 z d z=0$ be the given equation, comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,

$$
P=2 x^{2}+2 x y+2 x z^{2}+1, Q=1 \text { and } R=2 z
$$

$$
\begin{aligned}
& \therefore \frac{\partial \mathrm{P}}{\partial \mathrm{y}}=2 \mathrm{x}, \frac{\partial \mathrm{P}}{\partial \mathrm{z}}=4 \mathrm{xz}, \frac{\partial \mathrm{Q}}{\partial \mathrm{x}}=0, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=0, \frac{\partial \mathrm{R}}{\partial \mathrm{x}}=0 \text { and } \frac{\partial \mathrm{R}}{\partial \mathrm{y}}=0 \\
& \begin{aligned}
\therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}\right. & \left.-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right) \\
& =\left(2 \mathrm{x}^{2}+2 \mathrm{xy}+\mathrm{xz}^{2}+1\right)(0-0)+(0-4 \mathrm{xz})+2 \mathrm{z}(2 \mathrm{x}-0) \\
& =0-4 \mathrm{xz}+4 \mathrm{xz} \\
& =0
\end{aligned}
\end{aligned}
$$

\therefore The given equation integrable.
Rearrange the given terms as:
$2 x\left(x+y+z^{2}\right) d x+d x+d y+2 z d z=0$
Divide the given equation by $\left(x+y+z^{2}\right)$, we get,
$2 x d x+\frac{d x+d y+2 z d z}{x+y+z^{2}}=0$
i. e. $d\left(x^{2}\right)+\frac{d\left(x+y+z^{2}\right)}{x+y+z^{2}}=0$

Integrating, we get,
$x^{2}+\log \left(x+y+z^{2}\right)=c$
be the solution of given equation.
7) Solve $(y+z) d x+d y+d z=0$.

Proof: Let $(y+z) d x+d y+d z=0$ be the given equation,
comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,
$P=y+z, Q=1$ and $R=1$
$\therefore \frac{\partial P}{\partial y}=1, \frac{\partial P}{\partial z}=1, \frac{\partial Q}{\partial x}=0, \frac{\partial Q}{\partial z}=0, \frac{\partial R}{\partial x}=0$ and $\frac{\partial R}{\partial y}=0$
$\therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right)$
$=(\mathrm{y}+\mathrm{z})(0-0)+(0-1)+(1-0)$
$=0-1+1$
$=0$
\therefore The given equation is integrable.
Divide the given equation by $(y+z)$, we get,
$d x+\frac{d y+d z}{y+z}=0$ i.e. $d x+\frac{d(y+z)}{y+z}=0$
Integrating, we get,
$x+\log (y+z)=\log c$
i.e. $\log \mathrm{e}^{\mathrm{x}}+\log (\mathrm{y}+\mathrm{z})=\log \mathrm{c}$
$\therefore \mathrm{e}^{\mathrm{x}}(\mathrm{y}+\mathrm{z})=\mathrm{c}$
be the solution of given equation.
8) Show that the equation $y z^{2}\left(x^{2}-y z\right) d x+z x^{2}\left(y^{2}-x z\right) d y+x y^{2}\left(z^{2}-x y\right) d z=0$ is integrable. Is it exact? Verify.
Proof: Let $y z^{2}\left(x^{2}-y z\right) d x+z x^{2}\left(y^{2}-x z\right) d y+x y^{2}\left(z^{2}-x y\right) d z=0$ be the given equation, comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,
$P=y z^{2}\left(x^{2}-y z\right)=x^{2} y z^{2}-y^{2} z^{3}, Q=z x^{2}\left(y^{2}-x z\right)=x^{2} z y^{2}-x^{3} z^{2}$ and
$R=x y^{2}\left(z^{2}-x y\right)=x y^{2} z^{2}-x^{2} y^{3}$
$\therefore \frac{\partial P}{\partial y}=x^{2} z^{2}-2 y z^{3}, \frac{\partial P}{\partial z}=2 x^{2} y z-3 y^{2} z^{2}, \frac{\partial Q}{\partial x}=2 x z y^{2}-3 x^{2} z^{2}, \frac{\partial Q}{\partial z}=x^{2} y^{2}-2 x^{3} z$,
$\frac{\partial R}{\partial x}=y^{2} z^{2}-2 x y^{3}$ and $\frac{\partial R}{\partial y}=2 x y z^{2}-3 x^{2} y^{2}$
$\therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right)$
$=\left(x^{2} y z^{2}-y^{2} z^{3}\right)\left(x^{2} y^{2}-2 x^{3} z-2 x y z^{2}+3 x^{2} y^{2}\right)+\left(x^{2} z y^{2}-x^{3} z^{2}\right)\left(y^{2} z^{2}-2 x y^{3}-2 x^{2} y z\right.$
$\left.+3 y^{2} z^{2}\right)+\left(x y^{2} z^{2}-x^{2} y^{3}\right)\left(x^{2} z^{2}-2 y z^{3}-2 x z y^{2}+3 x^{2} z^{2}\right)$
$=\left(x^{2} y z^{2}-y^{2} z^{3}\right)\left(4 x^{2} y^{2}-2 x^{3} z-2 x y z^{2}\right)+\left(x^{2} z y^{2}-x^{3} z^{2}\right)\left(4 y^{2} z^{2}-2 x y^{3}-2 x^{2} y z\right)$
$+\left(x y^{2} z^{2}-x^{2} y^{3}\right)\left(4 x^{2} z^{2}-2 y z^{3}-2 x z y^{2}\right)$
$=\left(x^{2} y z^{2}-y^{2} z^{3}\right)\left(4 x^{2} y^{2}-2 x^{3} z-2 x y z^{2}\right)+\left(x^{2} z y^{2}-x^{3} z^{2}\right)\left(4 y^{2} z^{2}-2 x y^{3}-2 x^{2} y z\right)$
$+\left(x y^{2} z^{2}-x^{2} y^{3}\right)\left(4 x^{2} z^{2}-2 y z^{3}-2 x z y^{2}\right)$
$=4 x^{4} y^{3} z^{2}-4 x^{2} y^{4} z^{3}-2 x^{5} y z^{3}+2 x^{3} y^{2} z^{4}-2 x^{3} y^{2} z^{4}+2 x y^{3} z^{5}+4 x^{2} y^{4} z^{3}-4 x^{3} y^{2} z^{4}-2 x^{3} y^{5} z$
$+2 x^{4} y^{3} z^{2}-2 x^{4} y^{3} z^{2}+2 x^{5} y z^{3}+4 x^{3} y^{2} z^{4}-4 x^{4} y^{3} z^{2}-2 x y^{3} z^{5}+2 x^{2} y^{4} z^{3}-2 x^{2} y^{4} z^{3}+2 x^{3} y^{5} z$ $=0$
Hence the given equation is integrable is proved.
But it is not exact $\because \frac{\partial \mathrm{P}}{\partial \mathrm{y}} \neq \frac{\partial \mathrm{Q}}{\partial \mathrm{x}}, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}} \neq \frac{\partial \mathrm{R}}{\partial \mathrm{y}}$ and $\frac{\partial \mathrm{R}}{\partial \mathrm{x}} \neq \frac{\partial \mathrm{P}}{\partial \mathrm{z}}$

PRACTICAL NO.-8: DIFFERENCE EQUATIONS

1) Form the difference equation corresponding to the following general solution:
a) $\left.y=c_{1} x^{2}+c_{2} x+c_{3} b\right) y=\left(c_{1}+c_{2} n\right)(-2)^{n}$

Solution: a) Given solution $y_{x}=c_{1} x^{2}+c_{2} x+c_{3}$
contain three arbitrary constants $\mathrm{c}_{1}, \mathrm{c}_{2}$ and c_{3}, so we operate Δ thrice on this y_{x}, we get

$$
\begin{align*}
\Delta \mathrm{y}_{\mathrm{x}} & =\mathrm{y}_{\mathrm{x}+1}-\mathrm{y}_{\mathrm{x}}=\mathrm{c}_{1}(\mathrm{x}+1)^{2}+\mathrm{c}_{2}(\mathrm{x}+1)+\mathrm{c}_{3}-\mathrm{c}_{1} \mathrm{x}^{2}-\mathrm{c}_{2} \mathrm{x}-\mathrm{c}_{3} \\
& =2 \mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{1}+\mathrm{c}_{2} \ldots \ldots(2) \tag{2}\\
\Delta^{2} \mathrm{y}_{\mathrm{x}} & =\left[2 \mathrm{c}_{1}(\mathrm{x}+1)+\mathrm{c}_{1}+\mathrm{c}_{2}\right]-\left[2 \mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{1}+\mathrm{c}_{2}\right] \\
& =2 \mathrm{c}_{1} \ldots \ldots \text { (3) } \tag{3}
\end{align*}
$$

$\& \Delta^{3} \mathrm{y}_{\mathrm{x}}=2 \mathrm{c}_{1}-2 \mathrm{c}_{1}$
$\therefore(\mathrm{E}-1)^{3} \mathrm{y}_{\mathrm{x}}=0$
$\therefore\left(\mathrm{E}^{3}-3 \mathrm{E}^{2}+3 \mathrm{E}-1\right) \mathrm{y}_{\mathrm{x}}=0$
$\therefore y_{x+3}-3 y_{x+2}+3 y_{x+1}-y_{x}=0$ be the required difference equation.
b) Given solution $y_{n}=\left(c_{1}+c_{2} n\right)(-2)^{n}$ i.e. $y_{n}=c_{1}(-2)^{n}+c_{2} n(-2)^{n}$
contain two arbitrary constants c_{1} and c_{2}.
$\therefore \mathrm{y}_{\mathrm{n}+1}=\mathrm{c}_{1}(-2)^{\mathrm{n}+1}+\mathrm{c}_{2}(\mathrm{n}+1)(-2)^{\mathrm{n}+1}=-2 \mathrm{c}_{1}(-2)^{\mathrm{n}}-2 \mathrm{c}_{2}(\mathrm{n}+1)(-2)^{\mathrm{n}}$
$\& y_{n+2}=c_{1}(-2)^{n+2}+c_{2}(n+2)(-2)^{n+2}=4 c_{1}(-2)^{n}+4 c_{2}(n+2)(-2)^{n}$
Eliminating c_{1} and c_{2} from equations (i), (ii), (iii), we get,
$\left|\begin{array}{ccc}y_{n} & 1 & n \\ y_{n+1} & -2 & -2(n+1) \\ y_{n+2} & 4 & 4(n+2)\end{array}\right|=0$
i.e. $y_{n}[-8 n-16+8 n+8]-y_{n+1}[4 n+8-4 n]+y_{n+2}[-2 n-2+2 n]=0$
i.e. $-2 y_{n+2}-8 y_{n+1}-8 y_{n}=0$
i.e. $y_{n+2}+4 y_{n+1}+4 y_{n}=0$ be the required difference equation.
2) Show that $y_{x}=c_{1}+c_{2} 2^{x}-x$ is a solution of the difference equation

$$
y_{x+2}-3 y_{x+1}+2 y_{x}=1
$$

Proof: We have $y_{x}=c_{1}+c_{2} 2^{x}-x$

$$
\begin{aligned}
& \therefore \mathrm{y}_{\mathrm{x}+1}=\mathrm{c}_{1}+\mathrm{c}_{2} 2^{\mathrm{x}+1}-(\mathrm{x}+1)=\mathrm{c}_{1}+2 \mathrm{c}_{2} 2^{\mathrm{x}}-\mathrm{x}-1 \\
& \& \mathrm{y}_{\mathrm{x}+2}=\mathrm{c}_{1}+\mathrm{c}_{2} 2^{\mathrm{x}+2}-(\mathrm{x}+2)=\mathrm{c}_{1}+4 \mathrm{c}_{2} 2^{\mathrm{x}}-\mathrm{x}-2
\end{aligned}
$$

Consider

$$
\begin{aligned}
\mathrm{LHS} & =\mathrm{y}_{\mathrm{x}+2}-3 \mathrm{y}_{\mathrm{x}+1}+2 \mathrm{y}_{\mathrm{x}} \\
& =\mathrm{c}_{1}+4 \mathrm{c}_{2} 2^{\mathrm{x}}-\mathrm{x}-2-3\left[\mathrm{c}_{1}+2 \mathrm{c}_{2} 2^{\mathrm{x}}-\mathrm{x}-1\right]+2\left[\mathrm{c}_{1}+\mathrm{c}_{2} 2^{\mathrm{x}}-\mathrm{x}\right] \\
& =\mathrm{c}_{1}+4 \mathrm{c}_{2} 2^{\mathrm{x}}-\mathrm{x}-2-3 \mathrm{c}_{1}-6 \mathrm{c}_{2} 2^{\mathrm{x}}+3 \mathrm{x}+3+2 \mathrm{c}_{1}+2 \mathrm{c}_{2} 2^{\mathrm{x}}-2 \mathrm{x} \\
& =1 \\
& =\text { RHS }
\end{aligned}
$$

$\therefore \mathrm{y}_{\mathrm{x}}=\mathrm{c}_{1}+\mathrm{c}_{2} 2^{\mathrm{x}}-\mathrm{x}$ is a solution of the given difference equation is proved.
3) Formulate the Fibonacci difference equation and solve it.

Solution: A sequence of type $0,1,1,2,3,5,8, \ldots \ldots$ is called Fibonacci sequence which is formulated in difference equation form as $y_{x+1}=y_{x}+y_{x-1}$ with $y_{0}=0$ and $y_{1}=1$
To solve Fibonacci difference equation $y_{x+1}=y_{x}+y_{x-1}$ with $y_{0}=0$ and $y_{1}=1$ i.e. $y_{x+2}=y_{x+1}+y_{x}$ i.e. $\left(E^{2}-E-1\right) y_{x}=0$
we take $y_{x}=m^{x}$, then the A.E. is
$m^{2}-m-1=0$
$\therefore \mathrm{m}=\frac{1 \pm \sqrt{1+4}}{2}=\frac{1}{2} \pm \frac{\sqrt{5}}{2}$ are the roots of an A.E.
\therefore The G. S. of the given Fibonacci difference equation is
$y_{x}=c_{1}\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right)^{x}+c_{2}\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right)^{x}$
i.e. $y_{x}=\frac{1}{2^{x}}\left[c_{1}(1+\sqrt{5})^{x}+c_{2}(1-\sqrt{5})^{x}\right]$

Now $y_{0}=0$ and $y_{1}=1$ gives
$0=\mathrm{c}_{1}+\mathrm{c}_{2} \ldots \ldots$ (i) and
$1=\frac{1}{2}\left[\mathrm{c}_{1}(1+\sqrt{5})+\mathrm{c}_{2}(1-\sqrt{5})\right]$
$=\frac{1}{2}\left[\mathrm{c}_{1}+c_{1} \sqrt{5}+\mathrm{c}_{2}-c_{2} \sqrt{5}\right]$
$1=\frac{\sqrt{5}}{2}\left[c_{1}-c_{2}\right]$
i.e. $c_{1}-c_{2}=\frac{2}{\sqrt{5}} \quad \ldots \ldots$.(ii)

Adding equation (i) and (ii), we get,
$2 c_{1}=\frac{2}{\sqrt{5}} \quad$ i.e. $c_{1}=\frac{1}{\sqrt{5}}$
Putting in (i), we get, $c_{2}=-\frac{1}{\sqrt{5}}$
\therefore Required particular solution of Fibonacci difference equation is
$\mathrm{y}_{\mathrm{x}}=\frac{1}{2^{x}}\left[\frac{1}{\sqrt{5}}(1+\sqrt{5})^{\mathrm{x}}-\frac{1}{\sqrt{5}}(1-\sqrt{5})^{\mathrm{x}}\right]$
i.e. $y_{x}=\frac{1}{\sqrt{5}}\left[(1+\sqrt{5})^{x}-(1-\sqrt{5})^{x}\right] \cdot 2^{-x}$
4) Solve the following difference equations:
a) $y_{x+1}-3 y_{x}=1$
b) $\mathrm{y}_{\mathrm{x}+1}-3 \mathrm{y}_{\mathrm{x}}=0, \mathrm{y}_{0}=2$

Solution: a) Let $y_{x+1}-3 y_{x}=1$ i.e. $(E-3) y_{x}=1$
be the given non-homogeneous linear difference equation.
When we take $y_{x}=m^{x}$, the A.E. is
$m-3=0$
$\therefore \mathrm{m}=3$ is the roots of an A.E.
\therefore The G. S. of reduced homogeneous difference equation is
$y_{x}=c 3^{x}$
Now particular solution given non-homogeneous equation is
P.S. $=\frac{1}{(E-3)} 1$
$=\frac{1}{(E-3)} 1^{x}$
$=\frac{1}{(1-3)}$

$$
=-\frac{1}{2}
$$

Hence G.S. of given equation is $y_{x}=$ G.S. + P.S.
i.e. $y_{x}=c 3^{x}-\frac{1}{2}$
b) Let $y_{x+1}-3 y_{x}=0$ i.e. $(E-3) y_{x}=0$
be the given homogeneous linear difference equation.
When we take $y_{x}=m^{x}$, the A.E.is
$m-3=0$
$\therefore \mathrm{m}=3$ is the roots of an A. E.
\therefore The G. S. of given homogeneous difference equation is
$\mathrm{y}_{\mathrm{x}}=\mathrm{c} 3^{\mathrm{x}}$
Now $y_{0}=2$ gives c $3^{0}=2$ i.e. $c=2$
Hence particular solution of given equation is
$y_{x}=2.3^{x}$
5) Solve the following non-homogeneous linear difference equations:
i) $y_{x+2}-4 y_{x}=9 x^{2}$
b) $\Delta y_{x}+\Delta^{2} y_{x}=\sin x$

Solution: i) Let $y_{x+2}-4 y_{x}=9 x^{2}$ i.e. $\left(E^{2}-4\right) y_{x}=9 x^{2}$
be the given non-homogeneous linear difference equation.
When we take $y_{x}=m^{x}$, the A.E. is
$m^{2}-4=0$
i.e. $(m-2)(m+2)=0$
$\therefore \mathrm{m}=2,-2$ are the roots of an A. E.
\therefore The G. S. of reduced homogeneous difference equation is
$y_{x}=C_{1} 2^{x}+C_{2}(-2)^{x}$
Now particular solution of given non-homogeneous equation is
P.S. $\frac{1}{\left(E^{2}-4\right)}\left(9 \mathrm{x}^{2}\right)$

$$
=\frac{9}{(1+\Delta)^{2}-4}\left(x^{2}\right)
$$

$$
=\frac{9}{-3+2 \Delta+\Delta^{2}}\left(\mathrm{x}^{2}\right)
$$

$$
=\frac{-3}{\left[1-\left(\frac{2}{3} \Delta+\frac{1}{3} \Delta^{2}\right)\right]}\left(x^{2}\right)
$$

$$
=-3\left[1+\left(\frac{2}{3} \Delta+\frac{1}{3} \Delta^{2}\right)+\left(\frac{2}{3} \Delta+\frac{1}{3} \Delta^{2}\right)^{2}+\ldots .\right]\left(x^{2}\right)
$$

$$
=-3\left[1+\frac{2}{3} \Delta+\frac{7}{9} \Delta^{2}+\frac{4}{9} \Delta^{3}+\ldots .\right]\left(\mathrm{x}^{2}\right)
$$

$$
=-3\left[x^{2}+\frac{2}{3}(2 x)+\frac{7}{9}(2)+0\right]
$$

$$
=-3 x^{2}-4 x-\frac{14}{3}
$$

Hence G.S. of given equation is $y_{x}=$ G.S. + P.S.
i.e. $y_{x}=C_{1} 2^{x}+C_{2}(-2)^{x}-3 x^{2}-4 x-\frac{14}{3}$
ii) Let $\Delta y_{x}+\Delta^{2} y_{x}=\sin x$
i.e. $\left(\Delta+\Delta^{2}\right) y_{x}=\sin x$
i.e. $\left(E-1+E^{2}-2 E+1\right) y_{x}=\sin x$
i.e. $\left(E^{2}-E\right) y_{x}=\sin x$
be the given non-homogeneous linear difference equation.
When we take $y_{x}=m^{x}$, the A.E. is
$\mathrm{m}^{2}-\mathrm{m}=0$
i.e. $m(m-1)=0$
$\therefore \mathrm{m}=0,1$ are the roots of an A. E.
\therefore The G. S. of reduced homogeneous difference equation is
$y_{x}=C_{1} 0^{x}+C_{2}(1)^{x}$
i.e. $\mathrm{y}_{\mathrm{x}}=\mathrm{C}$, where $\mathrm{C}_{2}=\mathrm{C}$

Now particular solution of given non-homogeneous equation is
P.S. $=\frac{1}{\left(E^{2}-E\right)}(\sin x)$

$$
\begin{aligned}
& =\text { Imaginary part of } \frac{1}{\left(E^{2}-\mathrm{E}\right)}\left(\mathrm{e}^{\mathrm{ix}}\right) \\
& =\text { Imaginary part of } \frac{1}{\left(E^{2}-\mathrm{E}\right)}\left(\mathrm{e}^{\mathrm{i}}\right)^{\mathrm{x}} \\
& =\text { Imaginary part of } \frac{e^{i x}}{\left(e^{2 i}-e^{i}\right)} \\
& =\text { Imaginary part of } \frac{e^{i(x-1)}}{\left(e^{i}-1\right)} \\
& =\text { Imaginary part of } \frac{e^{i(x-1)}}{\left(e^{i}-1\right)} \mathrm{x} \frac{\left(e^{-i}-1\right)}{\left(e^{-i}-1\right)} \\
& =\text { Imaginary part of } \frac{e^{i(x-2)}-e^{i(x-1)}}{\left(1-e^{i}-e^{-i}+1\right)} \\
& =\operatorname{Imaginary} \text { part of }\left[\frac{\cos (\mathrm{x}-2)+\mathrm{isin}(\mathrm{x}-2)-\cos (\mathrm{x}-1)-\mathrm{isin}(\mathrm{x}-1)}{2-\cos 1-\mathrm{i} \sin 1-\cos 1+\mathrm{i} \sin 1}\right] \\
& =\frac{\sin (\mathrm{x}-2)-\sin (\mathrm{x}-1)}{2-2 \cos 1} \\
& =\frac{\sin (\mathrm{x}-2)-\sin (\mathrm{x}-1)}{2(1-\cos 1)}
\end{aligned}
$$

Hence G.S. of given equation is $y_{x}=$ G.S. + P.S.
i.e. $y_{x}=C+\frac{\sin (x-2)-\sin (x-1)}{2(1-\cos 1)}$
6) Solve $y_{x+2}-4 y_{x+1}+3 y_{x}=3^{x}+1$.

Solution: Let $\mathrm{y}_{\mathrm{x}+2}-4 \mathrm{y}_{\mathrm{x}+1}+3 \mathrm{y}_{\mathrm{x}}=3^{\mathrm{x}}+1$.
i.e. $\left(E^{2}-4 E+3\right) y_{x}=3^{x}+1$
be the given non- homogeneous linear difference equation.
When we take $y_{x}=m^{x}$, the A.E. is
$m^{2}-4 m+3=0$

$$
(m-1)(m-3)=0
$$

$\therefore \mathrm{m}=1,3$ are the roots of an A.E.
Thus, the G.S. of reduced homogeneous equation is
$\mathrm{y}_{\mathrm{x}}=\mathrm{C}_{1}+\mathrm{C}_{2} 3^{\mathrm{x}}$

Now particular solution of given non-homogeneous equation is
P.S. $=\frac{1}{\left(E^{2}-4 \mathrm{E}+3\right)}\left(3^{\mathrm{x}}+1\right)$
$=\frac{1}{(E-1)(E-3)}\left(3^{x}+1^{x}\right)$
$=\frac{1}{(\mathrm{E}-1)(\mathrm{E}-3)}\left(3^{\mathrm{x}}\right)+\frac{1}{(\mathrm{E}-1)(\mathrm{E}-3)}\left(1^{\mathrm{x}}\right)$
$=\frac{x 3^{x-1}}{1!(3-1)}+\frac{x 1^{x-1}}{1!(1-3)}$
$=\frac{x 3^{x-1}}{2}-\frac{x}{2}$
$=\frac{1}{2} x\left(3^{\mathrm{x}-1}-1\right)$
Hence G.S. of given equation is $y_{x}=$ G.S. + P.S.
i.e. $\mathrm{y}_{\mathrm{x}}=\mathrm{C}_{1}+\mathrm{C}_{2} 3^{\mathrm{x}}+3^{\mathrm{x}}+\frac{1}{2} x\left(3^{\mathrm{x}-1}-1\right)$
7) Solve $y_{x+2}-4 y_{x+1}+4 y_{x}=3 x+2^{x}$

Solution: Let $y_{x+2}-4 y_{x+1}+4 y_{x}=3 x+2^{x}$
i.e. $\left(E^{2}-4 E+4\right) y_{x}=3 x+2^{x}$
be the given non-homogeneous linear difference equation.
When we take $y_{x}=m^{x}$, the A.E.is
$m^{2}-4 m+4=0$
$(m-2)^{2}=0$
$\therefore \mathrm{m}=2,2$ are the roots of an A.E.
Thus, the G.S. of reduced homogeneous equation is

$$
y_{x}=\left(C_{1}+C_{2} x\right) 2^{x}
$$

Now particular solution given non-homogeneous equation is

$$
\begin{aligned}
\text { P.S. } & =\frac{1}{\left(E^{2}-4 \mathrm{E}+4\right)}\left(3 \mathrm{x}+2^{\mathrm{x}}\right) \\
& =\frac{1}{(E-2)^{2}}\left(3 \mathrm{x}+2^{\mathrm{x}}\right) \\
& =\frac{1}{(1+\Delta-2)^{2}}(3 \mathrm{x})+\frac{1}{(E-2)^{2}}\left(2^{\mathrm{x}}\right) \\
& =\frac{3}{(\Delta-1)^{2}} x+\frac{x(x-1) 2^{x-2}}{2!} \\
& =3(1-\Delta)^{-2} \mathrm{x}+\frac{x(x-1) 2^{x-2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =3(1+2 \Delta+\cdots) \mathrm{x}+x(x-1) 2^{x-3} \\
& =3(\mathrm{x}+2(1)+0)+x(x-1) 2^{x-3} \\
& =3 \mathrm{x}+6+x(x-1) 2^{x-3}
\end{aligned}
$$

Hence G.S. of given equation is $\mathrm{y}_{\mathrm{x}}=$ G.S. + P.S.
i.e. $\mathrm{y}_{\mathrm{x}}=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) 2^{\mathrm{x}}+3 \mathrm{x}+6+x(x-1) 2^{x-3}$
8) Solve $u_{x+2}-5 u_{x+1}+6 u_{x}=36$

Solution: Let $u_{x+2}-5 u_{x+1}+6 u_{x}=36$
i.e. $\left(E^{2}-5 E+6\right) u_{x}=36$
be the given non- homogeneous linear difference equation.
When we take $\mathrm{y}_{\mathrm{x}}=\mathrm{m}^{\mathrm{x}}$, the A.E.is
$m^{2}-5 m+6=0$
$(m-2)(m-3)=0$
$\therefore \mathrm{m}=2,3$ are the roots of an A.E.
Thus, the G.S. of reduced homogeneous equation is

$$
y_{x}=C_{1} 2^{x}+C_{2} 3^{x}
$$

Now particular solution given non-homogeneous equation is

$$
\begin{aligned}
\text { P.S. } & =\frac{1}{\left(E^{2}-5 E+6\right)}(36) \\
& =\frac{36}{(E-2)(E-3)}\left(1^{x}\right) \\
& =\frac{36}{(1-2)(1-3)} \\
& =18
\end{aligned}
$$

Hence G.S. of given equation is $y_{x}=$ G.S. + P.S.
i.e. $y_{x}=C_{1} 2^{x}+C_{2} 3^{x}+18$

॥ अंतरी पेटवू ज्ञानज्योत ॥

विद्यापीठ गीत

मंत्र असो हा एकच ह्रदयी 'जीवन म्हणजे ज्ञान' ज्ञानामधूनी मिळो मुक्ती अन मुक्तीमधूनी ज्ञान ॥धृ॥ कला, ज्ञान, विज्ञान, संस्कृती साधू पुरूषार्थ साफल्यास्तव सदा ‘अंतरी पेटवू ज्ञानज्योत' मंगल पावन चराचरातून स्रवते अक्षय ज्ञान॥१॥ उत्तम विद्या, परम शक्ति ही आमुची ध्येयासक्ती शील, एकता, चारित्र्यावर सदैव आमुची भक्ती सत्य शिवाचे मंदिर सुंदर, विद्यापीठ महान ॥२॥ समता, ममता, स्वातंत्र्याचे नांदो जगी नाते, आत्मबलाने होऊ आम्ही आमुचे भाग्यविधाते, ज्ञानप्रभुची लाभो करूणा आणि पायसदान ॥३॥ - कै.प्रा. राजा महाजन

THE NATIONAL INTERGRATION PLEDGE

"I solemnly pledge to work with dedication to preserve and strengthen the freedom and integrity of the nation.

I further affirm that I shall never resort to violence and that all differences and disputes relating to religion, language, region or other political or economic grievance should be settled by peaceful and constitutional means."

