

Karm. A. M. Patil Arts, Commerce and Kai. Annasaheb N. K. Patil Science Senior College Pimpalner, Tal.- Sakri,

Dist.- Dhule.

CLASS NOTES CLASS: S.Ý.B.SC SEM.-IV SUBJECT: MTH-402(A): DIFFERENTIAL EQUATIONS PREPARED BY: PROF. K. D. KADAM

MTH-402(A): DIFFERENTIAL EQUATIONS	
Unit-1: Theory of ordinary differential equations Mai	arks-15
1.1 Lipschitz condition	
1.2 Existence and uniqueness theorem	
1.3 Linearly dependent and independent solutions	
1.4 Wronskian definition	
1.5 Linear combination of solutions	
1.6 Theorems on i) Linear combination of solutions ii) Linearly independent so	olutions
iii) Wronskian is zero iv) Wronskian is non-zero	
1.7 Method of variation of parameters for second order L.D.E.	
Unit-2: Simultaneous Differential Equations Mai	rks-15
2.1 Simultaneous linear differential equations of first order	
2.2 Simultaneous D.E. of the form $dxP=dyQ=dzR$.	
2.3 Rule I: Method of combinations	
2.4 Rule II: Method of multipliers	
2.5 Rule III: Properties of ratios	
2.6 Rule IV: Miscellaneous	1 . 17
Unit-3: Total Differential or Planian Differential Equations Ma	irks-15
3.1 Prafilian differential equations	
3.2 Necessary and sufficient conditions for the integrability	
3.3 Conditions for exactness	
2.5 Solution of homogeneus equation	
Unit 4: Difference Equations	wka 15
4.1 Introduction Order of difference equation degree of difference equations	II KS-13
4.1 Infoduction, Order of difference equation, degree of difference equations 4.2 Solution to difference equation and formation of difference equations	
4.2 Solution to unreference equations I inear homogeneous difference equations with	h constant
coefficients	n constant
4.4 Non-homogenous linear difference equation with constant coefficients	
Recommended books:	
1 Ordinary and Partial Differential Equation by M. D. Rai Singhania, S. Chau	nd & Co
18th Edition (Chapter 1 and Chapter 2)	
2 Numerical Methods by V N Vedamurthy and N Ch S N Ivengar Vikas	Publishing
House New Delhi (Chapter 10)	Tuonsning
Reference Book:	
1. Introductory course in Differential Equations by D. A. Murray, Longmans	Green and
co London and Mumbai. 5th Edition 1997	
Learning Outcomes:	
a) Students will aware of formation of differential equations and their solutions	s
b) Students will understand the concept of Linschitz condition	
b) Students will understand the concept of Eipschitz condition	
c) Students will understand method of variation of parameters for second order	r L.D.E.
d) Students will understand simultaneous linear differential equations and meth	hod of their
solutions	
e) Students will understand Pfaffian differential equations and method of their	solutions
f) Students will understand difference equations and their solutions	

UNIT-1: THEORY OF ORDINARY DIFFERENTIAL EQUATIONS

Initial Value Problem: $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$ is called initial value problem. **Remark:** Initial value problem may have one solution or more than one solution or no solution. **Lipschitz Condition:** A function f(x, y) defined in a region D in xy-plane is said to satisfy Lipschitz condition in D if for (x, y_1) and (x, y_2) in D, there exist a positive constant K such that $|f(x, y_2) - f(x, y_1)| \le K|y_2 - y_1|$. Here the constant K is called Lipschitz constant for the function f(x, y). **Existence Theorem:** If the function f(x, y) is continuous and bounded for all values of x in a domain D and there exist a positive constants M & K such that $|f(x, y)| \leq M$ and satisfies Lipschitz's condition $|f(x, y_2) - f(x, y_1)| \le K|y_2 - y_1|$ for all points in domain D, then initial value problem $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$ has at least one solution y(x). **Uniqueness Theorem:** If the function f(x, y) is continuous and bounded for all values of x in a domain D and there exist a positive constants M & K such that $|f(x, y)| \le M$ and satisfies Lipschitz's condition $|f(x, y_2) - f(x, y_1)| \le K|y_2 - y_1|$ for all points in domain D, then initial value problem $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$ has a unique solution. **Theorem:** If S is either a rectangle $|x - x_0| \le h$, $|y - y_0| \le k$ (h, k > 0) or a strip $|x - x_0| \le h$, $|y| < \infty$ (h > 0) and f(x, y) is a real valued function defined on S such that $\frac{\partial f}{\partial y}$ exits and continuous on S with $\left|\frac{\partial f}{\partial y}\right| \leq K \forall (x, y) \in S$ for a positive constant K, then f(x, y) satisfies Lipschitz's condition on S with Lipschitz's constant K. **Proof:** As $|f(x, y_2) - f(x, y_1)| = |\{f(x, y)\}_{y=y_1}^{y_2}|$ $=\left|\int_{y_1}^{y_2} \frac{\partial f}{\partial y} dy\right|$ $=\int_{y_1}^{y_2} \left| \frac{\partial f}{\partial y} \right| \left| dy \right|$ $\leq \int_{y_1}^{y_2} K |dy|$ $\therefore |f(x, y_2) - f(x, y_1)| \le K|y_2 - y_1| \text{ for } (x, y_1), (x, y_2) \in S$ i.e. f(x, y) satisfies Lipschitz's condition on S with Lipschitz's constant K.

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 1

Ex.: Let the function $f(x, y) = x^2 + y^2 \forall (x, y) \in S$, S is the rectangle defined by $|x| \le a, |y| \le b$. Show that f(x, y) satisfies Lipschitz's condition. Find Lipschitz's constant.

Proof: Let (x, y_1) , (x, y_2) be any two points in the rectangle S which is defined by

$$|x| \le a, |y| \le b \text{ and } f(x, y) = x^{2} + y^{2} \dots (1)$$

$$\therefore |f(x, y_{2}) - f(x, y_{1})| = |x^{2} + y_{2}^{2} - x^{2} - y_{1}^{2}|$$

$$= |y_{2}^{2} - y_{1}^{2}|$$

$$= |y_{2} - y_{1}||y_{2} + y_{1}|$$

$$\le [|y_{2}| + |y_{1}|]|y_{2} - y_{1}|$$

$$\le 2b|y_{2} - y_{1}| \qquad \because |y_{2}| \text{ and } |y_{1}| \le b$$

$$\therefore f(x, y) \text{ satisfies Lipschitz's condition and Lipschitz's constant K = 2b.}$$

Ex.: If S is defined on the rectangle $|x| \le a$, $|y| \le b$, then show that the function $f(x, y) = x \sin y + y \cos x$ satisfies Lipschitz's condition. Find the Lipschitz's constant.

Proof: Let f(x, y) = xsiny + ycosx

 $\therefore \frac{\partial f}{\partial y} = x\cos y + \cos x$

Here f(x, y) is real valued function defined on S where S is rectangle

 $|x| \le a, |y| \le b$

 $\therefore \frac{\partial f}{\partial y}$ exists and continuous and hence bounded in S, with

$$\left|\frac{\partial f}{\partial x}\right| = |x\cos y + \cos x| \le |x\cos y| + |\cos x| \le |x| + 1$$

 $\Rightarrow \left| \frac{\partial f}{\partial y} \right| \le a + 1$

 \therefore f(x, y) satisfies Lipschitz's condition and Lipschitz's constant K = a + 1.

Ex.: Show that the function $f(x, y) = xy^2$ satisfies Lipschitz's condition on the rectangle $|x| \le 1, |y| \le 1$. But does not satisfy Lipschitz's condition on strip $|x| \le 1, |y| \le \infty$.

Proof: Let
$$f(x, y) = xy^2$$
 (1)

i) Let S is a rectangle given by $|x| \le 1$, $|y| \le 1$ (2) Clearly $f(x, y) = xy^2$ is continuous function on S and hence bounded on S with $\frac{\partial f}{\partial y} = 2xy \implies \left|\frac{\partial f}{\partial y}\right| = 2|x||y| \le 2(1)(1) \le 2 \forall (x, y) \in S$ $\therefore f(x, y)$ satisfies Lipschitz's condition on S and Lipschitz's constant K = 2.

ii) Let R is a strip given by
$$|x| \le 1, |y| \le \infty$$
 (2)
Here $f(x, y) = xy^2$ is continuous function on R and hence bounded on R
with $\frac{\partial f}{\partial y} = 2xy \Rightarrow \left|\frac{\partial f}{\partial y}\right| = 2|x||y| \le 2(1)(\infty) < \infty \quad \forall (x, y) \in S$
 $\Rightarrow \frac{\partial f}{\partial y}$ is unbounded on strip R.
 \therefore f(x, y) does not satisfy Lipschitz's condition on strip R is proved.
Ex.: Examine the existence and uniqueness of solutions of the initial value problem
 $\frac{dy}{dx} = y^{1/3}$ with $y(0) = 0$
Solution: Let $\frac{dy}{dx} = y^{1/3}$ with $y(0) = 0$ (i)
Comparing with $\frac{dy}{dx} = f(x, y)$, we get,
 $f(x, y) = y^{1/3}$ (ii)
Clearly $f(x, y) = y^{1/3} \Rightarrow \frac{\partial f}{\partial y} = \frac{1}{3}y^{2/3}$
 $\therefore \left|\frac{\partial f}{\partial y}\right| = \frac{1}{3}\frac{1}{|y^{2/3}|}$
For $x = 0$, $y = 0 \Rightarrow \left|\frac{\partial f}{\partial y}\right| = \frac{1}{3}\frac{1}{10} \rightarrow \infty$
 $\Rightarrow \frac{\partial f}{\partial y}$ is unbounded at origin.
 \therefore f(x, y) does not satisfy Lipschitz's condition at origin.
 \therefore Uniqueness and existence is not applicable to given initial value problem.

Remark: A continuous function may not satisfy Lipschitz's condition.

Linear Differential Equation of Second Order:

An equation $a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = 0$ is called a second order linear differential equation, where $a_0(x)$, $a_1(x)$ and $a_2(x)$ are continuous on an interval (a, b) and $a_0(x) \neq 0 \forall x \in (a, b)$.

Linearly Dependent Solutions:

Two solutions $y_1(x)$ and $y_2(x)$ of linear differential equation of second order are said to be linearly dependent solutions if there exists two constants c_1 and c_2 not both zero such that $c_1y_1(x) + c_2y_2(x) = 0 \forall x \in (a, b)$.

Linearly Independent Solutions:

Two solutions $y_1(x)$ and $y_2(x)$ of linear differential equation of second order are said to be linearly independent solutions if for any two constants c_1 and c_2 ,

 $c_1y_1(x) + c_2y_2(x) = 0 \Rightarrow c_1 = 0 \text{ and } c_2 = 0 \forall x \in (a, b).$

Linearly Combination of Solutions:

Let $y_1(x)$ and $y_2(x)$ be any two solutions of linear differential equation of second order, then $c_1y_1(x) + c_2y_2(x) = 0 \forall x \in (a, b)$ is called linear combination of two solutions $y_1(x)$ and $y_2(x)$, where c_1 and c_2 are constants.

The Wronskian:

Let $y_1(x)$ and $y_2(x)$ be any two solutions of linear differential equation of second order. Then the Wronskian of $y_1(x)$ and $y_2(x)$ is denoted by $W(y_1, y_2)$ or $W(y_1)$ and $y_2(x)$ is denoted by $W(y_1, y_2)$ or

$$W(x)$$
 and is defined as $W(x) = \begin{bmatrix} y_1' & y_2' \end{bmatrix}$

Remark: The Wronskian of three functions $y_1(x)$, $y_2(x)$ and $y_3(x)$ is defined by

$$W(x) = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix}$$

Theorem: If $y_1(x)$ and $y_2(x)$ are any two solutions of $a_0(x)y''(x)+a_1(x)y'(x)+a_2(x)y(x) = 0$, then linear combination $c_1y_1(x) + c_2y_2(x) = 0$, where c_1 and c_2 are constants, is also solution of the given equation.

Proof: Consider a given equation $a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = 0$ (i)

As
$$y_1(x)$$
 and $y_2(x)$ are the solutions of equation (i).
 $\therefore a_0(x) y_1''(x) + a_1(x) y_1'(x) + a_2(x)y_1(x) = 0$ (ii)
 $\therefore a_0(x) y_2''(x) + a_1(x) y_2'(x) + a_2(x)y_2(x) = 0$ (iii)
Let $u(x) = c_1y_1(x) + c_2y_2(x)$
 $\therefore u'(x) = c_1y_1'(x) + c_2y_2'(x)$
 $\therefore u''(x) = c_1y_1''(x) + c_2y_2''(x)$
Consider $a_0(x) u''(x) + a_1(x) u'(x) + a_2(x) u(x)$
 $= a_0(x)[c_1y_1''(x) + c_2y_2''(x)] + a_1(x)[c_1y_1'(x) + c_2y_2'(x)]$
 $+ a_2(x)[c_1y_1(x) + c_2y_2(x)]$
 $= c_1[a_0(x) y_1''(x) + a_1(x) y_1'(x) + a_2(x)y_1(x)]$
 $+ c_2[a_0(x) y_2''(x) + a_1(x) y_2'(x) + a_2(x)y_2(x)]$

$$= c_1(0) + c_2(0)$$
 by (ii) and (iii)
= 0

 \therefore c₁y₁(x) + c₂y₂(x) is solution of given equation is proved.

Remark: If $y_1(x)$, $y_2(x)$,, $y_n(x)$ are solutions of $a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = 0$, then $c_1y_1(x) + c_2y_2(x) + \dots + c_ny_n(x) = 0$ is also solution of the given equation. Where c_1, c_2, \dots, c_n are constants.

Theorem: Two solutions $y_1(x)$ and $y_2(x)$ of $a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = 0$, $a_0(x) \neq 0 \forall x \in (a, b)$, are linearly dependent if and only if their Wronskian is identically zero.

Proof: Suppose two solutions $y_1(x)$ and $y_2(x)$ of $a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = 0$,

 $a_0(x) \neq 0 \forall x \in (a, b)$, are linearly dependent (1)

As $y_1(x)$ and $y_2(x)$ are linearly dependent.

 \therefore there exists two constants c_1 and c_2 not both zero such that

 $c_1y_1(x) + c_2y_2(x) = 0 \forall x \in (a, b)$ (2) $\therefore c_1y_1'(x) + c_2y_2'(x) = 0 \forall x \in (a, b)$ (3)

As c_1 and c_2 not simultaneously zero.

 $|y_1(x) | y_2(x)| = 0$

$$\frac{|y_1'(x) - y_2'(x)|}{|y_1'(x) - y_2'(x)|} = 0 \ \forall \ x \in (a, b)$$

$$\Rightarrow W(x) = \frac{|y_1(x) - y_2(x)|}{|x_1(x) - y_2(x)|} = 0 \ \forall \ x \in (a, b)$$

$$\Rightarrow W(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} = 0 \ \forall \ x \in (a, b)$$

$$\Rightarrow Wronskian is zero.$$

Conversely: Suppose Wronskian is zero.

i.e.
$$\begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} = 0 \ \forall \ x \in (a, b)$$

Hence for some constants c_1 and c_2 not both zero

 $c_1y_1(x) + c_2y_2(x) = 0 \forall x \in (a, b)$

& $c_1y'_1(x) + c_2y'_2(x) = 0 \forall x \in (a, b)$

 \therefore solutions $y_1(x)$ and $y_2(x)$ are linearly dependent is proved.

Theorem: Two solutions $y_1(x)$ and $y_2(x)$ of $a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = 0$, $a_0(x) \neq 0 \forall x \in (a, b)$, are linearly independent if and only if their Wronskian is non-zero.

Proof: Suppose two solutions $y_1(x)$ and $y_2(x)$ of $a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = 0$, $a_0(x) \neq 0 \forall x \in (a, b)$, are linearly independent (1)

 \Rightarrow Wronskian is non-zero : if Wronskian is zero, then solutions $y_1(x)$ and $y_2(x)$

are linearly dependent

Conversely : Suppose Wronskian is non-zero.

 \Rightarrow solutions $y_1(x)$ and $y_2(x)$ are linearly independent. \therefore if solutions $y_1(x)$ and $y_2(x)$ are linearly dependent, then Wronskian is zero,

Ex.: Find the Wronskian of e^x and xe^x
Solution: Let
$$y_1 = e^x$$
 and $y_2 = xe^x$
 $\Rightarrow y_1' = e^x$ and $y_2' = e^x + xe^x$
 \therefore The Wronskian of y_1 and y_2 is
 $W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} e^x & xe^x \\ e^x + xe^x \end{vmatrix}$
 $= e^{2x} \begin{vmatrix} 1 & x \\ 1 & 1 + x \end{vmatrix}$
 $= e^{2x} [1 + x + x]$
 $= e^{2x} [1 + x + x]$

 $\Rightarrow y_1' = ae^{ax} cosbx and y_2' = ae^{ax} sinbx (b \neq b)'$ $\Rightarrow y_1' = ae^{ax} cosbx - be^{ax} sinbx and y_2' = ae^{ax} sinbx + be^{ax} cosbx$ $\therefore The Wronskian of y_1 and y_2 is$ $W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} e^{ax} cosbx & e^{ax} sinbx \\ ae^{ax} cosbx - be^{ax} sinbx & ae^{ax} sinbx + be^{ax} cosbx \end{vmatrix}$

$$= e^{2ax} \begin{vmatrix} \cos bx & \sin bx \\ a\cos bx - b\sin bx & a\sin bx + b\cos bx \end{vmatrix}$$

$$= e^{2ax} [a\cos bx \sin bx + b\cos^2 bx - a\sin bx \cosh x + b\sin^2 bx]$$

$$= e^{2ax} [b\cos^2 bx + b\sin^2 bx]$$

$$\therefore W(x) = be^{2ax}$$

Ex.: Show that e^x cosx and e^x sinx are linearly independent
Proof: Let $y_1 = e^x \cos x$ and $y_2 = e^x \sin x$

$$\Rightarrow y'_1 = e^x \cos x - e^x \sin x$$
 and $y'_2 = e^x \sin x + e^x \cos x$

$$\therefore$$
 The Wronskian of y_1 and y_2 is

$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^x \cos x & e^x \sin x \\ e^x \cos x - e^x \sin x + e^x \cos x \end{vmatrix}$$

$$= e^{2x} \begin{vmatrix} \cos x & \sin x \\ \cos x - \sin x & \sin x + \cos x \end{vmatrix}$$

$$= e^{2x} [\cos x \sin x + \cos^2 x - \sin x \cos x + \sin^2 x]$$

$$= e^{2x} [\cos^2 x + \sin^2 x]$$

$$\therefore$$
 W(x) = $e^{2x} \neq 0$

$$\therefore$$
 Given functions are linearly independent on the x axis

Proof: Let
$$y_1 = e^x$$
 and $y_2 = xe^x$
 $\Rightarrow y'_1 = e^x$ and $y'_2 = e^x + xe^x$
 \therefore The Wronskian of y_1 and y_2 is
 $W(x) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^x & xe^x \\ e^x & e^x + xe^x \end{vmatrix}$
 $= e^{2x} \begin{vmatrix} 1 & x \\ 1 & 1 + x \end{vmatrix}$
 $= e^{2x} [1 + x - x]$

 $= e^{2x} [1+x-x]$ $\therefore W(x) = e^{2x} \neq 0 \text{ for } x \neq 0$

: Given functions are linearly independent on x-axis is proved.

Ex.: Show that the Wronskian of the functions x^2 and $x^2\log x$ is non zero. Proof: Let $y_1 = x^2$ and $y_2 = x^2\log x$ $\Rightarrow y'_1 = 2x$ and $y'_2 = 2x\log x + x$ \therefore The Wronskian of y_1 and y_2 is $W(x) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} x^2 & x^2\log x \\ 2x & 2x\log x + x \end{vmatrix}$

$$= x^{3} \begin{vmatrix} 1 & \log x \\ 2 & 2\log x + 1 \end{vmatrix}$$

= x³[2logx + 1-2logx]

 $\therefore \mathbf{W}(\mathbf{x}) = x^3 \neq 0$

: Given functions are linearly independent.

Ex.: Show that $\sin 2x$ and $\cos 2x$ are solutions of the differential equation y'' + 4y = 0 and these are linearly independent.

Proof: Let
$$y_1 = \sin 2x$$
 and $y_2 = \cos 2x$ (1)

 $\therefore y_1' = 2\cos 2x \text{ and } y_2' = -2\sin 2x$

 $\therefore y_1'' = -4\sin 2x$ and $y_2'' = -4\cos 2x$

: $y_1'' = -4y_1$ and $y_2'' = -4y_2$ by (1)

$$\therefore y_1' + 4y_1 = 0 \text{ and } y_2' + 4y_2 = 0$$

 \therefore y₁ = sin2x and y₂ = cos2x are the solutions of the differential equation y"+ 4y = 0 is proved.

Now the Wronskian of y_1 and y_2 is

$$W(\mathbf{x}) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} \sin 2x & \cos 2x \\ 2\cos 2x & -2\sin 2x \end{vmatrix}$$
$$= -2\sin^2 2x - 2\cos^2 2x$$
$$\therefore W(\mathbf{x}) = -2 \neq 0$$

: Given solutions are linearly independent is proved.

Ex.: Show that $\sin 3x$ and $\cos 3x$ are linearly independent solutions of the differential equation y''+9y = 0.

Proof: Let
$$y_1 = \sin 3x$$
 and $y_2 = \cos 3x$ (1)

$$\therefore$$
 y'_1 = 3cos3x and y'_2 = -3sin3x

$$\therefore y_1'' = -9\sin 3x$$
 and $y_2'' = -9\cos 3x$

 $\therefore y_1'' = -9y_1$ and $y_2'' = -9y_2$ by (1)

 $\therefore y_1'' + 9y_1 = 0$ and $y_2'' + 9y_2 = 0$

 \therefore y₁ = sin3x and y₂ = cos3x are the solutions of the differential equation y"+ 9y = 0 is proved.

Now the Wronskian of y_1 and y_2 is

$$W(x) = \begin{vmatrix} y_1' & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} \sin 3x & \cos 3x \\ 3\cos 3x & -3\sin 3x \end{vmatrix}$$

= $-3\sin^2 3x - 3\cos^2 3x$
 \therefore W(x) = $-3 \neq 0$
 \therefore y₁ = sin3x and y₂ = cos3x are linearly independent solutions of the differential equation y"+ 9y = 0 is proved
Ex. Show that y₁ = sinx and y₂ = sinx - cosx are linearly independent solutions of the differential equation y"+ y = 0.
Proof: Let y₁ = sinx and y₂ = sinx - cosx \dots (1)
 \therefore y'₁ = cosx and y'₂ = cosx + sinx
 \therefore y''₁ = -sinx and y''₂ = -sinx + cosx
 \therefore y''₁ = -y₁ and y''₂ = -y₂ by (1)
 \therefore y''₁ = y₁ and y''₂ = y₂ by (1)
 \therefore y''₁ + y₁ = 0 and y''₂ + y₂ = 0
 \therefore y₁ = sinx and y₂ = sinx - cosx are the solutions of the differential equation y" + y = 0.
Now the Wronskian of y₁ and y₂ is
 $W(x) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} sinx & sinx - cosx \\ cosx & cosx + sinx \end{vmatrix}$
 $= sinxcosx + sin^2x - sinxcosx + cos^2x$
 \therefore W(x) = 1 $\neq 0$
 \therefore y₁ = sinx and y₂ = sinx - cosx are linearly independent solutions of the differential equation y" + y = 0 is proved

Ex.: Examine whether e^{2x} and e^{3x} are linearly independent solutions of the differential equation y''- 5y'+ 6y = 0 or not?

Solution: Let
$$y_1 = e^{2x}$$
 and $y_2 = e^{3x}$ (1)
 $\therefore y'_1 = 2e^{2x}$ and $y'_2 = 3e^{3x}$
 $\therefore y''_1 = 4e^{2x}$ and $y''_2 = 9e^{3x}$
Consider $y''_1 - 5y'_1 + 6y_1 = 4e^{2x} - 10e^{2x} + 6e^{2x} = 0$ and
 $y''_2 - 5y'_2 + 6y_2 = 9e^{3x} - 15e^{3x} + 6e^{3x} = 0$
 $\therefore y_1 = e^{2x}$ and $y_2 = e^{3x}$ are the solutions of the differential equation y''- 5y'+ 6y = 0.
Now the Wronskian of y_1 and y_2 is
 $W(x) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^{2x} & e^{3x} \\ 2e^{2x} & 3e^{3x} \end{vmatrix}$

$$= 3e^{5x} - 2e^{5x}$$

$$\therefore \mathbf{W}(\mathbf{x}) = e^{5x} \neq 0$$

∴ $y_1 = e^{2x}$ and $y_2 = e^{3x}$ are linearly independent solutions of the differential equation y"- 5y'+ 6y = 0.

Ex.: Show that the functions 1+x, x^2 and 1+2x are linearly independent. Proof: Let $y_1 = 1+x$, $y_2 = x^2$ and $y_3 = 1+2x$ are the given functions. $\therefore y'_1 = 1, y'_2 = 2x$ and $y'_3 = 2$ $\therefore y''_1 = 0, y''_2 = 2$ and $y''_3 = 0$ \therefore The Wronskian of y_1, y_2 and y_3 is $W(x) = \begin{vmatrix} y_1 & y_2 & y_3 \\ y'_1 & y'_2 & y'_3 \\ y''_1 & y''_2 & y''_3 \end{vmatrix} = \begin{vmatrix} 1+x & x^2 & 1+2x \\ 1 & 2x & 2 \\ 0 & 2 & 0 \end{vmatrix}$ $= (1+x)(0-4) - x^2(0-0) + (1+2x)(2-0)$ = -4-4x+2+4x \therefore W(x) = $-2 \neq 0$. \therefore Given functions are linearly independent.

Ex.: Using Wronskian, show that the functions x, x^2 , x^3 are linearly independent. Proof: Let $y_1 = x$, $y_2 = x^2$ and $y_3 = x^3$ are the given functions. $\therefore y'_1 = 1$, $y'_2 = 2x$ and $y'_3 = 3x^2$ $\therefore y'_1 = 0$, $y''_2 = 2$ and $y''_3 = 6x$ \therefore The Wronskian of y_1 , y_2 and y_3 is $W(x) = \begin{vmatrix} y_1 & y_2 & y_3 \\ y'_1 & y'_2 & y'_3 \\ y''_1 & y''_2 & y''_3 \end{vmatrix} = \begin{vmatrix} x & x^2 & x^3 \\ 1 & 2x & 3x^2 \\ 0 & 2 & 6x \end{vmatrix}$ $= x(12x^2-6x^2) - x^2(6x-0) + x^3(2-0)$ $= 6x^3-6x^3+2x^3$ \therefore W(x) = $2x^3 \neq 0$. \therefore Given functions are linearly independent.

Ex. Prove that 1, x, x^2 are linearly independent. Hence form the differential equation whose solutions are 1, x, x^2 .

Proof: Let $y_1 = 1$, $y_2 = x$ and $y_3 = x^2$ are the given functions. $\therefore y'_1 = 0$, $y'_2 = 1$ and $y'_3 = 2x$ $\therefore y_1'' = 0, y_2'' = 0 \text{ and } y_3'' = 2$ $\therefore \text{ The Wronskian of } y_1, y_2 \text{ and } y_3 \text{ is}$ $W(x) = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix} = \begin{vmatrix} 1 & x & x^2 \\ 0 & 1 & 2x \\ 0 & 0 & 2 \end{vmatrix}$ $= (2 - 0) - x(0 - 0) + x^2(0 - 0)$ $\therefore W(x) = 2 \neq 0.$ $\therefore 1, x, x^2 \text{ are linearly independent solutions.}$ To find differential equation, let $y = c_1 + c_2 x + c_3 x^2$ (i) where c_1, c_2, c_3 are constants. Differentiating equation (i) thrice w.r.t. x, we get, $\frac{dy}{dx} = c_2 + 2c_3 x$ $\frac{d^2y}{dx^2} = 2c_3$ $\frac{d^3y}{dx^3} = 0 \text{ be the required differential equation.}$

Ex. Examine whether the set of functions 1, x^2 , x^3 are linearly independent or not. Solution: Let $y_1 = 1$, $y_2 = x^2$ and $y_3 = x^3$ are the given functions.

$$\therefore y_1' = 0, \ y_2' = 2x \text{ and } y_3' = 3x^2
\therefore y_1'' = 0, \ y_2'' = 2 \text{ and } y_3'' = 6x
\therefore The Wronskian of y_1, y_2 and y_3 is
W(x) =
$$\begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix} = \begin{vmatrix} 1 & x^2 & x^3 \\ 0 & 2x & 3x^2 \\ 0 & 2 & 6x \end{vmatrix}
= (12x^2 - 6x^2) - x^2 (0 - 0) + x^3 (0 - 0)
\therefore W(x) = 6x^2 ≠ 0
\therefore Given set of functions are linearly independent.$$$$

Ex.: Examine the functions x^2 , e^x , e^{-x} for linear independence. Solution: Let $y_1 = x^2$, $y_2 = e^x$ and $y_3 = e^{-x}$ are the given functions. $\therefore y'_1 = 2x, y'_2 = e^x$ and $y'_3 = -e^{-x}$ $\therefore y''_1 = 2, y''_2 = e^x$ and $y''_3 = e^{-x}$ \therefore The Wronskian of y_1, y_2 and y_3 is $W(x) = \begin{vmatrix} y_1 & y_2 & y_3 \\ y'_1 & y'_2 & y'_3 \\ y''_1 & y''_2 & y''_3 \end{vmatrix} = \begin{vmatrix} x^2 & e^x & e^{-x} \\ 2x & e^x & -e^{-x} \\ 2 & e^x & e^{-x} \end{vmatrix}$

$$= e^{x-x} \begin{vmatrix} x^2 & 1 & 1 \\ 2x & 1 & -1 \\ 2 & 1 & 1 \end{vmatrix}$$

= x²(1+1)-(2x+2)+(2x-2)
$$\therefore W(x) = 2x^2 - 4 \neq 0 \text{ if } x^2 - 2 \neq 0 \text{ i.e. if } x \neq \pm \sqrt{2}$$

$$\therefore \text{ Given functions are linearly independent if } x \neq \pm \sqrt{2} \text{ and}$$

are linearly dependent if $x = \pm \sqrt{2}$.

Ex.: Examine whether the set of functions x^2-x+1 , x^2-1 , $3x^2-x-1$ are linearly dependent or not.

Solution: Let
$$y_1 = x^2 \cdot x + 1$$
, $y_2 = x^2 \cdot 1$ and $y_3 = 3x^2 \cdot x \cdot 1$ are the given functions.
 $\therefore y'_1 = 2x - 1$, $y'_2 = 2x$ and $y'_3 = 6x \cdot 1$
 $\therefore y''_1 = 2$, $y''_2 = 2$ and $y''_3 = 6$
 \therefore The Wronskian of y_1 , y_2 and y_3 is
 $W(x) = \begin{vmatrix} y_1 & y_2 & y_3 \\ y'_1 & y'_2 & y'_3 \\ y''_1 & y''_2 & y''_3 \end{vmatrix} = \begin{vmatrix} x^2 - x + 1 & x^2 - 1 & 3x^2 - x - 1 \\ 2x - 1 & 2x & 6x - 1 \\ 2 & 2 & 6 \end{vmatrix}$
 $= (x^2 \cdot x + 1)(12x \cdot 12x + 2) \cdot (x^2 \cdot 1)(12x \cdot 6 \cdot 12x + 2) + (3x^2 \cdot x \cdot 1)(4x \cdot 2 \cdot 4x)$
 $= 2x^2 \cdot 2x + 2 + 4x^2 \cdot 4 \cdot 6x^2 + 2x + 2$
 \therefore W(x) = 0
 \therefore Given set of functions are linearly dependent

Method of Variation of Parameters:

Let $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$ (i) be a linear differential equation, where P, Q and R are the functions of x or constants. Suppose y = Au + Bv (ii) be a complementary function (C.F.) of (i). Where A, B are constants and u, v are functions of x. As (ii) is C.F. of (i), hence u and v must be the solution of auxiliary equation of (i) i.e. $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = 0$ (iii) $\therefore \frac{d^2u}{dx^2} + P\frac{du}{dx} + Qu = 0$ (iv) and $\frac{d^2v}{dx^2} + P\frac{dv}{dx} + Qv = 0$ (v) In the method of variation of parameter, we assume that y = Au + Bv (vi)

be the G.S. of the given equation (i).

Where A and B are functions of x so chosen that equation (1) shall be satisfied
and
$$u\frac{dA}{dx} + v\frac{dB}{dx} = 0$$
 (vii)
Differentiating equation (vi) w.r.t. x, we get,
 $\frac{dy}{dx} = A\frac{du}{dx} + u\frac{dA}{dx} + B\frac{dv}{dx} + v\frac{dB}{dx}$
 $\Rightarrow \frac{dy}{dx} = A\frac{du}{dx} + u\frac{dA}{dx} + B\frac{dv}{dx} + v\frac{dB}{dx}$
Now differentiating equation (viii) w.r.t. x, we get,
 $\frac{d^2y}{dx^2} = \frac{dA}{dx}\frac{du}{dx} + A\frac{d^2u}{dx^2} + \frac{dB}{dx}\frac{dv}{dx} + B\frac{d^2v}{dx^2} \dots$ (ix)
Using (vi), (viii) and (ix) in (i), we have,
 $\left[\frac{dA}{dx}\frac{du}{dx} + A\frac{d^2u}{dx^2} + \frac{dB}{dx}\frac{dv}{dx} + B\frac{d^2v}{dx^2}\right] + P[A\frac{du}{dx} + B\frac{dv}{dx}] + Q[Au + Bv] = R$
 $\Rightarrow A[\frac{d^2u}{dx^2} + P\frac{du}{dx} + Qu] + B[\frac{d^2v}{dx^2} + P\frac{dv}{dx} + Qv] + [\frac{dA}{dx}\frac{du}{dx} + \frac{dB}{dx}\frac{dv}{dx}] = R$
 $\Rightarrow A(0) + B(0) + [\frac{dA}{dx}\frac{du}{dx} + \frac{dB}{dx}\frac{dv}{dx}] = R$ by (iv) and (v)
 $\Rightarrow \frac{dA}{dx}\frac{du}{dx} + \frac{dB}{dx}\frac{dv}{dx} = R$ (x)
Solving (vii) and (x), we get, $\frac{dA}{dx}$ and $\frac{dB}{dx}$.
Integrating $\frac{dA}{dx}$ and $\frac{dB}{dx}$, we get, A and B.
Putting these values of A and B in (vi), we get G S, of given equation (i).

Ex.: Solve by method of variation of parameters $\frac{d^2y}{dx^2} + 4y = 4\tan 2x$

Solution: Let $\frac{d^2y}{dx^2} + 4y = 4\tan 2x$ i.e. $(D^2 + 4)y = 4\tan 2x$ (i) be the given equation. \therefore Its A.E. is $D^2 + 4 = 0$ which has roots $D = \pm 2i$. \therefore C.F. is $y = A\cos 2x + B\sin 2x$ By method of variation of parameter assume that $y = A\cos 2x + B\sin 2x$ (ii) be the G.S. of the given equation (i). Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\cos 2x \frac{dA}{dx} + \sin 2x \frac{dB}{dx} = 0$ (iii) Differentiating equation (ii) w.r.t. x, we get, $\frac{dy}{dx} = -2A\sin 2x + \cos 2x \frac{dA}{dx} + 2B\cos 2x + \sin 2x \frac{dB}{dx}$ $\Rightarrow \frac{dy}{dx} = -2A\sin 2x + 2B\cos 2x$ (iv) using (iii). Again differentiating equation (iv) w.r.t. x, we get,

$$\frac{d^2y}{dx^2} = -4A\cos 2x - 2\sin 2x \frac{dA}{dx} - 4B\sin 2x + 2\cos 2x \frac{dB}{dx}$$

$$\therefore \frac{d^2y}{dx^2} = -4(A\cos 2x + B\sin 2x) - 2\sin 2x \frac{dA}{dx} + 2\cos 2x \frac{dB}{dx}$$
 by (ii)

$$\therefore \frac{d^2y}{dx^2} = -4y - 2\sin 2x \frac{dA}{dx} + 2\cos 2x \frac{dB}{dx}$$
 by (ii)

$$\therefore \frac{d^2y}{dx^2} + 4y = -2\sin 2x \frac{dA}{dx} + 2\cos 2x \frac{dB}{dx}$$
 by (i)
i.e. $\sin 2x \frac{dA}{dx} - \cos 2x \frac{dB}{dx} = 4\tan 2x$ by (i)
i.e. $\sin 2x \frac{dA}{dx} - \cos 2x \frac{dB}{dx} = -2\tan 2x.....$ (v)
To solve (ii) and (v), consider $\sin 2x$ (iii) - $\cos 2x$ (v), we get,
 $\sin 2x \cos 2x \frac{dA}{dx} + \sin^2 2x \frac{dB}{dx} - \sin 2x \cos 2x \frac{dA}{dx} + \cos^2 2x \frac{dB}{dx} = 0 + 2\cos 2x \tan 2x$

$$\therefore \frac{dB}{dx} = 2\sin 2x$$
Putting value of $\frac{dB}{dx}$ in (iii), we get,
 $\cos 2x \frac{dA}{dx} + \sin 2x(2\sin 2x) = 0$

$$\therefore \cos 2x \frac{dA}{dx} = -2\sin^2 2x \Rightarrow \frac{dA}{dx} = -\frac{2\sin^2 2x}{\cos 2x}$$
Now $\frac{dA}{dx} = -2\sin^2 2x \Rightarrow A = \int (-\frac{2\sin^2 2x}{\cos 2x}) dx + c_1 = -2\int (\frac{1-\cos^2 2x}{\cos 2x}) dx + c_1$
 $= -log(\sec 2x + \tan 2x) + \sin 2x + c_1$
and $\frac{dB}{dx} = 2\sin 2x \Rightarrow B = \int 2\sin 2x dx = -\cos 2x + c_2$
Putting these values of A and B in (ii), we get,
 $y = [-log(\sec 2x + \tan 2x) + \sin 2x + c_1]\cos 2x + (-\cos 2x + c_2)\sin 2x$
 $\therefore y = c_1\cos 2x + c_2\sin 2x - \cos 2x \log(\sec 2x + \tan 2x) + \sin 2x\cos 2x - \cos 2x\sin 2x$
 $\therefore y = c_1\cos 2x + c_2\sin 2x - \cos 2x \log(\sec 2x + \tan 2x) + \sin 2x\cos 2x - \cos 2x\sin 2x$
 $\therefore y = c_1\cos 2x + c_2\sin 2x - \cos 2x \log(\sec 2x + \tan 2x) + \sin 2x\cos 2x - \cos 2x\sin 2x$

Ex.: Solve by method of variation of parameters y'' - 3y' + 2y = 2Solution: Let y'' - 3y' + 2y = 2 i.e. $(D^2 - 3D + 2)y = 2$ (i) be the given equation. \therefore Its A.E. is $D^2 - 3D + 2 = 0$ i.e. (D - 1)(D - 2) = 0 which has roots D = 1, 2. \therefore C.F. is $y = Ae^x + Be^{2x}$ By method of variation of parameter assume that $y = Ae^x + Be^{2x}$ (ii) be the G.S. of the given equation (i). Where A and B are functions of x so chosen that equation (i) shall be satisfied

Where A and B are functions of x so chosen that equation (i) shall be satisfied and $e^x \frac{dA}{dx} + e^{2x} \frac{dB}{dx} = 0$ (iii)

Differentiating equation (ii) w.r.t. x, we get,

$$y' = Ae^{x} + e^{x} \frac{dA}{dx} + 2Be^{2x} + e^{2x} \frac{dB}{dx}$$

 $\Rightarrow y' = Ae^{x} + 2Be^{2x}$ (iv) using (iii).
Again differentiating equation (iv) w.r.t. x, we get,
 $y'' = Ae^{x} + e^{x} \frac{dA}{dx} + 4Be^{2x} + 2e^{2x} \frac{dB}{dx}$
 $\therefore y'' - 3y' + 2y = 2$ gives
 $Ae^{x} + e^{x} \frac{dA}{dx} + 4Be^{2x} + 2e^{2x} \frac{dB}{dx} - 3Ae^{x} - 6Be^{2x} + 2Ae^{x} + 2Be^{2x} = 2$
i.e. $e^{x} \frac{dA}{dx} + 2e^{2x} \frac{dB}{dx} = 2$ (v)
To solve (iii) and (v), consider (v) - (iii), we get,
 $e^{x} \frac{dA}{dx} + 2e^{2x} \frac{dB}{dx} - e^{x} \frac{dA}{dx} - e^{2x} \frac{dB}{dx} = 2 - 0$
 $\therefore e^{2x} \frac{dB}{dx} = 2 \Rightarrow \frac{dB}{dx} = 2e^{-2x}$
Putting value of $\frac{dB}{dx}$ in (iii), we get,
 $e^{x} \frac{dA}{dx} - 2e^{-x} \Rightarrow A = \int (-2e^{-x})dx + c_1 = 2e^{-x} + c_1$ and
 $\frac{dB}{dx} = 2e^{-2x} \Rightarrow B = \int 2e^{-2x} dx = -e^{-2x} + c_2$
Putting these values of A and B in (ii), we get,
 $y = [2e^{-x} + c_1]e^{x} + (-e^{-2x} + c_2)e^{2x}$
 $\therefore y = c_1e^{x} + c_2e^{2x} + 1$ be the required G.S. of given equation.

Ex.: Using method of variation of parameters solve $\frac{d^2y}{dx^2} + y = \csc x$

Solution: Let
$$\frac{d^2y}{dx^2} + y = \operatorname{cosecx} i.e. (D^2 + 1)y = \operatorname{cosecx} \dots$$
 (i) be the given equation
 \therefore Its A.E. is $D^2 + 1 = 0$ which has roots $D = \pm i$.

 \therefore C.F. is y = Acosx + Bsinx

By method of variation of parameter assume that $y = A\cos x + B\sin x$ (ii) be the G.S. of the given equation (i).

Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\cos x \frac{dA}{dx} + \sin x \frac{dB}{dx} = 0$ (iii)

Differentiating equation (ii) w.r.t. x, we get,

$$\frac{dy}{dx} = -Asinx + \cos x \frac{dA}{dx} + Bcosx + \sin x \frac{dB}{dx}$$

$$\Rightarrow \frac{dy}{dx} = -Asinx + Bcosx (iv) using (iii).$$
Again differentiating equation (iv) w.r.t. x, we get,

$$\frac{d^2y}{dx^2} = -Acosx - sinx \frac{dA}{dx} - Bsinx + cosx \frac{dB}{dx}$$

$$\Rightarrow \frac{d^2y}{dx^2} = -(Acosx + Bsinx) - sinx \frac{dA}{dx} + cosx \frac{dB}{dx}$$

$$\Rightarrow \frac{d^2y}{dx^2} = -y - sinx \frac{dA}{dx} + cosx \frac{dB}{dx} + cosx \frac{dB}{dx}$$

$$\Rightarrow \frac{d^2y}{dx^2} = -y - sinx \frac{dA}{dx} + cosx \frac{dB}{dx} + cosx \frac{dB}{dx}$$

$$\Rightarrow -sinx \frac{dA}{dx} + cosx \frac{dB}{dx} = cosex(v) \quad by (i)$$
To solve (iii) and (v), consider sinx(iii) + cosx(v), we get,
sinxcosx \frac{dA}{dx} + sin^2x \frac{dB}{dx} - sinxcosx \frac{dA}{dx} + cos^2x \frac{dB}{dx} = 0 + cosxcosecx
$$\therefore \frac{dB}{dx} = cotx$$
Putting value of $\frac{dB}{dx}$ in (iii), we get,

$$\cos \frac{dA}{dx} = -cosx \Rightarrow \frac{dA}{dx} = -1$$
Now $\frac{dA}{dx} = -1 \Rightarrow A = \int (-1)dx = -x + c_1$ and

$$\frac{dB}{dx} = cotx \Rightarrow B = \int cotxdx = \log sinx + c_2$$
Putting these values of A and B in (ii), we get,

$$y = (-x + c_1)cosx + (\log sinx + c_2)sinx$$

$$\therefore y = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsinx)$$

$$\Rightarrow ty = c_1cosx + c_2sinx - xcosx + sinx(logsi$$

: Its A.E. is $D^2 + a^2 = 0$ which has roots $D = \pm ai$.

 \therefore C.F. is y = Acosax + Bsinax

By method of variation of parameter assume that $y = A\cos x + B\sin x$ (ii) be the G.S. of the given equation (i).

Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\cos x \frac{dA}{dx} + \sin x \frac{dB}{dx} = 0$ (iii) Differentiating equation (ii) w.r.t. x, we get, $\frac{dy}{dx} = -aAsinax + \cos ax \frac{dA}{dx} + aBcosax + \sin ax \frac{dB}{dx}$ $\Rightarrow \frac{dy}{dx} = -aAsinax + aBcosax \quad \dots \quad \text{(iv) using (iii)}.$ Again differentiating equation (iv) w.r.t. x, we get, $\frac{d^2y}{dx^2} = -a^2A\cos ax - a\sin ax\frac{dA}{dx} - a^2B\sin ax + a\cos ax\frac{dB}{dx}$ $\therefore \frac{d^2 y}{dx^2} = -a^2 (A\cos ax + B\sin ax) - a\sin ax \frac{dA}{dx} + a\cos ax \frac{dB}{dx}$ $\therefore \frac{d^2 y}{dx^2} = -a^2 y - asinax \frac{dA}{dx} + acosax \frac{dB}{dx}$ by (ii) $\therefore \frac{d^2 y}{dx^2} + a^2 y = -asinax \frac{dA}{dx} + acosax \frac{dB}{dx}$ $\therefore -asinax \frac{dA}{dx} + acosax \frac{dB}{dx} = cosec(ax) \qquad \dots \qquad (v)$ by (i) To solve (iii) and (v), consider asinax(iii)+cosax(v), we get, asinaxcosax $\frac{dA}{dx}$ + asin²ax $\frac{dB}{dx}$ - asinaxcosax $\frac{dA}{dx}$ + acos²ax $\frac{dB}{dx}$ = 0 + cosaxcosec(ax) $\therefore a \frac{dB}{dx} = \cot(ax) \Longrightarrow \frac{dB}{dx} = \frac{1}{a}\cot(ax)$ Putting value of $\frac{dB}{dx}$ in (iii), we get, $\cos x \frac{dA}{dx} + \sin x \left[\frac{1}{2} \cot(ax)\right] = 0$ $\therefore \cos ax \frac{dA}{dx} = -\frac{1}{a} \cos ax \Longrightarrow \frac{dA}{dx} = -\frac{1}{a}$ Now $\frac{dA}{dx} = -\frac{1}{x} \Longrightarrow A = \int (-\frac{1}{x}) dx = -\frac{x}{a} + c_1$ and $\frac{dB}{dx} = \frac{1}{a}\cot(ax) \Longrightarrow B = \int (\frac{1}{a}\cot(ax)) dx = \frac{1}{a^2}\log(ax) + c_2$ Putting these values of A and B in (ii), we get, $y = (-\frac{x}{a} + c_1)\cos ax + (\frac{1}{a^2}\log \sin ax + c_2)\sin ax$ $\therefore y = c_1 \cos ax + c_2 \sin ax - \frac{x}{a} \cos ax + \frac{1}{a^2} \sin ax (\log \sin ax)$ be the required G.S. of given equation.

Ex.: Using method of variation of parameters solve $\frac{d^2y}{dx^2} + 9y = \sec 3x$ Solution: Let $\frac{d^2y}{dx^2} + 9y = \sec 3x$ i.e. $(D^2 + 9)y = \sec 3x$ (i) be the given equation.

 \therefore Its A.E. is $D^2 + 9 = 0$ which has roots $D = \pm 3i$. \therefore C.F. is y = Acos3x + Bsin3x By method of variation of parameter assume that $y = A\cos 3x + B\sin 3x$ (ii) be the G.S. of the given equation (i). Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\cos 3x \frac{dA}{dx} + \sin 3x \frac{dB}{dx} = 0$ (iii) Differentiating equation (ii) w.r.t. x, we get, $\frac{dy}{dx} = -3A\sin 3x + \cos 3x \frac{dA}{dx} + 3B\cos 3x + \sin 3x \frac{dB}{dx}$ $\Rightarrow \frac{dy}{dx} = -3Asin3x + 3Bcos3x \quad \dots \quad \text{(iv) using (iii)}.$ Again differentiating equation (iv) w.r.t. x, we get, $\frac{d^2y}{dx^2} = -9A\cos 3x - 3\sin 3x \frac{dA}{dx} - 9B\sin 3x + 3\cos 3x \frac{dB}{dx}$ $\therefore \frac{d^2 y}{dx^2} = -9(A\cos 3x + B\sin 3x) - 3\sin 3x \frac{dA}{dx} + 3\cos 3x \frac{dB}{dx}$ $\therefore \frac{d^2 y}{dx^2} = -9y - 3sin 3x \frac{dA}{dx} + 3cos 3x \frac{dB}{dx} \qquad by (ii)$ $\therefore \frac{d^2 y}{dx^2} + 9y = -3\sin 3x \frac{dA}{dx} + 3\cos 3x \frac{dB}{dx}$ $\therefore -3sin3x \frac{dA}{dx} + 3cos3x \frac{dB}{dx} = \sec 3x \dots (v) \quad by (i)$ To solve (iii) and (v), consider $3\sin 3x(iii) + \cos 3x(v)$, we get. $3\sin 3x\cos 3x \frac{dA}{dx} + 3\sin^2 3x \frac{dB}{dx} - 3\sin 3x\cos 3x \frac{dA}{dx} + 3\cos^2 3x \frac{dB}{dx} = 0 + \cos 3x\sec 3x$ $\therefore 3 \frac{dB}{dx} = 1 \Longrightarrow \frac{dB}{dx} = \frac{1}{3}$ Putting value of $\frac{dB}{dx}$ in (iii), we get, $\cos 3x \frac{dA}{dx} + \sin 3x(\frac{1}{2}) = 0$ $\therefore \cos 3x \frac{dA}{dx} = -\frac{1}{2} \sin 3x \implies \frac{dA}{dx} = -\frac{1}{2} \tan 3x$ Now $\frac{dA}{dx} = -\frac{1}{2}\tan 3x \Longrightarrow A = \int (-\frac{1}{2}\tan 3x) dx = \frac{1}{2}\log \cos 3x + c_1$ and $\frac{dB}{dx} = \frac{1}{2} \Longrightarrow B = \int (\frac{1}{2}) dx = \frac{x}{2} + c_2$ Putting these values of A and B in (ii), we get, $y = (\frac{1}{2}\log\cos 3x + c_1)\cos 3x + (\frac{x}{2} + c_2)\sin 3x$ $\therefore y = c_1 \cos 3x + c_2 \sin 3x + \frac{1}{2} \cos 3x (\log \sin 3x) + \frac{x}{2} \sin 3x$

be the required G.S. of given equation.

Ex.: Using method of variation of parameters solve $\frac{d^2y}{dx^2} + a^2y = \sec(ax)$ **Solution:** Let $\frac{d^2y}{dx^2} + a^2y = \sec(ax)$ i.e. $(D^2 + a^2)y = \sec(ax)$ (i) be the given equation. : Its A.E. is $D^2 + a^2 = 0$ which has roots $D = \pm ai$. \therefore C.F. is y = Acosax + Bsinax By method of variation of parameter assume that $y = A\cos x + B\sin x$ (ii) be the G.S. of the given equation (i). Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\cos x \frac{dA}{dx} + \sin x \frac{dB}{dx} = 0$ (iii) Differentiating equation (ii) w.r.t. x, we get, $\frac{dy}{dx} = -aAsinax + \cos ax \frac{dA}{dx} + aBcosax + \sin ax \frac{dB}{dx}$ $\Rightarrow \frac{dy}{dx} = -aAsinax + aBcosax \dots (iv) using (iii).$ Again differentiating equation (iv) w.r.t. x, we get, $\frac{d^2y}{dx^2} = -a^2A\cos ax - a\sin ax\frac{dA}{dx} - a^2B\sin ax + a\cos ax\frac{dB}{dx}$ $\therefore \frac{d^2 y}{dx^2} = -a^2 (A\cos ax + B\sin ax) - a\sin ax \frac{dA}{dx} + a\cos ax \frac{dB}{dx}$ $\therefore \frac{d^2 y}{dx^2} = -a^2 y - a \sin a x \frac{dA}{dx} + a \cos a x \frac{dB}{dx} \qquad \text{by (ii)}$ $\therefore \frac{d^2 y}{dx^2} + a^2 y = -asinax \frac{dA}{dx} + acosax \frac{dB}{dx}$ $\therefore -asinax \frac{dA}{dx} + acosax \frac{dB}{dx} = \sec(ax) \qquad \dots \qquad (v)$ by (i) To solve (iii) and (v), consider asinax(iii)+cosax(v), we get, asinaxcosax $\frac{dA}{dx}$ + asin²ax $\frac{dB}{dx}$ - asinaxcosax $\frac{dA}{dx}$ + acos²ax $\frac{dB}{dx}$ = 0 + cosaxsec(ax) $\therefore a \frac{dB}{dr} = 1 \Longrightarrow \frac{dB}{dr} = \frac{1}{a}$ and an area with a first and Putting value of $\frac{dB}{dx}$ in (iii), we get, $\cos x \frac{dA}{du} + \sin x (\frac{1}{c}) = 0$ $\therefore \cos ax \frac{dA}{dx} = -\frac{1}{a} \sin ax \Longrightarrow \frac{dA}{dx} = -\frac{1}{a} \tan ax$ Now $\frac{dA}{dx} = -\frac{1}{a} \tan ax \implies A = \int (-\frac{1}{a} \tan ax) dx = \frac{1}{a^2} \log \cos ax + c_1$ and $\frac{dB}{dx} = \frac{1}{a} \Longrightarrow B = \int (\frac{1}{a}) dx = \frac{x}{a} + c_2$ Putting these values of A and B in (ii), we get. $y = (\frac{1}{a^2}\log\cos a + c_1)\cos a + (\frac{x}{a} + c_2)\sin a x$

 $\therefore y = c_1 \cos ax + c_2 \sin ax + \frac{1}{a^2} \cos ax (\log \sin ax) + \frac{x}{a} \sin ax$ be the required G.S. of given equation.

Ex.: Solve by method of variation of parameters y'' + y - x = 0**Solution:** Let y'' + y = x i.e. $(D^2 + 1)y = x$ (i) be the given equation. \therefore Its A.E. is $D^2 + 1 = 0$ which has roots $D = \pm i$. \therefore C.F. is y = C₁cosx + C₂sinx By method of variation of parameter assume that $y = A\cos x + B\sin x$ (ii) be the G.S. of the given equation (i). Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\cos x \frac{dA}{dx} + \sin x \frac{dB}{dx} = 0$ (iii) Differentiating equation (ii) w.r.t. x, we get, $y' = -Asinx + cosx \frac{dA}{dx} + Bcosx + sinx \frac{dB}{dx}$ \Rightarrow y' = -Asinx + Bcosx (iv) using (iii). Again differentiating equation (iv) w.r.t. x, we get, $y'' = -Acosx - sinx \frac{dA}{dx} - Bsinx + cosx \frac{dB}{dx}$ $\therefore y'' = -(A\cos x + B\sin x) - \sin x \frac{dA}{dx} + \cos x \frac{dB}{dx}$ $\therefore y'' = -y - sinx \frac{dA}{dx} + cosx \frac{dB}{dx} by (ii)$ $\therefore \mathbf{y}'' + \mathbf{y} = -\sin x \frac{dA}{dx} + \cos x \frac{dB}{dx}$ $\therefore -sinx\frac{dA}{dx} + cosx\frac{dB}{dx} = x \qquad \dots \qquad (v) \qquad by (i)$ To solve (iii) and (v), consider sinx(iii) + cosx(v), we get, $\sin x \cos x \frac{dA}{dx} + \sin^2 x \frac{dB}{dx} - \sin x \cos x \frac{dA}{dx} + \cos^2 x \frac{dB}{dx} = 0 + x \cos x$ $\therefore \frac{dB}{dx} = \mathbf{X}\mathbf{COSX}$ Putting value of $\frac{dB}{dx}$ in (iii), we get, $\cos \frac{dA}{dx} + \sin x [x \cos x] = 0$ $\therefore \cos x \frac{dA}{dx} = -x\sin x \cos x \Longrightarrow \frac{dA}{dx} = -x\sin x$ Now $\frac{dA}{dx} = -xsinx \implies A = \int (-xsinx) dx = xcosx - \int cosx dx + c_1 = xcosx - sinx + c_1 and$ $\frac{dB}{dx} = x\cos x \Longrightarrow B = \int x\cos x dx = x\sin x - \int \sin x dx + c_2 = x\sin x + \cos x + c_2$ Putting these values of A and B in (ii), we get, $y = (x\cos x - \sin x + c_1)\cos x + (x\sin x + \cos x + c_2)\sin x$ $\therefore y = c_1 \cos x + c_2 \sin x + x \cos^2 x - \sin x \cos x + x \sin^2 x + \cos x \sin x$ \therefore y = c₁cosx + c₂sinx + x

be the required G.S. of given equation.

MULTIPLE CHOICE QUESTIONS [MCQ'S]

1) $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$ is called B) linear equation A) initial value problem C) homogeneous equation D) None of these 2) An initial value problem $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$ may have B) more than one solution A) one solution C) no solution. D) all of these. 3) A function f(x, y) defined in a region D in xy-plane is said to satisfy Lipschitz condition in D if for (x, y_1) and (x, y_2) in D, there exist a positive constant K such that A) $|f(x, y_2) - f(x, y_1)| \le K|y_2 - y_1|$ B) $|f(x, y_2) - f(x, y_1)| \le K$ C) $|f(x, y_2) - f(x, y_1)| \ge K|y_2 - y_1|$ D) None of these 4) If a function f(x, y) satisfy Lipschitz condition $|f(x, y_2) - f(x, y_1)| \le K|y_2 - y_1|$ then K is called for the function f(x, y). B) Lipschitz constant C) variable A) constant D) None of these 5) Every continuous function satisfy Lipschitz condition. C) may not A) may B) must D) None of these 6) If the function f(x, y) is continuous and bounded for all values of x in a domain D and satisfies Lipschitz's condition $|f(x, y_2) - f(x, y_1)| \le K|y_2 - y_1|$ for all points in domain D, then initial value problem $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$ has A) a unique solution. B) no solution. C) infinite number of solutions D) None of these 7) If S is either a rectangle $|x - x_0| \le h$, $|y - y_0| \le k$ (h, k > 0) or a strip $|x - x_0| \le h$, $|y| < \infty$ (h > 0) and f(x, y) is a real valued function defined on S such that $\frac{\partial f}{\partial y}$ exits and continuous on S with $\left|\frac{\partial f}{\partial y}\right| \le K \forall (x, y) \in S$ for a positive constant K, then f(x, y) satisfies Lipschitz's condition on S with constant K. A) Picard's B) Non Lipschitz'sC) Lipschitz's D) None of these 8) A function f(x, y) is said to satisfy Lipschitz condition in a region D in xy plane if there

exist a positive constant K such that $ f(x, y_2) - f(x, y_1) \leq \dots$ whenever the points						
(x, y_1) and (x, y_2) both lie in D.						
A) K $ x_1 - x_2 $	B) K $ y_2 - x $	$C) K y_2 - y_1 $	D) None of these			
9) If S is defined by the	e rectangle $ x \leq a$,	$ y \leq b$, then the fu	nction			
f(x, y) = xsiny + yco	$f(x, y) = x \sin y + y \cos x$ satisfies Lipschitz's condition with Lipschitz's constant is					
A) a	B) a - 1	C) a + 1	D) b			
10) If S is defined by the	the rectangle $ x \leq 1$	$ y \leq 1$, then Lips	chitz's constant is			
for the function f(x.	$(\mathbf{y}) = \mathbf{x}\mathbf{y}^2.$					
A) 1	B) 2 ARAPICI	C) 3	D) 4			
11) If S is defined by the	he rectangle $ x \leq a$	$ y \le b$, then Lips	chitz's constant is			
for the function f(x	$\mathbf{y} = \mathbf{x}^2 + \mathbf{y}^2.$	साहेब कर	1201			
A) b	B) a	C) 2b	D) 2a			
12) Uniqueness and ex	istence is for t	the initial value prob	blem $\frac{dy}{dx} = y^{1/3}$ with $y(0) = 0$.			
A) applicable	E Constant	B) not applicable	31			
C) may or may n	ot app <mark>licable</mark>	D) None of these	1			
13) If $a_0(x)$, $a_1(x)$ and a	$_2(\mathbf{x})$ are continuous	on an interval (a, b)) and $a_0(x) \neq 0 \forall x \in (a, b)$,			
then an equation a_0	$(\mathbf{x})\mathbf{y}''(\mathbf{x}) + \mathbf{a}_1(\mathbf{x})\mathbf{y}'(\mathbf{x})$	$+a_2(x)y(x) = 0$ is cal	ılled			
A) a second orde	er linear differential	equation	3			
B) a first order li	near differential eq	uation	2			
C) a third order l	inear differential ec	Juation	8			
D) None of these	ter star	240				
14) The Wronskian of	$y_1(x)$ and $y_2(x)$ is defined as $y_1(x) = 0$	enoted by $W(y_1, y_2)$	and is defined as			
A) $\begin{vmatrix} y_1 & y_1' \\ y_2' & y_2 \end{vmatrix}$	B) $\begin{vmatrix} y_1' & y_1' \\ y_2' & y_2 \end{vmatrix}$	C) $\begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$	D) None of these			
15) The Wronskian of three functions $y_1(x)$, $y_2(x)$ and $y_3(x)$ is $W(x) = \dots$						
A) $\begin{vmatrix} y_1 & y_2 & y_1 \\ y_1 & y_2' & y_1 \\ y_1'' & y_2'' & y_2'' \end{vmatrix}$	$\begin{bmatrix} 3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\binom{3}{2}$ D) None of these			
16) Two solutions $y_1(x)$) and $y_2(x)$ of $a_0(x)y_2(x)$	$y''(x) + a_1(x)y'(x) + a_2$	$a_{2}(x)y(x) = 0, a_{0}(x) \neq 0$			
$\forall x \in (a, b)$, are linearly dependent if and only if their Wronskian is						
A) zero	B) non zero	C) 1	D) None of these			
17) Two non zero functions $f_1(x)$ and $f_2(x)$ are linearly dependent iff their Wronskian is						
A) zero	B) non zero	C) 1	D) None of these			

18) Two solutions	$y_1(x)$ and $y_2(x)$ of	$a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y'(x) +$	$\mathbf{x})\mathbf{y}(\mathbf{x}) = 0, \mathbf{a}_0(\mathbf{x}) \neq 0$			
$\forall x \in (a, b), are$	e linearly indepen	dent if and only if their Wr	onskian is			
A) zero	B) 1	C) non zero	D) None of these			
19) Two non zero	functions $f_1(x)$ and	d $f_2(x)$ of differential equation	on are linearly			
independent if	f their Wronskian	is				
A) non zero	B) zero	C) non vanishing	D) None of these			
20) The Wronskian	n of e^{-x} and e^x is					
A) 1	B) 2	C) 3	D) None of these			
21) The functions	e^{-x} and e^{x} are	त्यदी,पिपळनेर ता क				
A) Linearly	dependent	B) Linearly dependent an	nd Linearly independent			
C) Linearly	independent	D) None of these	· 8.			
22) The Wronskian	n of sinx and cosx	is	NO A.			
A) -1	B) 0	C) 1	D) None of these			
23) The functions	sinx and cosx are	153				
A) Linearly	A) Linearly dependent B) Linearly dependent and Linearly independer					
C) Linearly independent D) None of these						
24) The Wronskian	n of cosx <mark>and</mark> sinx	is	a			
A) -1	B) 0	C) 1	D) None of these			
25) The functions	cosx and sinx are	min upt and pr	3			
A) Linearly independent		B) Linearly dependent and	nd Linearly independent			
C) Linearly	dependent	D) None of these				
26) The Wronskian	n of sin2x and cos	2x is				
A) -2	B) 0	C) 2	D) None of these			
27) The functions sin2x and cos2x are						
A) Linearly dependent (B) Linearly dependent and Linearly independent						
C) Linearly	independent	D) None of these				
28) The Wronskian	1 of $\sin 3x$ and $\cos x$	3x 1s				
A) 0	B) 3	C) -3	D) None of these			
29) The functions sin3x and cos3x are						
A) Linearly	dependent	B) Linearly dependent an	nd Linearly independent			
C) Linearly independent D) None of these						
$\lambda $ Δ	$\mathbf{D} 1$	$y_1 = \sin x$ and $y_2 = \sin x - co$	D $\cos^2 x$			
A) U 21) The functions	$\mathbf{D} \mathbf{I} = \mathbf{D} \mathbf{I}$		D) COS X			
$y_1 - s_1 x_1 - s_1 x_1 x_1 x_2 - s_1 x_1 - c_0 s_1 x_1 c_1 \dots c_0 s_1 x_1 \dots c_0 s_1 \dots c_0 s_$						

MTH-402(A): DIFFERENTIAL EQUATIONS A) Linearly dependent B) Linearly dependent and Linearly independent C) Linearly independent D) None of these 32) The Wronskian of the functions $y_1 = e^x \cos x$ and $y_2 = e^x \sin x$ is A) e^{2x} B) e^{x} **C**) 1 D) 0 33) The functions $e^x \cos x$ and $e^x \sin x$ are A) Linearly independent B) Linearly dependent and Linearly independent D) None of these C) Linearly dependent 34) The Wronskian of $e^{2x}\cos 3x$ and $e^{2x}\sin 3x$ is C) $3e^{2x}$ D) $2e^{3x}$ A) $3e^{4x}$ B) 0 C) $3e^{2x}$ 35) The functions $e^{2x}\cos 3x$ and $e^{2x}\sin 3x$ are A) $3e^{4x}$ B) 0 A) Linearly dependent B) Linearly dependent and Linearly independent D) None of these C) Linearly independent 36) The Wronskian of $e^{ax} \cos bx$ and $e^{ax} \sin bx$ ($b \neq 0$) is C) be^{2ax} A) ae^{2ax} D) 2be^{ax} B) 0 37) The functions $e^{ax} cosbx$ and $e^{ax} sinbx$ (b \neq 0) are A) Linearly dependent B) Linearly dependent and Linearly independent C) Linearly independent D) None of these 38) The Wronskian of e^{2x} and e^{3x} is A) e^{2x} B) e^{3x} C) e^{5x} D) e^{6x} 39) The functions e^{2x} and e^{3x} are A) Linearly dependent B) Linearly dependent and Linearly independent C) Linearly independent D) None of these 40) The Wronskian of the functions x^2 and $x^2 \log x$ is A) logx B) x^2 C) x^3 D) None of these 41) The functions x^2 and $x^2 \log x$ are A) Linearly independent B) Linearly dependent and Linearly independent C) Linearly dependent D) None of these 42) The Wronskian of the functions 1, x, x^2 is A) 0 **B**) 1 C) 2 D) None of these 43) The functions 1, x, x^2 are A) Linearly dependent B) Linearly dependent and Linearly independent C) Linearly independent D) None of these 44) The Wronskian of the functions 1, x^2 , x^3 is C) $6x^{3}$ A) 0 B) $6x^2$ D) None of these 45) The functions 1. x^2 , x^3 are

A) Linearly independent	B) Linearly dependent and Linearly independent			
C) Linearly dependent	D) None of these			
46) The Wronskian of the functions x	$, x^{2}, x^{3}$ is			
A) 0 B) $2x^3$	C) 2x	D) None of these		
47) The functions x, x^2 , x^3 are				
A) Linearly dependent	B) dependent			
C) Linearly independent	D) None of these			
48) The functions x^2 , e^x , e^{-x} are linear	$y \dots if x = \pm \sqrt{2}$			
A) independent	B) not dependent			
C) dependent	D) None of these			
49) The functions x^2 , e^x , e^{-x} are linear	ly if x ≠ $\pm \sqrt{2}$			
A) independent	B) dependent and independent			
C) dependent	D) None of these	AX I		
50) The Wronskian of the functions 1	$+x, x^{2}, 1+2x \text{ is } \dots$	2 2 2		
A) 0 B) -2	C) 2	D) None of these		
51) The functions $1+x$, x^2 , $1+2x$ are li	nearly	3		
A) independent	B) dependent and indepe	ndent		
C) dependent	D) None of these			
52) The Wronskian of the functions x	$x^{2}-x+1$, $x^{2}-1$, $3x^{2}-x-1$ is			
A) 0 B) -2	C) 2	D) None of these		
53) The functions x^2-x+1 , x^2-1 , $3x^2-x$	-1 are linearly	3		
A) independent	B) dependent and indepe	ndent		
C) dependent	D) None of these			
54) In a method of variation of param	eters, A and B are so chose	en such that C.F.		
y = Au+Bv becomes G.S. of given	n differential equation is .			
A) $A \frac{du}{du} + B \frac{dv}{du} = 0$ B) $u \frac{dA}{du} + v$	$\frac{dB}{du} = 0$ C) $u \frac{dA}{du} + v \frac{dB}{du} \neq 0$	D) None of these		
$\begin{array}{c} ax & ax \\ ax & ax \end{array}$	axnnicax ichaxi q	MORT		
55) C.F. of $\frac{dx^2}{dx^2} + d^2y = \operatorname{cosec}(ax)$ is y	y =			
A) $c_1 e^{ax} + c_2 e^{-ax}$	B) Acosec(ax)+Bsec(ax)			
C) $Acos(ax)+Bsin(ax)$	D) None of these			
56) C.F. of $y'' + a^2 y = \sec(ax)$ is $y = a^{2x}$				
A) $c_1 e^{ax} + c_2 e^{-ax}$	B) Acosec(ax)+Bsec(ax)			
C) $Acos(ax)+Bsin(ax)$	D) None of these			
57) C.F. of $\frac{a^2 y}{dx^2} + a^2 y = \sin(ax)$ is $y = \dots$				
A) $c_1 e^{ax} + c_2 e^{-ax}$	B) Acosec(ax)+Bsec(ax)			
C) Acos(ax)+Bsin(ax)	D) None of these			

58) C.F. of $y'' + 4y = 4\tan 2x$ is $y = \dots$ A) $c_1 e^{2x} + c_2 e^{-2x}$ B) Acosec2x + Bsec2xC) Acos2x + Bsin2xD) None of these 59) C.F. of $y'' + 9y = \sec 3x$ is $y = \dots$ A) $c_1 e^{3x} + c_2 e^{-3x}$ B) Acosec3x + Bsec3xC) $A\cos 3x + B\sin 3x$ D) None of these 60) C.F. of y'' + y - x = 0 is $y = \dots$ A) Acosx + Bsinx B) Acosecx + Bsecx C) $c_1e^x + c_2e^{-x}$ D) None of these 61) C.F. of $y''-y = e^{2x}$ is $y = \dots$ B) $c_1 + c_2 e^x$ C) $c_1 e^x + c_2 e^{-x}$ A) Acosx + Bsinx D) None of these 62) C.F. of $\frac{d^2y}{dx^2} - y = \frac{2}{1+e^x}$ is $y = \dots$ B) $c_1 e^x + c_2 e^{-x}$ C) $c_1 e^x + c_2$ D) None of these A) $A\cos x + B\sin x$ 63) C.F. of $y''-2y' = e^x \sin x$ is $y = \dots$ A) $A\cos 2x + B\sin 2x$ B) $c_1 + c_2e^{2x}$ C) $c_1e^x + c_2e^{-x}$ D) None of these 64) C.F. of y''-3y' + 2y = 2 is $y = \dots$ A) $c_1e^x + c_2e^{2x}$ B) $c_1 + c_2e^{2x}$ C) Acos2x + Bsin2x D) None of these 65) C.F. of y"+ $k^2y = coskx$ is y =B) $c_1 + c_2 e^{kx}$ C) $c_1 e^{kx} + c_2 e^{-kx}$ A) Acoskx + Bsinkx D) None of these

UNIT-2: SIMULTANEOUS DIFFERENTIAL EQUATIONS

Simultaneous Linear Differential Equation of First Order: The general form of a set of simultaneous linear differential equation of first order of three variables x, y, z is $P_1dx + Q_1dy + R_1dz = 0$ and $P_2dx + Q_2dy + R_2dz = 0$

where P_1 , Q_1 , R_1 and P_2 , Q_2 , R_2 are functions of x, y, z.

Simultaneous Differential Equation: If P, Q, R are the functions of x, y, z, then

differential equation of the form $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$ is called simultaneous differential equation of first order.

Methods of Solving Simultaneous Differential Equation:

Rule-I(A) Method of Combinations:

By taking any two pairs of the three ratios of $\frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R}$ in which third variable is absent or cancelled. Integrating and taking product of these solutions, we get G.S. of given equation.

Ex.: Solve $\frac{dx}{zy} = \frac{dy}{zx} = \frac{dz}{xy}$ Solution: Let $\frac{dx}{zy} = \frac{dy}{zx} = \frac{dz}{xy}$ (i) be the given simultaneous differential equation. Taking first two ratios of (i), we have $\frac{dx}{zy} = \frac{dy}{zx} \Rightarrow \frac{dx}{y} = \frac{dy}{x} \Rightarrow xdx = ydy \Rightarrow 2xdx - 2ydy = 0$ Integrating, we get, $x^2 - y^2 = c_1$ i.e. $x^2 - y^2 - c_1 = 0$ (ii) Now taking first and third ratios of (i), we have $\frac{dx}{zy} = \frac{dz}{xy} \Rightarrow \frac{dx}{z} = \frac{dz}{x} \Rightarrow xdx = zdz \Rightarrow 2xdx - 2zdz = 0$ Integrating, we get, $x^2 - z^2 = c_2$ i.e. $x^2 - z^2 - c_2 = 0$ (iii) \therefore By (ii) and (iii), $(x^2 - y^2 - c_1)(x^2 - z^2 - c_2) = 0.$

be the required general solution of given equation.

Ex.: Solve $\frac{dx}{z^2} = \frac{ydy}{z^2} = \frac{dz}{zy}$ Solution: Let $\frac{dx}{z^2} = \frac{ydy}{xz^2} = \frac{dz}{xy}$ (i) be the given simultaneous differential equation. Taking first two ratios of (i), we have $\frac{dx}{dx^2} = \frac{ydy}{xdx^2} \Longrightarrow xdx = ydy \Longrightarrow 2xdx - 2ydy = 0$ Integrating, we get, $x^{2} - y^{2} = c_{1}$ i.e. $x^{2} - y^{2} - c_{1} = 0$ (ii) Now taking second and third ratios of (i), we have $\frac{ydy}{rz^2} = \frac{dz}{ry} \Longrightarrow y^2 dy = z^2 dz \Longrightarrow 3y^2 dy - 3z^2 dz = 0$ Integrating, we get, $v^3 - z^3 = c_2$ i.e. $v^3 - z^3 - c_2 = 0$ (iii) \therefore By (ii) and (iii), $(x^2 - y^2 - c_1)(y^3 - z^3 - c_2) = 0$ be the required general solution of given equation. **Ex.:** Solve $\frac{xdx}{y^2z} = \frac{dy}{zx} = \frac{dz}{y^2}$ Solution: Let $\frac{xdx}{y^2z} = \frac{dy}{zx} = \frac{dz}{y^2}$ (i) be the given simultaneous differential equation. Taking first two ratios of (i), we have $\frac{xdx}{y^2 z} = \frac{dy}{zx} \Longrightarrow x^2 dx = y^2 dy \Longrightarrow 3x^2 dx - 3y^2 dy = 0$ Integrating, we get, $x^{3} - y^{3} = c_{1}$ i.e. $x^{3} - y^{3} - c_{1} = 0$ (ii) Now taking first and third ratios of (i), we have $\frac{xdx}{y^2z} = \frac{dz}{y^2} \Longrightarrow xdx = zdz \Longrightarrow 2xdx - 2zdz = 0$ Integrating, we get, $x^{2} - z^{2} = c_{2}$ i.e. $x^{2} - z^{2} - c_{2} = 0$ (iii) \therefore By (ii) and (iii). $(x^{3} - y^{3} - c_{1})(x^{2} - z^{2} - c_{2}) = 0$ be the required general solution of given equation.

Ex.: Solve $\frac{dx}{dt} = \frac{dy}{dt} = \frac{dz}{dt}$ Solution: Let $\frac{dx}{0} = \frac{dy}{-z} = \frac{dz}{y}$ (i) be the given simultaneous differential equation. Taking first two ratios of (i), we have $\frac{dx}{dx} = \frac{dy}{dx} \Longrightarrow dx = 0$ Integrating, we get, $x = c_1$ i.e. $x - c_1 = 0$ (ii) Now taking second and third ratios of (i), we have $\frac{dy}{-z} = \frac{dz}{v} \Longrightarrow ydy = -zdz \Longrightarrow 2ydy + 2zdz = 0$ Integrating, we get, $y^2 + z^2 = c_2$ i.e. $y^2 + z^2 - c_2 = 0$ (iii) \therefore By (ii) and (iii), $(x - c_1)(y^2 + z^2 - c_2) = 0$ be the required general solution of given equation. **Ex.:** Solve $\frac{dx}{z} = \frac{dy}{0} = \frac{dz}{-x}$ Solution: Let $\frac{dx}{z} = \frac{dy}{0} = \frac{dz}{-x}$ (i) be the given simultaneous differential equation. Taking first two ratios of (i), we have $\frac{dx}{z} = \frac{dy}{0} \Longrightarrow dy = 0$ Integrating, we get, $y = c_1$ i.e. $y - c_1 = 0$ (ii) PRITE REF (inclusion) Now taking first and third ratios of (i), we have $\frac{dx}{z} = \frac{dz}{-x} \Longrightarrow xdx = -zdz \Longrightarrow 2xdx + 2zdz = 0$ Integrating, we get, $x^{2} + z^{2} = c_{2}$ i.e. $x^{2} + z^{2} - c_{2} = 0$ (iii) \therefore By (ii) and (iii). $(y - c_1)(x^2 + z^2 - c_2) = 0$

be the required general solution of given equation.

Ex.: Solve $\frac{dx}{-x} = \frac{dy}{0} = \frac{dz}{z}$ (Oct.2019)Solution: Let $\frac{dx}{-x} = \frac{dy}{0} = \frac{dz}{z}$ (i) be the given simultaneous differential equation. Taking first two ratios of (i), we have $\frac{dx}{-x} = \frac{dy}{0} \Longrightarrow dy = 0$ Integrating, we get, $y = c_1$ i.e. $y - c_1 = 0$ (ii) Now taking first and third ratios of (i), we have $\frac{dx}{-x} = \frac{dz}{z} \Longrightarrow \frac{dx}{x} = -\frac{dz}{z} \Longrightarrow \frac{dx}{x} + \frac{dz}{z} = 0$ Integrating, we get, $log x + log z = log c_2$ i.e. $xz = c_2$ i.e. $xz - c_2 = 0$ (iii) \therefore By (ii) and (iii), $(y - c_1)(xz - c_2) = 0$ be the required general solution of given equation. **Ex.:** Solve $\frac{dx}{x^2z} = \frac{dy}{0} = \frac{dz}{-x^2}$ Solution: Let $\frac{dx}{x^2z} = \frac{dy}{0} = \frac{dz}{-x^2}$(i) be the given simultaneous differential equation. Taking first two ratios of (i), we have $\frac{dx}{x^2z} = \frac{dy}{0} \Longrightarrow dy = 0$ Integrating, we get, $y = c_1$ i.e. $y - c_1 = 0$ (ii) $x_1 = 0$ Now taking first and third ratios of (i), we have $\frac{dx}{r^2 z} = \frac{dz}{-r^2} \Longrightarrow dx = -zdz \Longrightarrow 2dx + 2zdz = 0$ Integrating, we get, $2x + z^2 = c_2$ i.e. $2x + z^2 - c_2 = 0$ (iii) \therefore By (ii) and (iii). $(y - c_1)(2x + z^2 - c_2) = 0$

be the required general solution of given equation.

Ex.: Solve $\frac{dx}{y} = \frac{dy}{-x} = \frac{dz}{0}$ Solution: Let $\frac{dx}{y} = \frac{dy}{-x} = \frac{dz}{0}$ (i) be the given simultaneous differential equation. Taking first two ratios of (i), we have $\frac{dx}{y} = \frac{dy}{-x} \Longrightarrow xdx = -ydy \Longrightarrow 2xdx + 2ydy = 0$ Integrating, we get, $x^{2} + y^{2} = c_{1}$ i.e. $x^{2} + y^{2} - c_{1} = 0$ (ii) Now taking first and third ratios of (i), we have $\frac{dx}{y} = \frac{dz}{0} \Longrightarrow dz = 0$ Integrating, we get, $z = c_2$ i.e. $z - c_2 = 0$ (iii) \therefore By (ii) and (iii), $(x^{2} + y^{2} - c_{1})(z - c_{2}) = 0$ be the required general solution of given equation. **Ex.:** Solve $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$ Solution: Let $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$ (i) be the given simultaneous differential equation. Taking first two ratios of (i), we have $\frac{dx}{r} = \frac{dy}{y}$ Integrating, we get, $\log x = \log y + \log c_1$ i.e. $x = c_1 y$ i.e. $x - c_1 y = 0$ (ii) Now taking first and third ratios of (i), we have $\frac{dx}{x} = \frac{dz}{z}$ Integrating, we get, $\log x = \log z + \log c_2$ i.e. $x = c_2 z$ i.e. $x - c_2 z = 0$ (iii) \therefore By (ii) and (iii), $(x - c_1 y)(x - c_2 z) = 0$ be the required general solution of given equation.

Ex.: Solve dx = dy = dz**Solution:** Let dx = dy = dz (i) be the given simultaneous differential equation. Taking first two ratios of (i), we have dx = dyIntegrating, we get, $x = y + c_1$ i.e. $x - y - c_1 = 0$ (ii) Now taking first and third ratios of (i), we have dx = dzIntegrating, we get, $x = z + c_2$ i.e. $x - z - c_2 = 0$ (iii) \therefore By (ii) and (iii), $(x - y - c_1)(x - z - c_2) = 0$ be the required general solution of given equation. **Ex.:** Solve dx = dy = cosecx dzSolution: Let dx = dy = cosecx dz (i) be the given simultaneous differential equation. Taking first two ratios of (i), we have dx = dyIntegrating, we get, $x = y + c_1$ i.e. $x - y - c_1 = 0$ (ii) Now taking first and third ratios of (i), we have $dx = cosecx dz \Rightarrow dz = sinx dx \Rightarrow dz - sinx dx = 0$ Integrating, we get, $z + \cos x = c_2$ i.e. $z + \cos x - c_2 = 0$ (iii) and and \therefore By (ii) and (iii), $(x - y - c_1)(z + \cos x - c_2) = 0$ be the required general solution of given equation.

Ex.: Solve dx = dy = tanx dz

Solution: Let dx = dy = tanx dz (i) be the given simultaneous differential equation. Taking first two ratios of (i), we have (Oct.2019)

dx = dy

Integrating, we get,

 $x = y + c_1$ i.e. $x - y - c_1 = 0$ (ii)

Now taking first and third ratios of (i), we have

 $dx = tanx dz \Longrightarrow dz = \cot x dx$

Integrating, we get,

 $z = logsinx + c_2$ i.e. $z - logsinx - c_2 = 0$ (iii)

∴ By (ii) and (iii),

 $(x - y - c_1)(z - \log \sin x - c_2) = 0$

be the required general solution of given equation.

<u>Ex.</u> Solve $\frac{dx}{tanx} = \frac{dy}{tany} = \frac{dz}{tanz}$

Solution: Let
$$\frac{dx}{tanx} = \frac{dy}{tany} = \frac{dz}{tanz}$$
...(i)
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
 $\frac{dx}{tanx} = \frac{dy}{tany} \Rightarrow \cot x dx = \cot y dy$
Integrating, we get,
logsinx = logsiny + logc₁
i.e. sinx = c₁siny i.e. sinx - c₁siny = 0..... (ii)
Now taking first and third ratios of (i), we have
 $\frac{dx}{tanx} = \frac{dz}{tanz} \Rightarrow \cot x dx = \cot z dz$ for the domain uncertainty
Integrating, we get,
logsinx = logsinz + logc₂
i.e. sinx = c₂sinz i.e. sinx - c₂sinz = 0 (iii)
 \therefore By (ii) and (iii),
(sinx - c₁siny)(sinx - c₂sinz) = 0

be the required general solution of given equation.

Ex.: Solve $\frac{dx}{cotx} = \frac{dy}{coty} = \frac{dz}{cotz}$ **Solution:** Let $\frac{dx}{cotx} = \frac{dy}{coty} = \frac{dz}{cotz} \dots (i)$ be the given simultaneous differential equation. Taking first two ratios of (i), we have $\frac{dx}{cotx} = \frac{dy}{coty} \Longrightarrow tanxdx = tanydy$ Integrating, we get, $logsecx = logsecy + logc_1$ i.e. $\sec x = c_1 \sec y$ i.e. $\sec x - c_1 \sec y = 0$ (ii) Now taking first and third ratios of (i), we have $\frac{dx}{cotx} = \frac{dz}{cotz} \Longrightarrow tanxdx = tanzdz$ Integrating, we get, $logsecx = logsecz + logc_2$ i.e. $\sec x = c_2 \sec z$ i.e. $\sec x - c_2 \sec z = 0$ (iii) \therefore By (ii) and (iii). $(\text{secx} - c_1 \text{secy})(\text{secx} - c_2 \text{secz}) = 0$ be the required general solution of given equation. **Ex.:** Solve $\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{dz}{x^2y^2z^2}$ **Solution:** Let $\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{dz}{x^2y^2z^2}$ (i) be the given simultaneous differential equation. Taking first two ratios of (i), we have $\frac{dx}{y^2} = \frac{dy}{x^2} \Longrightarrow x^2 dx = y^2 dy \Longrightarrow 3x^2 dx - 3y^2 dy = 0$ Integrating, we get, $x^{3} - y^{3} = c_{1}$ i.e. $x^{3} - y^{3} - c_{1} = 0$ (ii) Now taking first and third ratios of (i), we have $\frac{dx}{v^2} = \frac{dz}{x^2 v^2 z^2} \Longrightarrow x^2 dx = z^{-2} dz \Longrightarrow 3x^2 dx - 3z^{-2} dz = 0$

Integrating, we get,

 $x^{3} + 3z^{-1} = c_{2}$ i.e. $x^{3} + \frac{3}{z} - c_{2} = 0$ (iii)

 \therefore By (ii) and (iii),

$$(x^{3}-y^{3}-c_{1})(x^{3}+\frac{3}{2}-c_{2})=0$$

be the required general solution of given equation.
Rule-I(B) Method of Combinations:

By taking one pair of ratios of $\frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R}$ in which third variable is absent or cancelled, solving it we get one solution and using this solution we eliminate third variable from another pair of ratios and solve it which contain two constants c_1 and c_2 . In this solution put the value of first constant c_1 , we get G.S. of given simultaneous differential equation.

Ex.: Solve
$$\frac{dx}{x+z} = \frac{dy}{y} = \frac{dz}{z+y^2}$$

Solution: Let $\frac{dx}{x+z} = \frac{dy}{y} = \frac{dz}{z+y^2}$ (i)
be the given simultaneous differential equation.
Taking second and third ratios of (i) in which third variable x is absent, we have
 $\frac{dy}{y} = \frac{dz}{z+y^2} \Rightarrow zdy + y^2dy = ydz \Rightarrow y^2dy = ydz - zdy$
 $\Rightarrow dy = \frac{ydz-zdy}{y^2} \Rightarrow dy = d(\frac{z}{y}) \Rightarrow d(\frac{z}{y}) = dy$
Integrating, we get,
 $\frac{z}{y} = y + c_1$ i.e. $z = y^2 + c_1 y$ (ii)
Now taking first and second ratios of (i), we have
 $\frac{dx}{x+z} = \frac{dy}{y} \Rightarrow \frac{dx}{x+y^2+c_1y} = \frac{dy}{y}$ by (ii)
 $\Rightarrow ydx = xdy+y^2dy + c_1ydy$
 $\Rightarrow ydx - xdy = y^2dy + c_1ydy \Rightarrow \frac{ydx-xdy}{y^2} = dy + \frac{c_1}{y} dy$
Integrating, we get,
 $\frac{x}{y} = y + c_1 logy + c_2$
i.e. $x = y^2 + (z - y^2)logy + c_2y$ by (ii)
be the required general solution of given equation.

Ex.: Solve $\frac{dx}{xy} = \frac{dy}{y^2} = \frac{dz}{zxy-2x^2}$ (Oct.2019)**Solution:** Let $\frac{dx}{xy} = \frac{dy}{y^2} = \frac{dz}{zxy-2x^2}$ (i) be the given simultaneous differential equation. Taking first and second ratios of (i) in which third variable z is absent, we have $\frac{dx}{xy} = \frac{dy}{y^2} \Longrightarrow \frac{dx}{x} = \frac{dy}{y}$ Integrating, we get, $log x = log y + log c_1$ i.e. $x = c_1 y \dots$ (ii) Now taking second and third ratios of (i), we have $\frac{dy}{y^2} = \frac{dz}{zxy - 2x^2} \Longrightarrow \frac{dy}{y^2} = \frac{dz}{c_1 z y^2 - 2c_1^2 y^2} \quad \text{by (ii)}$ $\Rightarrow dy = \frac{dz}{c_1(z-2c_1)}$ Integrating, we get, $y = \frac{1}{c_1} \log(z - 2c_1) + c_2$ i.e. $y = \frac{y}{x} \log(z - 2\frac{x}{y}) + c_2$ by (ii) i.e. $xy = y\log(\frac{yz-2x}{y}) + c_2x$ be the required general solution of given equation. **Ex.:** Solve $\frac{dx}{ry} = \frac{dy}{y^2} = \frac{dz}{ryz - zr^2}$ Solution: Let $\frac{dx}{xy} = \frac{dy}{y^2} = \frac{dz}{xyz - zx^2}$ (i) be the given simultaneous differential equation. Taking first and second ratios of (i) in which third variable z is absent, we have $\frac{dx}{xy} = \frac{dy}{y^2} \Rightarrow \frac{dx}{x} = \frac{dy}{y}$ with replaced Refer length which in the Integrating, we get, $log x = log y + log c_1$ i.e. $x = c_1 y \dots$ (ii)

Now taking second and third ratios of (i), we have
$$dz = dz$$

$$\frac{dy}{y^2} = \frac{dz}{xyz - zx^2} \Longrightarrow \frac{dy}{y^2} = \frac{dz}{c_1 y^2 z - z c_1^2 y^2} \quad \text{by (ii)}$$
$$\implies dy = \frac{dz}{(c_1 - c_1^2)z}$$
Integrating, we get,
$$y = \frac{1}{(c_1 - c_1^2)} \log z + c_2$$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 10

i.e.
$$y = \frac{1}{\left[\frac{x}{y} - \left(\frac{x}{y}\right)^{2}\right]} \log z + c_{2}$$
 by (ii)
i.e. $y = \frac{y^{2}}{(xy - x^{2})} \log z + c_{2}$

be the required general solution of given equation.

Ex.: Solve $\frac{dx}{1} = \frac{dy}{3} = \frac{dz}{5z + \tan(y - 3x)}$ **Solution:** Let $\frac{dx}{1} = \frac{dy}{3} = \frac{dz}{5z + \tan(y - 3x)}$ (i) be the given simultaneous differential equation. Taking first and second ratios of (i) in which third variable z is absent, we have $\frac{dx}{1} = \frac{dy}{2} \Longrightarrow dy = 3dx$ Integrating, we get, $y = 3x + c_1 i.e. y - 3x = c_1 \dots$ (ii) Now taking first and third ratios of (i), we have $\frac{dx}{1} = \frac{dz}{5z + \tan(y - 3x)} \Longrightarrow dx = \frac{dz}{5z + \tan(z - 1)}$ by (ii) Integrating, we get, $x = \frac{1}{r} \log(5z + tanc_1) + c_2$ i.e. $5x = \log[5z + \tan(y - 3x)] + 5c_2$ by (ii) be the required general solution of given equation. **Ex.:** Solve $\frac{dx}{y} = \frac{dy}{x} = \frac{dz}{xyz^2(x^2-y^2)}$

Solution: Let
$$\frac{dx}{y} = \frac{dy}{x} = \frac{dz}{xyz^2(x^2-y^2)}$$
..... (i)
be the given simultaneous differential equation.

Taking first and second ratios of (i) in which third variable z is absent, we have $\frac{dx}{y} = \frac{dy}{x} \Longrightarrow xdx = ydy \Longrightarrow 2xdx - 2ydy = 0$ Integrating, we get, $x^2 - y^2 = c_1 \dots$ (ii) Now taking first and third ratios of (i), we have

$$\frac{dx}{y} = \frac{dz}{xyz^2(x^2 - y^2)} \Longrightarrow xdx = \frac{dz}{c_1 z^2} \qquad \text{by (ii)}$$

Integrating, we get,

$$\frac{x^2}{2} = -\frac{1}{c_1 z} + c_2$$

i.e. $\frac{x^2}{2} = -\frac{1}{z(x^2 - y^2)} + c_2$ by (ii)

be the required general solution of given equation.

Ex.: Solve
$$\frac{dx}{z} = \frac{dy}{-z} = \frac{dz}{z^2 + (x+y)^2}$$

Solution: Let $\frac{dx}{z} = \frac{dy}{-z} = \frac{dz}{z^2 + (x+y)^2}$ (i)
be the given simultaneous differential equation.
Taking first and second ratios of (i) in which third variable z is absent, we have
 $\frac{dx}{z} = \frac{dy}{-z} \Rightarrow dx = -dy \Rightarrow dx + dy = 0$
Integrating, we get,
 $x + y = c_1 \dots$ (ii)
Now taking first and third ratios of (i), we have
 $\frac{dx}{z} = \frac{dz}{z^2 + (x+y)^2} \Rightarrow 2dx = \frac{2zdz}{z^2 + c_1^2}$ by (ii)
Integrating, we get,
 $2x = \log[z^2 + c_1^2) + c_2$
i.e. $2x = \log[z^2 + (x + y)^2] + c_2$ by (ii)
be the required general solution of given equation.

Ex.: Solve
$$\frac{dx}{x+y} = \frac{dy}{x+y} = \frac{dz}{-x-y-2z}$$

Solution: Let $\frac{dx}{x+y} = \frac{dy}{x+y} = \frac{dz}{-x-y-2z}$

be the given simultaneous differential equation.

Taking first and second ratios of (i) in which third variable z is absent, we have $\frac{dx}{x+y} = \frac{dy}{x+y} \Longrightarrow dx = dy$ Integrating, we get,

(i)

 $x = y + c_1 \dots (ii)$ Now taking second and third ratios of (i), we have $\frac{dy}{x+v} = \frac{dz}{-x-v-2z} \Longrightarrow \frac{dy}{v+c_1+y} = \frac{dz}{-y-c_1-y-2z}$ by (ii) $\Longrightarrow \frac{dy}{2y+c_1} = \frac{dz}{-2y-c_1-2z}$ \Rightarrow -2ydy- $c_1 dy$ -2zdy = 2ydz+ $c_1 dz$ \Rightarrow 2ydy+ $c_1 dy$ +2zdy + 2ydz+ $c_1 dz = 0$ \Rightarrow dv²+c₁d(v + z)+2d(vz) = 0 Integrating, we get, $v^{2} + c_{1}(v + z) + 2vz = c_{2}$ i.e. $v^2 + (x - y)(y + z) + 2vz = c_2$ by (ii) be the required general solution of given equation. **Rule-II: Method of Multipliers:** Let $\frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R} \dots$ (i) be the given simultaneous differential equation. If possible there exists a multipliers l, m, n which are functions of x or constants such that lP+mQ+nR = 0, then $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} = \frac{ldx+mdy+ndz}{lP+mQ+nR}$ Now $lP+mQ+nR = 0 \implies ldx + mdy + ndz = 0$ Integrating we get a solution say $\phi(x, y, z) = c_1$ i.e. $\phi(x, y, z) - c_1 = 0$... (ii) Again choose multipliers l_1 , m_1 , n_1 which are functions of x or constants such that $l_1 P + m_1 Q + n_1 R = 0$ then $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} = \frac{l_1 dx + m_1 dy + n_1 dz}{l_1 P + m_1 Q + n_1 R}$ and $l_1 P + m_1 Q + n_1 R = 0 \implies l_1 dx + m_1 dy + n_1 dz = 0$ Integrating we get a solution say $\Psi(x, y, z) = c_2$ i.e. $\Psi(x, y, z) - c_2 = 0$... (iii) By (ii) and (iii), the G.S. of (i) is $[\emptyset(x, y, z) - c_1][\psi(x, y, z) - c] = 0$

Ex.: Solve $\frac{dx}{z-y} = \frac{dy}{x-z} = \frac{dz}{y-x}$ Solution: Let $\frac{dx}{z-y} = \frac{dy}{x-z} = \frac{dz}{y-x}$ (i)

(Oct.2019)

be the given simultaneous differential equation.

Taking multipliers 1, 1, 1, we get,

Each Ratio of (i) = $\frac{dx+dy+dz}{z-v+x-z+v-x} = \frac{dx+dy+dz}{0}$ \Rightarrow dx + dv + dz = 0 Integrating, we get, $\mathbf{x} + \mathbf{y} + \mathbf{z} = \mathbf{c}_1$ i.e. $x + y + z - c_1 = 0$ (ii) Again by taking multipliers x, y, z, we get, Each Ratio of (i) = $\frac{xdx+ydy+zdz}{xz-xy+yx-yz+zy-zx} = \frac{xdx+ydy+zdz}{0}$ $\Rightarrow xdx + ydy + zdz = 0$ $\Rightarrow 2xdx + 2ydy + 2zdz = 0$ Integrating, we get, $x^{2} + y^{2} + z^{2} = c_{2}$ i.e. $x^2 + y^2 + z^2 - c_2 = 0$ (iii) By (ii) and (iii), $(x + y + z - c_1)(x^2 + y^2 + z^2 - c_2) = 0$ be the required general solution of given equation. **Ex.:** Solve $\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)}$ Solution: Let $\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)}$ (i) be the given simultaneous differential equation. Taking multipliers 1, 1, 1, we get, Each Ratio of (i) = $\frac{dx+dy+dz}{x(y-z)+y(z-x)+z(x-y)} = \frac{dx+dy+dz}{xy-xz+yz-yx+zx-zy} = \frac{dx+dy+dz}{0}$ \Rightarrow dx + dy + dz = 0 Integrating, we get, तमाणा तमाध्य रेपछित विज्वति मानवः। $x + y + z = c_1$ i.e. $x + y + z - c_1 = 0$ (ii) Again by taking multipliers $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$, we get, Each Ratio of (i) = $\frac{\frac{1}{x}dx + \frac{1}{y}dy + \frac{1}{z}dz}{(y-z) + (z-x) + (x-y)} = \frac{\frac{1}{x}dx + \frac{1}{y}dy + \frac{1}{z}dz}{0}$ $\Rightarrow \frac{1}{x}dx + \frac{1}{y}dy + \frac{1}{z}dz = 0$ Integrating, we get,

 $\log x + \log y + \log z = \log c_2$ i.e. $xyz = c_2$ i.e. $xyz - c_2 = 0$ (iii) By (ii) and (iii), $(x + y + z - c_1)(xyz - c_2) = 0$ be the required general solution of given equation. **Ex.:** Solve $\frac{dx}{x(y^2-z^2)} = \frac{dy}{-y(z^2+x^2)} = \frac{dz}{z(x^2+y^2)}$ Solution: Let $\frac{dx}{x(y^2-z^2)} = \frac{dy}{-y(z^2+x^2)} = \frac{dz}{z(x^2+y^2)}$ (i) be the given simultaneous differential equation. Taking multipliers x, y, z, we get, xdx+ydy+zdz \Rightarrow xdx + ydy + zdz = 0 \Rightarrow 2xdx + 2ydy + 2zdz = 0 Integrating, we get, $x^{2} + y^{2} + z^{2} = c_{1}$ i.e. $x^2 + y^2 + z^2 - c_1 = 0$ (ii) Again by taking multipliers $\frac{1}{x}$, $-\frac{1}{y}$, $-\frac{1}{z}$, we get, Each Ratio of (i) = $\frac{\frac{1}{x}dx - \frac{1}{y}dy - \frac{1}{z}dz}{y^2 - z^2 + z^2 + x^2 - y^2} = \frac{\frac{1}{x}dx - \frac{1}{y}dy - \frac{1}{z}dz}{0}$ $\Rightarrow \frac{1}{x}dx - \frac{1}{y}dy - \frac{1}{z}dz = 0 \Rightarrow \frac{1}{x}dx = \frac{1}{y}dy + \frac{1}{z}dz$ Integrating, we get, $\log x = \log y + \log z + \log c_2$ i.e. $x = c_2yz$ i.e. $x - c_2yz = 0$ (iii) By (ii) and (iii). $(x^{2} + y^{2} + z^{2} - c_{1})(x - c_{2}yz) = 0$

be the required general solution of given equation.

Ex.: Solve $\frac{dx}{x(y^2+z)} = \frac{dy}{-y(x^2+z)} = \frac{dz}{z(x^2-y^2)}$ Solution: Let $\frac{dx}{x(y^2+z)} = \frac{dy}{-y(x^2+z)} = \frac{dz}{z(x^2-y^2)}$ (i) be the given simultaneous differential equation. Taking multipliers x, y, -1, we get, Each Ratio of (i) = $\frac{xdx+ydy-dz}{x^2y^2+x^2z-y^2z^2-y^2z-zx^2+zy^2} = \frac{xdx+ydy-dz}{0}$ \Rightarrow xdx + ydy - dz = 0 $\Rightarrow 2xdx + 2ydy - 2dz = 0$ Integrating, we get, $x^{2} + y^{2} - 2z = c_{1}$ i.e. $x^2 + y^2 - 2z - c_1 = 0$ (ii) Again by taking multipliers $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$, we get, Each Ratio of (i) = $\frac{\frac{1}{x}dx + \frac{1}{y}dy + \frac{1}{z}dz}{y^2 + z - x^2 - z + x^2 - y^2} = \frac{\frac{1}{x}dx + \frac{1}{y}dy + \frac{1}{z}dz}{0}$ $\Rightarrow \frac{1}{x}dx + \frac{1}{y}dy + \frac{1}{z}dz = 0$ Integrating, we get, $\log x + \log y + \log z = \log c_2$ i.e. $xyz = c_2$ i.e. $xyz - c_2 = 0$ (iii) By (ii) and (iii), $(x^2 + y^2 - 2z - c_1)(xyz - c_2) = 0$ be the required general solution of given equation.

Ex.: Solve
$$\frac{yzdx}{y-z} = \frac{zxdy}{z-x} = \frac{xydz}{x-y}$$

Solution: Let $\frac{yzdx}{y-z} = \frac{zxdy}{z-x} = \frac{xydz}{x-y}$ (i)
be the given simultaneous differential equation.
Taking multipliers 1, 1, 1, we get,
Each Ratio of (i) = $\frac{yzdx+zxdy+xydz}{y-z+z-x+x-y} = \frac{d(xyz)}{0}$
 $\Rightarrow d(xyz) = 0$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 16

Integrating, we get, $xyz = c_1$ i.e. $xyz - c_1 = 0$ (ii) Again by taking multipliers x, y, z, we get, Each Ratio of (i) = $\frac{xyzdx + xyzdy + xyzdz}{xy - xz + yz - yx + zx - zy} = \frac{xyzd(x + y + z)}{0}$ $\Rightarrow xyzd(x + y + z) = 0$ $\Rightarrow d(x + y + z) = 0$ Integrating, we get, $x + y + z = c_2$ i.e. $x + y + z - c_2 = 0$...(iii) By (ii) and (iii), $(xyz - c_1)(x + y + z - c_2) = 0$ be the required general solution of given equation. **Ex.:** Solve $\frac{adx}{bc(y-z)} = \frac{bdy}{ca(z-x)} = \frac{cdz}{ab(x-y)}$ Solution: Let $\frac{adx}{bc(y-z)} = \frac{bdy}{ca(z-x)} = \frac{cdz}{ab(x-y)}$ (i) be the given simultaneous differential equation. Taking multipliers, a, b, c, we get, Each Ratio of (i) = $\frac{a^2 dx + b^2 dy + c^2 dz}{abc(y-z+z-x+x-y)} = \frac{a^2 dx + b^2 dy + c^2 dz}{0}$ $\Rightarrow a^2 dx + b^2 dy + c^2 dz = 0$ Integrating, we get, $a^{2}x + b^{2}y + c^{2}z = c_{1}^{4}$ i.e. $a^2x + b^2y + c^2z - c_1 = 0$ (ii) Again by taking multipliers ax, by, cz, we get, Each Ratio of (i) = $\frac{a^2 x dx + b^2 y dy + c^2 z dz}{a b c (xy - xz + yz - yx + zx - zy)} = \frac{a^2 x dx + b^2 y dy + c^2 z dz}{0}$ $\Rightarrow a^2 x dx + b^2 y dy + c^2 z dz = 0$ $\Rightarrow a^2 2x dx + b^2 2v dv + c^2 2z dz = 0$ Integrating, we get, $a^2x^2 + b^2y^2 + c^2z^2 = c_2$ i.e. $a^2x^2 + b^2y^2 + c^2z^2 - c_2 = 0$...(iii)

By (ii) and (iii), $(a^{2}x + b^{2}y + c^{2}z - c_{1})(a^{2}x^{2} + b^{2}y^{2} + c^{2}z^{2} - c_{2}) = 0$ be the required general solution of given equation. **<u>Ex.</u>**: Solve $\frac{adx}{yz(b-c)} = \frac{bdy}{zx(c-a)} = \frac{cdz}{xy(a-b)}$ **Solution:** Let $\frac{adx}{yz(b-c)} = \frac{bdy}{zx(c-a)} = \frac{cdz}{xy(a-b)}$ (i) be the given simultaneous differential equation. Taking multipliers x, y, z, we get, Each Ratio of (i) = $=\frac{axdx+bydy+czdz}{xyz(b-c+c-a+a-b)} = \frac{axdx+bydy+czdz}{0}$ $\Rightarrow axdx + bydy + czdz = 0$ \Rightarrow 2axdx + 2bydy + 2czdz = 0 Integrating, we get, $ax^2 + by^2 + cz^2 = c_1$ i.e. $ax^2 + by^2 + cz^2 - c_1 = 0$ (ii) Again by taking multipliers ax, by, cz, we get Each Ratio of (i) = = $\frac{a^2 x dx + b^2 y dy + c^2 z dz}{xyz(ab - ac + bc - ba + ca - cb)} = \frac{a^2 x dx + b^2 y dy + c^2 z dz}{0}$ $\Rightarrow a^2 x dx + b^2 y dy + c^2 z dz = 0$ $\Rightarrow a^2 2xdx + b^2 2ydy + c^2 2zdz = 0$ Integrating, we get, $a^{2}x^{2} + b^{2}y^{2} + c^{2}z^{2} = c_{2}$ i.e. $a^2x^2 + b^2y^2 + c^2z^2 - c_2 = 0$...(iii) By (ii) and (iii). $(ax^{2} + by^{2} + cz^{2} - c_{1})(a^{2}x^{2} + b^{2}y^{2} + c^{2}z^{2} - c_{2}) = 0$ be the required general solution of given equation.

Rule-III: Properties of Ratios:

Let $\frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R}$... (i) be the given simultaneous differential equation. If there does not exists a multipliers l, m, n such that lP+mQ+nR = 0, then choose the multipliers P₁, Q₁, R₁ and P₂, Q₂, R₂ such that d(P₁P+Q₁Q+R₁R) = P₁dx+Q₁dy+R₁dz and d(P₂P+Q₂Q+R₂R) = P₂dx+Q₂dy+R₂dz, then we have

 $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} = \frac{P_1 dx + Q_1 dy + R_1 dz}{P_1 P + Q_1 Q + R_1 R} = \frac{P_2 dx + Q_2 dy + R_2 dz}{P_2 P + Q_2 Q + R_2 R}$ Taking any two pairs of suitable ratios, we get solutions say $\emptyset(x, y, z) - c_1 = 0 \dots$ (ii) and $\psi(x, y, z) - c_2 = 0 \dots$ (iii) By (ii) and (iii), the G.S. of (i) is $[\emptyset(x, y, z) - c_1][\psi(x, y, z) - c_2] = 0$ **Ex.:** Solve $\frac{dx}{x^2 - y^2 - z^2} = \frac{dy}{2xy} = \frac{dz}{2xz}$ **Solution:** Let $\frac{dx}{x^2 - y^2 - z^2} = \frac{dy}{2xy} = \frac{dz}{2xz}$ (i) be the given simultaneous differential equation. Taking second and third ratios of (i), we have $\frac{dy}{2xy} = \frac{dz}{2xz} \Longrightarrow \frac{dy}{y} = \frac{dz}{z}$ Integrating, we get, $\log y = \log z + \log c_1$ i.e. $y = c_1 z$ i.e. $y - c_1 z = 0$ (ii) Now by taking multipliers x, y, z, we get, Each Ratio of (i) = $\frac{xdx+ydy+zdz}{x^3-xy^2-xz^2+2xy^2+2xz^2} = \frac{xdx+ydy+zdz}{x^3+xy^2+xz^2} = \frac{xdx+ydy+zdz}{x(x^2+y^2+z^2)}$ $\frac{dx}{x^2 - y^2 - z^2} = \frac{dy}{2xy} = \frac{dz}{2xz} = \frac{xdx + ydy + zdz}{x(x^2 + y^2 + z^2)} \dots \dots (iii)$ Taking second and fourth ratios of (iii), we have, $\frac{dy}{2xy} = \frac{xdx + ydy + zdz}{x(x^2 + y^2 + z^2)}$ $\Rightarrow \frac{dy}{y} = \frac{2xdx + 2ydy + 2zdz}{(x^2 + y^2 + z^2)}$ $\Rightarrow \frac{dy}{y} = \frac{d(x^2 + y^2 + z^2)}{(x^2 + y^2 + z^2)}$ Integrating, we get, $\log y = \log(x^2 + y^2 + z^2) + \log c_2$ i.e. $y = c_2 (x^2 + y^2 + z^2)$ i.e. $y - c_2 (x^2 + y^2 + z^2) = 0.....$ (iv) By (ii) and (iv), $(y - c_1 z)[y - c_2 (x^2 + y^2 + z^2)] = 0$ be the required general solution of given equation.

<u>Ex.</u>: Solve $\frac{dx}{z(x+y)} = \frac{dy}{z(x-y)} = \frac{dz}{x^2+y^2}$ Solution: Let $\frac{dx}{z(x+y)} = \frac{dy}{z(x-y)} = \frac{dz}{x^2+y^2}$ (i) be the given simultaneous differential equation. Taking first and second ratios of (i), we have $\frac{dx}{z(x+y)} = \frac{dy}{z(x-y)} \Longrightarrow \frac{dx}{(x+y)} = \frac{dy}{(x-y)}$ $\Rightarrow xdx - vdx = xdv + vdv$ $\Rightarrow xdx - ydx - xdy - ydy = 0$ $\Rightarrow 2xdx - 2ydx - 2xdy - 2ydy = 0$ $\Rightarrow d(x^2 - 2xy - y^2) = 0$ Integrating, we get, $x^2 - 2xy - y^2 = c_1$ i.e. $x^2 - 2xy - y^2 - c_1 = 0$ (ii) Now by taking multipliers x, -y, -z, we get, Each Ratio of (i) = $\frac{xdx-ydy-zdz}{x^2z+xyz-xyz+y^2z-zx^2-zy^2}$ xdx-ydy-zdz xdx - ydy - zdz = 0 \Rightarrow 2xdx - 2ydy - 2zdz = 0 \Rightarrow d($x^2 - y^2 - z^2$) = 0 Integrating, we get, $x^2 - v^2 - z^2 = c_2$ i.e. $x^2 - y^2 - z^2 - c_2 = 0$ (iii) By (ii) and (iii), $(x^2 - 2xy - y^2 - c_1)(x^2 - y^2 - z^2 - c_2) = 0$ be the required general solution of given equation.

Ex.: Solve
$$\frac{dx}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y}$$

Solution: Let $\frac{dx}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y}$ (i)
be the given simultaneous differential equation.
By taking multipliers 1, 1, 1, we get,
Each Ratio of (i) = $\frac{dx+dy+dz}{y+z+z+x+x+y}$
i.e. Each Ratio of (i) = $\frac{dx+dy+dz}{2x+2y+2z}$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 20

i.e. Each Ratio of (i) = $\frac{d(x+y+z)}{2(x+y+z)}$ Again by taking multipliers 1, -1, 0 and 0, 1, -1 we get, Each Ratio of (i) = $\frac{dx-dy+0}{y+z-z-x+0} = \frac{0+dy-dz}{0+z+x-x-y}$ i.e. Each Ratio of (i) = $\frac{dx - dy}{y - x} = \frac{dy - dz}{z - y}$ i.e. Each Ratio of (i) = $\frac{d(x+y+z)}{2(x+y+z)} = \frac{dx-dy}{y-x} = \frac{dx-dz}{z-x}$ Consider $\frac{dx-dy}{y-x} = \frac{dy-dz}{z-y}$ $\implies \frac{d(x-y)}{(x-y)} = \frac{d(y-z)}{(y-z)}$ Integrating, we get, $log(x-y) = log(y-z) + logc_2$ i.e. $(x-y) = c_1(y-z)$ i.e. $(x-y) - c_1(y-z) = 0$ (ii) Again consider $\frac{d(x+y+z)}{2(x+y+z)} = \frac{dx-dy}{y-x}$ $\Rightarrow \frac{d(x+y+z)}{(x+y+z)} = -2\frac{d(x-y)}{(x-y)}$ $\implies \frac{d(x+y+z)}{(x+y+z)} + 2\frac{d(x-y)}{(x-y)} = 0$ Integrating, we get, $log(x+y+z)+2log(x-y) = logc_1$ i.e. $(x+y+z)(x-y)^2 = c_2$ i.e. $(x+y+z)(x-y)^2 - c_2 = 0$ (iii) By (ii) and (iii), $[(x-y) - c_1(y-z)][(x+y+z)(x-y)^2 - c_2] = 0$ न्दात सानवः be the required general solution of given equation. **Ex.:** Solve $\frac{dx}{v^2 + vz + z^2} = \frac{dy}{z^2 + zx + x^2} = \frac{dz}{x^2 + xy + y^2}$ Solution: Let $\frac{dx}{y^2 + yz + z^2} = \frac{dy}{z^2 + zx + x^2} = \frac{dz}{x^2 + xy + y^2}$ (i)

be the given simultaneous differential equation. By taking multipliers as -1, 1, 0; 0, -1, 1 and -1, 0, 1, we have, Each Ratio of (i) = $\frac{dy-dx}{z^2+zx+x^2-y^2-yz-z^2} = \frac{dz-dy}{x^2+xy+y^2-z^2-zx-x^2} = \frac{dz-dx}{x^2+xy+y^2-y^2-yz-z^2}$

i.e. Each Ratio of (i) =
$$\frac{dy-dx}{zx+x^2-y^2-yz} = \frac{dz-dy}{xy+y^2-z^2-zx} = \frac{dz-dx}{x^2+xy-yz-z^2}$$

i.e. Each Ratio of (i) = $\frac{dy-dx}{(x-y)(x+y)+z(x-y)} = \frac{dz-dy}{x(y-z)+(y-z)(y+z)} = \frac{dz-dx}{(x-z)(x+z)+y(x-z)}$
i.e. Each Ratio of (i) = $\frac{dy-dx}{(x-y)(x+y+z)} = \frac{dz-dy}{(y-z)(x+y+z)} = \frac{dz-dx}{(x-z)(x+y+z)}$
Consider $\frac{dy-dx}{(x-y)(x+y+z)} = \frac{dz-dy}{(y-z)(x+y+z)}$
 $\Rightarrow \frac{d(y-x)}{(y-x)} = \frac{d(z-y)}{(z-y)}$
Integrating, we get,
 $\log(y-x) = \log(z-y) + \log c_1$
i.e. $(y-x) - c_1(z-y) = 0$ (ii)
Again consider $\frac{dy-dx}{(x-y)(x+y+z)} = \frac{dz-dx}{(x-z)(x+y+z)}$
 $\Rightarrow \frac{d(y-x)}{(y-x)} = \frac{d(z-x)}{(z-x)}$
Integrating, we get,
 $\log(y-x) = \log(z-x) + \log c_2$
i.e. $(y-x) - c_2(z-x) = 0$ (iii)
By (ii) and (iii),
 $[(y-x) - c_1(z-y)][(y-x) - c_2(z-x)] = 0$
be the required general solution of given equation.

MULTIPLE CHOICE QUESTIONS [MCQ'S]

1) If P, Q, R are the functions of x, y, z, then differential equation of the form $\frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R} \text{ is called } \dots \text{ differential equation of first order.}$ [A]linear [B] simultaneous [C] homogeneous [D] None of these 2) Solution of $\frac{dx}{0} = \frac{dy}{-z} = \frac{dz}{y}$ is..... [A] $(x-c_1)(y^2+z^2-c_2) = 0$ [B] $(y-c_1)(x^2+z^2-c_2) = 0$ [C] $(z-c_1)(x^2+y^2-c_2) = 0$ [D] $(x-c_1)(y^2-z^2-c_2) = 0$ 3) Solution of $\frac{dx}{z} = \frac{dy}{0} = \frac{dz}{-x}$ is..... [A] $(x-c_1)(y^2+z^2-c_2) = 0$ [B] $(y-c_1)(x^2+z^2-c_2) = 0$ [C] $(z-c_1)(x^2+y^2-c_2) = 0$ [D] $(x-c_1)(y^2-z^2-c_2) = 0$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCHENCE SR. COLLEGE, PIMPALNER 22

14) Solution of $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$ is	
$[A] (x - c_1 y)(x - c_2 z) = 0$	$[B] (x + c_1 y)(x - c_2 z) = 0$
$[C] (x - c_1 y)(x + c_2 z) = 0$	$[D] (x + c_1 y)(x + c_2 z) = 0$
15) Taking first and second ratios of simulta	neous D.E. $\frac{dx}{yz} = \frac{dy}{zx} = \frac{dz}{xy}$,
the solution is	
[A] $x^2 = y^2$ [B] $x^2 - y^2 = c$	[C] $x^2 - 3y^2 = c$ [D] $4x^2 = 5y^2$
16) Taking first and third ratios of simultane	cous D.E. $\frac{dx}{yz} = \frac{dy}{zx} = \frac{dz}{xy}$,
the solution is	पळनेर ता
[A] $x^2 - z^2 = c$ [B] $x^2 + z^2 = 0$	[C] $x^2 - 3z^2 = 0$ [D] $x^2 = 5z^2 + 2$
17) Taking second and third ratios of simulta	aneous D.E. $\frac{dx}{yz} = \frac{dy}{zx} = \frac{dz}{xy}$,
the solution is	
[A] $y^2 - z^2 - c = 0$ [B] $x^2 - z^2 = 0$	[C] x2 - 3z2 = c [D] None of these
18) Solution of $\frac{dx}{yz} = \frac{dy}{zx} = \frac{dz}{xy}$ is	
[A] $(x^2 + y^2 - c_1)(x^2 - z^2 - c_2) = 0$	[B] $(x^2 - y^2 - c_1)(x^2 + z^2 - c_2) = 0$
$[C] (x^2 - y^2 - c_1)(x^2 - z^2 - c_2) = 0$	[D] (x2 + y2 - c1)(x2 + z2 - c2) = 0
19) Taking first and second ratios of simulta	neous differential equation $\frac{xdx}{y^2z} = \frac{dy}{xz} = \frac{dz}{y^2}$,
the solution is	S S S
[A] $x^3 + 2y^3 = c$ [B] $x^3 - y^3 = c$	[C] $x^3 + 4y^3 = c$ [D] $2x^3 + 3y^3 = c$
20) Taking first and third ratios of simultane	cous D.E. $\frac{xdx}{y^2z} = \frac{dy}{xz} = \frac{dz}{y^2}$,
the solution is	
[A] $x^2 + z^2 = c$ [B] $x^2 - z^2 = c$	[C] $x^2 + 3y^2 = c$ [D] $4x^2 + 5y^2 = c$
21) Solution of $\frac{xdx}{y^2z} = \frac{dy}{xz} = \frac{dz}{y^2}$ is	सिष्टितं विन्दति मानवः।।।
[A] (x3 - y3 - c1)(x2 - z2 - c2) = 0	[B] $(x^3 + y^3 - c_1)(x^2 - z^2 - c_2) = 0$
[C] (x3 - y3 - c1)(x2 + z2 - c2) = 0	[D] $(x^3 + y^3 - c_1)(x^2 + z^2 - c_2) = 0$
22) Taking first and second ratio of simultar	neous differential equation
$\frac{dx}{1} = \frac{dy}{2} = \frac{dz}{5z + \tan(y - 2x)}$, the solution is	
[A] $xy = c$ [B] $x^2 + z^2 = c$	[C] $x = 2y + c$ [D] $y = 2x + c$
23) Taking first and second ratio of simultar	neous differential equation
$\frac{dx}{1} = \frac{dy}{3} = \frac{dz}{5z + \tan(y - 3x)}, \text{ the solution is } \dots$	
[A] $y-3x-c_1 = 0$ [B] $y+3x-c_1$	$= 0 [C] x-3y-c_1 = 0 [D] x+3y-c_1 = 0$

24) Taking first and second ratios of simultaneous D.E. $\frac{dx}{tanx} = \frac{dy}{tany}$ the solution is..... [A] $\sin x - \cos y = 0$ [B] $\sin x - \cos z = 0$ [C] sinx + csiny = 0[D] siny - csinz = 025) Taking first and third ratios of simultaneous D.E. $\frac{dx}{tanx} = \frac{dy}{tany} = \frac{dz}{tanz}$, the solution is..... [A] $\sin x - \cos y = 0$ [B] $\sin x - \cos z = 0$ $[D] \operatorname{siny} - \operatorname{csinz} = 0$ [C] sinx + csiny = 026) Taking second and third ratios of simultaneous D.E. $\frac{dx}{tanx} = \frac{dy}{tany} = \frac{dz}{tanz}$, the solution is..... [A] sinx - csiny = 0[B] sinx - csinz = 0[C] sinx + csiny = 0[D] siny - csinz = 027) Solution of $\frac{dx}{tanx} = \frac{dy}{tany} = \frac{dz}{tanz}$ is..... [A] $(\sin x + c \sin y)(\sin x - c \sin z) = 0$ [B] (sinx - csiny)(sinx + csinz) = 0[C] $(\sin x - c \sin y)(\sin x - c \sin z) = 0$ [D] $(\sin x + c \sin y)(\sin x + c \sin z) = 0$ 28) Taking first and second ratios of simultaneous D.E. $\frac{dx}{cotx} = \frac{dy}{coty} = \frac{dz}{cotz}$, the solution is..... [A] $\sec x - \csc y = 0$ **[B]** secx - csecz = 0 [C] secy – csecz = 0 [D] $\sec x + \csc y = 0$ 29) Taking first and third ratios of simultaneous D.E. $\frac{dx}{cotx} = \frac{dy}{coty} = \frac{dz}{cotz}$, the solution is..... $[A] \sec x - \csc y = 0$ **[B]** secx $- \csc z = 0$ [C] secy - csecz = 0[D] secx + csecy = 0 30) Taking second and third ratios of simultaneous D.E. $\frac{dx}{cotx} = \frac{dy}{coty} = \frac{dz}{cotz}$, the solution is..... [B] $\sec x - \csc z = 0$ [A] $\sec x - \csc y = 0$ [C] secy – csecz = 0 [D] secx + csecy = 031) Solution of $\frac{dx}{cotx} = \frac{dy}{coty} = \frac{dz}{cotz}$ is..... [A] (secx - csecy)(secx - csecz) = 0[B] $(\sec x + \csc y)(\sec x - \csc z) = 0$ [C] (secx - csecy)(secx + csecz) = 0 [D] (secx + csecy)(secx + csecz) = 0

32) So	lution of $dx = dy$	= cosecxdz is			
	$[A] (x + y - c_1)(z + $	$-\cos x - c_2) = 0$	[B] $(x - y - c_1)(z + $	$\cos (\cos x - c_2) = 0$	
	$[C] (x - y - c_1)(z - c_1)(z$	$cosx - c_2) = 0$	$[D] (x + y - c_1)(z - c_1)(z$	$-\cos x - c_2) = 0$	
33) Ta	king first and seco	nd ratios of simulta	neous D.E. $\frac{dx}{y} = \frac{dy}{x}$	$=\frac{dz}{xyz^2(x^2-y^2)},$	
the	e solution is				
1	$[A] x^2 - y^2 = c$	[B] $x^2 + y^2 = c$	[C] x = cy	[D] x - y = c	
34) Ta	king first and seco	nd ratios of simulta	neous D.E. $\frac{dx}{z} = \frac{dy}{-z}$	$=\frac{dz}{z^2+(x+y)^2},$	
the	e solution is	if form			
	$[A] x^2 - y^2 = c$	$[B] x^2 + y^2 = c$	[C] x = cy	$[D] \mathbf{x} + \mathbf{y} = \mathbf{c}$	
35) Ta	king first and seco	nd ratios of simulta	neous D.E. $\frac{dx}{x+y} = \frac{dx}{x+y}$	$\frac{dy}{+y} = \frac{dz}{-x - y - 2z},$	
the	e solution is	3 Storing	ILEA ET.B	5 GV	
	[A] x - y = c	[B] $x+y = c$	$[C] \mathbf{x} = \mathbf{c}\mathbf{y}$	[D] xy = c	
36) Ta	king first and seco	nd ratios of simulta	neous D.E. $\frac{dx}{xy} = \frac{dy}{y^2}$	$=\frac{dz}{zxy-2x^2},$	
the	e solution is	1 . 8 1	3 2	31	
	[A] xy = c	[B] $x^2 + z^2 = c$	[C] x - y = c	[D] x/y = c	
37) Ta	king first and seco	nd <mark>ratio</mark> s of simulta	neous D.E. $\frac{dx}{y^2} = \frac{dy}{x^2}$	$=\frac{dz}{x^2y^2z^2},$	
the	e solution is	24	The second second	3	
	$[A] x^2 + y^2 = c$	[B] $x^3 - y^3 = c$	$[C] x^3 + y^3 = c$	$[\mathbf{D}] \mathbf{x}^2 - \mathbf{y}^2 = \mathbf{c}$	
38) Ta	king second and th	ird ratios of simulta	aneous D.E. $\frac{dx}{x^2+2y^2}$	$=\frac{dy}{-xy}=\frac{dz}{xz}$,	
the	e solution is	e teo	LIPIT .		
1	[A] yz = c	[B] xz = c	[C] xy = c	[D] y - z = c	
39) Taking second and third ratios of simultaneous D.E. $\frac{dx}{x^2 - x^2} = \frac{dy}{2x^2} = \frac{dz}{2x^2}$,					
the	e solution is	कमणा तमभ्यच्य	ासाध्द विन्दात म		
	[A] yz = c	[B] xz = c	[C] y = cz	[D] y - z = c	
40) Ta	king first and seco	nd ratios of simulta	neous D.E. $\frac{dx}{x} = \frac{dy}{y}$	$=\frac{dz}{z-a\sqrt{x^2+y^2+z^2}},$	
the	e solution is			2	
	[A] x+y=c	[B] xy = c	[C] x = cy	[D] x - y = c	
41) Th	e solution of simul	taneous differential	equation $\frac{dx}{a} = \frac{dy}{a} =$	= <i>dz</i> is	
	$[A](x - ay - c_1)(y)$	$+\mathbf{z}-\mathbf{c}_{2})=0$	[B] $(x + ay - c_1)(y$	$-z-c_2)=0$	
	$[C] (x - y - c_1)(y - c_1)(y$	$-az-c_2)=0$	$[D](x + ay - c_1)(y)$	$+ az - c_2) = 0$	

42) The solution set of $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$ is..... [B] $x = C_1 y, y = C_2 z$ [A] $xy = C_1$, $yz = C_2$ $[C] x = C_1 + z, y = C_2 z$ [D] $y = C_1 z$, $y = C_2 + x$ 43) The solution set of $\frac{dx}{y} = \frac{dy}{x} = \frac{dz}{z}$ is..... [A] $x^2 - y^2 = C_1$ and $x + y = C_2 z$ [C] $x^2 + z^2 = C_1$, $x + y + z = C_2 z$ [D] None of these 44) The solution set of $\frac{dx}{yz} = \frac{dy}{zx} = \frac{dz}{xy}$ is..... [A] $x^2 - y^2 = C_1$ and $x^2 - z^2 = C_2$ [B] $x^2 + y^2 = C_1$ and $x^2 - z^2 = C_2$ [C] $x + y + z = C_1$ and $x^2 + z^2 = C_2$ [D] None of these 45) The solution set of $\frac{dx}{z} = \frac{dy}{0} = \frac{dz}{-x}$ is..... [A] $x^2 + y^2 = C_1$ and $y = C_2$ [B] $y = C_1$ and $x^2 + z^2 = C_2$ $[C] x^{2} + z^{2} = C_{1}$ and $z = C_{2}$ [D] None of these 46) The solution set of $\frac{dx}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y}$ is..... [A] $v-x = C_1(z-v)$ and $(x-v)^2(x+v+z) = C_2$ [B] $x+y = C_1(y+z)$ and $(x-y)^2(x+y+z) = C_2$ [C] $y-z = C_1(x-y)$ and $(x+y)^2(x+y-z) = C_2$ [D] $x-y = C_1(y-z)$ and $(x+y+z) = C_2(x-y)^2$ 47) If $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} = \frac{A}{P+mQ+nR}$, then A = [B] mdx + ldv + ndz[A] ldx + mdv + ndz[D] ldx + mdy - ndz[C] ldx - mdy + ndz48) If $\frac{dx}{p} = \frac{dy}{0} = \frac{dz}{R} = \frac{xdx+ydy+zdz}{A}$, then A = [A] xP + yQ + zR[B] xP - yQ + zR[C] xP + yQ - zR[D] yP - xO + zR49) Set of multipliers used to solve simultaneous D.E. $\frac{dx}{z-y} = \frac{dy}{x-z} = \frac{dz}{y-x}$ are ... [A] 1, 1, 0 and $\frac{1}{r}, \frac{1}{v}, \frac{1}{z}$ **[B]** 1, 1, 1 and x, y, z [D] 1, 1, 0 and x, -y, -z [C] 1, 0, 1 and x, y, -z 50) Set of multipliers used to solve simultaneous D.E. $\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)}$ are ... [A] 1, 1, 1 and $\frac{1}{r}, \frac{1}{v}, \frac{1}{z}$ [B] 0, 1, 1 and x, y, z [D] 1, 1, 0 and x, -y, -z [C] 1, 0, 1 and x, y, -z 51) Set of multipliers used to solve simultaneous D.E. $\frac{yzdx}{y-z} = \frac{zxdy}{z-x} = \frac{xydz}{x-y}$ are ... [A] 1, 0, 1 and $\frac{1}{r}, \frac{1}{v}, \frac{1}{z}$ [B] 1, 1, 1 and x, y, z [C] 1, 0, 1 and x, y, -z [D] 1, 1, 0 and x, -y, -z

52) Set of multipliers used to solve simultaneous D.E. $\frac{adx}{bc(y-z)} = \frac{bdy}{ca(z-x)} = \frac{cdz}{ab(x-y)}$ are ... [A] 1, 1, 1 and $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ [B] a, -b, -c and x, y, z [C] a, b, c and ax, by, cz [D] a, b, -c and x, -y, -z 53) Set of multipliers used to solve simultaneous D.E. $\frac{adx}{(b-c)yz} = \frac{bdy}{(c-a)zx} = \frac{cdz}{(a-b)xy}$ are ... [A] 1, 1, 1 and $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ [B] x, y, z and ax, by, cz [C] a, b, c and ax, -by, cz [D] a, b, -c and x, -y, -z 54) Set of multipliers used to solve simultaneous D.E. $\frac{dx}{x(y^2-z^2)} = \frac{dy}{-y(z^2+x^2)} = \frac{dz}{z(x^2+y^2)}$ are ... [A] 1, 1, 1 and x, -y, z [B] 1, 0, 1 and x, y, -z [D] x, y, z and $\frac{1}{r}$, $-\frac{1}{v}$, $-\frac{1}{z}$ [C] -1, 0, 1 and x, -y, -z 55) Set of multipliers used to solve simultaneous D.E. $\frac{dx}{z(x+y)} = \frac{dy}{z(x-y)} = \frac{dz}{x^2+y^2}$ are ... [A] x, y, -z and x, -y, -z[B] -x, y, z and x, -y, -z [C] y, x, -z and x, -y, -z [D] y, x, z and x, y, -z 56) Set of multipliers used to solve simultaneous D.E. $\frac{dx}{x(y^2+z)} = \frac{dy}{-y(x^2+z)} = \frac{dz}{z(x^2-v^2)}$ are ... [A] $\frac{1}{r}, \frac{1}{y}, \frac{1}{z}$ and x, y, -1 [B] x, y, z and 1, y, z [C] 1, 1, 1 and x, y, z [D] None of these 57) Set of multipliers used to solve simultaneous D.E. $\frac{dx}{x(2v^4-z^4)} = \frac{dy}{v(z^4-2x^4)} = \frac{dz}{z(x^4-v^4)}$ are ... [B] x^2 , y^2 , z^2 and 1, y, z [A] $\frac{1}{r}, \frac{1}{y}, \frac{2}{z}$ and x^3, y^3, z^3 [C] 1, 1, 1 and x^4 , y^4 , z^4 [D] None of these 58) Set of multipliers used to solve simultaneous D.E. $\frac{dx}{mz-ny} = \frac{dy}{nx-lz} = \frac{dz}{ly-mx}$ are ... [B] -x, y, z and l, -m, -n [A] x, y, -z and 1, 0, 0 [C] y, x, -z and 1, 1, 1 [D] x, y, z and l, m, n 59) If we use multipliers 1, 1, 0 to solve simultaneous D.E. $\frac{dx}{1+y} = \frac{dy}{1+x} = \frac{dz}{z}$, then each ratio = $[A] \frac{dx+dz}{2+x+z} \qquad [B] \frac{dx+dy}{1+x+y} \qquad [C] \frac{dx+dy}{2+y}$ [D] $\frac{dx+dy}{2+x+y}$ 60) If we use multipliers a, b, 1 to solve simultaneous D.E. $\frac{dx}{y} = \frac{dy}{-r} = \frac{dz}{hr - ay}$, then the solution is [A] $ax+by = c_1$ [B] $x+y+z = c_1$ [C] ax-y+z = c_1 [D] $ax+by+z = c_1$

UNIT-3: TOTAL DIFFERENTIAL OR PFAFFIAN DIFFERENTIAL EQUATIONS

Pfaffian Differential Equation of First Order: The differential equation of the form $u_1dx_1 + u_2dx_2 + \dots + u_ndx_n = 0$ is called Pfaffian differential equation or total differential equation in n independent variables x_1, x_2, \dots, x_n .

- **Pfaffian Differential Equation:** If P, Q, R are the functions of x, y, z, then differential equation of the form Pdx + Qdy + Rdz = 0 is called Pfaffian differential equation or total differential equation.
- **Exact Differential Equation:** A Pfaffian differential equation Pdx + Qdy + Rdz = 0 is said to be exact if there exists a function u(x, y, z) such that Pdx + Qdy + Rdz = du.
- **Integrable Differential Equation:** A Pfaffian differential equation Pdx + Qdy + Rdz = 0 is said to be integrable if it is either exact or can be made exact.
- **Note:** Every exact differential equation is integrable. But every integrable differential equation may not be exact.

The Necessary Condition: If the Pfaffian differential equation Pdx + Qdy + Rdz = 0 is integrable, then $P(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}) + Q(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}) + R(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}) = 0$ **Proof:** Let the differential equation Pdx + Qdy + Rdz = 0 (i) where P, Q, R are the functions of x, y, z be integrable say its integral is u(x, y, z) = c (ii) \therefore equation (i) is either exact or can be made exact. By total differentiation $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz$ (iii) As (ii) is an integral of (i), we have, $\frac{\partial u}{\partial x} = \frac{\partial u}{Q} = \frac{\partial u}{R} = \lambda \Longrightarrow \lambda P = \frac{\partial u}{\partial x}, \lambda Q = \frac{\partial u}{\partial y}, \lambda R = \frac{\partial u}{\partial z}$ (iv) From the first two equations of (iv), we get, $\frac{\partial}{\partial y} (\lambda P) = \frac{\partial}{\partial y} (\frac{\partial u}{\partial x}) = \frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial}{\partial x} (\frac{\partial u}{\partial y}) = \frac{\partial}{\partial x} (\lambda Q)$ i.e. $\lambda \frac{\partial P}{\partial y} + P \frac{\partial \lambda}{\partial x} = \lambda \frac{\partial Q}{\partial x}$

$$\therefore \lambda \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = Q \frac{\partial \lambda}{\partial x} - P \frac{\partial \lambda}{\partial y} \qquad \dots \qquad (v)$$
Similarly, $\lambda \left(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}\right) = R \frac{\partial \lambda}{\partial y} - Q \frac{\partial \lambda}{\partial z} \qquad \dots \qquad (vi)$
 $\lambda \left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}\right) = P \frac{\partial \lambda}{\partial z} - R \frac{\partial \lambda}{\partial x} \qquad \dots \qquad (vii)$
Consider (v) ×R + (vi) × P + (vii) × Q, we get,
 $P\left(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}\right) + Q\left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}\right) + R\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = 0$

Sufficient Condition for Integrability: The Pfaffian differential equation

$$Pdx + Qdy + Rdz = 0 \text{ is integrable if } P(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}) + Q(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}) + R(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}) = 0.$$

Condition for Exactness: The Pfaffian differential equation Pdx + Qdy + Rdz = 0 is

exact if
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
, $\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$ and $\frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}$.

Method of Solution by Inspection: The Pfaffian differential equation

Pdx + Qdy + Rdz = 0 can be solved by arranging the terms or dividing by suitable function of x, y, z. The modified equation may contain several parts which are exact differentials. The following list will help to re-write the given equation in differential form:

i)
$$ydx + xdy = d(xy)$$

ii) $yzdx + xzdy + xydz = d(xyz)$
iii) $2(xdx + ydy) = d(x^2+y^2)$
iv) $2(xdx + ydy + zdz) = d(x^2+y^2+z^2)$
v) $y^2dx + 2xydy = d(xy^2)$
vi) $\frac{df(x,y,z)}{f(x,y,z)} = d[\log f(x,y,z)]$
vii) $\frac{xdy-ydx}{x^2} = d(\frac{y}{x})$
viii) $\frac{ydx-xdy}{y^2} = d(\frac{x}{y})$
ix) $\frac{xdy+ydx}{xy} = d(\log xy)$
x) $\frac{xdy-ydx}{xy} = d(\log \frac{y}{x})$
xi) $\frac{xdy-ydx}{x^2+y^2} = d(\tan^{-1}\frac{y}{x})$
xii) $\frac{xdy+ydx}{x^2+y^2} = d[\frac{1}{2}\log(x^2+y^2)]$

Ex. Show that the given equation (yz+2x) dx + (zx - 2z) dy + (xy - 2y) dz = 0 is exact. (Oct. 2019)

Proof: Let (yz+2x) dx + (zx - 2z) dy + (xy - 2y) dz = 0 be the given equation, comparing it with Pdx + Qdy + Rdz = 0, we get, P = yz+2x, Q = zx - 2z and R = xy - 2y

$$\therefore \frac{\partial P}{\partial y} = z, \frac{\partial P}{\partial z} = y, \frac{\partial Q}{\partial x} = z, \frac{\partial Q}{\partial z} = x - 2, \frac{\partial R}{\partial x} = y \text{ and } \frac{\partial R}{\partial y} = x - 2$$
$$\therefore \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y} \text{ and } \frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}$$

Hence the given equation is exact is proved.

Ex. Show that the given equation $(x^2 - yz) dx + (y^2 - zx) dy + (z^2 - xy) dz = 0$ is exact. **Proof:** Let $(x^2 - yz) dx + (y^2 - zx) dy + (z^2 - xy) dz = 0$ be the given equation, comparing it with Pdx + Qdy + Rdz = 0, we get, $P = x^2 - yz, Q = y^2 - zx$ and $R = z^2 - xy$ $\therefore \frac{\partial P}{\partial y} = -z, \frac{\partial P}{\partial z} = -y, \frac{\partial Q}{\partial x} = -z, \frac{\partial Q}{\partial z} = -x, \frac{\partial R}{\partial x} = -y$ and $\frac{\partial R}{\partial y} = -x$ $\therefore \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$ and $\frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}$ Hence the given equation is exact is proved.

Ex. Show that the given equation $(yz - x^3) dx + (zx - y^3) dy + (xy - z^3) dz = 0$ is exact. **Proof:** Let $(yz - x^3) dx + (zx - y^3) dy + (xy - z^3) dz = 0$ be the given equation,

comparing it with Pdx + Qdy + Rdz = 0, we get, P = yz - x³, Q = zx - y³ and R = xy - z³ $\therefore \frac{\partial P}{\partial y} = z, \frac{\partial P}{\partial z} = y, \frac{\partial Q}{\partial x} = z, \frac{\partial Q}{\partial z} = x, \frac{\partial R}{\partial x} = y \text{ and } \frac{\partial R}{\partial y} = x$ $\therefore \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y} \text{ and } \frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}$

Hence the given equation is exact is proved.

Ex. Show that the given equation $(2x + y^2 + 2xz) dx + 2xy dy + x^2 dz = 0$ is exact. **Proof:** Let $(2x + y^2 + 2xz) dx + 2xy dy + x^2 dz = 0$ be the given equation,

comparing it with
$$Pdx + Qdy + Rdz = 0$$
, we get,

P = 2x + y² + 2xz, Q = 2xy and R = x²

$$\therefore \frac{\partial P}{\partial y} = 2y, \frac{\partial P}{\partial z} = 2x, \frac{\partial Q}{\partial x} = 2y, \frac{\partial Q}{\partial z} = 0, \frac{\partial R}{\partial x} = 2x \text{ and } \frac{\partial R}{\partial y} = 0$$

$$\therefore \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y} \text{ and } \frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}$$

 \therefore the given equation is exact is proved.

Ex. Show that the equation $(2x + y^2 + 2xz) dx + 2xy dy + x^2 dz = 0$ is integrable. **Proof:** Let $(2x + y^2 + 2xz) dx + 2xy dy + x^2 dz = 0$ be the given equation, comparing it with Pdx + Qdy + Rdz = 0, we get, $P = 2x + y^2 + 2xz$, Q = 2xy and $R = x^2$ $\therefore \frac{\partial P}{\partial y} = 2y, \frac{\partial P}{\partial z} = 2x, \frac{\partial Q}{\partial x} = 2y, \frac{\partial Q}{\partial z} = 0, \frac{\partial R}{\partial x} = 2x \text{ and } \frac{\partial R}{\partial y} = 0$ $\therefore P(\frac{\partial Q}{\partial x} - \frac{\partial R}{\partial y}) + Q(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}) + R(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial y})$ $= (2x + y^{2} + 2xz) (0 - 0) + 2xy(2x - 2x) + x^{2}(2y - 2y)$ = 0Hence the given equation is integrable is proved. **Ex.** Show that the equation $yz^{2}(x^{2} - yz) dx + zx^{2}(y^{2} - xz) dy + xy^{2}(z^{2} - xy) dz = 0$ is integrable. Is it exact? Verify. **Proof:** Let $yz^2(x^2 - yz) dx + zx^2(y^2 - xz) dy + xy^2(z^2 - xy) dz = 0$ be the given equation. comparing it with Pdx + Qdy + Rdz = 0, we get, $P = yz^{2}(x^{2} - yz) = x^{2}yz^{2} - y^{2}z^{3}$, $Q = zx^{2}(y^{2} - xz) = x^{2}zy^{2} - x^{3}z^{2}$ and $R = xy^{2}(z^{2}-xy) = xy^{2}z^{2}-x^{2}y^{3}$ $\therefore \frac{\partial P}{\partial x} = x^2 z^2 - 2yz^3, \frac{\partial P}{\partial z} = 2x^2 yz - 3y^2 z^2, \quad \frac{\partial Q}{\partial x} = 2xzy^2 - 3x^2 z^2, \quad \frac{\partial Q}{\partial z} = x^2 y^2 - 2x^3 z,$ $\frac{\partial R}{\partial x} = y^2 z^2 - 2xy^3$ and $\frac{\partial R}{\partial y} = 2xyz^2 - 3x^2y^2$ $\therefore P(\frac{\partial Q}{\partial x} - \frac{\partial R}{\partial y}) + Q(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}) + R(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial y})$ $= (x^{2}yz^{2} - y^{2}z^{3}) (x^{2}y^{2} - 2x^{3}z - 2xyz^{2} + 3x^{2}y^{2}) + (x^{2}zy^{2} - x^{3}z^{2}) (y^{2}z^{2} - 2xy^{3} - 2x^{2}yz^{2})$ $+3y^{2}z^{2}) + (xy^{2}z^{2}-x^{2}y^{3})(x^{2}z^{2}-2yz^{3}-2xzy^{2}+3x^{2}z^{2})$ $= (x^{2}yz^{2} - y^{2}z^{3}) (4x^{2}y^{2} - 2x^{3}z - 2xyz^{2}) + (x^{2}zy^{2} - x^{3}z^{2})(4y^{2}z^{2} - 2xy^{3} - 2x^{2}yz)$ $+(xy^{2}z^{2}-x^{2}y^{3})(4x^{2}z^{2}-2yz^{3}-2xzy^{2})$ $= (x^{2}yz^{2} - y^{2}z^{3}) (4x^{2}y^{2} - 2x^{3}z - 2xyz^{2}) + (x^{2}zy^{2} - x^{3}z^{2})(4y^{2}z^{2} - 2xy^{3} - 2x^{2}yz)$ $+(xy^{2}z^{2}-x^{2}y^{3})(4x^{2}z^{2}-2yz^{3}-2xzy^{2})$ $= 4x^{4}v^{3}z^{2} - 4x^{2}v^{4}z^{3} - 2x^{5}vz^{3} + 2x^{3}v^{2}z^{4} - 2x^{3}v^{2}z^{4} + 2xv^{3}z^{5} + 4x^{2}v^{4}z^{3} - 4x^{3}v^{2}z^{4} - 2x^{3}v^{5}z^{4}$ $+ 2x^4v^3z^2 - 2x^4v^3z^2 + 2x^5vz^3 + 4x^3v^2z^4 - 4x^4v^3z^2 - 2xy^3z^5 + 2x^2y^4z^3 - 2x^2y^4z^3 + 2x^3y^5z^4 - 2x^2y^4z^3 - 2x^2y^4z^3 + 2x^3y^5z^4 - 2x^2y^4z^3 - 2x^2y^2z^3 - 2x^2y^2z^2 - 2x^2y^2 - 2x^2 - 2x^2y^2 - 2x^2y^2 - 2x^2 - 2x^2y^2 - 2x^2 -$ = 0

Hence the given equation is integrable is proved.

But it is not exact $:: \frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial z} \neq \frac{\partial R}{\partial y} \text{ and } \frac{\partial R}{\partial x} \neq \frac{\partial P}{\partial z}$

<u>Ex</u>. Solve (y + z) dx + dy + dz = 0.

Proof: Let (y + z) dx + dy + dz = 0 be the given equation, comparing it with Pdx + Qdy + Rdz = 0, we get, P = y + z, Q = 1 and R = 1 $\therefore \frac{\partial P}{\partial y} = 1, \frac{\partial P}{\partial z} = 1, \frac{\partial Q}{\partial x} = 0, \frac{\partial Q}{\partial z} = 0, \frac{\partial R}{\partial x} = 0$ and $\frac{\partial R}{\partial y} = 0$ $\therefore P(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}) + Q(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}) + R(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x})$ = (y + z) (0 - 0) + (0 - 1) + (1 - 0)= 0 - 1 + 1= 0 \therefore The given equation is integrable. Divide the given equation by (y + z), we get, $dx + \frac{dy+dz}{y+z} = 0$ Integrating, we get, $x + \log (y + z) = c$ be the solution of given equation.

Ex. Solve $xdy - ydx - 2x^2zdz = 0$.

Proof: Let $xdy - ydx - 2x^2zdz = 0$ be the given equation, comparing it with Pdx + Qdy + Rdz = 0, we get, P = -y, Q = x and $R = -2x^2z$ $\therefore \frac{\partial P}{\partial y} = -1$, $\frac{\partial P}{\partial z} = 0$, $\frac{\partial Q}{\partial x} = 1$, $\frac{\partial Q}{\partial z} = 0$, $\frac{\partial R}{\partial x} = -4xz$ and $\frac{\partial R}{\partial y} = 0$ $\therefore P(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}) + Q(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}) + R(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x})$ $= (-y) (0 - 0) + x(-4xz - 0) - 2x^2z(-1-1)$ $= 0 - 4x^2z + 4x^2z$ = 0

 \therefore The given equation is integrable.

Divide the given equation by x^2 , we get,

$$\frac{xdy-ydx}{x^2} - 2zdz = 0$$

i. e.
$$d(\frac{x}{y}) - d(z^2) = 0$$

Integrating, we get,
 $\frac{y}{x} - z^2 = c$
 $\therefore y - xz^2 = cx$
be the solution of given equation.
Ex. Solve zydx = zxdy + y^2dz.
Proof: Let zydx = zxdy + y^2dz.
Proof: Let zydx = zxdy + y^2dz = 0 and $\frac{\partial R}{\partial y} = -2y$
 $\therefore P(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}) + Q(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}) + R(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial z})$
 $= (zy) (ex + 2y) - zx(0 - y) - y^2(z + z)$
 $= -xyz + 2y^2z + xyz - 2y^2z$
 $= 0$
 \therefore The given equation is integrable.
Divide the given equation by y²z, we get,
 $\frac{ydx - xdy - dz}{y^2} - \frac{dz}{z} = 0$
 $\therefore e. e. d(\frac{A}{y}) - \frac{dz}{z} = 0$
Integrating, we get,
 $\frac{x}{y} - \log z = c$
 $\therefore x - y\log z = cy$
be the solution of given equation.
Ex. Solve xz²dx - zdy + ydz = 0.
Proof: Let xz²dx - zdy + ydz = 0.
Proof: Let xz²dx - zdy + ydz = 0 be the given equation,
comparing it with Pdx + Qdy + Rdz = 0, we get,
 $P = xz^2, Q = -z$ and $R = y$

$$\therefore \frac{\partial P}{\partial y} = 0, \frac{\partial P}{\partial z} = 2xz, \frac{\partial Q}{\partial x} = 0, \frac{\partial Q}{\partial z} = -1, \frac{\partial R}{\partial x} = 0 \text{ and } \frac{\partial R}{\partial y} = 1$$

$$\therefore P(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}) + Q(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}) + R(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x})$$
$$= (xz^{2}) (-1 - 1) - z(0 - 2xz) + y(0 - 0)$$
$$= -2xz^{2} + 2xz^{2} + 0$$
$$= 0$$

∴ The given equation is integrable. Divide the given equation by z^2 , we get, $xdx - \frac{zdy-ydz}{z^2} = 0$ i.e. $\frac{1}{2}d(x^2) - d(\frac{y}{z}) = 0$ i.e. $d(x^2) - 2d(\frac{y}{z}) = 0$ Integrating, we get, $x^2 - 2(\frac{y}{z}) = c$ ∴ $x^2z - 2y = cz$ be the solution of given equation.

Ex. Solve (x-y)dx - xdy + zdz = 0.

Proof: Let (x-y)dx - xdy + zdz = 0 be the given equation, comparing it with Pdx + Qdy + Rdz = 0, we get, P = x-y, Q = -x and R = z $\therefore \frac{\partial P}{\partial y} = -1$, $\frac{\partial P}{\partial z} = 0$, $\frac{\partial Q}{\partial x} = -1$, $\frac{\partial Q}{\partial z} = 0$, $\frac{\partial R}{\partial x} = 0$ and $\frac{\partial R}{\partial y} = 0$ $\therefore P(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}) + Q(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}) + R(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x})$ = (x-y) (0-0) - x(0-0) + z(-1+1) in the equation of R = 0 \therefore The given equation is integrable. Rearrange the terms of given equation as: xdx - ydx - xdy + zdz = 0i.e. 2xdx - 2(ydx + xdy) + 2zdz = 0i.e. $d(x^2) - 2d(xy) + d(z^2) = 0$

Integrating, we get, $x^2 - 2xy + z^2 = c$

be the solution of given equation.

Ex. Solve
$$(a - z)(ydx + xdy) + xydz = 0$$
.
Proof: Let $(a - z)(ydx + xdy) + xydz = 0$
i.e. $(a - z)ydx + (a - z)xdy + xydz = 0$ be the given equation,
comparing it with Pdx + Qdy + Rdz = 0, we get,
 $P = (a - z)y, Q = (a - z)x$ and $R = xy$
 $\therefore \frac{\partial P}{\partial y} = a - z, \frac{\partial P}{\partial z} = -y, \frac{\partial Q}{\partial x} = a - z, \frac{\partial Q}{\partial z} = -x, \frac{\partial R}{\partial x} = y$ and $\frac{\partial R}{\partial y} = x$
 $\therefore P(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}) + Q(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}) + R(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x})$
 $= (a - z)y(-x - x) + (a - z)x(y + y) + xy(a - z - a + z)$
 $= -2(a - z)xy + 2(a - z)xy + 0$
 $= 0$
 \therefore The given equation is integrable.
Divide the given equation by $xy(a - z)$, we get,
 $\frac{ydx + xdy}{xy} + \frac{dz}{a - z} = 0$
i.e. $\frac{d(xy)}{xy} - \frac{d(z-a)}{z-a} = 0$
Integrating, we get,
 $\log xy - \log (z-a) = \log c$
i.e. $\frac{xy}{z-a} = c$
 $\therefore xy = c(z-a)$
be the solution of given equation. The Rice Berght High.

Proof: Let
$$(x^2 - yz) dx + (y^2 - zx) dy + (z^2 - xy) dz = 0$$
.
Proof: Let $(x^2 - yz) dx + (y^2 - zx) dy + (z^2 - xy) dz = 0$ be the given equation, comparing it with Pdx + Qdy + Rdz = 0, we get,
 $P = x^2 - yz, Q = y^2 - zx$ and $R = z^2 - xy$
 $\therefore \frac{\partial P}{\partial y} = -z, \frac{\partial P}{\partial z} = -y, \frac{\partial Q}{\partial x} = -z, \frac{\partial Q}{\partial z} = -x, \frac{\partial R}{\partial x} = -y$ and $\frac{\partial R}{\partial y} = -x$
 $\therefore \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$ and $\frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}$

∴ The given equation exacts and hence integrable.
Now we rearrange the terms as:

$$(x^2 dx + y^2 dy + z^2 dz) - (yzdx + zxdy + xydz) = 0$$

 $\therefore (3x^2 dx + 3y^2 dy + 3z^2 dz) - 3(yzdx + zxdy + xydz) = 0$
 $\therefore (dx^3 + y^3 + z^3) - 3d(xyz) = 0$
Integrating, we get,
 $x^3 + y^3 + z^3 - 3xyz = c$
be the solution of given equation.
Ex. Solve $(y^2 + z^2 - x^2)dx - 2xydy - 2xzdz = 0$. (Oct. 20 9)
Proof: Let $(y^2 + z^2 - x^2)dx - 2xydy - 2xzdz = 0$ be the given equation,
comparing it with Pdx + Qdy + Rdz = 0, we get,
 $P = y^2 + z^2 - x^2$, $Q = -2y$, $\frac{\partial Q}{\partial z} = 0$, $\frac{\partial Q}{\partial z} = 0$, $\frac{\partial R}{\partial x} = -2z$ and $\frac{\partial R}{\partial y} = 0$
 $\therefore P(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}) + Q(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}) + R(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial z})$
 $= (y^2 + z^2 - x^2)(0 - 0) - 2xy(-2z - 2z) - 2xz(2y+2y)$
 $= 0 + 8xyz - 8xyz$
 $= 0$
 \therefore The given equation integrable.
Now we rearrange the terms as:
 $(x^2 + y^2 + z^2)dx - 2x^2dx - 2xydy - 2xzdz = 0$
i.e. $(x^2 + y^2 + z^2)dx - xx(2x^2 + y^2 + z^2) = 0$
Dividing by $x(x^2 + y^2 + z^2)$, we get,
 $\therefore \frac{dx}{x} - \frac{d(x^2 + y^2 + z^2)}{(x^2 + y^2 + z^2)} = 0$
i.e. $(x^2 + y^2 + z^2)dx - xx(x^2 + y^2 + z^2) = 0$
Dividing by $(x(x^2 + y^2 + z^2) + \log c)$
 $\therefore x = c(x^2 + y^2 + z^2)$

Ē

be the solution of given equation.

<u>Ex.</u> Solve 2yzdx + zxdy - xy(1+z)dz = 0.

Proof: Let 2yzdx + zxdy - xy(1+z)dz = 0 be the given equation, comparing it with Pdx + Qdy + Rdz = 0, we get, P = 2yz, Q = zx and R = -xy(1+z) $\therefore \frac{\partial P}{\partial y} = 2z, \frac{\partial P}{\partial z} = 2y, \frac{\partial Q}{\partial x} = z, \frac{\partial Q}{\partial z} = x, \frac{\partial R}{\partial x} = -y(1+z) \text{ and } \frac{\partial R}{\partial y} = -x(1+z)$ $\therefore P(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}) + Q(\frac{\partial R}{\partial y} - \frac{\partial P}{\partial z}) + R(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial y})$ = (2yz)[x + x(1+z)] + zx[-y(1+z) - 2y) - xy(1+z)(2z-z)= (2yz)(2x + xz) + zx(-yz - 3y) - xyz(1+z) $= 4xyz + 2xyz^2 - xyz^2 - 3xyz - xyz - xyz^2$ = 0 \therefore The given equation integrable. Divide the given equation by xyz, we get, $\frac{2dx}{x} + \frac{dy}{y} - (\frac{1}{z} + 1)dz = 0$ Integrating, we get, $2\log x + \log y - \log z - z = \log c$ i.e. $\log x^2 + \log y - \log z - \log e^z = \log c$ i.e. $\log(\frac{x^2y}{ze^2}) = \log c$ $\therefore \frac{x^2y}{x^2} = c$ i.e. $x^2y = cze^z$ [Seconduli dubuta Rike disent unde be the solution of given equation.

Ex. Solve $(2x^2 + 2xy + 2xz^2 + 1)dx + dy + 2zdz = 0$. **Proof:** Let $(2x^2 + 2xy + 2xz^2 + 1)dx + dy + 2zdz = 0$ be the given equation, comparing it with Pdx + Qdy + Rdz = 0, we get, $P = 2x^2 + 2xy + 2xz^2 + 1$, Q = 1 and R = 2z $\therefore \frac{\partial P}{\partial y} = 2x$, $\frac{\partial P}{\partial z} = 4xz$, $\frac{\partial Q}{\partial x} = 0$, $\frac{\partial Q}{\partial z} = 0$, $\frac{\partial R}{\partial x} = 0$ and $\frac{\partial R}{\partial y} = 0$

$$\begin{aligned} \therefore P(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}) + Q(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}) + R(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}) \\ &= (2x^2 + 2xy + xz^2 + 1)(0 - 0) + (0 - 4xz) + 2z(2x - 0) \\ &= 0 - 4xz + 4xz \\ &= 0 \end{aligned}$$

$$\therefore The given equation integrable. Rearrange the given terms as: $2x(x + y + z^2)dx + dx + dy + 2zdz = 0 \\ Divide the given equation by (x + y + z^2), we get, $2xdx + \frac{dx + dy + 2zdz}{x + y + z^2} = 0 \\ i.e. d(x^2) + \frac{d(x + y + z^2)}{x + y + z^2} = 0 \\ Integrating, we get, \\ x^2 + \log (x + y + z^2) = c \\ be the solution of given equation. \end{aligned}$
Ex. Solve $\frac{yz}{x^2 + y^2} dx - \frac{xz}{x^2 + y^2} dy - \tan^{-1}\frac{y}{x} dz = 0 \\ Proof: Let $\frac{yz}{x^2 + y^2} dx - \frac{xz}{x^2 + y^2} dy - \tan^{-1}\frac{y}{x} dz = 0 \\ Proof: Let \frac{yz}{(x^2 + y^2) - 2x^2} - \frac{x(x^2 - y^2)}{(x^2 + y^2)^2} \frac{\partial P}{\partial z} = \frac{y}{x^2 + y^2}, \\ \frac{\partial Q}{\partial x} = -z \frac{(x^2 + y^2) - 2x^2}{(x^2 + y^2) - 2x^2} - \frac{x(x^2 - y^2)}{(x^2 + y^2)^2} \frac{\partial P}{\partial z} = \frac{x}{x^2 + y^2}. \end{aligned}$$$$$

 \therefore The given equation is integrable.

Rearrange the given equation as:

$$z\left[\frac{ydx - xdy}{x^2 + y^2}\right] - \tan^{-1}\frac{y}{x} dz = 0$$

i.e. $z\left[\frac{xdy - ydx}{x^2 + y^2}\right] + \tan^{-1}\frac{y}{x} dz = 0$
i.e. $\frac{1}{\tan^{-1}\frac{y}{x}} \left[\frac{xdy - ydx}{x^2 + y^2}\right] + \frac{dz}{z} = 0$
i.e. $\frac{d(\tan^{-1}\frac{y}{x})}{\tan^{-1}\frac{y}{x}} + \frac{dz}{z} = 0$

Integrating, we get,

$$\log \tan^{-1} \frac{y}{x} + \log z = \log c$$

$$v z \tan^{-1} \frac{y}{y} =$$

be the solution of given equation.

Homogeneous Equation: If P, Q, R, are homogeneous functions of same degree of variables x, y, z, then the Pfaffian differential equation Pdx + Qdy + Rdz = 0 is called homogeneous equation.

Method of Solving Homogeneous Equation: If Pdx + Qdy + Rdz = 0 is homogeneous equation, then find Px + Qy + Rz.

Case-i) If $\rho = Px + Qy + Rz \neq 0$, then

step-1) Find an I.F. $\frac{1}{2}$ of given homogeneous equation.

- 2) Multiply given equation by $\frac{1}{\rho}$.
- 3) Find $d(\rho)$.
- 4) Express given equation in the form $\frac{d(\rho)}{\rho} \pm \dots$
- 5) By integrating we get, the solution.

Case-ii) If $\rho = Px + Qy + Rz = 0$, then

step-1) Verify given homogeneous equation is integrable.

- 2) Put x = zu and y = zv, hence dx = udz + zdu and dy = vdz + zdv into the equation.
- case-a) If coefficient of dz is zero, then we get equation in two variables u and v, regrouping and integrating we get solution.

- 4) case-b) If coefficient of dz is not zero, then we will be able to separate the equation into form $\frac{f(u,v)du+g(u,v)dv}{f(u,v)} + \frac{dz}{z} = 0$
- 5) Take $\rho = f(u, v)$ and find $d(\rho)$.

6) Express given equation in the form $\frac{d(\rho)}{\rho} \pm \dots$ and rearrange the terms.

7) By integrating we get, the solution.

Remark: If $Px + Qy + Rz \neq 0$, then the homogeneous equation Pdx + Qdy + Rdz = 0 is always integrable. But if Px + Qy + Rz = 0, then it may or may not be integrable.

Ex. Solve z(z - y)dx + z(z + x)dy + x(x + y)dz = 0**Proof:** Let z(z - y)dx + z(z + x)dy + x(x + y)dz = 0 be the given homogeneous equation, with P = z(z - y), Q = z(z + x) and R = x(x + y) $\therefore \rho = Px + Qy + Rz = xz(z - y) + yz(z + x) + xz(x + y)$ $= xz^{2} - xyz + yz^{2} + xyz + x^{2}z + xyz$ $= xz^{2} + yz^{2} + x^{2}z + xyz$ $= z(xz + vz + x^{2} + xv)$ $= z(x + y)(z + x) \neq 0$ \therefore The given equation is integrable. Divide the given equation by z(x + y)(z + x), we get, $\frac{z(z-y)}{z(x+y)(z+x)} dx + \frac{z(z+x)}{z(x+y)(z+x)} dy + \frac{x(x+y)}{z(x+y)(z+x)} dz = 0$ *i.e.* $\frac{(z-y)}{(x+y)(z+x)} dx + \frac{1}{(x+y)} dy + \frac{x}{z(z+x)} dz = 0$ *i.e.* $\frac{[(z+x)-(x+y)]}{(x+y)(z+x)} dx + \frac{1}{(x+y)} dy + \frac{[(z+x)-z]}{z(z+x)} dz = 0$ *i.e.* $\frac{1}{(x+y)} dx - \frac{1}{(z+x)} dx + \frac{1}{(x+y)} dy + \frac{1}{z} dz - \frac{1}{(z+x)} dz = 0$ $i.e.\frac{dx+dy}{(x+y)} - \frac{dx+dz}{(z+x)} + \frac{dz}{z} = 0$ i.e. $\frac{d(x+y)}{(x+y)} + \frac{dz}{z} = \frac{d(x+z)}{(x+z)}$ Integrating, we get, $\log (x + y) + \log z = \log (x + z) + \log c$

 $\therefore (x + y)z = c(x + z)$

be the solution of given equation.

Ex. Solve y(y+z)dx + x(x-z)dy + x(x+y)dz = 0**Proof:** Let y(y + z)dx + x(x - z)dy + x(x + y)dz = 0 be the given homogeneous equation, with P = y(y + z), Q = x(x - z) and R = x(x + y) $\therefore \rho = Px + Qy + Rz = x\gamma(y + z) + yx(x - z) + zx(x + y)$ $= xy^{2} + xyz + x^{2}y - xyz + x^{2}z + xyz$ $= xy^{2} + x^{2}y + x^{2}z + xyz$ $= x(y^2 + xy + xz + yz)$ $= x(x + y)(y + z) \neq 0$ \therefore The given equation is integrable. Divide the given equation by x(x + y)(y + z), we get, $\frac{y(y+z)}{x(x+y)(y+z)} dx + \frac{x(x-z)}{x(x+y)(y+z)} dy + \frac{x(x+y)}{x(x+y)(y+z)} dz = 0$ *i.e.* $\frac{y}{x(x+y)} dx + \frac{(x-z)}{(x+y)(y+z)} dy + \frac{1}{(y+z)} dz = 0$ *i.e.* $\frac{[(x+y)-x]}{x(x+y)} dx + \frac{[(x+y)-(y+z)]}{(x+y)(y+z)} dy + \frac{1}{(y+z)} dz = 0$ *i.e.* $\frac{1}{x} dx - \frac{1}{(x+y)} dx + \frac{1}{(y+z)} dy - \frac{1}{(x+y)} dy + \frac{1}{(y+z)} dz = 0$ $i.e.\frac{dx}{x}-\frac{dx+dy}{(x+y)}+\frac{dy+dz}{(y+z)}=0$ *i.e.* $\frac{dx}{x} + \frac{d(y+z)}{(y+z)} = \frac{d(x+y)}{(x+y)}$ Integrating, we get, $\log x + \log (y + z) = \log (x + y) + \log c$ $\therefore x(y+z) = c(x+y)$ be the solution of given equation.

Ex. Solve $(y^2 + yz)dx + (z^2 + zx)dy + (y^2 - xy)dz = 0$ Proof: Let $(y^2 + yz)dx + (z^2 + zx)dy + (y^2 - xy)dz = 0$ be the given homogeneous equation,

be the given homogeneous equation,

with $P=y^2+\,yz$, $Q=z^2+\,zx$ and $R=y^2$ - xy

$$\therefore \rho = Px + Qy + Rz = x(y^2 + yz) + y(z^2 + zx) + z(y^2 - xy)$$

$$= xy^2 + xyz + yz^2 + xyz + y^2z - xyz$$

$$= xy^2 + yz^2 + y^2z + xyz$$

$$= y(xy + z^2 + yz + xz)$$

$$= y(x + z)(y + z) \neq 0$$

$$\therefore \text{ The given equation is integrable.}$$
Divide the given equation by $y(x+z)(y+z)$, we get,

$$\frac{y(y+z)}{y(x+z)(y+z)} dx + \frac{z(x+z)}{y(x+z)(y+z)} dy + \frac{y(y-x)}{y(x+z)(y+z)} dz = 0$$

$$i. e. \frac{1}{(x+z)} dx + \frac{x}{y(y+z)} dy + \frac{(y+z)-(x+z)}{(x+z)(y+z)} dz = 0$$

$$i. e. \frac{1}{(x+z)} dx + \frac{1}{y} dy - \frac{1}{(y+z)} dy + \frac{1}{(x+z)} dz - \frac{1}{(y+z)} dz = 0$$

$$i. e. \frac{dx+dz}{(x+z)} + \frac{1}{y} dy - \frac{dy+dz}{(y+z)} = 0$$

$$i. e. \frac{d(x+z)}{(x+z)} + \frac{dy}{y} = \frac{d(y+z)}{(y+z)}$$
Integrating, we get,

$$\log (x + z) + \log y = \log (y + z) + \log c$$

$$\therefore (x + z)y = c(y + z)$$
be the solution of given equation.

Ex. Solve $(yz + z^2)dx - xzdy + xydz = 0$

Proof: Let
$$(yz + z^2)dx - xzdy + xydz = 0$$
 be the given homogeneous equation,
with $P = yz + z^2$, $Q = -xz$ and $R = xy$
 $\therefore \rho = Px + Qy + Rz = x(yz + z^2) + y(-xz) + z(xy)$
 $= xyz + xz^2 - xyz + xyz$
 $= xyz + xz^2$
 $= xyz + xz^2$
 $= xz(y + z) \neq 0$

 \therefore The given equation is integrable.

Divide the given equation by xz(y + z), we get,

Ex.

$$\frac{x(y+z)}{xz(y+z)} dx - \frac{xz}{xz(y+z)} dy + \frac{xy}{xz(y+z)} dz = 0$$

i. e. $\frac{1}{x} dx - \frac{1}{(y+z)} dy + \frac{y}{z(y+z)} dz = 0$
i. e. $\frac{1}{x} dx - \frac{1}{(y+z)} dy + \frac{1}{z(y+z)} dz = 0$
i. e. $\frac{1}{x} dx - \frac{1}{(y+z)} dy + \frac{1}{z} dz - \frac{1}{(y+z)} dz = 0$
i. e. $\frac{1}{x} dx + \frac{1}{z} dz - \frac{dy+dz}{(y+z)} = 0$
i. e. $\frac{dx}{x} + \frac{dz}{z} = \frac{d(y+z)}{(y+z)}$
Integrating, we get,
log x + log z = log (y + z) + logc
 $\therefore xz = c(y + z)$
be the solution of given equation.
Ex. Solve $z^2 dx + (z^2 - 2yz) dy + (2y^2 - yz - xz) dz = 0$
Proof: Let $z^2 dx + (z^2 - 2yz) dy + (2y^2 - yz - xz) dz = 0$
be the given homogeneous equation,
with P = z^2 , Q = $z^2 - 2yz$ and R = $2y^2 - yz - xz$ and is integrable.
 $\therefore \rho = Px + Qy + Rz = xz^2 + y(z^2 - 2yz) + z(2y^2 - yz - xz)$
 $= xz^2 + yz^2 - 2y^2 z + 2zy^2 - yz^2 - xz^2$
 $= 0$
 \therefore To solve the given equation put x = zu and y = zy,
 \therefore dx = udz + zdu and dy = vdz + zdv
 \therefore the given equation becomes
 $z^2(udz + zdu) + (z^2 - 2vz)(vdz + zdv) + (2z^2v^2 - z^2v - uz^2)dz = 0$
i.e. $z^3 du + z^3(1 - 2v)dv) + (dz = 0$
i.e. $du + (1 - 2v)dv = 0$
Integrating, we get,
 $u + v - v^2 = c$
$$\therefore \frac{x}{z} + \frac{y}{z} - \frac{y^2}{z^2} = c$$

i.e. $(x + y)z - y^2 = cz^2$

be the solution of given equation.

Ex. Solve yzdx + 2zxdy - 3xydz = 0**Proof:** Let yzdx + 2zxdy - 3xydz = 0 be the given homogeneous equation, with P = yz, Q = 2zx and R = -3xy and is integrable. $\therefore \rho = Px + Qy + Rz = xyz + 2yzx - 3zxy = 0$ \therefore To solve the given equation put x = zu and y = zv, \therefore dx = udz + zdu and dy = vdz + zdv \therefore the given equation becomes $vz^{2}(udz + zdu) + (2z^{2}u)(vdz + zdv) - (3z^{2}uv)dz = 0$ i.e. $vz^{3}du + 2uz^{3}dv + (uvz^{2} + 2z^{2}uv - 3z^{2}uv)dz = 0$ i.e. $vz^3du + 2uz^3dv + 0dz = 0$ i.e. vdu + 2udv = 0i.e. $\frac{du}{du} + 2\frac{dv}{du} = 0$ Integrating, we get, $\log u + 2\log v = \log c$ $\therefore uv^2 = c$ i.e. $\frac{x}{z} \left(\frac{y^2}{z^2} \right) = c$ i.e. $xy^2 = cz^3$ साध्द विन्दति सानरः be the solution of given equation.

Ex. Solve $yz^2(x^2 - yz) dx + zx^2(y^2 - xz) dy + xy^2(z^2 - xy) dz = 0$ **Proof:** Let $yz^2(x^2 - yz) dx + zx^2(y^2 - xz) dy + xy^2(z^2 - xy) dz = 0$

be the given homogeneous equation, which is integrable with $P = yz^{2}(x^{2} - yz), \quad Q = zx^{2}(y^{2} - xz) \text{ and } R = xy^{2}(z^{2} - xy)$ $\therefore Px + Qy + Rz = xyz^{2}(x^{2} - yz) + yzx^{2}(y^{2} - xz) + zxy^{2}(z^{2} - xy)$ $= xyz (x^{2}z - yz^{2} + xy^{2} - x^{2}z + yz^{2} - xy^{2})$

∴ To solve the given equation put x = zu and y = zv,
∴ dx = udz + zdu and dy = vdz + zdv
∴ the given equation becomes

$$vz^3(u^2z^2 - vz^2)(udz + zdu) + u^2z^3(v^2z^2 - uz^2)(vdz + zdv) + uv^2z^3(z^2 - uvz^2)dz = 0$$

i.e. $z^5[(u^2v - v^2)(udz + zdu) + (u^2v^2 - u^3)(vdz + zdv) + (uv^2 - u^2v^3)dz] = 0$
i.e. $(u^2v - v^2)zdu + (u^2v^2 - u^3)zdv + (u^3v - uv^2 + u^2v^3 - u^3v + uv^2 - u^2v^3)dz = 0$
i.e. $(u^2 - v)vzdu + (v^2 - u)u^2zdv = 0$
i.e. $u^2vdu - v^2du + u^2v^2dv - u^3dv = 0$
i.e. $u^2(vdu - udv) + u^2v^2dv - v^2du = 0$
Dividing by u^2v^2 , we get,
i.e. $\frac{v^{du-udv}}{v^2} + dv - \frac{du}{u^2} = 0$
i.e. $d(\frac{v}{v}) + dv + d(\frac{1}{u}) = 0$
Integrating, we get,
 $\frac{u}{v} + v + \frac{1}{u} = c$
∴ $u^2 + uv^2 + v = cuv$
i.e. $(\frac{x^2}{z^2}) + \frac{x}{z}(\frac{y^2}{z^2}) + \frac{y}{z} = c(\frac{x}{z})(\frac{y}{z})$
i.e. $x^2z + xy^2 + yz^2 = cxyz$
be the solution of given equation.

= 0

MULTIPLE CHOICE QUESTIONS [MCQ'S)]

1) The differential equation of the form $u_1dx_1 + u_2dx_2 + \dots + u_ndx_n = 0$ is called differential equation in n independent variables x_1, x_2, \dots, x_n .

A) PfaffianB) LinearC) HomogeneousD) None of these2) Pfaffian differential equation is also called differential equation.

- A) linear B) total C) homogeneous D) None of these
- 3) If P, Q, R, are functions of x, y, z, then the differential equation Pdx + Qdy + Rdz = 0 is called differential equation.

A) simultaneous B) Pfaffian	C) linear D) N	Non Linear	
4) If there exists a function u(x, y, z), such the	hat $Pdx + Qdy + Rdz = d$	lu, then the Pfaffian	
differential equation $Pdx + Qdy + Rdz = 0$) is said to be		
. A) exact	B) not exact		
C) may or may not be exact	D) None of these		
5) Pfaffian differential equation $Pdx + Qdy$	+ $Rdz = 0$ is said to be	,	
if the equation is exact or can be made ex	act.		
A) not integrable B) integrable	C) linear D) N	None of these	
6) Statement 'Every exact differential equation	on is integrable.' is		
A) true	B) false		
C) may be true or false	D) None of these		
7) Every exact differential equation is	ाहब एन से उठा		
A) not integrable	B) integrable	3.	
C) may or may not integrable	D) None of these	A L	
8) Statement 'Every integrable differential equation is exact' is			
A) true	B) false		
C) may be true or false	D) None of these		
9) An integrable differential equation		2	
A) is exact	B) is not exact	P	
C) may or may not exact	D) None of these		
10) If the Pfaffian differential equation $Pdx + Qdy + Rdz = 0$ satisfies the conditions			
$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$ and $\frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}$, then give	en equation is		
A) exact	B) not exact		
C) may or may not exact	D) None of these		
11) If the Pfaffian differential equation $Pdx + Qdy + Rdz = 0$ is exact, then it satisfies the			
conditions	ल्लाब्द् ।वन्द्रात नानवः		
A) $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ B) $\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$	C) $\frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}$ D) A	All above	
12) If the differential equation $Pdx + Qdy + Rdz = 0$ is exact, then			
$\frac{\partial P}{\partial P} = \frac{\partial Q}{\partial Q}, \frac{\partial Q}{\partial Q} = \frac{\partial R}{\partial R} & \frac{\partial R}{\partial R} = \dots$			
$\partial y \partial x^{\prime} \partial z \partial y \partial x$	$a \partial z$ $b \partial d$	¹ v	
A) $\frac{\partial z}{\partial z}$ B) $\frac{\partial y}{\partial y}$	C) $\frac{\partial P}{\partial P}$ D) $\frac{\partial}{\partial P}$		
13) The differential equation $(yz + 2x) dx +$	(zx-2z) dy + (xy-2y)	dz = 0 is	
A) exact	B) not exact		
C) may or may not exact	D) None of these		

MTH-402(A): DIFFERENTIAL EQUATIONS

14) The differential equa	ation $(x^2 - yz) dx +$	$(y^2 - zx) dy + (z^2 - zx) d$	- xy) dz = 0 is
A) exact		B) not exact	
C) may or may no	t exact	D) None of these	
15) The differential equa	ation $(yz - x^3) dx +$	$(zx - y^3) dy + (xy - y^3) dy + (y - y^3) dy $	z^{3}) dz = 0 is
A) exact		B) not exact	
C) may or may no	t exact	D) None of these	
16) The differential equa	ation $(2x + y^2 + 2xz)$	$dx + 2xy dy + x^2 dx$	dz = 0 is
A) exact		B) not exact	
C) may or may no	t exact	D) None of these	
17) The differential equa	ation $(y + z)dx + (z + z)dx$	(x + x)dy + (x + y)dz	= 0 is
A) exact	Tell'	B) not exact	
C) may or may no	t exact	D) None of these	301
18) The differential equa	tion $(y + z) dx + dy$	y + dz = 0 is	19
A) exact	A	B) not exact	$\langle \langle \mathfrak{A} \rangle \rangle$
C) may or may no	t exact	D) None of these	a \ *
19) For the differential e	quation xdx + ydy -	+ zdz = 0. Which of	the following is true?
A) $\frac{\partial P}{\partial r} = \frac{\partial Q}{\partial r}$	B) $\frac{\partial Q}{\partial r} = \frac{\partial R}{\partial r}$	C) $\frac{\partial R}{\partial r} = \frac{\partial P}{\partial r}$	D) All above
20) For the differential e	$\frac{\partial z}{\partial x} = \frac{\partial y}{\partial y}$	dx dz = (z + x)dy + (x + y)	dz = 0
Which of the followi	ng is true?		a a a a a a a a a a a a a a a a a a a
$\partial P = \partial Q$	$\frac{\partial Q}{\partial Q} = \partial R$	$\partial R = \partial P$	D) All shows
$A)\frac{\partial y}{\partial y} = \frac{\partial x}{\partial x}$	$\mathbf{B} \frac{\partial \mathbf{z}}{\partial \mathbf{z}} = \frac{\partial \mathbf{y}}{\partial \mathbf{y}}$	$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial z}$	D) All above
21) The differential equa	ation $(2x + y^2 + 2xz)$	$dx + 2xy dy + x^2 dx$	dz = 0 1s
A) not integrable	, tes	B) integrable	
C) may or may no	t integrable	D) None of these	
22) The differential equa	(y + z) dx + dy	$y + dz = 0 \text{ is} \dots$	
A) integrable	रकमणी तमभ्यच्ये	B) not integrable	ानवः।।
C) may or may no	t integrable	D) None of these	
23) If the differential equ	ation Pdx + Qdy +	Rdz = 0 is (a - z)(y)	ydx + xdy) + xydz = 0,
then $P = \dots$	\mathbf{D}		
A) a - z	B) $(a - z)y$	C) $(a - z)x$	D) xy
24) If the differential equ	ation Pdx + Qdy +	Rdz = 0 is $(a - z)(y)$	ydx + xdy) + xydz = 0,
then $Q = \dots$		\mathbf{C}	
A) $a - z$	B) $(a - z)y$	C) $(a - z)x$	D) xy $1 + \frac{2}{2}$
25) If the differential equation $C = C$	ation Pdx + Qdy +	$\kappa dz = 0$ is $zydx = z$	zxuy + y dz,
then $Q = \dots$	D) 7W	\mathbf{C}) and	\mathbf{D}) \mathbf{v}^2
A) ZX	\mathbf{D}) – ZX	C) Zy	D) y

26) If the differential equation Pdx + Qdy + Rdz = 0 is $zydx = zxdy + y^2dz$, then $R = \dots$ C) y^2 B) - zx $D) - v^2$ A) zy 27) If the differential equation Pdx + Qdy + Rdz = 0 is $2x^2ydx + 3xy^2dy + zdz = 0$, then the value of P is A) $2x^2y$ B) $3xy^2$ C) z D) x^3 28) If the differential equation Pdx + Qdy + Rdz = 0 is (yz + 2x) dx + (zx - 2z) dy + (xy - 2y) dz = 0, then $Q = \dots$ A) yz + 2x B) zx - 2z C) xy - 2y D) None of these 29) If the differential equation Pdx + Qdy + Rdz = 0 is $(yz - x^{3}) dx + (zx - y^{3}) dy + (xy - z^{3}) dz = 0$, then R = A) $yz - x^3$ B) $zx - y^3$ C) $xy - z^3$ D) 0 30) If the differential equation Pdx + Qdy + Rdz = 0 is (yz + xyz) dx + (zx + xyz) dy + (xy + xyz) dz = 0, then Q =A) yz + xyz B) zx + xyz C) xy + xyz D) xy + xyz + yz 31) If the differential equation Pdx + Qdy + Rdz = 0 is $2x^2ydx + 3xy^2dy + zdz = 0$, B) $3xy^2$ C) z then $\frac{\partial P}{\partial y} = \dots$ D) x^3 32) If the differential equation Pdx + Qdy + Rdz = 0 is $2x^2ydx + 3xy^2dy + zdz = 0$, then $\frac{\partial P}{\partial z} = \dots$ B) $3xy^2$ C) z A) $2x^2$ D) 0 33) If the differential equation Pdx + Qdy + Rdz = 0 is $2x^2ydx + 3xy^2dy + zdz = 0$, then $\frac{\partial Q}{\partial x} = \dots$ B) $3y^2$ C) z D) x^3 34) If the differential equation Pdx + Qdy + Rdz = 0 is $2x^2ydx + 3xy^2dy + zdz = 0$, then $\frac{\partial Q}{\partial z} = \dots$ B) $3y^2$ C)zA) $2x^2$ D) 0 35) If the differential equation Pdx + Qdy + Rdz = 0 is $2x^2ydx + 3xy^2dy + zdz = 0$, then $\frac{\partial R}{\partial x} = \dots$ B) $3v^2$ A) $2x^{2}$ C) z D) 0 36) If the differential equation Pdx + Qdy + Rdz = 0 is $2x^2ydx + 3xy^2dy + zdz = 0$, then $\frac{\partial R}{\partial y} = \dots$ A) $2x^2$ B) $3v^2$ C) z D) 0

MTH-402(A): DIFFERENTIAL EQUATIONS

37) If the differential equation Pdx + Qdy + Rdz = 0 is (a - z)(ydx + xdy) + xydz = 0, then $\frac{\partial P}{\partial v} = \dots$ B) (a-z)y C) (a-z)xA) a - z D) x 38) If the differential equation Pdx + Qdy + Rdz = 0 is (a - z)(ydx + xdy) + xydz = 0, then $\frac{\partial P}{\partial z} = \dots$ B) (a - z)y C) - yA) a - z D) y 39) If the differential equation Pdx + Qdy + Rdz = 0 is (a - z)(ydx + xdy) + xydz = 0, then $\frac{\partial Q}{\partial x} = \dots$ (a-z)x C) x B) (a - z)xA) a - z D) -x 40) If the differential equation Pdx + Qdy + Rdz = 0 is (a - z)(ydx + xdy) + xydz = 0, then $\frac{\partial Q}{\partial r} = \dots$ A) a - z B) (a - z)x C) x D) –x 41) If the differential equation Pdx + Qdy + Rdz = 0 is $zydx = zxdy + y^2dz$, then $\frac{\partial R}{\partial y} = \dots$ C) - 2yB) 0 D) 2y A) z 42) If the differential equation Pdx + Qdy + Rdz = 0 is $zydx = zxdy + y^2dz$, then $\frac{\partial Q}{\partial x} = \dots$ C) – 2y D) 2y A) -zB) z 43) If the differential equation Pdx + Qdy + Rdz = 0 is $zydx = zxdy + y^2dz$, then $\frac{\partial Q}{\partial z} = \dots$ B) –x C) – 2y D) 2y A) x 44) To solve the equation (y + z)dx + dy + dz = 0, we divide the equation by B) y C) y + z D) xyz A) z 45) To solve the equation $xdy - ydx - 2x^2zdz = 0$, we divide the equation by A) x^2z B) x^2 C) xy D) xyz 46) To solve the equation $zydx = zxdy + y^2dz$, we divide the equation by A) $v^2 z$ B) zy C) zx D) xyz 47) To solve the equation $xz^2dx - zdy + ydz = 0$, we divide the equation by B) x C) z^2 A) xz^2 D) xyz 48) To solve the equation $(y^2 + z^2 - x^2)dx - 2xydy - 2xzdz = 0$, we rearrange the terms

by	v adding and subtra	cting		
	A) $x^2 dx$	B) $y^2 dx$	C) $z^2 dx$	D) xyz
49) Sc	olution of equation	ydx + xdy = 0 is		
	A) $xy = c$	B) $yz = c$	C) $zx = c$	D) $xyz = c$
50) Sc	olution of equation	yzdx + xzdy + xyd	z = 0 is	
ſ	A) $xy = c$	B) $yz = c$	C) $zx = c$	D) xyz = c
51) Sc	olution of equation	(y+z)dx + dy + dz	z = 0 is	
	A) $x + \log(y + z) =$	= c	B) $\log x + y + z =$	c
	C) $y + z = c$	सांसायटा,।	D) $x + y + z = c$	
52) If	P, Q, R, are homo	geneous functions o	of x, y, z, of same de	egree, then the Pfaffian
dif	fferential equation	Pdx + Qdy + Rdz =	= 0 is called di	fferential equation
	A) simultaneous	B) homogeneous	C) linear	D) Non Linear
53) Tł	he Pfaffian differer	ntial equation (x-y)	lx - xdy + zdz = 0 is	s equation.
	A) homogeneous	\$ 1	B) non homogene	ous
	C) may or may no	t homogeneous	D) None of these	픸
54) Tł	he Pfaffian differer	ntial equation 2(y +	z)dx - (x + z)dy + (x + z)dy	(2y - x + z)dz = 0 is
	A) homogeneous	equation	B) non homogene	ous equation
	C) simultaneous e	quation	D) None of these	콜
55) The differential equation $(y^2 + z^2 - x^2)dx - 2xydy - 2xzdz = 0$ is equation.				
	A) not homogeneo	ous	B) homogeneous	9
	C) may or may no	t homogeneous	D) None of these	
56) The differential equation $yz^2(x^2 - yz) dx + zx^2(y^2 - xz) dy + xy^2(z^2 - xy) dz = 0$				
15	equation.			
	A) simultaneous	B) homogeneous	C) linear	D) Non homogeneous
57) If $Pdx + Qdy + Rdz = 0$ is homogeneous differential equation with				
ρ=	$=$ Px + Qy + Rz \neq	0, then it is always	integrable since it h	as an I.F.=
	Α) ρ	B) $\frac{1}{\rho}$	C) e ^p	D) None of these
58) Fo	or homogeneous di	fferential equation	Pdx + Qdy + Rdz =	0,
if	$\rho = Px + Qy + Rz$	\neq 0, then the different	ential equation is alv	ways
	A) integrable		B) not integrable	
	C) may or may no	t integrable	D) None of these	
59) Fo	or homogeneous di	fferential equation	Pdx + Qdy + Rdz =	0
if $\rho = Px + Qy + Rz = 0$, then the differential equation is				

UNIT-4: DIFFERENCE EQUATIONS

Shift Operator: Shift operator E is defined as Ef(x) = f(x+h). Note: $E^{2}f(x) = E[Ef(x)] = Ef(x+h) = f(x+2h)$, Similarly $E^{3}f(x) = f(x+3h)$ and so on, In general $E^n f(x) = f(x+nh)$, where n is any real number. **Forward difference Operator:** Forward difference operator Δ is defined as $\Delta f(x) = f(x+h) - f(x).$ Note: i) $\Delta f(x) = f(x+h) - f(x)$ is called first forward difference of f(x) and $\Delta^{n} f(x)$ is called nth forward difference of f(x). ii) $\Delta f(x) = f(x+h) - f(x) = Ef(x) - f(x) = (E - 1)f(x)$ $\therefore \Delta = E - 1$ i.e $E = \Delta + 1$ be the relation between shift operator and forward difference operator. **Difference Equations:** A relation of the form F $[x, y, \frac{\Delta y}{\Delta x}, \frac{\Delta^2 y}{\Delta x^2}, \dots, \frac{\Delta^n y}{\Delta x^n}] = 0$ is called a difference equation. Note: i) If y = f(x), then $\frac{\Delta y}{\Delta x} = \frac{f(x+h)-f(x)}{h} = \frac{Ef(x)-f(x)}{h} = \frac{(E-1)f(x)}{h}$, $\frac{\Delta^2 y}{\Delta x^2} = \frac{f(x+2h)-2f(x+h)+f(x)}{h^2} = \frac{E^2f(x)-2Ef(x)+f(x)}{h^2} = \frac{(E-1)^2f(x)}{h^2}$, and so on, ingeneral, $\frac{\Delta^n y}{\Delta x^n} = \frac{(E-1)^n f(x)}{h^n}$. Where h is the interval of differencing. ii) If y = f(x), then a relation of the form φ [x, f(x), f(x + h), f(x + 2h), ..., f(x + nh)] = 0 is called a difference equation. Order of a difference equation: The difference between the largest and smallest arguments for the function involved divided by h is called order of a difference equation. e.g. Order of a difference equation φ [x, f(x), f(x + h), f(x + 2h), ..., f(x + nh)] = 0 is $\frac{(x+nh)-(x)}{h} = n$. Solution of a difference equation: Any function which satisfies the given difference equation is called solution of a difference equation. **Subscript Notation:** y = f(x) is written in subscript form as $y_x = f(x)$ and $y_{x+n} = f(x+nh)$. e.g. i) The difference equation f(x + 2h) - 5f(x + h) + 6f(x) = 0 is written in

subscript form as $y_{x+2} - 5y_{x+1} + 6y_x = 0$.

ii) A difference equation φ [x, f(x), $f(x + h), f(x + 2h), \dots, f(x + nh)$] = 0

is written in subscript form as φ [x, y_x, y_{x+1}, y_{x+2},, y_{x+n}] = 0.
Note: Difference equation φ[x, y_x, y_{x+1}, y_{x+2},, y_{x+n}] = 0 is also expressed as φ[x, y_x, Ey_x, E²y_x,, Eⁿy_x] = 0.
Linear Difference Equation: An equation of the form

a₀(x)Eⁿy_x+a₁(x)Eⁿ⁻¹y_x + a₂(x)Eⁿ⁻²y_x+ +a_n(x)y_x = R(x) i.e. Φ(E)y_x = R(x) ...(1)
where Φ(E) = a₀(x)Eⁿ + a₁(x)Eⁿ⁻¹ + a₂(x)Eⁿ⁻² + + a_n(x), a₀(x) ≠ 0 and a_i(x) (i = 0, 1, 2,) are constants, then the equation (1) is called a linear difference equation with constant coefficients.

Non-Linear Difference Equation: If a difference equation is not of the form

Φ(E)y_x = R(x), then the equation it is called a non-linear difference equation.

e. g. i) (E³ - 6E² + 12) y_x = 0 is a linear difference equation with variable coefficients.
ii) (x E² - xE + 4) y_x = 4x + 1 is a linear difference equation.

Formulation of Difference Equation: From the general solution of a difference

Formulation of Difference Equation: From the general solution of a difference equation, we operate Δ , k times on this G.S. and eliminate these arbitrary constants.

Note: In this unit we take interval difference h =1

i.e. $Ef(x) = f(x+1) \& \Delta f(x) = f(x+1) - f(x)$

Ex. Given $f(x) = c.3^{x} + x.3^{x-1}$, find the corresponding difference equation. Solution: Given solution $f(x) = c.3^{x} + x.3^{x-1}$, contain only one arbitrary constant,

so we operate Δ once on this f(x), we get, $\Delta f(x) = f(x+1) - f(x) = c.3^{x+1} + (x+1).3^x - c.3^x - x.3^{x-1}$ **4** $= 3c.3^x + 3x.3^{x-1} + 3.3^{x-1} - c.3^x - x.3^{x-1}$ $= 2c.3^x + (2x+3)3^{x-1}$ $= 2[f(x) - x.3^{x-1}] + (2x+3)3^{x-1}$ from given equation $c.3^x = f(x) - x.3^{x-1}$ $\therefore f(x+1) - f(x) = 2f(x) - 2x.3^{x-1} + 2x.3^{x-1} + 3^x$ i. e. $f(x+1) - 3f(x) = 3^x$ be the required difference equation.

Ex. Given $u_x = c_1 2^x + c_2 3^x + \frac{1}{2}$, find the corresponding difference equation. **Solution:** Given solution $u_x = c_1 2^x + c_2 3^x + \frac{1}{2}$ contain two arbitrary constants,

so we operate
$$\Delta$$
 twice on this u_x , we get,

$$\Delta u_x = u_{x+1} - u_x = c_1 2^{x+1} + c_2 3^{x+1} + \frac{1}{2} - c_1 2^x - c_2 3^x - \frac{1}{2}$$

$$= 2c_1 2^x + 3c_2 3^x - c_1 2^x - c_2 3^x$$

$$= c_1 2^x + 2c_2 3^x \dots (i)$$

$$\Delta^2 u_x = c_1 2^{x+1} + 2c_2 3^{x+1} - c_1 2^x - 2c_2 3^x$$

$$= 2c_1 2^x + 6c_2 3^x - c_1 2^x - 2c_2 3^x$$

$$= c_1 2^x + 4c_2 3^x \dots (ii)$$
Now equation (ii) - (i) gives,

$$\Delta^2 u_x - \Delta u_x = c_1 2^x + 4c_2 3^x - c_1 2^x - 2c_2 3^x = 2c_2 3^x$$
From (i), we get,

$$\Delta u_x = c_1 2^x + \Delta^2 u_x - \Delta u_x \text{ i.e. } c_1 2^x = 2\Delta u_x - \Delta^2 u_x$$
Hence from given equation, we have,

$$u_x = 2\Delta u_x - \Delta^2 u_x + \frac{1}{2}(\Delta^2 u_x - \Delta u_x) + \frac{1}{2}$$

$$= \frac{3}{2} \Delta u_x - \frac{1}{2} \Delta^2 u_x + \frac{1}{2}$$

$$= \frac{3}{2} (u_{x+1} - u_x) - \frac{1}{2} (u_{x+2} - 2u_{x+1} + u_x) + \frac{1}{2}$$

$$\therefore 2u_x = 3u_{x+1} - 3u_x - u_{x+2} + 2u_{x+1} - u_x + 1$$

$$\therefore u_{x+2} - 5u_{x+1} + 6u_x = 1$$
 be the required difference equation.

Ex. Form the difference equation corresponding to the family of curves $y = ax^2 + bx - 3$, **Solution:** Given family of curves $y_x = ax^2 + bx - 3$ contain two arbitrary constants,

so we operate
$$\Delta$$
 twice on this y_x , we get,

$$\Delta y_x = y_{x+1} - y_x = a(x+1)^2 + b(x+1) - 3 - ax^2 - bx + 3$$

$$= 2ax + a + b \dots (i)$$

$$\Delta^2 y_x = 2a(x+1) + a + b - 2ax - a - b$$

$$= 2a$$

$$\therefore a = \frac{1}{2} \Delta^2 y_x$$

Putting in (i), we get,

$$\Delta y_x = x\Delta^2 y_x + \frac{1}{2}\Delta^2 y_x + b$$

$$\therefore b = \Delta y_x - x\Delta^2 y_x - \frac{1}{2}\Delta^2 y_x$$

Hence from given equation, we have,

$$y_{x} = x^{2} \frac{1}{2} \Delta^{2} y_{x} + x(\Delta y_{x} - x\Delta^{2} y_{x} - \frac{1}{2} \Delta^{2} y_{x}) - 3$$

$$\therefore 2y_{x} = x^{2} \Delta^{2} y_{x} + 2x \Delta y_{x} - 2x^{2} \Delta^{2} y_{x} - x\Delta^{2} y_{x} - 6$$

$$\therefore 2y_{x} = -(x^{2} + x) \Delta^{2} y_{x} + 2x \Delta y_{x} - 6$$

$$\therefore 2y_{x} = -(x^{2} + x) (y_{x+2} - 2y_{x+1} + y_{x}) + 2x(y_{x+1} - y_{x}) - 6$$

$$\therefore 2y_{x} = -(x^{2} + x) y_{x+2} + 2(x^{2} + x) y_{x+1} - (x^{2} + x) y_{x} + 2xy_{x+1} - 2xy_{x} - 6$$

$$\therefore 2y_{x} = -(x^{2} + x) y_{x+2} + 2(x^{2} + 2x) y_{x+1} - (x^{2} + 3x) y_{x} - 6$$

$$\therefore (x^{2} + x) y_{x+2} - 2(x^{2} + 2x) y_{x+1} + (x^{2} + 3x + 2) y_{x} + 6 = 0$$

be the required difference equation.

Ex. Form the difference equation given that $y_n = A3^n + B5^n$, where A and B are arbitrary constants.

Solution: Given equation $y_n = A3^n + B5^n \dots$ (i)

be the required difference equation.

Ex. Form the difference equation corresponding to the following general solution: a) $y = c_1 x^2 + c_2 x + c_3$ b) $y = (c_1 + c_2 n)(-2)^n$

Solution: a) Given solution $y_x = c_1 x^2 + c_2 x + c_3 \dots (1)$

contain three arbitrary constants c_1 , c_2 and c_3 , so we operate Δ thrice on this y_x ,

we get

$$\begin{aligned} \Delta y_x &= y_{x+1} - y_x = c_1(x+1)^2 + c_2(x+1) + c_3 - c_1 x^2 - c_2 x - c_3 \\ &= 2c_1 x + c_1 + c_2 \dots \dots (2) \\ \Delta^2 y_x &= [2c_1(x+1) + c_1 + c_2] - [2c_1 x + c_1 + c_2] \\ &= 2c_1 \dots \dots (3) \end{aligned}$$

$$\begin{aligned} &\& \Delta^{3}y_{x} = 2c_{1} - 2c_{1} \\ &\therefore (E - 1)^{3}y_{x} = 0 \\ &\therefore (E^{3} - 3E^{2} + 3E - 1)y_{x} = 0 \\ &\therefore y_{x+3} - 3y_{x+2} + 3y_{x+1} - y_{x} = 0 \text{ be the required difference equation.} \end{aligned}$$

b) Given solution $y_{n} = (c_{1} + c_{2}n)(-2)^{n}$ i.e. $y_{n} = c_{1}(-2)^{n} + c_{2}n(-2)^{n}$ (1)
contain two arbitrary constants c_{1} and c_{2} .
 $&\therefore y_{n+1} = c_{1}(-2)^{n+1} + c_{2}(n+1)(-2)^{n+1} = -2c_{1}(-2)^{n} - 2c_{2}(n+1)(-2)^{n}$ (ii)
 $&y_{n+2} = c_{1}(-2)^{n+2} + c_{2}(n+2)(-2)^{n+2} = 4c_{1}(-2)^{n} + 4c_{2}(n+2)(-2)^{n}$ (iii)
Eliminating c_{1} and c_{2} from equations (i), (ii), (iii), we get,
 $\begin{vmatrix} y_{n} & 1 & n \\ y_{n+1} & -2 & -2(n+1) \\ y_{n+2} & 4 & 4(n+2) \end{vmatrix} = 0$
i.e. $y_{n}[-8n-16+8n+8] - y_{n+1}[4n+8-4n] + y_{n+2}[-2n-2+2n] = 0$
i.e. $-2y_{n+2} - 8y_{n+1} - 8y_{n} = 0$
i.e. $y_{n+2} + 4y_{n+1} + 4y_{n} = 0$
be the required difference equation.

Ex. Find the order of the difference equation $y_{x+2} - 7y_x = 5$ Solution: Given difference equation is $y_{x+2} - 7y_x = 5$

Here difference between the highest subscript and lowest subscript = x+2 - x = 2

 \therefore order of given difference equation is 2.

Ex. Find the order of the difference equation $y_{x+4} - 5y_{x+2} + 6y_x = 0$. **Solution:** Given difference equation is $y_{x+4} - 5y_{x+2} + 6y_x = 0$.

Here difference between the highest subscript and lowest subscript = x+4 - x = 4

 \therefore order of given difference equation is 4.

Ex. Find the order of the difference equation $\Delta^3 y_x + 2\Delta y_x + y_x = x + 3$. **Solution:** Given difference equation is $\Delta^3 y_x + 2\Delta y_x + y_x = x + 3$

i.e. $(E-1)^3 y_x + 2(E-1)y_x + y_x = x + 3$ i.e. $(E^3 - 3E^2 + 3E - 1)y_x + (2E-2)y_x + y_x = x + 3$ i.e. $y_{x+3} - 3y_{x+2} + 3y_{x+1} - y_x + 2y_{x+1} - 2y_x + y_x = x + 3$ Here difference between the highest subscript and lowest subscript = x+3 - x = 3 \therefore order of given difference equation is 3.

Ex. Show that
$$y_x = \frac{x(x-1)}{2}$$
 is a solution of the difference equation $y_{x+1} - y_x = x$.
Proof: We have $y_x = \frac{x(x-1)}{2}$
 $\therefore y_{x+1} = \frac{(x+1)x}{2}$
Consider
LHS = $y_{x+1} - y_x$
 $= \frac{(x+1)x}{2} - \frac{x(x-1)}{2}$
 $= \frac{x}{2} [x+1-x+1]$
 $= x$
 $= RHS$
 $\therefore y_x = \frac{x(x-1)}{2}$ is a solution of the given difference equation is proved.

Ex. Show that $y_x = 1 - \frac{2}{x}$, x = 1, 2, 3, ... is a solution of the first order difference equation $(x+1)y_{x+1} + xy_x = 2x - 3$, x = 1, 2, 3, ...Proof: We have $y_x = 1 - \frac{2}{x}$, x = 1, 2, 3, ... $\therefore y_{x+1} = 1 - \frac{2}{x+1}$ Consider LHS = $(x+1)y_{x+1} + xy_x$ $= (x+1)(1 - \frac{2}{x+1}) + x(1 - \frac{2}{x})$ = x + 1 - 2 + x - 2

= 2x - 3

 \therefore y_x = 1- $\frac{2}{x}$, x = 1, 2, 3, is a solution of the given difference equation is proved.

<u>Ex.</u> Show that $y_x = c_1 + c_2 2^x - x$ is a solution of the difference equation $y_{x+2} - 3y_{x+1} + 2y_x = 1$ **Proof:** We have $y_x = c_1 + c_2 2^x - x$ $\therefore y_{x+1} = c_1 + c_2 2^{x+1} - (x+1) = c_1 + 2c_2 2^x - x - 1$ & $y_{x+2} = c_1 + c_2 2^{x+2} - (x+2) = c_1 + 4c_2 2^x - x - 2$

Consider

LHS =
$$y_{x+2} - 3y_{x+1} + 2y_x$$

= $c_1 + 4c_2 2^x - x - 2 - 3[c_1 + 2c_2 2^x - x - 1] + 2[c_1 + c_2 2^x - x]$
= $c_1 + 4c_2 2^x - x - 2 - 3c_1 - 6c_2 2^x + 3x + 3 + 2c_1 + 2c_2 2^x - 2x$
= 1
= RHS

 \therefore y_x = c₁ + c₂ 2^x - x is a solution of the given difference equation is proved.

Second Order Homogenous Difference Equations: If $a_2 \neq 0$, then $y_{x+2} + a_1y_{x+1} + a_2y_x = 0$ is called second order homogenous difference equation.

General Homogenous Difference Equations:

If $a_n \neq 0$, then $y_{x+n} + a_1 y_{x+n-1} + a_2 y_{x+n-2} + \dots + a_{n-1} y_{x+1} + a_n y_x = 0$

is called nth order homogenous difference equation.

Auxiliary Equations: When $y_x = m^x$, the auxiliary equation of general n^{th} order homogenous difference equation is $m^n + a_1m^{n-1} + a_2m^{n-2} + \dots + a_{n-1}m + a_n = 0$

- **Remark:** i) If m_1 and m_2 are distinct real roots of an auxiliary equation $m^2 + a_1m + a_2 = 0$ of given second order homogenous difference equation, then the solution is $y_x = c_1 m_1^x + c_2 m_2^x$.
 - ii) If m_1 and m_2 are equal real roots of an auxiliary equation $m^2 + a_1m + a_2 = 0$ of given second order homogenous difference equation, then the solution is $y_x = (c_1 + c_2 x)m_1^x$.
 - iii) If $m = \alpha \pm i\beta$ are the complex roots of an auxiliary equation $m^2 + a_1m + a_2 = 0$ of given second order homogenous difference equation, then the solution is $y_x = \rho^x (c_1 \cos x\theta + c_2 \sin x\theta)$

where $\rho = \sqrt{\alpha^2 + \beta^2}$, $\theta = \tan^{-1}(\frac{\beta}{\alpha})$ and c_1 , c_2 are constants.

- iv) If $m_1, m_2, ..., m_n$ are distinct real roots of an auxiliary equation of given n^{th} order homogenous difference equation, then the solution is $y_x = c_1 m_1^x + c_2 m_2^x + + c_n m_n^x$
- v) If m_1, m_2, \ldots, m_k are equal real roots of an auxiliary equation of given n^{th}

order homogenous difference equation repeated k times, then the solution is $y_x = (c_1 + c_2 x + \dots + c_k x^{k-1}) m_1^x.$

Ex. Solve the difference equation $y_{x+3} - 3y_{x+2} - 10y_{x+1} + 24y_x = 0$.

Solution: Given difference equation is $y_{x+3} - 3y_{x+2} - 10y_{x+1} + 24y_x = 0$.

When we take $y_x = m^x$, the A.E.is $m^3 - 3m^2 - 10m + 24 = 0$ (m - 2) (m + 3) (m - 4) = 0 $\therefore m = 2, -3, 4$ are the roots of an A.E. Thus, the G.S. is $y_x = C_1 2^x + C_2 (-5)^x + C_3 4^x$.

Ex. Solve the difference equation $y_{x+2} - 7y_{x+1} + 12y_x = 0$. Solution: Given difference equation is $y_{x+2} - 7y_{x+1} + 12y_x = 0$.

When we take $y_x = m^x$, the A.E.is $m^2 - 7m + 12 = 0$ (m - 3) (m - 4) = 0 $\therefore m = 3, 4$ are the roots of an A.E. Thus, the G.S. is $y_x = C_1 3^x + C_2 4^x$

Ex. Solve the difference equation $y_{x+4} - 4y_{x+3} + 6y_{x+2} - 4y_{x+1} + y_x = 0$. Solution: Given difference equation is $y_{x+4} - 4y_{x+3} + 6y_{x+2} - 4y_{x+1} + y_x = 0$.

When we take $y_x = m^x$, the A.E.is $m^4 - 4m^3 + 6m^2 - 4m + 1 = 0$ $(m - 1)^4 = 0$ $\therefore m = 1, 1, 1, 1$ are the roots of an A.E. Thus, the G.S. is $y_x = (C_1 + C_2x + C_3x^2 + C_4x^3) \cdot 1^x = C_1 + C_2x + C_3x^2 + C_4x^3$

Ex. Solve the difference equation $y_{x+4} - 8y_{x+3} + 18y_{x+2} - 27 y_x = 0$. Solution: Given difference equation is $y_{x+4} - 8y_{x+3} + 18y_{x+2} - 27 y_x = 0$.

When we take $y_x = m^x$, the A.E.is

 $m^4 - 8m^3 + 18m^2 - 27 = 0$ $(m+1)(m-3)^3 = 0$: m = -1, 3, 3, 3 are the roots of an A.E. Thus. the G.S. is $y_x = C_1(-1)^x + (C_2 + C_3x + C_4x^2).3^x$ **Ex.** Solve the difference equation $y_{x+3} + y_{x+2} - 8y_{x+1} - 12y_x = 0$. **Solution:** Given difference equation is $y_{x+3} + y_{x+2} - 8y_{x+1} - 12y_x = 0$. When we take $y_x = m^x$, the A.E.is $m^3 + m^2 - 8m - 12 = 0$ $(m - 3) (m^2 + 4m + 4) = 0$ $(m - 3) (m + 2)^2 = 0$ \therefore m = 3, -2, -2 are the roots of an A.E. Thus, the G.S. is $v_x = C_1 3^x + (C_2 + C_3 x) \cdot (-2)^x$ **Ex.** Solve the difference equation $2y_{x+2} - 5y_{x+1} + 2y_x = 0$. Also find the particular solution satisfying the initial conditions $y_0 = 0$ and $y_1 = 1$. **Solution:** Given difference equation is $2y_{x+2} - 5y_{x+1} + 2y_x = 0$. When we take $y_x = m^x$, the A.E.is $2m^2 - 5m + 2 = 0$ (2m - 1)(m - 2) = 0 \therefore m = $\frac{1}{2}$, 2 are the roots of an A.E. Thus, the G.S. is $y_x = C_1(\frac{1}{2})^x + C_2 2^x$ म्यर्च्य सिध्दि विन्दति मानव When x = 0 and x = 1, we get, $y_0 = C_1 + C_2 = 0$ and $y_1 = \frac{1}{2}C_1 + 2C_2 = 1$ Solving these, we get $C_1 = -\frac{2}{3}$ and $C_2 = \frac{2}{3}$: The particular solution is $y_x = -\frac{2}{3}(\frac{1}{2})^x + \frac{2}{3}2^x$ **Ex.** Solve the difference equation $9y_{x+2} - 6y_{x+1} + y_x = 0$. Also find the particular solution

Ex. Solve the difference equation $9y_{x+2} - 6y_{x+1} + y_x = 0$. Also find the particular solution satisfying the initial conditions $y_0 = 0$ and $y_1 = 1$.

Solution: Given difference equation is $9y_{x+2} - 6y_{x+1} + y_x = 0$.

When we take
$$y_x = m^x$$
, the A.E. is
 $9m^2 - 6m + 1 = 0$
 $(3m - 1)^2 = 0$
 $\therefore m = \frac{1}{3}, \frac{1}{3}$ are the roots of an A.E.
Thus, the G.S. is
 $y_x = (C_1 + C_2 x) (\frac{1}{3})^x$
When $x = 0$ and $x = 1$, we get,
 $y_0 = C_1 = 0$ and $y_1 = \frac{1}{3} (C_1 + C_2) = 1$
Solving these, we get $C_1 = 0$ and $C_2 = 3$
 \therefore The particular solution is $y_x = 2(\frac{1}{3})^x x$
Ex. Solve the difference equation $y_{x12} + y_x = 0$ with $y_0 = 0$ and $y_1 = 1$.
Solution: Given difference equation is $y_{x12} + y_x = 0$.
When we take $y_x = m^x$, the A.E. is
 $m^2 + 1 = 0$
 $\therefore m = \pm i = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$ are the roots of an A.E. with $\rho = 1$ and $\theta = \frac{\pi}{2}$
Thus, the G.S. is
 $y_x = C_1 \cos \frac{\pi}{2} x + C_2 \sin \frac{\pi}{2} x$
When $x = 0$ and $y_1 = C_2 = 1$
 \therefore The particular solution is $y_{x+1} - 2y_x \cos \alpha + y_{x+1} = 0$.
When we take $y_{x-1} = m^x$, the A.E. is
 $m^2 - 2m\cos \alpha + 1 = 0$
 $\therefore m = \frac{2\cos \alpha \pm \sqrt{4\cos^2 \alpha - 4}}{2} = \cos \alpha \pm i \sin \alpha$ are the roots of an A.E.
with $\rho = 1$ and $\theta = \alpha$
Thus, the G.S. is
 $y_x = C_1 \cos \alpha x + C_2 \sin \alpha x$

Ex. Solve the difference equation $3y_{x+2} - 6y_{x+1} + 4y_x = 0$. Also find the particular solution satisfying the initial conditions $y_0 = 0$ and $y_1 = 1$.

Solution: Given difference equation is $3y_{x+2} - 6y_{x+1} + 4y_x = 0$.

When we take $y_x = m^x$, the A.E. is

$$3m^{2}-6m+4=0$$

$$\therefore m = \frac{6\pm\sqrt{36-48}}{6} = 1 \pm \frac{1}{\sqrt{3}}i = \frac{2}{\sqrt{3}}(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}) \text{ are the roots of an A.E.}$$
with $\rho = \frac{2}{\sqrt{3}}$ and $\theta = \frac{\pi}{6}$
Thus, the G.S. is
 $y_{x} = (\frac{2}{\sqrt{3}})^{x} (C_{1}\cos\frac{\pi}{6}x + C_{2}\sin\frac{\pi}{6}x)$
Fibonacci Sequence: A sequence of type 0, 1, 1, 2, 3, 5, 8, is called Fibonacci sequence. which is formulated in difference equation form as
 $y_{x+1} = y_{x} + y_{x-1}$ i.e. $y_{x+2} - y_{x+1} - y_{x} = 0$ i.e. $(E^{2} - E - 1)y_{x} = 0$ with $y_{0} = 0$ and $y_{1} = 1$
is called Fibonacci difference equation:
Formulation of Fibonacci difference equation:
Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, is formulated in difference equation form as $y_{x+1} = y_{x} + y_{x-1}$ i.e. $y_{x+2} - y_{x+1} + y_{x} = 0$ with $y_{0} = 0$ and $y_{1} = 1$
Method of solving Fibonacci difference equation:
Let, $y_{x+2} - y_{x+1} - y_{x} = 0$ i.e. $(E^{2} - E - 1)y_{x} = 0$ with $y_{0} = 0$ and $y_{1} = 1$
Method of solving Fibonacci difference equation:
Let, $y_{x+2} - y_{x+1} - y_{x} = 0$ i.e. $(E^{2} - E - 1)y_{x} = 0$ with $y_{0} = 0$ and $y_{1} = 1$
be the Fibonacci difference equation:
Let, $y_{x+2} - y_{x+1} - y_{x} = 0$ i.e. $(E^{2} - E - 1)y_{x} = 0$ with $y_{0} = 0$ and $y_{1} = 1$
be the Fibonacci difference equation:
Let, $y_{x+2} - y_{x+1} - y_{x} = 0$ i.e. $(E^{2} - E - 1)y_{x} = 0$ with $y_{0} = 0$ and $y_{1} = 1$
be the Fibonacci difference equation:
 $y_{x} = m - 1 = 0$ voccound for the two form $A = E$
 $\therefore m = \frac{1 \pm \sqrt{14}}{2} = \frac{1}{2} \pm \frac{\sqrt{2}}{2}$ are the roots of an A.E.
 \therefore The G. S. of the given Fibonacci difference equation is
 $y_{x} = c_{1}(\frac{1}{2} + \frac{\sqrt{5}}{2})^{x} + c_{2}(1 - \sqrt{5})^{x}]$
Now $y_{0} = 0$ and $y_{1} = 1$ gives
 $0 = c_{1} + c_{2} \dots (i)$ and

$$1 = \frac{1}{2} [c_{1}(1 + \sqrt{5}) + c_{2}(1 - \sqrt{5})]$$

$$= \frac{1}{2} [c_{1} + c_{1}\sqrt{5} + c_{2} - c_{2}\sqrt{5}]$$

$$1 = \frac{\sqrt{5}}{2} [c_{1} - c_{2}]$$
i.e. $c_{1} - c_{2} = \frac{2}{\sqrt{5}}$ (ii)
Adding equation (i) and (ii), we get,
 $2c_{1} = \frac{2}{\sqrt{5}}$ i.e. $c_{1} = \frac{1}{\sqrt{5}}$
Putting in (i), we get, $c_{2} = -\frac{1}{\sqrt{5}}$
 \therefore Required particular solution of Fibonacci difference equation is
 $y_{x} = \frac{1}{2^{x}} [\frac{1}{\sqrt{5}} (1 + \sqrt{5})^{x} - \frac{1}{\sqrt{5}} (1 - \sqrt{5})^{x}]$
i.e. $y_{x} = \frac{1}{\sqrt{5}} [(1 + \sqrt{5})^{x} - (1 - \sqrt{5})^{x}].2^{-x}$

_

_

i.e.
$$a_0[\lambda_1 y_{x+n}^{(1)} + \lambda_2 y_{x+n}^{(2)} + \dots + \lambda_n y_{x+n}^{(n)}] + a_1[\lambda_1 y_{x+n-1}^{(1)} + \lambda_2 y_{x+n-1}^{(2)} + \dots + \lambda_n y_{x+n-1}^{(n)}]$$

+ $a_2[\lambda_1 y_{x+n-2}^{(1)} + \lambda_2 y_{x+n-2}^{(2)} + \dots + \lambda_n y_{x+n-2}^{(n)}] + \dots$
+ $a_n[\lambda_1 y_x^{(1)} + \lambda_2 y_x^{(2)} + \dots + \lambda_n y_x^{(n)}] = 0$
 $\therefore \lambda_1 y_x^{(1)} + \lambda_2 y_x^{(2)} + \dots + \lambda_n y_x^{(n)}$ is solution of given difference equation is proved.

Theorem: If Y is a solutions of nth order homogeneous linear difference equation with constant coefficients $a_0y_{x+n} + a_1y_{x+n-1} + a_2y_{x+n-2} + \dots + a_ny_x = 0$, and Y^{*} is a solutions of non-homogeneous linear difference equation with constant coefficients $a_0y_{x+n} + a_1y_{x+n-1} + a_2y_{x+n-2} + \dots + a_ny_{kx} = R_x$ then $Y + Y^*$ is a solution of $a_0y_{x+n} + a_1y_{x+n-1} + a_2y_{x+n-2} + \dots + a_ny_x = R_x$ **Proof:** As Y is a solutions of the given homogeneous linear difference equation $a_0y_{x+n} + a_1y_{x+n-1} + a_2y_{x+n-2} + \dots + a_ny_x = 0$ $\therefore a_0 Y_{x+n} + a_1 Y_{x+n-1} + a_2 Y_{x+n-2} + \dots + a_n Y_x = 0 \dots (1)$ Also Y^* is a solutions of the non-homogeneous linear difference equation $a_0y_{x+n} + a_1y_{x+n-1} + a_2y_{x+n-2} + \dots + a_ny_x = R_x$ $\therefore a_0 Y_{r+n}^* + a_1 Y_{r+n-1}^* + a_2 Y_{r+n-2}^* + \dots + a_n Y_r^* = R_r \dots (2)$ Adding equation (1) & (2), we get $a_0Y_{x+n} + a_1Y_{x+n-1} + a_2Y_{x+n-2} + \dots + a_nY_x$ $+a_0Y_{x+n}^* + a_1Y_{x+n-1}^* + a_2Y_{x+n-2}^* + \dots + a_nY_x^* = R_x$ $a_0(Y_{x+n}+Y_{x+n}^*) + a_1(Y_{x+n-1}+Y_{x+n-1}^*) + a_2(Y_{x+n-2}+Y_{x+n-2}^*) + \dots + a_n(Y_x+Y_x^*) = R_x$ Hence $Y + Y^*$ is a solution of $a_0y_{x+n} + a_1y_{x+n-1} + a_2y_{x+n-2} + \dots + a_ny_x = R_x$ is proved.

Non-Homogenous Linear Difference Equations: If $a_2 \neq 0$, then $y_{x+2} + a_1y_{x+1} + a_2y_x = f(x)$ is called second order homogenous linear difference equation.

General Non-Homogenous Difference Equations:

If $a_0 \neq 0$, then $(a_0 E^n + a_1 E^{n-1} + a_2 E^{n-2} + \dots + a_n)y_x = f(x)$ i.e. $\Phi(E)y_x = f(x)$ is called nth order non-homogenous linear difference equation.

Remark: i) If $\Phi(a) \neq 0$, then particular solution of non-homogenous linear difference equation $\Phi(E)y_x = a^x$ is $\frac{1}{\Phi(E)}a^x = \frac{a^x}{\Phi(a)}$

ii) If $\Phi(a) = 0$ i.e. $\Phi(E) = (E-a)^n \psi(E)$ with $\psi(a) \neq 0$, then particular solution of non-homogenous linear difference equation $\Phi(E)y_x = a^x$ is

$$\frac{1}{\Phi(E)}a^{x} = \frac{1}{(E-a)^{n}\psi(E)}a^{x} = \frac{x(x-1)(x-2)\dots(x-n+1)a^{x-n}}{n!\psi(a)}$$

iii) If non-homogenous linear difference equation is of type $\Phi(E)y_x = f(x)$, where f(x) is polynomial in x of degree r, then its particular solution is

$$\frac{1}{\Phi(E)}f(x) = \frac{1}{\Phi(1+\Delta)}f(x)$$

- We expand $\frac{1}{\Phi(1+\Delta)}$ in ascending powers of Δ and operate on f(x).
- iv) If non-homogenous linear difference equation is of type $\Phi(E)y_x = a^x f(x)$, then its particular solution is $\frac{1}{\Phi(E)}a^x f(x) = a^x \frac{1}{\Phi(aE)}f(x)$
- v) If non-homogenous linear difference equation is of type $\Phi(E)y_x = \cos ax$, then its particular solution is $\frac{1}{\Phi(E)}\cos ax = \text{Real part of } \frac{1}{\Phi(E)}e^{iax}$
- vi) If non-homogenous linear difference equation is of type $\Phi(E)y_x = sinax$, then its particular solution is $\frac{1}{\Phi(E)}sinax = Imaginary$ part of $\frac{1}{\Phi(E)}e^{iax}$

Ex. Solve the following difference equations:

a) $y_{x+1} - 3y_x = 1$ b) $y_{x+1} - 3y_x = 0$, $y_0 = 2$

Solution: a) Let $y_{x+1} - 3y_x = 1$ i.e. (E - 3) $y_x = 1$

be the given non-homogeneous linear difference equation.

When we take
$$y_x = m^x$$
, the A.E.is

m - 3 = 0

 \therefore m = 3 is the roots of an A. E.

: The G. S. of reduced homogeneous difference equation is

Now particular solution of given non-homogeneous equation is

$$P.S. = \frac{1}{(E-3)}1$$
$$= \frac{1}{(E-3)}1^{x}$$
$$= \frac{1}{(1-3)}$$
$$= -\frac{1}{2}$$

Hence G.S. of given equation is $y_x = G.S. + P.S.$

i.e. $y_x = c 3^x - \frac{1}{2}$ b) Let $y_{x+1} - 3y_x = 0$ i.e. (E - 3) $y_x = 0$ be the given homogeneous linear difference equation. When we take $y_x = m^x$, the A.E.is m - 3 = 0 \therefore m = 3 is the roots of an A. E. : The G. S. of given homogeneous difference equation is $y_x = c3^x$ Now $y_0 = 2$ gives $c3^0 = 2$ i.e. 2 = cHence particular solution of given equation is $y_{x} = 2.3^{x}$ **Ex.** Solve the following equation $y_{x+2} - 3y_{x+1} + 2y_x = 1$. **Solution:** Let $y_{x+2} - 3y_{x+1} + 2y_x = 1$ i.e. $(E^2 - 3E + 2)y_x = 1$ be the given non-homogeneous linear difference equation. When we take $y_x = m^x$, the A.E. is $m^2 - 3m + 2 = 0$ (m - 1) (m - 2) = 0 \therefore m = 1, 2 are the roots of an A.E. Thus, the G.S. of reduced homogeneous equation is $y_x = C_1 + C_2 2^x$ Now particular solution of given non-homogeneous equation is $P.S. = \frac{1}{(E^2 - 3E + 2)} l$ $= \frac{1}{(E-1)(E-2)} 1^{x}$ $= \frac{x}{(1-2)}$ $\equiv -x$

Hence G.S. of given equation is $y_x = G.S. + P.S.$

i.e.
$$y_x = C_1 + C_2 2^x - x$$

Ex. Solve $y_{x+2} - 3y_{x+1} + 2y_x = a^x$, where a is some constant

Solution: Let $y_{x+2} - 3y_{x+1} + 2y_x = a^x$ i.e. $(E^2 - 3E + 2)y_x = a^x$, where a is some constant be the given non-homogeneous linear difference equation. When we take $y_x = m^x$, the A.E. is $m^2 - 3m + 2 = 0$ (m - 1) (m - 2) = 0 \therefore m = 1, 2 are the roots of an A.E. Thus, the G.S. of reduced homogeneous equation is $y_x = C_1 + C_2 2^x$ Now particular solution of given non-homogeneous equation is P.S. = $\frac{1}{(F^2 - 3F + 2)}a^x$ $=\frac{1}{(E-1)(E-2)}a^{x}$ $=\frac{a^x}{(a-1)(a-2)}$ when $a \neq 1$ and $a \neq 2$ If a = 1, then P.S. = $\frac{1}{(E^2 - 3E + 2)} 1^x = \frac{1}{(E - 1)(E - 2)} 1^x = \frac{x1^{x-1}}{11(1-2)} = -x$ If a = 2, then P.S. = $\frac{1}{(E^2 - 3E + 2)}2^x = \frac{1}{(E - 1)(E - 2)}2^x = \frac{x2^{x-1}}{1!(2-1)} = x2^{x-1}$ Hence complete solution of given equation is $y_x = G.S. + P.S.$ i.e. $y_x = C_1 + C_2 2^x + \frac{a^x}{(a-1)(a-2)}$ when $a \neq 1$ and $a \neq 2$ $y_x = C_1 + C_2 2^x - x$ when a=1 $y_x = C_1 + C_2 2^x + x 2^{x-1}$ when a =2 $v_x = C_1 + C_2 2^x - x$ _____ **Ex.** Solve $y_{x+2} - 4y_{x+1} + 4y_x = 3^x + 2^x + 4$. **Solution:** Let $y_{x+2} - 4y_{x+1} + 4y_x = 3^x + 2^x + 4$. i.e. $(E^2 - 4E + 4)v_x = 3^x + 2^x + 4$ be the given non-homogeneous linear difference equation.

When we take $y_x = m^x$, the A.E. is $m^2 - 4m + 4 = 0$

$$(m-2)^2 = 0$$

 \therefore m = 2, 2 are the roots of an A.E.

Thus, the G.S. of reduced homogeneous equation is

$$y_x = (C_1 + C_2 x) 2^x$$

Now particular solution of given non-homogeneous equation is

P.S. =
$$\frac{1}{(E^2 - 4E + 4)}(3^x + 2^x + 4)$$

= $\frac{1}{(E-2)^2}(3^x + 2^x + 4.1^x)$
= $\frac{1}{(E-2)^2}(3^x) + \frac{1}{(E-2)^2}(2^x) + \frac{1}{(E-2)^2}(4.1^x)$
= $\frac{3^x}{(3-2)^2} + \frac{x(x-1)2^{x-2}}{2!} + \frac{4.1^x}{(1-2)^2}$
= $3^x + x(x-1)2^{x-3} + 4$
Hence G.S. of given equation is $y_x = G.S. + P.S.$
i.e. $y_x = (C_1 + C_2 x)2^x + 3^x + x(x-1)2^{x-3} + 4$

<u>Ex.</u> Solve $y_{x+2} - 4y_{x+1} + 3y_x = 3^x + 1$.

Solution: Let $y_{x+2} - 4y_{x+1} + 3y_x = 3^x + 1$. i.e. $(E^2 - 4E + 3)y_x = 3^x + 1$ be the given non-homogeneous linear difference equation. When we take $y_x = m^x$, the A.E. is $m^2 - 4m + 3 = 0$ (m - 1) (m - 3) = 0 $\therefore m = 1, 3$ are the roots of an A.E. Thus, the G.S. of reduced homogeneous equation is $y_x = C_1 + C_2 3^x$ recommended for the formula of given non-homogeneous equation is $P.S. = \frac{1}{(E^2 - 4E + 3)}(3^x + 1)$ $= \frac{1}{(E - 1)(E - 3)}(3^x) + \frac{1}{(E - 1)(E - 3)}(1^x)$ $= \frac{x3^{x-1}}{1!(3-1)} + \frac{x1^{x-1}}{1!(1-3)}$

$$= \frac{1}{2} x(3^{x^{-1}-1})$$
Hence G.S. of given equation is $y_x = G.S. + P.S.$
i.e. $y_x = C_1 + C_2 3^x + \frac{1}{2} x(3^{x^{-1}-1})$

Ex. Solve $y_{x+2} = 4y_{x+1} + 4y_x = 3x + 2^x$
Solution: Let $y_{x+2} - 4y_{x+1} + 4y_x = 3x + 2^x$
i.e. $(E^2 - 4E + 4)y_x = 3x + 2^x$
be the given non-homogeneous linear difference equation.
When we take $y_x = m^x$, the A.E. is
 $m^2 - 4m + 4 = 0$
 $(m - 2)^2 = 0$
 $\therefore m = 2, 2$ are the roots of an A.E.
Thus, the G.S. of reduced homogeneous equation is
 $y_x = (C_1 + C_2x) 2^x$
Now particular solution of given non-homogeneous equation is
 $P.S. = \frac{1}{(E^2 - 4E + 4)}(3x + 2^x)$
 $= \frac{1}{(E - 2)^2}(3x) + \frac{1}{(E - 2)^2}(2^x)$
 $= \frac{3}{(A - 1)^2}x + \frac{x(x - 1)2^{x - 2}}{2}$
 $= 3(1 - \Delta)^{-2}x + \frac{x(x - 1)2^{x - 2}}{2}$
 $= 3(1 - 2A)^{-2}x + \frac{x(x - 1)2^{x - 3}}{2}$
 $= 3(x + 2(x + 1 - x) + ...) + x(x - 1)2^{x - 3}$
 $= 3x + 6 + x(x - 1)2^{x - 3}$
Hence G.S. of given equation is $y_x = G.S. + P.S.$
i.e. $y_x = (C_1 + C_2x)2^x + 3x + 6 + x(x - 1)2^{x - 3}$

Solution: Let $u_{x+2} - 5u_{x+1} + 6u_x = 36$ i.e. $(E^2 - 5E + 6)u_x = 36$ be the given non- homogeneous linear difference equation.

When we take $y_x = m^x$, the A.E. is

 $m^2 - 5m + 6 = 0$ (m - 2)(m - 3) = 0 \therefore m = 2, 3 are the roots of an A.E. Thus, the G.S. of reduced homogeneous equation is $y_x = C_1 2^x + C_2 3^x$ Now particular solution of given non-homogeneous equation is P.S. = $\frac{1}{(E^2 - 5E + 6)}(36)$ $=\frac{36}{(E-2)(E-3)}(1^{x})$ $=\frac{36}{(1-2)(1-3)}$ = 18Hence G.S. of given equation is $y_x = G.S. + P.S.$ i.e. $y_x = C_1 2^x + C_2 3^x + 18$ _____ **<u>Ex.</u>** Solve $y_{x+2} - 5y_{x+1} + 6y_x = 2$. Also find the solution satisfying the initial conditions $y_0 = 1$ and $y_1 = -1$ **Solution:** Let $y_{x+2} - 5y_{x+1} + 6y_x = 2$ i.e. $(E^2 - 5E + 6)y_x = 2$ be the given non-homogeneous linear difference equation. When we take $y_x = m^x$, the A.E. is $m^2 - 5m + 6 = 0$ (m - 2)(m - 3) = 0 \therefore m = 2, 3 are the roots of an A.E. Thus, the G.S. of reduced homogeneous equation is $y_x = C_1 2^x + C_2 3^x$ Now particular solution of given non-homogeneous equation is P.S. = $\frac{1}{(E^2 - 5E + 6)}(2)$ $= \frac{2}{(E-2)(E-3)}(1^{x})$ $= \frac{2}{(1-2)(1-3)}$

Hence G.S. of given equation is $y_x = G.S. + P.S.$ i.e. $y_x = C_1 2^x + C_2 3^x + 1$ By using initial conditions $y_0 = 1$ and $y_1 = -1$, we get $C_1 2^0 + C_2 3^0 + 1 = 1$ i.e. $C_1 + C_2 = 0$ & $C_1 2^1 + C_2 3^1 + 1 = -1$ i.e. $2C_1 + 3C_2 = -2$ Solving we get $C_1 = 2$ and $C_2 = -2$ Hence the solution is $y_x = 2^{x+1} - 2.3^x + 1$ **Ex.** Solve the following non-homogeneous linear difference equations: i) $v_{x+2} - 4v_x = 9x^2$ b) $\Delta y_x + \Delta^2 y_x = \sin x$ **Solution:** i) Let $y_{x+2} - 4y_x = 9x^2$ i.e. $(E^2 - 4) y_x = 9x^2$ be the given non-homogeneous linear difference equation. When we take $y_x = m^x$, the A.E. is $m^2 - 4 = 0$ i.e. (m-2)(m+2) = 0 \therefore m = 2, -2 are the roots of an A. E. : The G. S. of reduced homogeneous difference equation is $v_x = C_1 2^x + C_2 (-2)^x$ Now particular solution of given non-homogeneous equation is P.S. $\frac{1}{(E^2-4)}(9x^2)$ $=\frac{1}{(1+\Delta)^2-4}(9x^2)$ $=\frac{9}{-3+2\Lambda+\Lambda^2}(x^2)$ $= \frac{-3}{[1 - (\frac{2}{3}\Delta + \frac{1}{3}\Delta^2)]} (x^2)$ $= -3[1 + (\frac{2}{3}\Delta + \frac{1}{3}\Delta^2) + (\frac{2}{3}\Delta + \frac{1}{3}\Delta^2)^2 + \dots](x^2)$ $= -3[1 + \frac{2}{3}\Delta + \frac{7}{9}\Delta^{2} + \frac{4}{9}\Delta^{3} + \dots](x^{2})$ $=-3[x^{2}+\frac{2}{3}(2x)+\frac{7}{9}(2)+0]$ $=-3x^2-4x-\frac{14}{2}$

Hence G.S. of given equation is $y_x = G.S. + P.S.$

i.e.
$$y_x = C_1 2^x + C_2 (-2)^x - 3x^2 - 4x - \frac{14}{3}$$

ii) Let $\Delta y_x + \Delta^2 y_x = \sin x$
i.e. $(\Delta + \Delta^2) y_x = \sin x$
i.e. $(E - 1 + E^2 - 2E + 1)y_x = \sin x$
i.e. $(E^2 - E)y_x = \sin x$
be the given non-homogeneous linear difference equation.
When we take $y_x = m^x$, the A.E. is
 $m^2 - m = 0$
i.e. $m(m - 1) = 0$
 $\therefore m = 0, 1$ are the roots of an A. E.
 \therefore The G. S. of reduced homogeneous difference equation is
 $y_x = C_1 0^x + C_2(1)^x$
i.e. $y_x = C$, where $C_2 = C$
Now particular solution given non-homogeneous equation is
 $P.S. = \frac{1}{(E^2 - E)}(\sin x)$
 $= \text{Imaginary part of } \frac{1}{(E^2 - E)}(e^{ix})$
 $= \text{Imaginary part of } \frac{1}{(E^2 - E)}(e^{ix})$
 $= \text{Imaginary part of } \frac{e^{i(x-1)}}{(e^{i(x-1)})}$
 $= \text{Imaginary part of } \frac{e^{i(x-1)}}{(e^{i(x-1)})} = \frac{e^{i(x-1)}(e^{-i(x-1)})}{(1 - e^{i(x-1)})(1 - e^{i(x-1)})(1$

MULTIPLE CHOICE QUESTIONS [MCQ'S]

1) Shift operator is de	noted by E and defi	ined as $Ef(x) = \dots$	
A) f(x-h)	B) f(x)	C) $f(x + h)$	D) None of these
2) If E is a shift opera	tor, then $E^n f(x) =$		
A) $f(x + nh)$	B) f(x)	C) $f(x - nh)$	D) None of these
3) Forward difference	operator is denoted	1 by Δ and defined a	as $\Delta f(x) = \dots$
A) $f(x+h) - f(x)$	(b) $f(x) - f(x + 1)$	h) C) $f(x + h) + f(x + h)$	f(x) D) None of these
4) If Δ is a forward difference of the fo	fference operator, th	hen $\Delta^2 f(x) = \dots$	
A) $f(x+2h) - f(x+2h) - f$	x)	B) $f(x + 2h) - 2$	2f(x+h) + f(x)
C) $f(x + 2h) +$	2f(x+h) + f(x)	D) None of thes	se
5) If Δ is a forward di	fference operator, t	hen $\Delta^3 f(x) = \dots$	20 30
A) $f(x + 3h) +$	3f(x + 2h) + 3f(x)	(x + h) + f(x) B)	f(x + 2h) - 2f(x + h) + f(x)
C) $f(x + 3h) -$	3f(x + 2h) + 3f(x)	(x + h) - f(x) D)	None of these
6) Relation between for	orward difference o	perator Δ and shift	operator E is
A) $\Delta = \mathbf{E} - 1$	B) $\Delta = E + 1$	$C) \Delta = 1 - E$	D) None of these
7) A relation of the fo	rm F [<mark>x, y</mark> , $\frac{\Delta y}{\Delta x}$, $\frac{\Delta^2 y}{\Delta x^2}$,	$\dots, \frac{\Delta^n y}{\Delta x^n}] = 0 \text{ is cal}$	lled a
A) differential e	equation	B) difference ec	quation
C) linear equati	on	D) None of thes	se
8) For $y = f(x)$ the relationship of the relation of the rel	ation of the form φ	[x, f(x), f(x+h), f(x-	+2h), f(x+nh)] is called
A) differential e	equation	B) linear equation	on
C) difference ea	quation	D) None of thes	se
9) If E and Δ are shift	and forward different	ence operators respe	ectively and h is interval
difference, then $\frac{\Delta^n y}{\Delta x^n}$	·=		
A) $\frac{\mathrm{E}^n f(x)}{\mathrm{h}^n}$	B) $\frac{(E-1)^n f(x)}{h^n}$	C) $\frac{(E+1)^n f(x)}{h^n}$	D) None of these
10) The difference bet	ween the largest an	nd smallest argumen	ts for the function involved
divided by h is cal	led of a differ	rence equation.	
A) order	B) solution	C) root	D) None of these
11) The order of the d	ifference equation	f(x+2h) - 5f(x+2h) -	(+ h) + 6f(x) = 0 is

A) 1	B) 2	C) 3	D) None of these
12) Order of a differ	rence equation φ [x, f(x), $f(x + h)$, $f(x + 2h)$	f(x + nh) = 0
is			
A) 1	B) n-1	C) n	D) None of these
13) The order of the	e difference equation y_x .	$_{+2} - 7y_x = 5$ is	
A) 1	B) 2	C) 3	D) None of these
14) The order of the	e difference equation y_x .	$_{+4} - 5y_{x+1} + 6y_x = 0.$	is
A) 4	B) 5	C) 6	D) None of these
15) The order of the	e difference equation Δ^2	$y_x + 3\Delta y_x = x$ is	
A) 1	B) 2	C) 3	D) None of these
16) The order of the	e difference equation Δ^3	$\mathbf{y}_{\mathbf{x}} + 2\Delta \mathbf{y}_{\mathbf{x}} + \mathbf{y}_{\mathbf{x}} = \mathbf{x} - \mathbf{y}_{\mathbf{x}} - \mathbf{y}_{\mathbf{x}} = \mathbf{x} - \mathbf{y}_{\mathbf{x}} - \mathbf{y}_{\mathbf{x}}$	+ 3 is
A) 1	B) 2	C) 3	D) None of these
17) The order of the	e difference equation Δ^3	$y_x + \Delta^2 y_x + \Delta y_x + y_y$	$v_x = 0$ is
A) 1	B) 2	C) 3	D) None of these
18) The difference of	equation $\frac{f(x+2h)-5}{2}$	f(x+h) + 6f(x)	= 0 is written in
subscript form a	as	Att the	ă
A) $y_{x+2} - 5y_{x-2}$	$x_1 + 6y_x = 0$	B) $y_{x+2} - 5y_{x+1} + 6$	$\delta \mathbf{y}_{\mathbf{x}-1} = 0$
C) $y_{x+2} - 5y_{x+2}$	$_{+1} + 6y_x = 0$	D) None of these	3
19) The difference equation $\Delta y_k - 2y_k = 3$ is written in subscript form as			
A) $y_{k+1} - 2y_k$	= 3 B) $y_{k+1} - 3y_k = 3$	C) $y_{k+1} - y_k = 3$	D) $y_{k+1} + y_k = 3$
20) The difference equation $\Delta^3 y_k - \Delta^2 y_k + \Delta y_k + y_k = 0$ is written in subscript form as			
A) y _{k+3} - 4y _{k+}	$y_2 + 6y_{k+1} = 0$	B) $y_{k+3} - 2y_{k+2} + 2$	$\mathbf{y}_{\mathbf{k}+1} = 0$
C) $y_{k+3} - y_{k+2}$	$+ y_{k+1} + y_k = 0$	D) None of these	ानवः॥
21) $y_x = \frac{x(x-1)}{2}$ is the solution of the difference equation			
A) $y_{x+1} + 2y_x$	= 0	B) $y_{x+1} + y_x = 0$	
C) $y_{x+1} - y_x =$	X	D) None of these	
22) $y_x = 1 - \frac{2}{x}$ is the solution of the difference equation			
A) $(x+1)y_{x+1}$	$+xy_x = 2x - 3$	B) $(x+1)y_{x+1} + xy_{x+1}$	x = 2x

MTH-402(A): DIFFERENTIAL EQUATIONS

C) $(x+1)y_{x+1} + xy_x = 0$ D) None of these

23) $y_x = C_1 + C_2 2^x - x$ is the solution of the difference equation

A) $y_{x+2} - 3y_{x+1} + 2y_x = 0$	B) $y_{x+2} - 3y_{x+1} + 2y_x = 1$	
C) $y_{x+2} - 3y_{x+1} + 2y_x = x$	D) None of these	
24) An equation of the form $a_0(k)E^ny_k+a_1(k)$	$E^{n-1}y_k + a_2(k)E^{n-2}y_k + \dots + a_n(k)y_k = R(k),$	
$a_0(k) \neq 0$ and $a_i(k)$ ($i = 0, 1, 2,$) ar	e constants, is called awith constant	
coefficients.		
A) linear differential equation	B) linear difference equation	
C) non-linear difference equation	D) None of these	
चालागरा,॥	पळचर हा. र	
25) $(E^3 - 6E^2 + 12) y_k = 0$ is a with con	stant coefficients.	
A) linear difference equation	B) linear differential equation	
C) non-linear difference equation	D) None of these	
26) $(kE^2 - kE + 4) y_k = 4k + 1$ is a with	a variable coefficient.	
A) linear difference equation	B) linear differential equation	
C) non-linear difference equation	D) None of these	
27) $y_k^2 + y_k y_{k+1} = 10k$ is a	an En El	
A) linear difference equation	B) linear differential equation	
C) non-linear difference equation	D) None of these	
28) If the solution of difference equation con	ntains n arbitrary constants, then order of	
difference equation is		
A) n - 1 B) n	C) n + 1 D) n + 2	
29) The order of the difference equation form	ned from the solution $y_n = A3^n + B5^n$ is	
A) 2 B) 1	C) 0 D) 3	
30) The order of the difference equation formed from the solution $y_n = ax^2 + bx - 3$ is		
A) 1 B) 2	C) 3 D) 4	
31) If $a_2 \neq 0$, then $y_{x+2} + a_1y_{x+1} + a_2y_n = 0$ is	called difference equation	
A) homogenous	B) non- homogenous	
C) linear	D) None of these	
32) If $a_n \neq 0$, then $y_{x+n} + a_1 y_{x+n-1} + a_2 y_{x+n-2} + a_2 y_{x+n-$	$a_{n-1}y_{x+1} + a_ny_x = 0$ is called n th order	
difference equation		
A) homogenous	B) non- homogenous	

C) linear	D) None of these	
33) If m_1 and m_2 are distinct real roots of an auxiliary equation of the difference		
equation, then the solution $y_x = \dots$		
A) $c_1 m_1^{\chi} + c_2 m_2^{\chi}$	B) $c_1 x^{m_1 x} + c_2 x^{m_2 x}$	
C) $(m_1 + m_2)x$	D) None of these	
34) If an auxiliary equation $m^2 + a_1m + a_2 =$	= 0 of given second order homogenous	
difference equation has equal real roots	m_1 and m_2 , then the solution is $y_x = \dots$	
A) $c_1 m_1^x + c_2 m_2^x$	B) $c_1 x^{m_1 x} + c_2 x^{m_2 x}$	
C) $(c_1 + c_2 x) m_1^x$	D) None of these	
35) If $m = \alpha \pm i\beta$ are the complex roots of	an auxiliary equation $m^2 + a_1m + a_2 = 0$ with	
$\rho = \sqrt{\alpha^2 + \beta^2}, \ \theta = \tan^{-1}(\frac{\beta}{\alpha}) \text{ and } c_1, \ c_2$	are constants, of given second order	
homogenous difference equation, then t	the solution is $y_x = \dots$	
A) $\rho^{x} (c_{1} \cos \theta + c_{2} \sec \theta)$	B) $\rho^{x} (c_{1} \cos \theta + c_{2} \sin \theta)$	
C) ρ^{x} (c ₁ cosecx θ + c ₂ sinx θ)	D) None of these	
36) If m_1, m_2, \ldots, m_n are distinct real roots	of an auxiliary equation of given n th	
order homogenous difference	equation, then the solution is	
A) $c_1 m_1^x + c_2 m_2^x + \dots + c_k m_k^x$	B) $c_1 x^{m_1 x} + c_2 x^{m_2 x} + \ldots + c_k x^{m_k x}$	
C) $(c_1 + c_2 x + + c_k x^{k-1}) m_1^x$	D) None of these	
37) If m_1, m_2, \ldots, m_k are equal real roots of	f an auxiliary equation of given n th order	
homogenous difference equation repeat	ed k times, then the solution is	
A) $c_1 m_1^x + c_2 m_2^x + \dots + c_k m_k^x$	B) $c_1 x^{m_1 x} + c_2 x^{m_2 x} + \ldots + c_k x^{m_k x}$	
C) $(c_1 + c_2 x + + c_k x^{k-1}) m_1^x$	D) None of these	
38) The solution of the difference equation	$y_{x+2} - 7y_{x+1} + 12y_x = 0$ is $y_x = \dots$	
A) $c_1 m_{1+}^3 c_2 m_2^4$	B) $c_1 3^x_+ c_2 4^x$	
$C) (3^x + 4^x) x$	D) None of these	
39) The solution of the difference equation	$2y_{x+2} - 5y_{x+1} + 2y_x = 0$ is $y_x = \dots$	
A) $c_1 2^{-x} + c_2 2^x$	B) $c_1 2^x + c_2 5^x$	
C) $c_1 2^{-x} + c_2 5^x$	D) None of these	
40) The solution of the difference equation	$9y_{x+2} - 6y_{x+1} + y_x = 0$ is $y_x = \dots$	
A) $c_1 3^{-x} + c_2 4^x$	B) $c_1 3^x + c_2 4^{-x}$	

॥ अंतरी पेटवू ज्ञानज्योत ॥

विद्यापीठ गीत

मंत्र असो हा एकच हृदयी 'जीवन म्हणजे ज्ञान' ज्ञानामधूनी मिळो मुक्ती अन मुक्तीमधूनी ज्ञान ॥धृ ॥ कला, ज्ञान, विज्ञान, संस्कृती साधू पुरूषार्थ साफल्यास्तव सदा 'अंतरी पेटवू ज्ञानज्योत' मंगल पावन चराचरातून स्त्रवते अक्षय ज्ञान ॥१ ॥ उत्तम विद्या, परम शक्ति ही आमुची ध्येयासक्ती शील, एकता, चारित्र्यावर सदैव आमुची भक्ती सत्य शिवाचे मंदिर सुंदर, विद्यापीठ महान ॥२ ॥ समता, ममता, स्वातंत्र्याचे नांदो जगी नाते, आत्मबलाने होऊ आम्ही आमुचे भाग्यविधाते, ज्ञानप्रभुची लाभो करूणा आणि पायसदान ॥३ ॥ – कै.प्रा. राजा महाजन

THE NATIONAL INTERGRATION PLEDGE

"I solemnly pledge to work with dedication to preserve and strengthen the freedom and integrity of the nation.

I further affirm that I shall never resort to violence and that all differences and disputes relating to religion, language, region or other political or economic grievance should be settled by peaceful and constitutional means."