Pimpalner Education Society's

Karm. A. M. Patil Arts, Commerce and Kai. Annasaheb N. K. Patil Science Senior College Pimpalner, Tal.- Sakri, Dist.- Dhule.

CLASS NOTES

CLASS: S.Y.B.SC SEM.-IV

SUBJECT: MTH-402(A): DIFFERENTLAL EQU HTIONS
PREPARED BY: PROF. K. D. KADAM

MTH-402(A): DIFFERENTLAL EQUATIONS

Unit-1: Theory of ordinary differential equations

1.1 Lipschitz condition
1.2 Existence and uniqueness theorem
1.3 Linearly dependent and independent solutions
1.4 Wronskian definition
1.5 Linear combination of solutions
1.6 Theorems on i) Linear combination of solutions ii) Linearly independent solutions
iii) Wronskian is zero iv) Wronskian is non-zero
1.7 Method of variation of parameters for second order L.D.E.
Unit-2: Simultaneous Differential Equations
Marks-15
2.1 Simultaneous linear differential equations of first order
2.2 Simultaneous D.E. of the form $d x P=d y Q=d z R$.
2.3 Rule I: Method of combinations
2.4 Rule II: Method of multipliers
2.5 Rule III: Properties of ratios
2.6 Rule IV: Miscellaneous

Unit-3: Total Differential or Pfaffian Differential Equations
Marks-15
3.1 Pfaffian differential equations
3.2 Necessary and sufficient conditions for the integrability
3.3 Conditions for exactness
3.4 Method of solution by inspection
3.5 Solution of homogenous equation

Unit-4: Difference Equations

4.1 Introduction, Order of difference equation, degree of difference equations
4.2 Solution to difference equation and formation of difference equations
4.3 Linear difference equations, Linear homogeneous difference equations with constant coefficients
4.4 Non-homogenous linear difference equation with constant coefficients

Recommended books:

1. Ordinary and Partial Differential Equation by M. D. Rai Singhania, S. Chand \& Co. 18th Edition. (Chapter 1 and Chapter 2)
2. Numerical Methods by V. N. Vedamurthy and N. Ch. S. N. Iyengar, Vikas Publishing House, New Delhi. (Chapter 10).

Reference Book:

1. Introductory course in Differential Equations by D. A. Murray, Longmans Green and co. London and Mumbai, 5th Edition 1997.

Learning Outcomes:

a) Students will aware of formation of differential equations and their solutions
b) Students will understand the concept of Lipschitz condition
c) Students will understand method of variation of parameters for second order L.D.E.
d) Students will understand simultaneous linear differential equations and method of their solutions
e) Students will understand Pfaffian differential equations and method of their solutions
f) Students will understand difference equations and their solutions

UNIT-1: THEORY OF ORDINARY DIFFERENTLAL EQUATIONS

Initial Value Problem: $\frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ with $\mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}$ is called initial value problem. Remark: Initial value problem may have one solution or more than one solution or no solution.
Lipschitz Condition: A function $f(x, y)$ defined in a region D in $x y$-plane is said to satisfy Lipschitz condition in D if for $\left(\mathrm{x}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}, \mathrm{y}_{2}\right)$ in D , there exist a positive constant K such that $\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right| \leq \mathrm{K}\left|y_{2}-y_{1}\right|$.
Here the constant K is called Lipschitz constant for the function $f(x, y)$.
Existence Theorem: If the function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is continuous and bounded for all values of x in a domain D and there exist a positive constants $\mathrm{M} \& \mathrm{~K}$ such that $|f(x, y)| \leq \mathrm{M}$ and satisfies Lipschitz's condition $\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right| \leq \mathrm{K}\left|y_{2}-y_{1}\right|$ for all points in domain D, then initial value problem $\frac{d y}{d x}=f(x, y)$ with $\mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}$ has at least one solution $\mathrm{y}(\mathrm{x})$.

Uniqueness Theorem:

If the function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is continuous and bounded for all values of x in a domain D and there exist a positive constants $\mathrm{M} \& \mathrm{~K}$ such that $|f(x, y)| \leq \mathrm{M}$ and satisfies Lipschitz's condition $\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right| \leq K\left|y_{2}-y_{1}\right|$ for all points in domain D , then initial value problem $\frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ with $\mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}$ has a unique solution.

Theorem: If S is either a rectangle $\left|x-x_{0}\right| \leq h,\left|y-y_{0}\right| \leq \mathrm{k}(\mathrm{h}, \mathrm{k}>0)$ or a strip $\left|x-x_{0}\right| \leq h,|y|<\infty(\mathrm{h}>0)$ and $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is a real valued function defined on S such that $\frac{\partial f}{\partial y}$ exits and continuous on S with $\left|\frac{\partial f}{\partial y}\right| \leq K \forall(x, y) \in S$ for a positive constant K , then $\mathrm{f}(\mathrm{x}, \mathrm{y})$ satisfies Lipschitz's condition on S with Lipschitz's constant K.
Proof: As $\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right|=\left|\{f(x, y)\}_{y=y_{1}}^{y_{2}}\right|$
$=\left|\int_{y_{1}}^{y_{2}} \frac{\partial \mathrm{f}}{\partial \mathrm{y}} d y\right|$
$=\int_{y_{1}}^{y_{2}}\left|\frac{\partial f}{\partial y}\right||d y|$
$\leq \int_{y_{1}}^{y_{2}} K|d y|$
$\therefore\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right| \leq K\left|y_{2}-y_{1}\right|$ for $\left(\mathrm{x}, \mathrm{y}_{1}\right),\left(\mathrm{x}, \mathrm{y}_{2}\right) \in \mathrm{S}$
i.e. $\mathrm{f}(\mathrm{x}, \mathrm{y})$ satisfies Lipschitz's condition on S with Lipschitz's constant K .

Ex.: Let the function $f(x, y)=x^{2}+y^{2} \forall(x, y) \in S, S$ is the rectangle defined by $|x| \leq \mathrm{a},|y| \leq \mathrm{b}$. Show that $\mathrm{f}(\mathrm{x}, \mathrm{y})$ satisfies Lipschitz's condition.
Find Lipschitz's constant.
Proof: Let $\left(\mathrm{x}, \mathrm{y}_{1}\right),\left(\mathrm{x}, \mathrm{y}_{2}\right)$ be any two points in the rectangle S which is defined by

$$
\begin{aligned}
& |x| \leq \mathrm{a},|y| \leq \mathrm{b} \text { and } \mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}+\mathrm{y}^{2} \ldots \ldots \text { (1) } \\
& \therefore\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right|=\left|x^{2}+y_{2}{ }^{2}-x^{2}-y_{1}{ }^{2}\right| \\
& =\left|y_{2}{ }^{2}-y_{1}{ }^{2}\right| \\
& =\left|y_{2}-y_{1}\right|\left|y_{2}+y_{1}\right| \\
& \leq\left[\left|y_{2}\right|+\left|y_{1}\right|\right]\left|y_{2}-y_{1}\right| \\
& \leq 2 \mathrm{~b}\left|y_{2}-y_{1}\right| \quad \because\left|y_{2}\right| \text { and }\left|y_{1}\right| \leq \mathrm{b}
\end{aligned}
$$

$\therefore \mathrm{f}(\mathrm{x}, \mathrm{y})$ satisfies Lipschitz's condition and Lipschitz's constant $\mathrm{K}=2 \mathrm{~b}$.

Ex.: If S is defined on the rectangle $|x| \leq \mathrm{a},|y| \leq \mathrm{b}$, then show that the function $f(x, y)=x \sin y+y \cos x$ satisfies Lipschitz's condition. Find the Lipschitz's constant.
Proof: Let $f(x, y)=x \sin y+y \cos x$
$\therefore \frac{\partial f}{\partial y}=x \cos y+\cos x$
Here $f(x, y)$ is real valued function defined on S where S is rectangle $|x| \leq \mathrm{a},|y| \leq \mathrm{b}$
$\therefore \frac{\partial \mathrm{f}}{\partial \mathrm{y}}$ exists and continuous and hence bounded in S , with
$\left|\frac{\partial f}{\partial y}\right|=|x \cos y+\cos x| \leq|x \cos y|+|\cos x| \leq|x|+1$
$\Rightarrow\left|\frac{\partial f}{\partial y}\right| \leq \mathrm{a}+1$
$\therefore \mathrm{f}(\mathrm{x}, \mathrm{y})$ satisfies Lipschitz's condition and Lipschitz's constant $\mathrm{K}=\mathrm{a}+1$.
Ex.: Show that the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{xy}^{2}$ satisfies Lipschitz's condition on the rectangle $|x| \leq 1,|y| \leq 1$. But does not satisfy Lipschitz's condition on strip $|x| \leq 1,|y| \leq$ ∞.
Proof: Let $f(x, y)=x^{2} \ldots \ldots$ (1)
i) Let S is a rectangle given by $|x| \leq 1,|y| \leq 1$

Clearly $f(x, y)=x y^{2}$ is continuous function on S and hence bounded on S with $\frac{\partial \mathrm{f}}{\partial \mathrm{y}}=2 \mathrm{xy} \Rightarrow\left|\frac{\partial \mathrm{f}}{\partial \mathrm{y}}\right|=2|x||y| \leq 2(1)(1) \leq 2 \forall(\mathrm{x}, \mathrm{y}) \in \mathrm{S}$
$\therefore \mathrm{f}(\mathrm{x}, \mathrm{y})$ satisfies Lipschitz's condition on S and Lipschitz's constant $\mathrm{K}=2$.
ii) Let R is a strip given by $|x| \leq 1,|y| \leq \infty$

Here $f(x, y)=x y^{2}$ is continuous function on R and hence bounded on R
with $\frac{\partial \mathrm{f}}{\partial \mathrm{y}}=2 \mathrm{xy} \Rightarrow\left|\frac{\partial \mathrm{f}}{\partial \mathrm{y}}\right|=2|x||y| \leq 2(1)(\infty)<\infty \quad \forall(\mathrm{x}, \mathrm{y}) \in \mathrm{S}$
$\Rightarrow \frac{\partial \mathrm{f}}{\partial \mathrm{y}}$ is unbounded on strip R.
$\therefore \mathrm{f}(\mathrm{x}, \mathrm{y})$ does not satisfy Lipschitz's condition on strip R is proved.

Ex.: Examine the existence and uniqueness of solutions of the initial value problem $\frac{d y}{d x}=\mathrm{y}^{1 / 3}$ with $\mathrm{y}(0)=0$
Solution: Let $\frac{d y}{d x}=y^{1 / 3}$ with $y(0)=0$.
Comparing with $\frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y})$, we get,
$f(x, y)=y^{1 / 3}$
Clearly $f(x, y)=y^{1 / 3}$ is continuous and hence bounded.
Now $f(x, y)=y^{1 / 3} \Longrightarrow \frac{\partial f}{\partial y}=\frac{1}{3} y^{-2 / 3}$
$\therefore\left|\frac{\partial f}{\partial y}\right|=\frac{1}{3} \frac{1}{\left|y^{2 / 3}\right|}$
For $\mathrm{x}=0, \mathrm{y}=0 \Rightarrow\left|\frac{\partial \mathrm{f}}{\partial \mathrm{y}}\right|=\frac{1}{3} \frac{1}{|0|} \rightarrow \infty$
$\Rightarrow \frac{\partial \mathrm{f}}{\partial \mathrm{y}}$ is unbounded at origin.
$\therefore \mathrm{f}(\mathrm{x}, \mathrm{y})$ does not satisfy Lipschitz's condition at origin.
\therefore Uniqueness and existence is not applicable to given initial value problem.

Remark: A continuous function may not satisfy Lipschitz's condition.

Linear Differential Equation of Second Order:

An equation $a_{0}(x) y^{\prime \prime}(x)+a_{1}(x) y^{\prime}(x)+a_{2}(x) y(x)=0$ is called a second order linear differential equation, where $\mathrm{a}_{0}(\mathrm{x}), \mathrm{a}_{1}(\mathrm{x})$ and $\mathrm{a}_{2}(\mathrm{x})$ are continuous on an interval (a, b) and $\mathrm{a}_{0}(\mathrm{x}) \neq 0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$.

Linearly Dependent Solutions:

Two solutions $y_{1}(x)$ and $y_{2}(x)$ of linear differential equation of second order are said to be linearly dependent solutions if there exists two constants c_{1} and c_{2} not both zero such that $\mathrm{c}_{1} \mathrm{y}_{1}(\mathrm{x})+\mathrm{c}_{2} \mathrm{y}_{2}(\mathrm{x})=0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$.

Linearly Independent Solutions:

Two solutions $\mathrm{y}_{1}(\mathrm{x})$ and $\mathrm{y}_{2}(\mathrm{x})$ of linear differential equation of second order are said to be linearly independent solutions if for any two constants c_{1} and c_{2}, $\mathrm{c}_{1} \mathrm{y}_{1}(\mathrm{x})+\mathrm{c}_{2} \mathrm{y}_{2}(\mathrm{x})=0 \Rightarrow \mathrm{c}_{1}=0$ and $\mathrm{c}_{2}=0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$.

Linearly Combination of Solutions:

Let $y_{1}(x)$ and $y_{2}(x)$ be any two solutions of linear differential equation of second order, then $c_{1} y_{1}(x)+c_{2} y_{2}(x)=0 \forall x \in(a, b)$ is called linear combination of two solutions $y_{1}(x)$ and $y_{2}(x)$, where c_{1} and c_{2} are constants.

The Wronskian:

Let $y_{1}(x)$ and $y_{2}(x)$ be any two solutions of linear differential equation of second order. Then the Wronskian of $\mathrm{y}_{1}(\mathrm{x})$ and $\mathrm{y}_{2}(\mathrm{x})$ is denoted by $\mathrm{W}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ or $\mathrm{W}(\mathrm{x})$ and is defined as $\mathrm{W}(\mathrm{x})=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$
Remark: The Wronskian of three functions $\mathrm{y}_{1}(\mathrm{x}), \mathrm{y}_{2}(\mathrm{x})$ and $\mathrm{y}_{3}(\mathrm{x})$ is defined by

$$
\mathrm{W}(\mathrm{x})=\left|\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|
$$

Theorem: If $y_{1}(x)$ and $y_{2}(x)$ are any two solutions of $a_{0}(x) y^{\prime \prime}(x)+a_{1}(x) y^{\prime}(x)+a_{2}(x) y(x)=0$, then linear combination $c_{1} y_{1}(x)+c_{2} y_{2}(x)=0$, where c_{1} and c_{2} are constants, is also solution of the given equation.
Proof: Consider a given equation $\mathrm{a}_{0}(x) y^{\prime \prime}(x)+a_{1}(x) y^{\prime}(x)+a_{2}(x) y(x)=0$
As $y_{1}(x)$ and $y_{2}(x)$ are the solutions of equation (i).
$\therefore \mathrm{a}_{0}(\mathrm{x}) y_{1}^{\prime \prime}(\mathrm{x})+\mathrm{a}_{1}(\mathrm{x}) y_{1}^{\prime}(\mathrm{x})+\mathrm{a}_{2}(\mathrm{x}) \mathrm{y}_{1}(\mathrm{x})=0$
$\therefore \mathrm{a}_{0}(\mathrm{x}) y_{2}^{\prime \prime}(\mathrm{x})+\mathrm{a}_{1}(\mathrm{x}) y_{2}^{\prime}(\mathrm{x})+\mathrm{a}_{2}(\mathrm{x}) \mathrm{y}_{2}(\mathrm{x})=0$
Let $\mathrm{u}(\mathrm{x})=\mathrm{c}_{1} \mathrm{y}_{1}(\mathrm{x})+\mathrm{c}_{2} \mathrm{y}_{2}(\mathrm{x})$
$\therefore \mathrm{u}^{\prime}(\mathrm{x})=\mathrm{c}_{1} y_{1}^{\prime}(\mathrm{x})+\mathrm{c}_{2} y_{2}^{\prime}(\mathrm{x})$
$\therefore u^{\prime \prime}(\mathrm{x})=\mathrm{c}_{1} y_{1}^{\prime \prime}(\mathrm{x})+\mathrm{c}_{2} y_{2}^{\prime \prime}(\mathrm{x})$
Consider $\mathrm{a}_{0}(\mathrm{x}) \mathrm{u}^{\prime \prime}(\mathrm{x})+\mathrm{a}_{1}(\mathrm{x}) \mathrm{u}^{\prime}(\mathrm{x})+\mathrm{a}_{2}(\mathrm{x}) \mathrm{u}(\mathrm{x})$

$$
\begin{aligned}
= & \mathrm{a}_{0}(\mathrm{x})\left[\mathrm{c}_{1} y_{1}^{\prime \prime}(\mathrm{x})+\mathrm{c}_{2} y_{2}^{\prime \prime}(\mathrm{x})\right]+\mathrm{a}_{1}(\mathrm{x})\left[\mathrm{c}_{1} y_{1}^{\prime}(\mathrm{x})+\mathrm{c}_{2} y_{2}^{\prime}(\mathrm{x})\right] \\
& +\mathrm{a}_{2}(\mathrm{x})\left[\mathrm{c}_{1} \mathrm{y}_{1}(\mathrm{x})+\mathrm{c}_{2} \mathrm{y}_{2}(\mathrm{x})\right] \\
= & \mathrm{c}_{1}\left[\mathrm{a}_{0}(\mathrm{x}) y_{1}^{\prime \prime}(\mathrm{x})+\mathrm{a}_{1}(\mathrm{x}) y_{1}^{\prime}(\mathrm{x})+\mathrm{a}_{2}(\mathrm{x}) \mathrm{y}_{1}(\mathrm{x})\right] \\
& +\mathrm{c}_{2}\left[\mathrm{a}_{0}(\mathrm{x}) y_{2}^{\prime \prime}(\mathrm{x})+\mathrm{a}_{1}(\mathrm{x}) y_{2}^{\prime}(\mathrm{x})+\mathrm{a}_{2}(\mathrm{x}) \mathrm{y}_{2}(\mathrm{x})\right]
\end{aligned}
$$

$$
\begin{aligned}
& =c_{1}(0)+c_{2}(0) \quad \text { by (ii) and (iii) } \\
& =0
\end{aligned}
$$

$\therefore \mathrm{c}_{1} \mathrm{y}_{1}(\mathrm{x})+\mathrm{c}_{2} \mathrm{y}_{2}(\mathrm{x})$ is solution of given equation is proved.

Remark: If $y_{1}(x), y_{2}(x), \ldots \ldots y_{n}(x)$ are solutions of $a_{0}(x) y^{\prime \prime}(x)+a_{1}(x) y^{\prime}(x)+a_{2}(x) y(x)=0$, then $c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots . .+c_{n} y_{n}(x)=0$ is also solution of the given equation. Where $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \ldots \mathrm{c}_{\mathrm{n}}$ are constants.

Theorem: Two solutions $\mathrm{y}_{1}(\mathrm{x})$ and $\mathrm{y}_{2}(\mathrm{x})$ of $\mathrm{a}_{0}(\mathrm{x}) \mathrm{y}^{\prime \prime}(\mathrm{x})+\mathrm{a}_{1}(\mathrm{x}) \mathrm{y}^{\prime}(\mathrm{x})+\mathrm{a}_{2}(\mathrm{x}) \mathrm{y}(\mathrm{x})=0$, $\mathrm{a}_{0}(\mathrm{x}) \neq 0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$, are linearly dependent if and only if their Wronskian is identically zero.
Proof: Suppose two solutions $y_{1}(x)$ and $y_{2}(x)$ of $\mathrm{a}_{0}(x) y^{\prime \prime}(x)+a_{1}(x) y^{\prime}(x)+a_{2}(x) y(x)=0$, $\mathrm{a}_{0}(\mathrm{x}) \neq 0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$, are linearly dependent
As $y_{1}(x)$ and $y_{2}(x)$ are linearly dependent.
\therefore there exists two constants c_{1} and c_{2} not both zero such that
$\mathrm{c}_{1} \mathrm{y}_{1}(\mathrm{x})+\mathrm{c}_{2} \mathrm{y}_{2}(\mathrm{x})=0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$
$\therefore \mathrm{c}_{1} y_{1}^{\prime}(\mathrm{x})+\mathrm{c}_{2} y_{2}^{\prime}(\mathrm{x})=0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$

As c_{1} and c_{2} not simultaneously zero.
$\therefore\left|\begin{array}{ll}y_{1}(x) & y_{2}(x) \\ y_{1}^{\prime}(x) & y_{2}^{\prime}(x)\end{array}\right|=0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$
$\Rightarrow \mathrm{W}(\mathrm{x})=\left|\begin{array}{ll}y_{1}(x) & y_{2}(x) \\ y_{1}^{\prime}(x) & y_{2}^{\prime}(x)\end{array}\right|=0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$
\Rightarrow Wronskian is zero.
Conversely: Suppose Wronskian is zero.
i.e. $\left|\begin{array}{ll}y_{1}(x) & y_{2}(x) \\ y_{1}^{\prime}(x) & y_{2}^{\prime}(x)\end{array}\right|=0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$

Hence for some constants c_{1} and c_{2} not both zero
$\mathrm{c}_{1} \mathrm{y}_{1}(\mathrm{x})+\mathrm{c}_{2} \mathrm{y}_{2}(\mathrm{x})=0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$
$\& \mathrm{c}_{1} y_{1}^{\prime}(\mathrm{x})+\mathrm{c}_{2} y_{2}^{\prime}(\mathrm{x})=0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$
\therefore solutions $\mathrm{y}_{1}(\mathrm{x})$ and $\mathrm{y}_{2}(\mathrm{x})$ are linearly dependent is proved.
Theorem: Two solutions $y_{1}(x)$ and $y_{2}(x)$ of $a_{0}(x) y^{\prime \prime}(x)+a_{1}(x) y^{\prime}(x)+a_{2}(x) y(x)=0$, $\mathrm{a}_{0}(\mathrm{x}) \neq 0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$, are linearly independent if and only if their Wronskian is non-zero.
Proof: Suppose two solutions $\mathrm{y}_{1}(\mathrm{x})$ and $\mathrm{y}_{2}(\mathrm{x})$ of $\mathrm{a}_{0}(\mathrm{x}) \mathrm{y}^{\prime \prime}(\mathrm{x})+\mathrm{a}_{1}(\mathrm{x}) \mathrm{y}^{\prime}(\mathrm{x})+\mathrm{a}_{2}(\mathrm{x}) \mathrm{y}(\mathrm{x})=0$, $\mathrm{a}_{0}(\mathrm{x}) \neq 0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$, are linearly independent
\Rightarrow Wronskian is non-zero \because if Wronskian is zero, then solutions $\mathrm{y}_{1}(\mathrm{x})$ and $\mathrm{y}_{2}(\mathrm{x})$
are linearly dependent
Conversely : Suppose Wronskian is non-zero.
\Rightarrow solutions $y_{1}(x)$ and $y_{2}(x)$ are linearly independent. \because if solutions $y_{1}(x)$ and $y_{2}(x)$ are linearly dependent, then Wronskian is zero,

Ex.: Find the Wronskian of e^{x} and xe^{x}
Solution: Let $\mathrm{y}_{1}=\mathrm{e}^{\mathrm{x}}$ and $\mathrm{y}_{2}=\mathrm{xe}^{\mathrm{x}}$
$\Rightarrow y_{1}^{\prime}=\mathrm{e}^{\mathrm{x}}$ and $y_{2}^{\prime}=\mathrm{e}^{\mathrm{x}}+\mathrm{xe}^{\mathrm{x}}$
\therefore The Wronskian of y_{1} and y_{2} is

$$
\begin{aligned}
\mathrm{W}(\mathrm{x}) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{x} & x e^{x} \\
e^{x} & e^{x}+x e^{x}
\end{array}\right| \\
& =e^{2 x}\left|\begin{array}{cc}
1 & \mathrm{x} \\
1 & 1+\mathrm{x}
\end{array}\right| \\
& =e^{2 x}[1+\mathrm{x}-\mathrm{x}]
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=e^{2 x}$
Ex.: Find the Wronskian of $\sin x$ and $\cos x$
Solution: Let $\mathrm{y}_{1}=\sin \mathrm{x}$ and $\mathrm{y}_{2}=\cos \mathrm{x}$
$\Rightarrow y_{1}^{\prime}=\cos \mathrm{x}$ and $y_{2}^{\prime}=-\sin \mathrm{x}$
\therefore The Wronskian of y_{1} and y_{2} is
$\mathrm{W}(\mathrm{x})=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}\sin x & \cos x \\ \cos x & -\sin \mathrm{x}\end{array}\right|$

$$
=-\sin ^{2} x-\cos ^{2} x
$$

$\therefore \mathrm{W}(\mathrm{x})=-1$
Ex.: Find the Wronskian of $\sin x$ and $\sin x-\cos x$
Solution: Let $\mathrm{y}_{1}=\sin \mathrm{x}$ and $\mathrm{y}_{2}=\sin \mathrm{x}-\cos \mathrm{x}$
$\Rightarrow y_{1}^{\prime}=\cos x$ and $y_{2}^{\prime}=\cos x+\sin x$
\therefore The Wronskian of y_{1} and y_{2} is
$\mathrm{W}(\mathrm{x})=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{ll}\sin x & \sin x-\cos x \\ \cos x & \cos x+\sin x\end{array}\right|$

$$
=\sin x \cos x+\sin ^{2} x-\sin x \cos x+\cos ^{2} x
$$

$\therefore \mathrm{W}(\mathrm{x})=1$
Ex.: Find the Wronskian of $\mathrm{e}^{a \mathrm{ax}} \operatorname{cosbx}$ and $\mathrm{e}^{\mathrm{ax}} \sin b x(b \neq 0)$
Solution: Let $\mathrm{y}_{1}=\mathrm{e}^{a \mathrm{ax}} \operatorname{cosbx}$ and $\mathrm{y}_{2}=\mathrm{e}^{\mathrm{ax}} \operatorname{sinbx}(\mathrm{b} \neq 0)$
$\Rightarrow y_{1}^{\prime}=\mathrm{ae}^{\mathrm{ax}} \cos \mathrm{bx}-\mathrm{be}^{\mathrm{ax}} \operatorname{sinbx}$ and $y_{2}^{\prime}=\mathrm{ae}^{\mathrm{ax}} \operatorname{sinbx}+\mathrm{be}^{\mathrm{ax}} \cos \mathrm{bx}$
\therefore The Wronskian of y_{1} and y_{2} is
$\mathrm{W}(\mathrm{x})=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}e^{a x} \operatorname{cosbx} & e^{a x} \operatorname{sinbx} \\ a e^{a x} \cos \operatorname{bx}-\mathrm{b} e^{a x} \operatorname{sinbx} & a e^{a x} \operatorname{sinbx}+b e^{a x} \cos \mathrm{x}\end{array}\right|$

$$
\begin{aligned}
& =e^{2 a x}\left|\begin{array}{cc}
\operatorname{cosbx} & \operatorname{sinbx} \\
\mathrm{acosbx}-\mathrm{b} \operatorname{sinbx} & \mathrm{asinbx}+\mathrm{b} \operatorname{cosbx}
\end{array}\right| \\
& =e^{2 a x}\left[\mathrm{acosbx} \operatorname{sinbx}+\mathrm{b} \cos ^{2} \mathrm{bx}-\mathrm{asinbx} \operatorname{cosb}+\mathrm{b} \sin ^{2} \mathrm{bx}\right] \\
& =e^{2 a x}\left[\mathrm{~b} \cos ^{2} \mathrm{bx}+\mathrm{b} \sin ^{2} \mathrm{bx}\right]
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=\mathrm{b} e^{2 a x}$

Ex.: Show that $e^{x} \cos x$ and $e^{x} \sin x$ are linearly independent
Proof: Let $y_{1}=e^{x} \cos x$ and $y_{2}=e^{x} \sin x$
$\Longrightarrow y_{1}^{\prime}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}-\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}$ and $y_{2}^{\prime}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}+\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}$
\therefore The Wronskian of y_{1} and y_{2} is

$$
\begin{aligned}
\mathrm{W}(\mathrm{x}) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{x} \cos \mathrm{x} & e^{x} \sin \mathrm{x} \\
e^{x} \cos \mathrm{x}-e^{x} \sin \mathrm{x} & e^{x} \sin \mathrm{x}+e^{x} \cos \mathrm{x}
\end{array}\right| \\
& =e^{2 x}\left|\begin{array}{cc}
\cos \mathrm{x} & \sin \mathrm{x} \\
\cos \mathrm{x}-\sin \mathrm{x} & \sin \mathrm{x}+\cos \mathrm{x}
\end{array}\right| \\
& =e^{2 x}\left[\cos \mathrm{cosin} \mathrm{x}+\cos ^{2} \mathrm{x}-\sin \mathrm{x} \cos \mathrm{x}+\sin ^{2} \mathrm{x}\right] \\
& =e^{2 x}\left[\cos ^{2} \mathrm{x}+\sin ^{2} \mathrm{x}\right]
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=e^{2 x} \neq 0$
\therefore Given functions are linearly independent is proved.

Ex.: Show that e^{x} and xe^{x} are linearly independent on the x -axis.
Proof: Let $y_{1}=e^{x}$ and $y_{2}=x e^{x}$
$\Rightarrow y_{1}^{\prime}=\mathrm{e}^{\mathrm{x}}$ and $y_{2}^{\prime}=\mathrm{e}^{\mathrm{x}}+\mathrm{xe}^{\mathrm{x}}$
\therefore The Wronskian of y_{1} and y_{2} is

$$
\begin{aligned}
\mathrm{W}(\mathrm{x}) & =\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{x} & x e^{x} \\
e^{x} & e^{x}+x e^{x}
\end{array}\right| \\
& =e^{2 x}\left|\begin{array}{cc}
1 & \mathrm{x} \\
1 & 1+\mathrm{x}
\end{array}\right| \\
& =e^{2 x}[1+\mathrm{x}-\mathrm{x}]
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=e^{2 x} \neq 0$ for $\mathrm{x} \neq 0$
\therefore Given functions are linearly independent on x-axis is proved.
Ex.: Show that the Wronskian of the functions x^{2} and $x^{2} \log x$ is non zero.
Proof: Let $y_{1}=x^{2}$ and $y_{2}=x^{2} \log x$
$\Rightarrow y_{1}^{\prime}=2 \mathrm{x}$ and $y_{2}^{\prime}=2 \mathrm{x} \log \mathrm{x}+\mathrm{x}$
\therefore The Wronskian of y_{1} and y_{2} is
$\mathrm{W}(\mathrm{x})=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}x^{2} & x^{2} \log x \\ 2 \mathrm{x} & 2 \mathrm{x} \log \mathrm{x}+\mathrm{x}\end{array}\right|$

$$
\begin{aligned}
& =x^{3}\left|\begin{array}{cc}
1 & \log x \\
2 & 2 \log x+1
\end{array}\right| \\
& =x^{3}[2 \log x+1-2 \log x]
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=x^{3} \neq 0$
\therefore Given functions are linearly independent.

Ex.: Show that $\sin 2 x$ and $\cos 2 x$ are solutions of the differential equation $y "+4 y=0$ and these are linearly independent.
Proof: Let $\mathrm{y}_{1}=\sin 2 \mathrm{x}$ and $\mathrm{y}_{2}=\cos 2 \mathrm{x}$
$\therefore y_{1}^{\prime}=2 \cos 2 \mathrm{x}$ and $y_{2}^{\prime}=-2 \sin 2 \mathrm{x}$
$\therefore y_{1}^{\prime \prime}=-4 \sin 2 \mathrm{x}$ and $y_{2}^{\prime \prime}=-4 \cos 2 \mathrm{x}$
$\therefore y_{1}^{\prime \prime}=-4 \mathrm{y}_{1}$ and $y_{2}^{\prime \prime}=-4 \mathrm{y}_{2}$ by (1)
$\therefore y_{1}^{\prime \prime}+4 \mathrm{y}_{1}=0$ and $y_{2}^{\prime \prime}+4 \mathrm{y}_{2}=0$
$\therefore y_{1}=\sin 2 x$ and $y_{2}=\cos 2 x$ are the solutions of the differential equation $y^{\prime \prime}+4 y=0$ is proved.
Now the Wronskian of y_{1} and y_{2} is

$$
\begin{aligned}
\mathrm{W}(\mathrm{x}) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\sin 2 \mathrm{x} & \cos 2 x \\
2 \cos 2 \mathrm{x} & -2 \sin 2 \mathrm{x}
\end{array}\right| \\
& =-2 \sin ^{2} 2 x-2 \cos ^{2} 2 x
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=-2 \neq 0$
\therefore Given solutions are linearly independent is proved.

Ex.: Show that $\sin 3 x$ and $\cos 3 x$ are linearly independent solutions of the differential equation $y^{\prime \prime}+9 y=0$.
Proof: Let $\mathrm{y}_{1}=\sin 3 \mathrm{x}$ and $\mathrm{y}_{2}=\cos 3 \mathrm{x}$
$\therefore y_{1}^{\prime}=3 \cos 3 \mathrm{x}$ and $y_{2}^{\prime}=-3 \sin 3 \mathrm{x}$
$\therefore y_{1}^{\prime \prime}=-9 \sin 3 \mathrm{x}$ and $y_{2}^{\prime \prime}=-9 \cos 3 \mathrm{x}$
$\therefore y_{1}^{\prime \prime}=-9 \mathrm{y}_{1}$ and $y_{2}^{\prime \prime}=-9 \mathrm{y}_{2}$ by (1)
$\therefore y_{1}^{\prime \prime}+9 \mathrm{y}_{1}=0$ and $y_{2}^{\prime \prime}+9 \mathrm{y}_{2}=0$
$\therefore y_{1}=\sin 3 \mathrm{x}$ and $\mathrm{y}_{2}=\cos 3 \mathrm{x}$ are the solutions of the differential equation $\mathrm{y} "+9 \mathrm{y}=0$ is proved.
Now the Wronskian of y_{1} and y_{2} is
$\mathrm{W}(\mathrm{x})=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}\sin 3 \mathrm{x} & \cos 3 x \\ 3 \cos 3 \mathrm{x} & -3 \sin 3 \mathrm{x}\end{array}\right|$

$$
=-3 \sin ^{2} 3 x-3 \cos ^{2} 3 x
$$

$\therefore \mathrm{W}(\mathrm{x})=-3 \neq 0$
$\therefore y_{1}=\sin 3 x$ and $y_{2}=\cos 3 x$ are linearly independent solutions of the differential equation $y^{\prime \prime}+9 y=0$ is proved

Ex.: Show that $y_{1}=\sin x$ and $y_{2}=\sin x-\cos x$ are linearly independent solutions of the differential equation $y^{\prime \prime}+y=0$.
Proof: Let $y_{1}=\sin x$ and $y_{2}=\sin x-\cos x$
$\therefore y_{1}^{\prime}=\cos x$ and $y_{2}^{\prime}=\cos x+\sin x$
$\therefore y_{1}^{\prime \prime}=-\sin x$ and $y_{2}^{\prime \prime}=-\sin x+\cos x$
$\therefore y_{1}^{\prime \prime}=-\mathrm{y}_{1}$ and $y_{2}^{\prime \prime}=-\mathrm{y}_{2} \quad$ by (1)
$\therefore y_{1}^{\prime \prime}+\mathrm{y}_{1}=0$ and $y_{2}^{\prime \prime}+\mathrm{y}_{2}=0$
$\therefore y_{1}=\sin x$ and $y_{2}=\sin x-\cos x$ are the solutions of the differential equation $y^{\prime \prime}+\mathrm{y}=0$.
Now the Wronskian of y_{1} and y_{2} is

$$
\begin{aligned}
\mathrm{W}(\mathrm{x}) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\sin x & \sin x-\cos x \\
\cos x & \cos x+\sin x
\end{array}\right| \\
& =\sin x \cos x+\sin ^{2} x-\sin x \cos x+\cos ^{2} x
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=1 \neq 0$
$\therefore y_{1}=\sin x$ and $y_{2}=\sin x-\cos x$ are linearly independent solutions of the differential equation $y^{\prime \prime}+y=0$ is proved

Ex.: Examine whether $\mathrm{e}^{2 \mathrm{x}}$ and $\mathrm{e}^{3 \mathrm{x}}$ are linearly independent solutions of the differential equation $y^{\prime \prime}-5 y^{\prime}+6 y=0$ or not?
Solution: Let $\mathrm{y}_{1}=\mathrm{e}^{2 \mathrm{x}}$ and $\mathrm{y}_{2}=\mathrm{e}^{3 \mathrm{x}}$
$\therefore y_{1}^{\prime}=2 \mathrm{e}^{2 \mathrm{x}}$ and $y_{2}^{\prime}=3 \mathrm{e}^{3 \mathrm{x}}$
$\therefore y_{1}^{\prime \prime}=4 \mathrm{e}^{2 \mathrm{x}}$ and $y_{2}^{\prime \prime}=9 \mathrm{e}^{3 \mathrm{x}}$
Consider $y_{1}^{\prime \prime}-5 y_{1}^{\prime}+6 \mathrm{y}_{1}=4 \mathrm{e}^{2 \mathrm{x}}-10 \mathrm{e}^{2 \mathrm{x}}+6 \mathrm{e}^{2 \mathrm{x}}=0$ and
$y_{2}^{\prime \prime}-5 y_{2}^{\prime}+6 y_{2}=9 \mathrm{e}^{3 \mathrm{x}}-15 \mathrm{e}^{3 \mathrm{x}}+6 \mathrm{e}^{3 \mathrm{x}}=0$
$\therefore \mathrm{y}_{1}=\mathrm{e}^{2 \mathrm{x}}$ and $\mathrm{y}_{2}=\mathrm{e}^{3 \mathrm{x}}$ are the solutions of the differential equation $\mathrm{y}^{\prime \prime}-5 \mathrm{y}^{\prime}+6 \mathrm{y}=0$.
Now the Wronskian of y_{1} and y_{2} is
$\mathrm{W}(\mathrm{x})=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}e^{2 x} & e^{3 x} \\ 2 e^{2 x} & 3 e^{3 x}\end{array}\right|$

$$
=3 e^{5 x}-2 e^{5 x}
$$

$\therefore \mathrm{W}(\mathrm{x})=e^{5 x} \neq 0$
$\therefore \mathrm{y}_{1}=\mathrm{e}^{2 \mathrm{x}}$ and $\mathrm{y}_{2}=\mathrm{e}^{3 \mathrm{x}}$ are linearly independent solutions of the differential equation $y^{\prime \prime}-5 y^{\prime}+6 y=0$.

Ex.: Show that the functions $1+x, x^{2}$ and $1+2 x$ are linearly independent.
Proof: Let $\mathrm{y}_{1}=1+\mathrm{x}, \mathrm{y}_{2}=\mathrm{x}^{2}$ and $\mathrm{y}_{3}=1+2 \mathrm{x}$ are the given functions.
$\therefore y_{1}^{\prime}=1, y_{2}^{\prime}=2 \mathrm{x}$ and $y_{3}^{\prime}=2$
$\therefore y_{1}^{\prime \prime}=0, y_{2}^{\prime \prime}=2$ and $y_{3}^{\prime \prime}=0$
\therefore The Wronskian of $\mathrm{y}_{1}, \mathrm{y}_{2}$ and y_{3} is

$$
\begin{aligned}
\mathrm{W}(\mathrm{x}) & =\left|\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|=\left|\begin{array}{ccc}
1+x & x^{2} & 1+2 x \\
1 & 2 x & 2 \\
0 & 2 & 0
\end{array}\right| \\
& =(1+\mathrm{x})(0-4)-\mathrm{x}^{2}(0-0)+(1+2 \mathrm{x})(2-0) \\
& =-4-4 \mathrm{x}+2+4 \mathrm{x}
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=-2 \neq 0$.
\therefore Given functions are linearly independent.
Ex.: Using Wronskian, show that the functions $\mathrm{x}, \mathrm{x}^{2}, \mathrm{x}^{3}$ are linearly independent.
Proof: Let $y_{1}=x, y_{2}=x^{2}$ and $y_{3}=x^{3}$ are the given functions.
$\therefore y_{1}^{\prime}=1, y_{2}^{\prime}=2 \mathrm{x}$ and $y_{3}^{\prime}=3 \mathrm{x}^{2}$
$\therefore y_{1}^{\prime \prime}=0, y_{2}^{\prime \prime}=2$ and $y_{3}^{\prime \prime}=6 \mathrm{x}$
\therefore The Wronskian of $\mathrm{y}_{1}, \mathrm{y}_{2}$ and y_{3} is

$$
\begin{aligned}
\mathrm{W}(\mathrm{x}) & \left.=\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|=\begin{array}{ccc}
x & x^{2} & x^{3} \\
1 & 2 x & 3 x^{2} \\
0 & 2 & 6 x
\end{array} \right\rvert\, \\
& =\mathrm{x}\left(12 \mathrm{x}^{2}-6 \mathrm{x}^{2}\right)-\mathrm{x}^{2}(6 \mathrm{x}-0)+\mathrm{x}^{3}(2-0) \\
& =6 \mathrm{x}^{3}-6 \mathrm{x}^{3}+2 \mathrm{x}^{3}
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=2 \mathrm{x}^{3} \neq 0$.
\therefore Given functions are linearly independent.
Ex. Prove that 1, $\mathrm{x}, \mathrm{x}^{2}$ are linearly independent. Hence form the differential equation whose solutions are $1, x, x^{2}$.
Proof: Let $\mathrm{y}_{1}=1, \mathrm{y}_{2}=\mathrm{x}$ and $\mathrm{y}_{3}=\mathrm{x}^{2}$ are the given functions.
$\therefore y_{1}^{\prime}=0, y_{2}^{\prime}=1$ and $y_{3}^{\prime}=2 \mathrm{x}$
$\therefore y_{1}^{\prime \prime}=0, y_{2}^{\prime \prime}=0$ and $y_{3}^{\prime \prime}=2$
\therefore The Wronskian of $\mathrm{y}_{1}, \mathrm{y}_{2}$ and y_{3} is

$$
\begin{aligned}
\mathrm{W}(\mathrm{x}) & =\left|\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|=\left|\begin{array}{ccc}
1 & x & x^{2} \\
0 & 1 & 2 x \\
0 & 0 & 2
\end{array}\right| \\
& =(2-0)-\mathrm{x}(0-0)+\mathrm{x}^{2}(0-0)
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=2 \neq 0$.
$\therefore 1, \mathrm{x}, \mathrm{x}^{2}$ are linearly independent solutions.
To find differential equation, let $y=c_{1}+c_{2} x+c_{3} x^{2} \ldots \ldots$ (i)
where $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}$ are constants.
Differentiating equation (i) thrice w.r.t. x , we get,
$\frac{d y}{d x}=\mathrm{c}_{2}+2 \mathrm{c}_{3} \mathrm{X}$
$\frac{d^{2} y}{d x^{2}}=2 \mathrm{c}_{3}$
$\frac{d^{3} y}{d x^{3}}=0$ be the required differential equation.
Ex. Examine whether the set of functions 1, $\mathrm{x}^{2}, \mathrm{x}^{3}$ are linearly independent or not.
Solution: Let $\mathrm{y}_{1}=1, \mathrm{y}_{2}=\mathrm{x}^{2}$ and $\mathrm{y}_{3}=\mathrm{x}^{3}$ are the given functions.
$\therefore y_{1}^{\prime}=0, y_{2}^{\prime}=2 \mathrm{x}$ and $y_{3}^{\prime}=3 \mathrm{x}^{2}$
$\therefore y_{1}^{\prime \prime}=0, y_{2}^{\prime \prime}=2$ and $y_{3}^{\prime \prime}=6 x$
\therefore The Wronskian of $\mathrm{y}_{1}, \mathrm{y}_{2}$ and y_{3} is
$\mathrm{W}(\mathrm{x})=\left|\begin{array}{lll}y_{1} & y_{2} & y_{3} \\ y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\ y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}\end{array}\right|=\left|\begin{array}{ccc}1 & x^{2} & x^{3} \\ 0 & 2 x & 3 x^{2} \\ 0 & 2 & 6 x\end{array}\right|$
$=\left(12 \mathrm{x}^{2}-6 \mathrm{x}^{2}\right)-\mathrm{x}^{2}(0-0)+\mathrm{x}^{3}(0-0)$
$\therefore \mathrm{W}(\mathrm{x})=6 \mathrm{x}^{2} \neq 0$
\therefore Given set of functions are linearly independent.
Ex.: Examine the functions $x^{2}, \mathrm{e}^{\mathrm{x}}, \mathrm{e}^{-\mathrm{x}}$ for linear independence.
Solution: Let $\mathrm{y}_{1}=\mathrm{x}^{2}, \mathrm{y}_{2}=\mathrm{e}^{\mathrm{x}}$ and $\mathrm{y}_{3}=\mathrm{e}^{-\mathrm{x}}$ are the given functions.
$\therefore y_{1}^{\prime}=2 \mathrm{x}, y_{2}^{\prime}=\mathrm{e}^{\mathrm{x}}$ and $y_{3}^{\prime}=-\mathrm{e}^{-\mathrm{x}}$
$\therefore y_{1}^{\prime \prime}=2, y_{2}^{\prime \prime}=\mathrm{e}^{\mathrm{x}}$ and $y_{3}^{\prime \prime}=\mathrm{e}^{-\mathrm{x}}$
\therefore The Wronskian of $\mathrm{y}_{1}, \mathrm{y}_{2}$ and y_{3} is
$\mathrm{W}(\mathrm{x})=\left|\begin{array}{lll}y_{1} & y_{2} & y_{3} \\ y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\ y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}\end{array}\right|=\left|\begin{array}{ccc}x^{2} & e^{x} & e^{-x} \\ 2 x & e^{x} & -e^{-x} \\ 2 & e^{x} & e^{-x}\end{array}\right|$

$$
\begin{aligned}
& =e^{x-x}\left|\begin{array}{ccc}
x^{2} & 1 & 1 \\
2 x & 1 & -1 \\
2 & 1 & 1
\end{array}\right| \\
& =\mathrm{x}^{2}(1+1)-(2 \mathrm{x}+2)+(2 \mathrm{x}-2)
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=2 \mathrm{x}^{2}-4 \neq 0$ if $\mathrm{x}^{2}-2 \neq 0$ i.e. if $\mathrm{x} \neq \pm \sqrt{2}$
\therefore Given functions are linearly independent if $x \neq \pm \sqrt{2}$ and are linearly dependent if $x= \pm \sqrt{2}$.

Ex.: Examine whether the set of functions $x^{2}-x+1, x^{2}-1,3 x^{2}-x-1$ are linearly dependent or not.
Solution: Let $y_{1}=x^{2}-x+1, y_{2}=x^{2}-1$ and $y_{3}=3 x^{2}-x-1$ are the given functions.
$\therefore y_{1}^{\prime}=2 \mathrm{x}-1, y_{2}^{\prime}=2 \mathrm{x}$ and $y_{3}^{\prime}=6 \mathrm{x}-1$
$\therefore y_{1}^{\prime \prime}=2$, $\quad y_{2}^{\prime \prime}=2$ and $y_{3}^{\prime \prime}=6$
\therefore The Wronskian of $\mathrm{y}_{1}, \mathrm{y}_{2}$ and y_{3} is

$$
\begin{aligned}
\mathrm{W}(\mathrm{x}) & =\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|=\left|\begin{array}{ccc}
x^{2}-x+1 & x^{2}-1 & 3 x^{2}-x-1 \\
2 x-1 & 2 x & 6 x-1 \\
2 & 2 & 6
\end{array}\right| \\
& =\left(\mathrm{x}^{2}-\mathrm{x}+1\right)(12 \mathrm{x}-12 \mathrm{x}+2)-\left(\mathrm{x}^{2}-1\right) \\
& \left.=2 \mathrm{x}^{2}-2 \mathrm{x}+2+4 \mathrm{x}^{2}-4-6 \mathrm{x}^{2}+2 \mathrm{x}-2 \mathrm{x}+2 \mathrm{x}+2\right)+\left(3 \mathrm{x}^{2}-\mathrm{x}-1\right)(4 \mathrm{x}-2-4 \mathrm{x})
\end{aligned}
$$

$\therefore \mathrm{W}(\mathrm{x})=0$
\therefore Given set of functions are linearly dependent.

Method of Variation of Parameters:

$$
\text { Let } \frac{d^{2} y}{d x^{2}}+\mathrm{P} \frac{d y}{d x}+\mathrm{Qy}=\mathrm{R} \ldots \ldots \text { (i) be a linear differential equation, }
$$

where P, Q and R are the functions of x or constants.
Suppose $y=A u+B v \ldots .$. (ii) be a complementary function (C.F.) of (i).
Where A, B are constants and u, v are functions of x.
As (ii) is C.F. of (i), hence u and v must be the solution of auxiliary equation of (i)
i.e. $\frac{d^{2} y}{d x^{2}}+\mathrm{P} \frac{d y}{d x}+\mathrm{Qy}=0 \ldots \ldots$
$\therefore \frac{d^{2} u}{d x^{2}}+\mathrm{P} \frac{d u}{d x}+\mathrm{Qu}=0$
and $\frac{d^{2} v}{d x^{2}}+\mathrm{P} \frac{d v}{d x}+\mathrm{Qv}=0$
In the method of variation of parameter, we assume that $y=A u+B v$
be the G.S. of the given equation (i).

Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\mathrm{u} \frac{d A}{d x}+\mathrm{v} \frac{d B}{d x}=0$ \qquad (vii)

Differentiating equation (vi) w.r.t. x, we get,
$\frac{d y}{d x}=A \frac{d u}{d x}+\mathrm{u} \frac{d A}{d x}+B \frac{d v}{d x}+\mathrm{v} \frac{d B}{d x}$
$\Rightarrow \frac{d y}{d x}=A \frac{d u}{d x}+B \frac{d v}{d x}$
(viii) using (vii).

Now differentiating equation (viii) w.r.t. x, we get,
$\frac{d^{2} y}{d x^{2}}=\frac{d A}{d x} \frac{d u}{d x}+A \frac{d^{2} u}{d x^{2}}+\frac{d B}{d x} \frac{d v}{d x}+B \frac{d^{2} v}{d x^{2}}$.
Using (vi), (viii) and (ix) in (i), we have,
$\left[\frac{d A}{d x} \frac{d u}{d x}+A \frac{d^{2} u}{d x^{2}}+\frac{d B}{d x} \frac{d v}{d x}+B \frac{d^{2} v}{d x^{2}}\right]+\mathrm{P}\left[A \frac{d u}{d x}+B \frac{d v}{d x}\right]+\mathrm{Q}[\mathrm{Au}+\mathrm{Bv}]=\mathrm{R}$
$\Rightarrow A\left[\frac{d^{2} u}{d x^{2}}+\mathrm{P} \frac{d u}{d x}+\mathrm{Qu}\right]+B\left[\frac{d^{2} v}{d x^{2}}+\mathrm{P} \frac{d v}{d x}+\mathrm{Qv}\right]+\left[\frac{d A}{d x} \frac{d u}{d x}+\frac{d B}{d x} \frac{d v}{d x}\right]=\mathrm{R}$
$\Rightarrow A(0)+B(0)+\left[\frac{d A}{d x} \frac{d u}{d x}+\frac{d B}{d x} \frac{d v}{d x}\right]=\mathrm{R} \quad$ by (iv) and (v)
$\Longrightarrow \frac{d A}{d x} \frac{d u}{d x}+\frac{d B}{d x} \frac{d v}{d x}=\mathrm{R}$
Solving (vii) and (x), we get, $\frac{d A}{d x}$ and $\frac{d B}{d x}$.
Integrating $\frac{d A}{d x}$ and $\frac{d B}{d x}$, we get, A and B.
Putting these values of A and B in (vi), we get G.S. of given equation (i).

Ex.: Solve by method of variation of parameters $\frac{d^{2} y}{d x^{2}}+4 y=4 \tan 2 x$
Solution: Let $\frac{d^{2} y}{d x^{2}}+4 y=4 \tan 2 x$ i.e. $\left(D^{2}+4\right) y=4 \tan 2 x$
(i) be the given equation.
\therefore Its A.E. is $\mathrm{D}^{2}+4=0$ which has roots $\mathrm{D}= \pm 2 \mathrm{i}$.
\therefore C.F. is $\mathrm{y}=\mathrm{A} \cos 2 \mathrm{x}+\mathrm{B} \sin 2 \mathrm{x}$
By method of variation of parameter assume that $y=A \cos 2 x+B \sin 2 x$
be the G.S. of the given equation (i).
Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\cos 2 \mathrm{x} \frac{d A}{d x}+\sin 2 \mathrm{x} \frac{d B}{d x}=0$ \qquad
Differentiating equation (ii) w.r.t. x , we get,
$\frac{d y}{d x}=-2 A \sin 2 x+\cos 2 \mathrm{x} \frac{d A}{d x}+2 B \cos 2 x+\sin 2 \mathrm{x} \frac{d B}{d x}$
$\Rightarrow \frac{d y}{d x}=-2 A \sin 2 x+2 B \cos 2 x \ldots \ldots$ (iv) using (iii).
Again differentiating equation (iv) w.r.t. x, we get,
$\frac{d^{2} y}{d x^{2}}=-4 A \cos 2 x-2 \sin 2 x \frac{d A}{d x}-4 B \sin 2 x+2 \cos 2 x \frac{d B}{d x}$
$\therefore \frac{d^{2} y}{d x^{2}}=-4(A \cos 2 x+B \sin 2 x)-2 \sin 2 x \frac{d A}{d x}+2 \cos 2 x \frac{d B}{d x}$
$\therefore \frac{d^{2} y}{d x^{2}}=-4 y-2 \sin 2 x \frac{d A}{d x}+2 \cos 2 x \frac{d B}{d x} \quad$ by (ii)
$\therefore \frac{d^{2} y}{d x^{2}}+4 y=-2 \sin 2 x \frac{d A}{d x}+2 \cos 2 x \frac{d B}{d x}$
$\therefore-2 \sin 2 x \frac{d A}{d x}+2 \cos 2 x \frac{d B}{d x}=4 \tan 2 \mathrm{x} \quad$ by (i)
i.e. $\sin 2 x \frac{d A}{d x}-\cos 2 x \frac{d B}{d x}=-2 \tan 2 x$..

To solve (iii) and (v), consider $\sin 2 x(i i i)-\cos 2 x(v)$, we get,
$\sin 2 \mathrm{x} \cos 2 \mathrm{x} \frac{d A}{d x}+\sin ^{2} 2 \mathrm{x} \frac{d B}{d x}-\sin 2 \mathrm{x} \cos 2 \mathrm{x} \frac{d A}{d x}+\cos ^{2} 2 \mathrm{x} \frac{d B}{d x}=0+2 \cos 2 \mathrm{x} \tan 2 \mathrm{x}$ $\therefore \frac{d B}{d x}=2 \sin 2 \mathrm{x}$
Putting value of $\frac{d B}{d x}$ in (iii), we get,
$\cos 2 \mathrm{x} \frac{d A}{d x}+\sin 2 \mathrm{x}(2 \sin 2 \mathrm{x})=0$
$\therefore \cos 2 \mathrm{x} \frac{d A}{d x}=-2 \sin ^{2} 2 \mathrm{x} \Rightarrow \frac{d A}{d x}=-\frac{2 \sin ^{2} 2 x}{\cos 2 x}$
Now $\frac{d A}{d x}=-\frac{2 \sin ^{2} 2 x}{\cos 2 x} \Rightarrow \mathrm{~A}=\int\left(-\frac{2 \sin ^{2} 2 x}{\cos 2 x}\right) \mathrm{dx}+\mathrm{c}_{1}=-2 \int\left(\frac{1-\cos ^{2} 2 x}{\cos 2 x}\right) \mathrm{dx}+\mathrm{c}_{1}$

$$
=-2 \int(\sec 2 x-\cos 2 x) d x+c_{1}
$$

$$
=-\log (\sec 2 \mathrm{x}+\tan 2 \mathrm{x})+\sin 2 \mathrm{x}+\mathrm{c}_{1}
$$

and $\frac{d B}{d x}=2 \sin 2 \mathrm{x} \Rightarrow \mathrm{B}=\int 2 \sin 2 \mathrm{xdx}=-\cos 2 \mathrm{x}+\mathrm{c}_{2}$
Putting these values of A and B in (ii), we get,
$y=\left[-\log (\sec 2 x+\tan 2 x)+\sin 2 x+c_{1}\right] \cos 2 x+\left(-\cos 2 x+c_{2}\right) \sin 2 x$
$\therefore y=c_{1} \cos 2 x+c_{2} \sin 2 x-\cos 2 x \log (\sec 2 x+\tan 2 x)+\sin 2 x \cos 2 x-\cos 2 x \sin 2 x$
$\therefore \mathrm{y}=\mathrm{c}_{1} \cos 2 \mathrm{x}+\mathrm{c}_{2} \sin 2 \mathrm{x}-\cos 2 \mathrm{x} \log (\sec 2 \mathrm{x}+\tan 2 \mathrm{x})$
be the required G.S. of given equation.
Ex.: Solve by method of variation of parameters $y^{\prime \prime}-3 y^{\prime}+2 y=2$
Solution: Let $y^{\prime \prime}-3 y^{\prime}+2 y=2$ i.e. $\left(D^{2}-3 D+2\right) y=2 \ldots \ldots$ (i) be the given equation. \therefore Its A.E. is $\mathrm{D}^{2}-3 \mathrm{D}+2=0$ i.e. $(\mathrm{D}-1)(\mathrm{D}-2)=0$ which has roots $\mathrm{D}=1,2$.
\therefore C.F. is $y=\mathrm{Ae}^{\mathrm{x}}+\mathrm{Be}^{2 \mathrm{x}}$
By method of variation of parameter assume that $y=A e^{x}+B e^{2 x}$.
be the G.S. of the given equation (i).
Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\mathrm{e}^{\mathrm{x}} \frac{d A}{d x}+\mathrm{e}^{2 \mathrm{x}} \frac{d B}{d x}=0$

Differentiating equation (ii) w.r.t. x, we get,
$\mathrm{y}^{\prime}=A e^{x}+e^{x} \frac{d A}{d x}+2 B e^{2 x}+e^{2 x} \frac{d B}{d x}$
$\Rightarrow \mathrm{y}^{\prime}=A e^{x}+2 B e^{2 x} \ldots \ldots$ (iv) using (iii).
Again differentiating equation (iv) w.r.t. x, we get,
$y^{\prime \prime}=A e^{x}+e^{x} \frac{d A}{d x}+4 B e^{2 x}+2 e^{2 x} \frac{d B}{d x}$
$\therefore y^{\prime \prime}-3 y^{\prime}+2 y=2$ gives
$A e^{x}+e^{x} \frac{d A}{d x}+4 B e^{2 x}+2 e^{2 x} \frac{d B}{d x}-3 A e^{x}-6 B e^{2 x}+2 \mathrm{Ae}^{\mathrm{x}}+2 \mathrm{Be}^{2 \mathrm{x}}=2$
i.e. $e^{x} \frac{d A}{d x}+2 e^{2 x} \frac{d B}{d x}=2 \ldots \ldots$.(v)

To solve (iii) and (v), consider (v) - (iii), we get,
$e^{x} \frac{d A}{d x}+2 e^{2 x} \frac{d B}{d x}-e^{x} \frac{d A}{d x}-e^{2 x} \frac{d B}{d x}=2-0$
$\therefore e^{2 x} \frac{d B}{d x}=2 \Rightarrow \frac{d B}{d x}=2 e^{-2 x}$
Putting value of $\frac{d B}{d x}$ in (iii), we get,
$\mathrm{e}^{\mathrm{x}} \frac{d A}{d x}+\mathrm{e}^{2 \mathrm{x}}\left(2 e^{-2 x}\right)=0$
$\therefore e^{x} \frac{d A}{d x}=-2 \Rightarrow \frac{d A}{d x}=-2 e^{-x}$
Now $\frac{d A}{d x}=-2 e^{-x} \Rightarrow \mathrm{~A}=\int\left(-2 e^{-x}\right) \mathrm{dx}+\mathrm{c}_{1}=2 e^{-x}+\mathrm{c}_{1}$ and
$\frac{d B}{d x}=2 e^{-2 x} \Rightarrow \mathrm{~B}=\int 2 e^{-2 x} \mathrm{dx}=-e^{-2 x}+\mathrm{c}_{2}$
Putting these values of A and B in (ii), we get,
$\mathrm{y}=\left[2 e^{-x}+\mathrm{c}_{1}\right] e^{x}+\left(-e^{-2 x}+\mathrm{c}_{2}\right) e^{2 x}$
$\therefore \mathrm{y}=\mathrm{c}_{1} e^{x}+\mathrm{c}_{2} e^{2 x}+2-1$
$\therefore y=c_{1} e^{x}+\mathrm{c}_{2} e^{2 x}+1$ be the required G.S. of given equation.

Ex.: Using method of variation of parameters solve $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x$

Solution: Let $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x$ i.e. $\left(D^{2}+1\right) y=\operatorname{cosec} x \ldots \ldots$ (i) be the given equation.
\therefore Its A.E. is $\mathrm{D}^{2}+1=0$ which has roots $\mathrm{D}= \pm \mathrm{i}$.
\therefore C.F. is $y=A \cos x+B \sin x$
By method of variation of parameter assume that $y=A \cos x+B \sin x$
be the G.S. of the given equation (i).
Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\cos \mathrm{x} \frac{d A}{d x}+\sin \mathrm{x} \frac{d B}{d x}=0$ \qquad (iii)

Differentiating equation (ii) w.r.t. x , we get,
$\frac{d y}{d x}=-A \sin x+\cos x \frac{d A}{d x}+B \cos x+\sin x \frac{d B}{d x}$
$\Rightarrow \frac{d y}{d x}=-A \sin x+B \cos x \ldots \ldots$ (iv) using (iii).
Again differentiating equation (iv) w.r.t. x, we get,
$\frac{d^{2} y}{d x^{2}}=-A \cos x-\sin x \frac{d A}{d x}-B \sin x+\cos x \frac{d B}{d x}$
$\therefore \frac{d^{2} y}{d x^{2}}=-(A \cos x+B \sin x)-\sin x \frac{d A}{d x}+\cos x \frac{d B}{d x}$
$\therefore \frac{d^{2} y}{d x^{2}}=-y-\sin x \frac{d A}{d x}+\cos x \frac{d B}{d x} \quad$ by (ii)
$\therefore \frac{d^{2} y}{d x^{2}}+y=-\sin x \frac{d A}{d x}+\cos x \frac{d B}{d x}$
$\therefore-\sin x \frac{d A}{d x}+\cos x \frac{d B}{d x}=\operatorname{cosec} x$
(v) by (i)

To solve (iii) and (v), consider $\sin x(i i i)+\cos x(v)$, we get, $\sin \mathrm{x} \cos \mathrm{x} \frac{d A}{d x}+\sin ^{2} \mathrm{x} \frac{d B}{d x}-\sin \mathrm{x} \cos \mathrm{x} \frac{d A}{d x}+\cos ^{2} \mathrm{x} \frac{d B}{d x}=0+\cos \mathrm{x} \operatorname{cosec} \mathrm{x}$ $\therefore \frac{d B}{d x}=\cot x$
Putting value of $\frac{d B}{d x}$ in (iii), we get,
$\cos x \frac{d A}{d x}+\sin x(\cot x)=0$
$\therefore \cos x \frac{d A}{d x}=-\cos x \Rightarrow \frac{d A}{d x}=-1$
Now $\frac{d A}{d x}=-1 \Rightarrow A=\int(-1) \mathrm{dx}=-x+\mathrm{c}_{1}$ and
$\frac{d B}{d x}=\cot \mathrm{x} \Rightarrow \mathrm{B}=\int \cot x \mathrm{dx}=\log \sin \mathrm{x}+\mathrm{c}_{2}$
Putting these values of A and B in (ii), we get,
$y=\left(-x+c_{1}\right) \cos x+\left(\log \sin x+c_{2}\right) \sin x$
$\therefore \mathrm{y}=\mathrm{c}_{1} \cos \mathrm{x}+\mathrm{c}_{2} \sin \mathrm{x}-x \cos \mathrm{x}+\sin \mathrm{x}(\log \sin \mathrm{x})$
be the required G.S. of given equation.
Ex.: Using method of variation of parameters solve $\frac{d^{2} y}{d x^{2}}+a^{2} y=\operatorname{cosec}(a x)$
Solution: Let $\frac{d^{2} y}{d x^{2}}+a^{2} y=\operatorname{cosec}(a x)$ i.e. $\left(D^{2}+a^{2}\right) y=\operatorname{cosec}(a x) \ldots \ldots$ (i)
be the given equation.
\therefore Its A.E. is $\mathrm{D}^{2}+\mathrm{a}^{2}=0$ which has roots $\mathrm{D}= \pm$ ai.
\therefore C.F. is $\mathrm{y}=\mathrm{A} \cos a \mathrm{x}+\mathrm{B} \operatorname{sinax}$
By method of variation of parameter assume that $y=A \operatorname{cosax}+B \operatorname{sinax}$
be the G.S. of the given equation (i).

Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\operatorname{cosax} \frac{d A}{d x}+\operatorname{sinax} \frac{d B}{d x}=0$ \qquad
Differentiating equation (ii) w.r.t. x , we get,
$\frac{d y}{d x}=-a A \sin a x+\cos a x \frac{d A}{d x}+a B \cos a x+\sin a x \frac{d B}{d x}$
$\Rightarrow \frac{d y}{d x}=-a A \sin a x+a B \cos a x \ldots \ldots$. (iv) using (iii).
Again differentiating equation (iv) w.r.t. x, we get,
$\frac{d^{2} y}{d x^{2}}=-a^{2} A \cos a x-a \operatorname{sinax} \frac{d A}{d x}-a^{2} B \sin a x+a \cos a x \frac{d B}{d x}$
$\therefore \frac{d^{2} y}{d x^{2}}=-a^{2}(A \cos a x+B \sin a x)-a \sin a x \frac{d A}{d x}+a \cos a x \frac{d B}{d x}$
$\therefore \frac{d^{2} y}{d x^{2}}=-a^{2} y-a \operatorname{sinax} \frac{d A}{d x}+a \cos a x \frac{d B}{d x} \quad$ by (ii)
$\therefore \frac{d^{2} y}{d x^{2}}+a^{2} y=-a \sin a x \frac{d A}{d x}+a \cos a x \frac{d B}{d x}$
$\therefore-\operatorname{asinax} \frac{d A}{d x}+a \cos a x \frac{d B}{d x}=\operatorname{cosec}(\mathrm{ax}) \quad \ldots \ldots$. (v) by (i)
To solve (iii) and (v), consider asinax(iii)+cosax(v), we get, $\operatorname{asinaxcosax} \frac{d A}{d x}+\operatorname{asin}^{2} \mathrm{ax} \frac{d B}{d x}-\operatorname{asinaxcosax} \frac{d A}{d x}+\operatorname{acos}^{2} \mathrm{ax} \frac{d B}{d x}=0+\operatorname{cosax} \operatorname{cosec}(\mathrm{ax})$ $\therefore \mathrm{a} \frac{d B}{d x}=\cot (\mathrm{ax}) \Rightarrow \frac{d B}{d x}=\frac{1}{a} \cot (\mathrm{ax})$
Putting value of $\frac{d B}{d x}$ in (iii), we get,
$\operatorname{cosax} \frac{d A}{d x}+\sin a x\left[\frac{1}{a} \cot (\mathrm{ax})\right]=0$
$\therefore \operatorname{cosax} \frac{d A}{d x}=-\frac{1}{a} \cos a \mathrm{x} \Rightarrow \frac{d A}{d x}=-\frac{1}{a}$
Now $\frac{d A}{d x}=-\frac{1}{a} \Rightarrow A=\int\left(-\frac{1}{a}\right) \mathrm{dx}=-\frac{x}{a}+\mathrm{c}_{1}$ and
$\frac{d B}{d x}=\frac{1}{a} \cot (\mathrm{ax}) \Rightarrow \mathrm{B}=\int\left(\frac{1}{a} \operatorname{cotax}\right) \mathrm{dx}=\frac{1}{a^{2}} \log \sin a \mathrm{x}+\mathrm{c}_{2}$
Putting these values of A and B in (ii), we get,
$\mathrm{y}=\left(-\frac{x}{a}+\mathrm{c}_{1}\right) \cos \mathrm{ax}+\left(\frac{1}{a^{2}} \log \sin \mathrm{ax}+\mathrm{c}_{2}\right) \sin \mathrm{ax}$
$\therefore \mathrm{y}=\mathrm{c}_{1} \cos \mathrm{ax}+\mathrm{c}_{2} \sin \mathrm{ax}-\frac{x}{a} \cos \mathrm{ax}+\frac{1}{a^{2}} \sin \mathrm{ax}(\log \sin \mathrm{ax})$
be the required G.S. of given equation.
Ex.: Using method of variation of parameters solve $\frac{d^{2} y}{d x^{2}}+9 y=\sec 3 x$
Solution: Let $\frac{d^{2} y}{d x^{2}}+9 y=\sec 3 x$ i.e. $\left(D^{2}+9\right) y=\sec 3 x$.
be the given equation.
\therefore Its A.E. is $\mathrm{D}^{2}+9=0$ which has roots $\mathrm{D}= \pm 3 \mathrm{i}$.
\therefore C.F. is $y=A \cos 3 x+B \sin 3 x$
By method of variation of parameter assume that $y=A \cos 3 x+B \sin 3 x$
be the G.S. of the given equation (i).
Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\cos 3 \mathrm{x} \frac{d A}{d x}+\sin 3 \mathrm{x} \frac{d B}{d x}=0 \ldots \ldots$ (iii)
Differentiating equation (ii) w.r.t. x, we get,
$\frac{d y}{d x}=-3 A \sin 3 x+\cos 3 \mathrm{x} \frac{d A}{d x}+3 B \cos 3 x+\sin 3 \mathrm{x} \frac{d B}{d x}$
$\Rightarrow \frac{d y}{d x}=-3 A \sin 3 x+3 B \cos 3 x \ldots \ldots$. (iv) using (iii).
Again differentiating equation (iv) w.r.t. x, we get,
$\frac{d^{2} y}{d x^{2}}=-9 A \cos 3 x-3 \sin 3 x \frac{d A}{d x}-9 B \sin 3 x+3 \cos 3 x \frac{d B}{d x}$
$\therefore \frac{d^{2} y}{d x^{2}}=-9(A \cos 3 x+B \sin 3 x)-3 \sin 3 x \frac{d A}{d x}+3 \cos 3 x \frac{d B}{d x}$
$\therefore \frac{d^{2} y}{d x^{2}}=-9 y-3 \sin 3 x \frac{d A}{d x}+3 \cos 3 x \frac{d B}{d x} \quad$ by (ii)
$\therefore \frac{d^{2} y}{d x^{2}}+9 y=-3 \sin 3 x \frac{d A}{d x}+3 \cos 3 x \frac{d B}{d x}$
$\therefore-3 \sin 3 x \frac{d A}{d x}+3 \cos 3 x \frac{d B}{d x}=\sec 3 \mathrm{x} \ldots \ldots$ (v) by (i)
To solve (iii) and (v), consider $3 \sin 3 x(i i i)+\cos 3 x(v)$, we get,
$3 \sin 3 \mathrm{x} \cos 3 \mathrm{x} \frac{d A}{d x}+3 \sin ^{2} 3 \mathrm{x} \frac{d B}{d x}-3 \sin 3 \mathrm{x} \cos 3 \mathrm{x} \frac{d A}{d x}+3 \cos ^{2} 3 \mathrm{x} \frac{d B}{d x}=0+\cos 3 \mathrm{x} \sec 3 \mathrm{x}$ $\therefore 3 \frac{d B}{d x}=1 \Rightarrow \frac{d B}{d x}=\frac{1}{3}$
Putting value of $\frac{d B}{d x}$ in (iii), we get,
$\cos 3 \mathrm{x} \frac{d A}{d x}+\sin 3 \mathrm{x}\left(\frac{1}{3}\right)=0$
$\therefore \cos 3 \mathrm{x} \frac{d A}{d x}=-\frac{1}{3} \sin 3 \mathrm{x} \Longrightarrow \frac{d A}{d x}=-\frac{1}{3} \tan 3 \mathrm{x}$
Now $\frac{d A}{d x}=-\frac{1}{3} \tan 3 \mathrm{x} \Rightarrow \mathrm{A}=\int\left(-\frac{1}{3} \tan 3 x\right) \mathrm{dx}=\frac{1}{9} \log \cos 3 \mathrm{x}+\mathrm{c}_{1}$ and $\frac{d B}{d x}=\frac{1}{3} \Rightarrow \mathrm{~B}=\int\left(\frac{1}{3}\right) \mathrm{dx}=\frac{x}{3}+\mathrm{c}_{2}$
Putting these values of A and B in (ii), we get,
$\mathrm{y}=\left(\frac{1}{9} \log \cos 3 \mathrm{x}+\mathrm{c}_{1}\right) \cos 3 \mathrm{x}+\left(\frac{x}{3}+\mathrm{c}_{2}\right) \sin 3 \mathrm{x}$
$\therefore \mathrm{y}=\mathrm{c}_{1} \cos 3 \mathrm{x}+\mathrm{c}_{2} \sin 3 \mathrm{x}+\frac{1}{9} \cos 3 \mathrm{x}(\log \sin 3 \mathrm{x})+\frac{x}{3} \sin 3 \mathrm{x}$
be the required G.S. of given equation.

Ex.: Using method of variation of parameters solve $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec (a x)$
Solution: Let $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec (a x)$ i.e. $\left(D^{2}+a^{2}\right) y=\sec (a x)$
be the given equation.
\therefore Its A.E. is $\mathrm{D}^{2}+\mathrm{a}^{2}=0$ which has roots $\mathrm{D}= \pm$ ai.
\therefore C.F. is $y=A \cos a x+B \sin a x$
By method of variation of parameter assume that $y=A \cos a x+B \sin a x$
be the G.S. of the given equation (i).
Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\operatorname{cosax} \frac{d A}{d x}+\operatorname{sinax} \frac{d B}{d x}=0$
Differentiating equation (ii) w.r.t. x, we get,
$\frac{d y}{d x}=-a A \sin a x+\cos a x \frac{d A}{d x}+a B \cos a x+\sin a x \frac{d B}{d x}$
$\Rightarrow \frac{d y}{d x}=-a A \sin a x+a B \cos a x \ldots$. . (iv) using (iii).
Again differentiating equation (iv) w.r.t. x , we get,
$\frac{d^{2} y}{d x^{2}}=-a^{2} A \cos a x-a \sin a x \frac{d A}{d x}-a^{2} B \sin a x+a \cos a x \frac{d B}{d x}$
$\therefore \frac{d^{2} y}{d x^{2}}=-a^{2}(A \cos a x+B \sin a x)-a \sin a x \frac{d A}{d x}+a \cos a x \frac{d B}{d x}$
$\therefore \frac{d^{2} y}{d x^{2}}=-a^{2} y-a \sin a x \frac{d A}{d x}+a \cos a x \frac{d B}{d x} \quad$ by (ii)
$\therefore \frac{d^{2} y}{d x^{2}}+a^{2} y=-a \sin a x \frac{d A}{d x}+a \cos a x \frac{d B}{d x}$
$\therefore-\operatorname{asinax} \frac{d A}{d x}+a \cos a x \frac{d B}{d x}=\sec (\mathrm{ax})$
(v) by (i)

To solve (iii) and (v), consider asinax(iii)+cosax(v), we get, $\operatorname{asinaxcosax} \frac{d A}{d x}+\operatorname{asin}^{2} \mathrm{ax} \frac{d B}{d x}-\operatorname{asinaxcosax} \frac{d A}{d x}+\operatorname{acos}^{2} \mathrm{ax} \frac{d B}{d x}=0+\operatorname{cosaxsec}(\mathrm{ax})$ $\therefore \mathrm{a} \frac{d B}{d x}=1 \Longrightarrow \frac{d B}{d x}=\frac{1}{a}$
Putting value of $\frac{d B}{d x}$ in (iii), we get,
$\operatorname{cosax} \frac{d A}{d x}+\operatorname{sinax}\left(\frac{1}{a}\right)=0$
$\therefore \operatorname{cosax} \frac{d A}{d x}=-\frac{1}{a} \sin a x \Rightarrow \frac{d A}{d x}=-\frac{1}{a} \operatorname{tanax}$
Now $\frac{d A}{d x}=-\frac{1}{a} \operatorname{tanax} \Rightarrow \mathrm{~A}=\int\left(-\frac{1}{a} \operatorname{tanax}\right) \mathrm{dx}=\frac{1}{a^{2}} \log \cos a \mathrm{x}+\mathrm{c}_{1}$ and $\frac{d B}{d x}=\frac{1}{a} \Rightarrow \mathrm{~B}=\int\left(\frac{1}{a}\right) \mathrm{dx}=\frac{x}{a}+\mathrm{c}_{2}$
Putting these values of A and B in (ii), we get,
$\mathrm{y}=\left(\frac{1}{a^{2}} \log \cos \mathrm{ax}+\mathrm{c}_{1}\right) \cos a \mathrm{x}+\left(\frac{x}{a}+\mathrm{c}_{2}\right) \sin \mathrm{ax}$
$\therefore \mathrm{y}=\mathrm{c}_{1} \cos a \mathrm{x}+\mathrm{c}_{2} \sin \mathrm{ax}+\frac{1}{a^{2}} \cos a \mathrm{x}(\log \sin \mathrm{x})+\frac{x}{a} \sin \mathrm{x}$
be the required G.S. of given equation.
Ex.: Solve by method of variation of parameters $y^{\prime \prime}+y-x=0$
Solution: Let $y^{\prime \prime}+y=x$ i.e. $\left(D^{2}+1\right) y=x$
be the given equation.
\therefore Its A.E. is $\mathrm{D}^{2}+1=0$ which has roots $\mathrm{D}= \pm \mathrm{i}$.
\therefore C.F. is $y=\mathrm{C}_{1} \cos x+\mathrm{C}_{2} \sin x$
By method of variation of parameter assume that $y=A \cos x+B \sin x$.
be the G.S. of the given equation (i).
Where A and B are functions of x so chosen that equation (i) shall be satisfied and $\cos x \frac{d A}{d x}+\sin x \frac{d B}{d x}=0$
Differentiating equation (ii) w.r.t. x , we get,
$\mathrm{y}^{\prime}=-A \sin x+\cos \frac{d A}{d x}+B \cos x+\sin x \frac{d B}{d x}$
$\Rightarrow y^{\prime}=-A \sin x+B \cos x \ldots \ldots$. (iv) using (iii).
Again differentiating equation (iv) w.r.t. x , we get,
$y^{\prime \prime}=-A \cos x-\sin x \frac{d A}{d x}-B \sin x+\cos x \frac{d B}{d x}$
$\therefore \mathrm{y}^{\prime \prime}=-(A \cos x+B \sin x)-\sin x \frac{d A}{d x}+\cos x \frac{d B}{d x}$
$\therefore \mathrm{y}^{\prime \prime}=-y-\sin x \frac{d A}{d x}+\cos x \frac{d B}{d x}$ by (ii)
$\therefore \mathrm{y}^{\prime \prime}+y=-\sin x \frac{d A}{d x}+\cos x \frac{d B}{d x}$
$\therefore-\sin x \frac{d A}{d x}+\cos x \frac{d B}{d x}=\mathrm{x}$
(v) by (i)

To solve (iii) and (v), consider $\sin x($ iii $)+\operatorname{cosx}(\mathrm{v})$, we get, $\sin x \cos x \frac{d A}{d x}+\sin ^{2} x \frac{d B}{d x}-\sin x \cos x \frac{d A}{d x}+\cos ^{2} x \frac{d B}{d x}=0+x \cos x$
$\therefore \frac{d B}{d x}=\mathrm{x} \cos \mathrm{x}$
Putting value of $\frac{d B}{d x}$ in (iii), we get,
$\cos \mathrm{x} \frac{d A}{d x}+\sin \mathrm{x}[x \cos x]=0$
$\therefore \cos \mathrm{x} \frac{d A}{d x}=-\mathrm{x} \sin \mathrm{x} \cos \mathrm{x} \Rightarrow \frac{d A}{d x}=-x \sin x$
Now $\frac{d A}{d x}=-x \sin x \Rightarrow A=\int(-x \sin x) \mathrm{dx}=\mathrm{x} \cos x-\int \cos x d x+\mathrm{c}_{1}=\mathrm{x} \cos \mathrm{x}-\sin x+\mathrm{c}_{1}$ and
$\frac{d B}{d x}=x \cos x \Rightarrow B=\int x \cos x d x=x \sin x-\int \sin x d x+c_{2}=x \sin x+\cos x+c_{2}$
Putting these values of A and B in (ii), we get,
$\mathrm{y}=\left(\mathrm{x} \cos \mathrm{x}-\sin x+\mathrm{c}_{1}\right) \cos \mathrm{x}+\left(\mathrm{x} \sin \mathrm{x}+\cos x+\mathrm{c}_{2}\right) \sin \mathrm{x}$
$\therefore y=c_{1} \cos x+c_{2} \sin x+x \cos ^{2} x-\sin x \cos x+x \sin ^{2} x+\cos x \sin x$
$\therefore \mathrm{y}=\mathrm{c}_{1} \cos \mathrm{x}+\mathrm{c}_{2} \sin \mathrm{x}+\mathrm{x}$
be the required G.S. of given equation.

MULTIPLE CHOICE QUESTIONS [MCQ'S]

1) $\frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ with $\mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}$ is called
A) initial value problem
B) linear equation
C) homogeneous equation
D) None of these
2) An initial value problem $\frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ with $\mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}$ may have $\ldots \ldots$.
A) one solution
B) more than one solution
C) no solution.
D) all of these.
3) A function $f(x, y)$ defined in a region D in $x y$-plane is said to satisfy Lipschitz condition
in D if for $\left(\mathrm{x}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}, \mathrm{y}_{2}\right)$ in D , there exist a positive constant K such that
A) $\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right| \leq \mathrm{K}\left|y_{2}-y_{1}\right|$
B) $\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right| \leq \mathrm{K}$
C) $\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right| \geq K\left|y_{2}-y_{1}\right|$
D) None of these
4) If a function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ satisfy Lipschitz condition $\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right| \leq \mathrm{K}\left|y_{2}-y_{1}\right|$ then K is called for the function $\mathrm{f}(\mathrm{x}, \mathrm{y})$.
A) constant
B) Lipschitz constant
C) variable
D) None of these
5) Every continuous function \qquad satisfy Lipschitz condition.
A) may
B) must
C) may not
D) None of these
6) If the function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is continuous and bounded for all values of x in a domain D and satisfies Lipschitz's condition $\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right| \leq \mathrm{K}\left|y_{2}-y_{1}\right|$ for all points in domain D , then initial value problem $\frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ with $\mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}$ has $\ldots \ldots$
A) a unique solution.
B) no solution.
C) infinite number of solutions
D) None of these
7) If S is either a rectangle $\left|x-x_{0}\right| \leq \mathrm{h},\left|y-y_{0}\right| \leq \mathrm{k}(\mathrm{h}, \mathrm{k}>0)$ or a strip $\left|x-x_{0}\right| \leq \mathrm{h},|y|<\infty(\mathrm{h}>0)$ and $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is a real valued function defined on S such that $\frac{\partial f}{\partial y}$ exits and continuous on S with $\left|\frac{\partial f}{\partial y}\right| \leq K \forall(x, y) \in S$ for a positive constant K, then $f(x, y)$ satisfies Lipschitz's condition on S withconstant K.
A) Picard's
B) Non Lipschitz's
C) Lipschitz's
D) None of these
8) A function $f(x, y)$ is said to satisfy Lipschitz condition in a region D in $x y$ plane if there
exist a positive constant K such that $\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right| \leq \ldots \ldots$....whenever the points ($\mathrm{x}, \mathrm{y}_{1}$) and ($\mathrm{x}, \mathrm{y}_{2}$) both lie in D .
A) $K\left|x_{1}-x_{2}\right|$
B) $\mathrm{K}\left|y_{2}-x\right|$
C) $K\left|y_{2}-y_{1}\right|$
D) None of these
9) If S is defined by the rectangle $|x| \leq \mathrm{a},|y| \leq \mathrm{b}$, then the function $f(x, y)=x s i n y+y \operatorname{cosx}$ satisfies Lipschitz's condition with Lipschitz's constant is \qquad
A) a
B) a-1
C) $a+1$
D) b
10) If S is defined by the rectangle $|x| \leq 1,|y| \leq 1$, then Lipschitz's constant is for the function $f(x, y)=x y^{2}$.
A) 1
B) 2
C) 3
D) 4
11) If S is defined by the rectangle $|x| \leq \mathrm{a},|y| \leq \mathrm{b}$, then Lipschitz's constant is for the function $f(x, y)=x^{2}+y^{2}$.
A) b
B) a
C) 2 b
D) 2 a
12) Uniqueness and existence is $\ldots \ldots$. for the initial value problem $\frac{d y}{d x}=y^{1 / 3}$ with $y(0)=0$.
A) applicable
B) not applicable
C) may or may not applicable
D) None of these
13) If $\mathrm{a}_{0}(\mathrm{x}), \mathrm{a}_{1}(\mathrm{x})$ and $\mathrm{a}_{2}(\mathrm{x})$ are continuous on an interval (a, b) and $\mathrm{a}_{0}(\mathrm{x}) \neq 0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$, then an equation $a_{0}(x) y^{\prime \prime}(x)+a_{1}(x) y^{\prime}(x)+a_{2}(x) y(x)=0$ is called
A) a second order linear differential equation
B) a first order linear differential equation
C) a third order linear differential equation
D) None of these
14) The Wronskian of $\mathrm{y}_{1}(\mathrm{x})$ and $\mathrm{y}_{2}(\mathrm{x})$ is denoted by $\mathrm{W}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ and is defined as
A) $\left|\begin{array}{ll}y_{1} & y_{1}^{\prime} \\ y_{2}^{\prime} & y_{2}\end{array}\right|$
B) $\left|\begin{array}{ll}y_{1}^{\prime} & y_{1}^{\prime} \\ y_{2}^{\prime} & y_{2}\end{array}\right|$
C) $\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$
D) None of these
15) The Wronskian of three functions $\mathrm{y}_{1}(\mathrm{x}), \mathrm{y}_{2}(\mathrm{x})$ and $\mathrm{y}_{3}(\mathrm{x})$ is $\mathrm{W}(\mathrm{x})=$
A) $\left|\begin{array}{lll}y_{1} & y_{2} & y_{3} \\ y_{1} & y_{2}^{\prime} & y_{3}^{\prime} \\ y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}\end{array}\right|$ B) $\left|\begin{array}{lll}y_{1} & y_{2} & y_{3} \\ y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\ y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}\end{array}\right|$ C) $\left|\begin{array}{lll}y_{1} & y_{2} & y_{3} \\ y_{1}^{\prime} & y_{2}^{\prime} & y_{3} \\ y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}\end{array}\right|$ D) None of these
16) Two solutions $y_{1}(x)$ and $y_{2}(x)$ of $a_{0}(x) y^{\prime \prime}(x)+a_{1}(x) y^{\prime}(x)+a_{2}(x) y(x)=0, a_{0}(x) \neq 0$
$\forall x \in(a, b)$, are linearly dependent if and only if their Wronskian is \qquad
A) zero
B) non zero
C) 1
D) None of these
17) Two non zero functions $f_{1}(x)$ and $f_{2}(x)$ are linearly dependent iff their Wronskian is...
A) zero
B) non zero
C) 1
D) None of these
18) Two solutions $y_{1}(x)$ and $y_{2}(x)$ of $a_{0}(x) y^{\prime \prime}(x)+a_{1}(x) y^{\prime}(x)+a_{2}(x) y(x)=0, a_{0}(x) \neq 0$ $\forall x \in(a, b)$, are linearly independent if and only if their Wronskian is
A) zero
B) 1
C) non zero
D) None of these
19) Two non zero functions $f_{1}(x)$ and $f_{2}(x)$ of differential equation are linearly independent iff their Wronskian is ...
A) non zero
B) zero
C) non vanishing
D) None of these
20) The Wronskian of e^{-x} and e^{x} is \qquad
A) 1
B) 2
C) 3
D) None of these
21) The functions e^{-x} and e^{x} are \qquad
A) Linearly dependent
B) Linearly dependent and Linearly independent
C) Linearly independent
D) None of these
22) The Wronskian of $\sin x$ and $\cos x$ is \qquad
A) -1
B) 0
C) 1
D) None of these
23) The functions $\sin x$ and $\cos x$ are \qquad
A) Linearly dependent
B) Linearly dependent and Linearly independent
C) Linearly independent
D) None of these
24) The Wronskian of $\cos x$ and $\sin x$ is
A) -1
B) 0
C) 1
D) None of these
25) The functions $\cos x$ and $\sin x$ are
A) Linearly independent
B) Linearly dependent and Linearly independent
C) Linearly dependent
D) None of these
26) The Wronskian of $\sin 2 x$ and $\cos 2 x$ is
A) -2
B) 0
C) 2
D) None of these
27) The functions $\sin 2 x$ and $\cos 2 x$ are
A) Linearly dependent
B) Linearly dependent and Linearly independent
C) Linearly independent
D) None of these
28) The Wronskian of $\sin 3 x$ and $\cos 3 x$ is \qquad
A) 0
B) 3
C) -3
D) None of these
29) The functions $\sin 3 x$ and $\cos 3 x$ are
A) Linearly dependent
B) Linearly dependent and Linearly independent
C) Linearly independent
D) None of these
30) The Wronskian of the functions $y_{1}=\sin x$ and $y_{2}=\sin x-\cos x$ is \qquad
A) 0
B) 1
C) $\sin ^{2} x$
D) $\cos ^{2} x$
31) The functions $y_{1}=\sin x$ and $y_{2}=\sin x-\cos x$ are $\ldots \ldots$
A) Linearly dependent
B) Linearly dependent and Linearly independent
C) Linearly independent
D) None of these
32) The Wronskian of the functions $y_{1}=e^{x} \cos x$ and $y_{2}=e^{x} \sin x$ is \qquad
A) $e^{2 x}$
B) e^{x}
C) 1
D) 0
33) The functions $e^{x} \cos x$ and $e^{x} \sin x$ are \qquad
A) Linearly independent
B) Linearly dependent and Linearly independent
C) Linearly dependent
D) None of these
34) The Wronskian of $e^{2 x} \cos 3 x$ and $e^{2 x} \sin 3 x$ is
A) $3 e^{4 x}$
B) 0
C) $3 e^{2 x}$
D) $2 e^{3 x}$
35) The functions $e^{2 x} \cos 3 x$ and $e^{2 x} \sin 3 x$ are \qquad
A) Linearly dependent
B) Linearly dependent and Linearly independent
C) Linearly independent
D) None of these
36) The Wronskian of $e^{a x} \operatorname{cosbx}$ and $e^{a x} \sin b x(b \neq 0)$ is
A) $\mathrm{ae}^{2 \mathrm{ax}}$
B) 0
C) $b e^{2 a x}$
D) $2 b e^{a x}$
37) The functions $e^{a x} \cos b x$ and $e^{a x} \sin b x(b \neq 0)$ are \qquad
A) Linearly dependent
B) Linearly dependent and Linearly independent
C) Linearly independent
D) None of these
38) The Wronskian of $e^{2 x}$ and $e^{3 x}$ is \qquad
A) $e^{2 x}$
B) $e^{3 x}$
C) $e^{5 x}$
D) $e^{6 x}$
39) The functions $e^{2 x}$ and $e^{3 x}$ are
A) Linearly dependent
B) Linearly dependent and Linearly independent
C) Linearly independent
D) None of these
40) The Wronskian of the functions x^{2} and $x^{2} \log x$ is
A) $\log x$
B) x^{2}
C) x^{3}
D) None of these
41) The functions x^{2} and $x^{2} \log x$ are
A) Linearly independent
B) Linearly dependent and Linearly independent
C) Linearly dependent
D) None of these
42) The Wronskian of the functions $1, x, x^{2}$ is
A) 0
B) 1
C) 2
D) None of these
43) The functions $1, x, x^{2}$ are
A) Linearly dependent
B) Linearly dependent and Linearly independent
C) Linearly independent
D) None of these
44) The Wronskian of the functions $1, x^{2}, x^{3}$ is
A) 0
B) $6 x^{2}$
C) $6 x^{3}$
D) None of these
45) The functions $1, x^{2}, x^{3}$ are $\ldots \ldots$
A) Linearly independent
B) Linearly dependent and Linearly independent
C) Linearly dependent
D) None of these
46) The Wronskian of the functions x, x^{2}, x^{3} is
A) 0
B) $2 x^{3}$
C) $2 x$
D) None of these
47) The functions x, x^{2}, x^{3} are \qquad
A) Linearly dependent
B) dependent
C) Linearly independent
D) None of these
48) The functions x^{2}, e^{x}, e^{-x} are linearly \qquad if $x= \pm \sqrt{2}$
A) independent
B) not dependent
C) dependent
D) None of these
49) The functions x^{2}, e^{x}, e^{-x} are linearly if $x \neq \pm \sqrt{2}$
A) independent
B) dependent and independent
C) dependent
D) None of these
50) The Wronskian of the functions $1+x, x^{2}, 1+2 x$ is \qquad
A) 0
B) -2
C) 2
D) None of these
51) The functions $1+x, x^{2}, 1+2 x$ are linearly
A) independent
B) dependent and independent
C) dependent
D) None of these
52) The Wronskian of the functions $x^{2}-x+1, x^{2}-1,3 x^{2}-x-1$ is \qquad
A) 0
B) -2
C) 2
D) None of these
53) The functions $x^{2}-x+1, x^{2}-1,3 x^{2}-x-1$ are linearly
A) independent
B) dependent and independent
C) dependent
D) None of these
54) In a method of variation of parameters, A and B are so chosen such that C.F. $y=A u+B v$ becomes G.S. of given differential equation is
A) $\left.A \frac{d u}{d x}+\mathrm{B} \frac{d v}{d x}=0 \mathrm{~B}\right) u \frac{d A}{d x}+\mathrm{v} \frac{d B}{d x}=0$
C) $u \frac{d A}{d x}+v \frac{d B}{d x} \neq 0$
D) None of these
55) C.F. of $\frac{d^{2} y}{d x^{2}}+a^{2} y=\operatorname{cosec}(\mathrm{ax})$ is $y=\ldots$...
A) $c_{1} e^{a x}+c_{2} e^{-a x}$
B) $A \operatorname{cosec}(a x)+B \sec (a x)$
C) $\mathrm{A} \cos (\mathrm{ax})+\mathrm{B} \sin (\mathrm{ax})$
D) None of these
56) C.F. of $\mathrm{y}^{\prime \prime}+a^{2} y=\sec (a x)$ is $y=$
A) $c_{1} e^{a x}+c_{2} e^{-a x}$
B) $A \operatorname{cosec}(a x)+B \sec (a x)$
C) $A \cos (a x)+B \sin (a x)$
D) None of these
57) C.F. of $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sin (a x)$ is $y=$
A) $c_{1} e^{a x}+c_{2} e^{-a x}$
B) $A \operatorname{cosec}(a x)+B \sec (a x)$
C) $A \cos (a x)+B \sin (a x)$
D) None of these
58) C.F. of $y^{\prime \prime}+4 y=4 \tan 2 x$ is $y=$
A) $c_{1} e^{2 x}+c_{2} e^{-2 x}$
B) $A \operatorname{cosec} 2 x+B \sec 2 x$
C) $A \cos 2 x+B \sin 2 x$
D) None of these
59) C.F. of $y^{\prime \prime}+9 y=\sec 3 x$ is $y=$
A) $c_{1} e^{3 x}+c_{2} e^{-3 x}$
B) $A \operatorname{cosec} 3 x+B \sec 3 x$
C) $A \cos 3 \mathrm{x}+\mathrm{B} \sin 3 \mathrm{x}$
D) None of these
60) C.F. of $y^{\prime \prime}+y-x=0$ is $y=$
A) $A \cos x+B \sin x$
B) $A \operatorname{cosec} x+B \sec x$
C) $c_{1} e^{x}+c_{2} e^{-x}$
D) None of these
61) C.F. of $y^{\prime \prime}-y=e^{2 x}$ is $y=$
A) $A \cos x+B \sin x$
B) $c_{1}+c_{2} e^{x}$
C) $c_{1} e^{x}+c_{2} e^{-x}$
D) None of these
62) C.F. of $\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}$ is $y=\ldots \ldots$
A) $A \cos x+B \sin x$
B) $c_{1} e^{x}+c_{2} e^{-x}$
C) $c_{1} e^{x}+c_{2}$
D) None of these
63) C.F. of $y^{\prime \prime}-2 y^{\prime}=e^{x} \sin x$ is $y=$
A) $A \cos 2 x+B \sin 2 x$
B) $c_{1}+c_{2} e^{2 x}$
C) $c_{1} e^{x}+c_{2} e^{-x}$
D) None of these
64) C.F. of $y^{\prime \prime}-3 y^{\prime}+2 y=2$ is $y=\ldots$...
A) $c_{1} e^{x}+c_{2} e^{2 x}$
B) $c_{1}+c_{2} e^{2 x}$
C) $A \cos 2 x+B \sin 2 x$
D) None of these
65) C.F. of $y^{\prime \prime}+k^{2} y=\cos k x$ is $y=$

UNIT-2: SIMULTANEOUS DIFFERENTLAL EQUATIONS

Simultaneous Linear Differential Equation of First Order: The general form of a set of simultaneous linear differential equation of first order of three variables x, y, z is $P_{1} d x+Q_{1} d y+R_{1} d z=0$ and $P_{2} d x+Q_{2} d y+R_{2} d z=0$
where P_{1}, Q_{1}, R_{1} and P_{2}, Q_{2}, R_{2} are functions of x, y, z.
Simultaneous Differential Equation: If $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are the functions of $\mathrm{x}, \mathrm{y}, \mathrm{z}$, then differential equation of the form $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$ is called simultaneous differential equation of first order.

Methods of Solving Simultaneous Differential Equation:

Rule-I(A) Method of Combinations:

By taking any two pairs of the three ratios of $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$ in which third variable is absent or cancelled. Integrating and taking product of these solutions, we get G.S. of given equation.

Ex.: Solve $\frac{d x}{z y}=\frac{d y}{z x}=\frac{d z}{x y}$
Solution: Let $\frac{d x}{z y}=\frac{d y}{z x}=\frac{d z}{x y}$
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
$\frac{d x}{z y}=\frac{d y}{z x} \Rightarrow \frac{d x}{y}=\frac{d y}{x} \Rightarrow \mathrm{xdx}=\mathrm{ydy} \Rightarrow 2 \mathrm{xdx}-2 \mathrm{ydy}=0$
Integrating, we get,
$x^{2}-y^{2}=c_{1}$ i.e. $x^{2}-y^{2}-c_{1}=0 \ldots \ldots$.(ii)
Now taking first and third ratios of (i), we have
$\frac{d x}{z y}=\frac{d z}{x y} \Rightarrow \frac{d x}{z}=\frac{d z}{x} \Rightarrow \mathrm{xdx}=\mathrm{zdz} \Rightarrow 2 \mathrm{xdx}-2 \mathrm{zdz}=0$
Integrating, we get,
$\mathrm{x}^{2}-\mathrm{z}^{2}=\mathrm{c}_{2}$ i.e. $\mathrm{x}^{2}-\mathrm{z}^{2}-\mathrm{c}_{2}=0$
\therefore By (ii) and (iii),
$\left(\mathrm{x}^{2}-\mathrm{y}^{2}-\mathrm{c}_{1}\right)\left(\mathrm{x}^{2}-\mathrm{z}^{2}-\mathrm{c}_{2}\right)=0$.
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{z^{2}}=\frac{y d y}{x z^{2}}=\frac{d z}{x y}$
Solution: Let $\frac{d x}{z^{2}}=\frac{y d y}{x z^{2}}=\frac{d z}{x y} \ldots \ldots$
be the given simultaneous differential equation.
Taking first two ratios of (i), we have

$$
\frac{d x}{z^{2}}=\frac{y d y}{x z^{2}} \Rightarrow \mathrm{xdx}=\mathrm{ydy} \Rightarrow 2 \mathrm{xdx}-2 \mathrm{ydy}=0
$$

Integrating, we get,
$x^{2}-y^{2}=c_{1}$ i.e. $x^{2}-y^{2}-c_{1}=0$
Now taking second and third ratios of (i), we have
$\frac{y d y}{x z^{2}}=\frac{d z}{x y} \Rightarrow y^{2} d y=z^{2} d z \Rightarrow 3 y^{2} d y-3 z^{2} d z=0$
Integrating, we get,
$y^{3}-z^{3}=c_{2}$ i.e. $y^{3}-z^{3}-c_{2}=0$
$\therefore \mathrm{By}$ (ii) and (iii),
$\left(x^{2}-y^{2}-c_{1}\right)\left(y^{3}-z^{3}-c_{2}\right)=0$
be the required general solution of given equation.

Ex.: Solve $\frac{x d x}{y^{2} z}=\frac{d y}{z x}=\frac{d z}{y^{2}}$
Solution: Let $\frac{x d x}{y^{2} z}=\frac{d y}{z x}=\frac{d z}{y^{2}} \ldots \ldots$.
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
$\frac{x d x}{y^{2} z}=\frac{d y}{z x} \Rightarrow \mathrm{x}^{2} \mathrm{dx}=\mathrm{y}^{2} \mathrm{dy} \Rightarrow 3 \mathrm{x}^{2} \mathrm{dx}-3 \mathrm{y}^{2} \mathrm{~d} y=0$
Integrating, we get,
$x^{3}-y^{3}=c_{1}$ i.e. $x^{3}-y^{3}-c_{1}=0$
Now taking first and third ratios of (i), we have
$\frac{x d x}{y^{2} z}=\frac{d z}{y^{2}} \Rightarrow \mathrm{xdx}=\mathrm{zdz} \Rightarrow 2 \mathrm{xdx}-2 \mathrm{zdz}=0$
Integrating, we get,
$x^{2}-z^{2}=c_{2}$ i.e. $x^{2}-z^{2}-c_{2}=0$
\therefore By (ii) and (iii),
$\left(x^{3}-y^{3}-c_{1}\right)\left(x^{2}-z^{2}-c_{2}\right)=0$
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{0}=\frac{d y}{-z}=\frac{d z}{y}$
(Oct.2019)
Solution: Let $\frac{d x}{0}=\frac{d y}{-z}=\frac{d z}{y}$.
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
$\frac{d x}{0}=\frac{d y}{-z} \Rightarrow \mathrm{dx}=0$
Integrating, we get,
$\mathrm{x}=\mathrm{c}_{1}$ i.e. $\mathrm{x}-\mathrm{c}_{1}=0$
Now taking second and third ratios of (i), we have
$\frac{d y}{-z}=\frac{d z}{y} \Rightarrow y d y=-z d z \Rightarrow 2 y d y+2 z d z=0$
Integrating, we get,
$y^{2}+z^{2}=c_{2}$ i.e. $y^{2}+z^{2}-c_{2}=0$
$\therefore \mathrm{By}$ (ii) and (iii),
$\left(\mathrm{x}-\mathrm{c}_{1}\right)\left(\mathrm{y}^{2}+\mathrm{z}^{2}-\mathrm{c}_{2}\right)=0$
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{z}=\frac{d y}{0}=\frac{d z}{-x}$
Solution: Let $\frac{d x}{z}=\frac{d y}{0}=\frac{d z}{-x}$.
be the given simultaneous differential equation.
Taking first two ratios of (i), we have

$$
\frac{d x}{z}=\frac{d y}{0} \Rightarrow d y=0
$$

Integrating, we get,
$y=c_{1}$ i.e. $y-c_{1}=0$
Now taking first and third ratios of (i), we have
$\frac{d x}{z}=\frac{d z}{-x} \Rightarrow \mathrm{xdx}=-\mathrm{zdz} \Rightarrow 2 \mathrm{xdx}+2 \mathrm{zdz}=0$
Integrating, we get,
$x^{2}+z^{2}=c_{2}$ i.e. $x^{2}+z^{2}-c_{2}=0$
$\therefore \mathrm{By}$ (ii) and (iii),
$\left(y-c_{1}\right)\left(x^{2}+z^{2}-c_{2}\right)=0$
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{-x}=\frac{d y}{0}=\frac{d z}{z}$
(Oct.2019)
Solution: Let $\frac{d x}{-x}=\frac{d y}{0}=\frac{d z}{z}$.
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
$\frac{d x}{-x}=\frac{d y}{0} \Rightarrow d y=0$
Integrating, we get,
$y=c_{1}$ i.e. $y-c_{1}=0 \ldots .$. (ii)
Now taking first and third ratios of (i), we have
$\frac{d x}{-x}=\frac{d z}{z} \Rightarrow \frac{d x}{x}=-\frac{d z}{z} \Rightarrow \frac{d x}{x}+\frac{d z}{z}=0$
Integrating, we get,
$\log \mathrm{x}+\log \mathrm{z}=\log _{2}$ i.e. $\mathrm{xz}=\mathrm{c}_{2}$ i.e. $\mathrm{xz}-\mathrm{c}_{2}=0$
$\therefore \mathrm{By}$ (ii) and (iii),
$\left(y-c_{1}\right)\left(x z-c_{2}\right)=0$
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{x^{2} z}=\frac{d y}{0}=\frac{d z}{-x^{2}}$
Solution: Let $\frac{d x}{x^{2} z}=\frac{d y}{0}=\frac{d z}{-x^{2}}$.
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
$\frac{d x}{x^{2} z}=\frac{d y}{0} \Rightarrow \mathrm{dy}=0$
Integrating, we get,
$y=c_{1}$ i.e. $y-c_{1}=0$
Now taking first and third ratios of (i), we have
$\frac{d x}{x^{2} z}=\frac{d z}{-x^{2}} \Rightarrow \mathrm{dx}=-\mathrm{zdz} \Rightarrow 2 \mathrm{dx}+2 \mathrm{zdz}=0$
Integrating, we get,

$$
\begin{equation*}
2 x+z^{2}=c_{2} \text { i.e. } 2 x+z^{2}-c_{2}=0 \tag{iii}
\end{equation*}
$$

\therefore By (ii) and (iii),
$\left(y-c_{1}\right)\left(2 x+z^{2}-c_{2}\right)=0$
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{y}=\frac{d y}{-x}=\frac{d z}{0}$
Solution: Let $\frac{d x}{y}=\frac{d y}{-x}=\frac{d z}{0} \ldots \ldots$
be the given simultaneous differential equation.
Taking first two ratios of (i), we have

$$
\frac{d x}{y}=\frac{d y}{-x} \Rightarrow x d x=-y d y \Longrightarrow 2 x d x+2 y d y=0
$$

Integrating, we get,
$x^{2}+y^{2}=c_{1}$ i.e. $x^{2}+y^{2}-c_{1}=0$
Now taking first and third ratios of (i), we have
$\frac{d x}{y}=\frac{d z}{0} \Rightarrow \mathrm{dz}=0$
Integrating, we get,
$\mathrm{z}=\mathrm{c}_{2}$ i.e. $\mathrm{z}-\mathrm{c}_{2}=0$
\therefore By (ii) and (iii),
$\left(x^{2}+y^{2}-c_{1}\right)\left(z-c_{2}\right)=0$
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}$
Solution: Let $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}$
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
$\frac{d x}{x}=\frac{d y}{y}$
Integrating, we get,
$\log x=\log y+\log c_{1}$ i.e. $x=c_{1} y$ i.e. $x-c_{1} y=0$.
Now taking first and third ratios of (i), we have
$\frac{d x}{x}=\frac{d z}{z}$
Integrating, we get,
$\log x=\log z+\log c_{2}$ i.e. $x=c_{2} z$ i.e. $x-c_{2} z=0$
\therefore By (ii) and (iii),
$\left(x-c_{1} y\right)\left(x-c_{2} z\right)=0$
be the required general solution of given equation.

Ex.: Solve $d x=d y=d z$
Solution: Let $d x=d y=d z$
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
$d x=d y$
Integrating, we get,
$\mathrm{x}=\mathrm{y}+\mathrm{c}_{1}$ i.e. $\mathrm{x}-\mathrm{y}-\mathrm{c}_{1}=0$.
Now taking first and third ratios of (i), we have
$d x=d z$
Integrating, we get,
$\mathrm{x}=\mathrm{z}+\mathrm{c}_{2}$ i.e. $\mathrm{x}-\mathrm{z}-\mathrm{c}_{2}=0 \ldots \ldots$ (iii)
\therefore By (ii) and (iii),
$\left(\mathrm{x}-\mathrm{y}-\mathrm{c}_{1}\right)\left(\mathrm{x}-\mathrm{z}-\mathrm{c}_{2}\right)=0$
be the required general solution of given equation.

Ex.: Solve $d x=d y=\operatorname{cosec} x d z$
Solution: Let $d x=d y=\operatorname{cosec} x d z$
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
$d x=d y$
Integrating, we get,
$x=y+c_{1}$ i.e. $x-y-c_{1}=0$.
Now taking first and third ratios of (i), we have
$d x=\operatorname{cosec} x d z \Rightarrow \mathrm{dz}=\sin \mathrm{x} \mathrm{dx} \Rightarrow \mathrm{dz}-\sin \mathrm{xdx}=0$
Integrating, we get,
$\mathrm{z}+\cos \mathrm{x}=\mathrm{c}_{2}$ i.e. $\mathrm{z}+\cos \mathrm{x}-\mathrm{c}_{2}=0$
\therefore By (ii) and (iii),
$\left(\mathrm{x}-\mathrm{y}-\mathrm{c}_{1}\right)\left(\mathrm{z}+\cos \mathrm{x}-\mathrm{c}_{2}\right)=0$
be the required general solution of given equation.

Ex.: Solve $d x=d y=\tan x d z$
(Oct.2019)
Solution: Let $d x=d y=\tan x d z$
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
$d x=d y$
Integrating, we get,
$x=y+c_{1}$ i.e. $x-y-c_{1}=0$.
Now taking first and third ratios of (i), we have
$d x=\tan x d z \Rightarrow \mathrm{dz}=\cot \mathrm{dx}$
Integrating, we get,
$\mathrm{z}=\log \sin \mathrm{x}+\mathrm{c}_{2}$ i.e. $\mathrm{z}-\log \sin \mathrm{x}-\mathrm{c}_{2}=0$
\therefore By (ii) and (iii),
$\left(x-y-c_{1}\right)\left(z-\log \sin x-c_{2}\right)=0$
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{\tan x}=\frac{d y}{\tan y}=\frac{d z}{\tan z}$
Solution: Let $\frac{d x}{\tan x}=\frac{d y}{\tan y}=\frac{d z}{\tan z} \ldots$ (i)
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
$\frac{d x}{\tan x}=\frac{d y}{\tan y} \Rightarrow \cot \mathrm{xdx}=\operatorname{cotydy}$
Integrating, we get,
$\log \sin x=\log \sin y+\log c_{1}$
i.e. $\sin x=c_{1} \sin y$ i.e. $\sin x-c_{1} \sin y=0 \ldots \ldots$. (ii)

Now taking first and third ratios of (i), we have
$\frac{d x}{\tan x}=\frac{d z}{\tan z} \Rightarrow \cot x d x=\cot z d z$
Integrating, we get,
$\log \sin x=\log \sin z+\log _{2}$
i.e. $\sin x=c_{2} \sin z$ i.e. $\sin x-c_{2} \sin z=0$
\therefore By (ii) and (iii),
$\left(\sin x-\mathrm{c}_{1} \sin y\right)\left(\sin x-\mathrm{c}_{2} \sin z\right)=0$
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{\cot x}=\frac{d y}{\cot y}=\frac{d z}{\cot z}$
Solution: Let $\frac{d x}{\cot x}=\frac{d y}{\cot y}=\frac{d z}{\cot z}$.
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
$\frac{d x}{\cot x}=\frac{d y}{\cot y} \Rightarrow \tan \mathrm{xdx}=\tan \mathrm{ydy}$
Integrating, we get,
$\log \sec \mathrm{x}=\operatorname{logsec} y+\log c_{1}$
i.e. $\sec x=c_{1}$ secy i.e. $\sec x-c_{1} \sec y=0 \ldots \ldots$

Now taking first and third ratios of (i), we have

$$
\frac{d x}{\cot x}=\frac{d z}{\cot z} \Longrightarrow \tan x d x=\tan z d z
$$

Integrating, we get,
$\log \sec x=\operatorname{logsec} z+\log c_{2}$
i.e. $\sec x=c_{2} \sec z$ i.e. $\sec x-c_{2} \sec z=0$
\therefore By (ii) and (iii),
$\left(\sec x-c_{1} \sec y\right)\left(\sec x-c_{2} \sec z\right)=0$
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{y^{2}}=\frac{d y}{x^{2}}=\frac{d z}{x^{2} y^{2} z^{2}}$
Solution: Let $\frac{d x}{y^{2}}=\frac{d y}{x^{2}}=\frac{d z}{x^{2} y^{2} z^{2}}$.
be the given simultaneous differential equation.
Taking first two ratios of (i), we have
$\frac{d x}{y^{2}}=\frac{d y}{x^{2}} \Rightarrow x^{2} d x=y^{2} d y \Rightarrow 3 x^{2} d x-3 y^{2} d y=0$
Integrating, we get,
$x^{3}-y^{3}=c_{1}$ i.e. $x^{3}-y^{3}-c_{1}=0$
Now taking first and third ratios of (i), we have
$\frac{d x}{y^{2}}=\frac{d z}{x^{2} y^{2} z^{2}} \Rightarrow \mathrm{x}^{2} \mathrm{dx}=\mathrm{z}^{-2} \mathrm{dz} \Rightarrow 3 \mathrm{x}^{2} \mathrm{dx}-3 \mathrm{z}^{-2} \mathrm{~d} \mathrm{z}=0$
Integrating, we get,
$\mathrm{x}^{3}+3 \mathrm{z}^{-1}=\mathrm{c}_{2}$ i.e. $\mathrm{x}^{3}+\frac{3}{z}-\mathrm{c}_{2}=0$
\therefore By (ii) and (iii),
$\left(\mathrm{x}^{3}-\mathrm{y}^{3}-\mathrm{c}_{1}\right)\left(\mathrm{x}^{3}+\frac{3}{z}-\mathrm{c}_{2}\right)=0$
be the required general solution of given equation.

Rule-I(B) Method of Combinations:

By taking one pair of ratios of $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$ in which third variable is absent or cancelled, solving it we get one solution and using this solution we eliminate third variable from another pair of ratios and solve it which contain two constants c_{1} and c_{2}. In this solution put the value of first constant c_{1}, we get G.S. of given simultaneous differential equation.

Ex.: Solve $\frac{d x}{x+z}=\frac{d y}{y}=\frac{d z}{z+y^{2}}$
Solution: Let $\frac{d x}{x+z}=\frac{d y}{y}=\frac{d z}{z+y^{2}}$
be the given simultaneous differential equation.
Taking second and third ratios of (i) in which third variable x is absent, we have
$\frac{d y}{y}=\frac{d z}{z+y^{2}} \Rightarrow z d y+y^{2} d y=y d z \Rightarrow y^{2} d y=y d z-z d y$
$\Rightarrow d y=\frac{y d z-z d y}{y^{2}} \Rightarrow d y=d\left(\frac{z}{y}\right) \Rightarrow d\left(\frac{z}{y}\right)=d y$
Integrating, we get,
$\frac{z}{y}=y+c_{1}$ i.e. $z=y^{2}+c_{1} y$
Now taking first and second ratios of (i), we have
$\frac{d x}{x+z}=\frac{d y}{y} \Rightarrow \frac{d x}{x+y^{2}+c_{1} y}=\frac{d y}{y} \quad$ by (ii)
$\Rightarrow \mathrm{ydx}=\mathrm{xdy}+y^{2} \mathrm{dy}+c_{1} \mathrm{ydy}$
$\Rightarrow \mathrm{ydx}-\mathrm{xdy}=y^{2} \mathrm{dy}+c_{1} \mathrm{ydy} \Rightarrow \frac{y d x-x d y}{y^{2}}=\mathrm{dy}+\frac{c_{1}}{y} \mathrm{dy}$
$\Rightarrow \mathrm{d}\left(\frac{x}{y}\right)=\mathrm{dy}+\frac{c_{1}}{y} \mathrm{dy}$
Integrating, we get,
$\frac{x}{y}=y+c_{1} \log y+c_{2}$
i.e. $x=y^{2}+c_{1} y \log y+c_{2} y$
i.e. $x=y^{2}+\left(z-y^{2}\right) \log y+c_{2} y \quad$ by (ii)
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{x y}=\frac{d y}{y^{2}}=\frac{d z}{z x y-2 x^{2}}$
Solution: Let $\frac{d x}{x y}=\frac{d y}{y^{2}}=\frac{d z}{z x y-2 x^{2}} \ldots \ldots$
be the given simultaneous differential equation.
Taking first and second ratios of (i) in which third variable z is absent, we have
$\frac{d x}{x y}=\frac{d y}{y^{2}} \Rightarrow \frac{d x}{x}=\frac{d y}{y}$
Integrating, we get,
$\log x=\log y+\log _{1}$ i.e. $\mathrm{x}=\mathrm{c}_{1} \mathrm{y}$
Now taking second and third ratios of (i), we have
$\frac{d y}{y^{2}}=\frac{d z}{z x y-2 x^{2}} \Rightarrow \frac{d y}{y^{2}}=\frac{d z}{c_{1} z y^{2}-2 c_{1}^{2} y^{2}} \quad$ by (ii)
$\Rightarrow d y=\frac{d z}{c_{1}\left(z-2 c_{1}\right)}$
Integrating, we get,
$y=\frac{1}{c_{1}} \log \left(z-2 c_{1}\right)+c_{2}$
i.e. $y=\frac{y}{x} \log \left(z-2 \frac{x}{y}\right)+\mathrm{c}_{2}$
by (ii)
i.e. $x y=y \log \left(\frac{y z-2 x}{y}\right)+\mathrm{c}_{2} \mathrm{x}$
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{x y}=\frac{d y}{y^{2}}=\frac{d z}{x y z-z x^{2}}$
Solution: Let $\frac{d x}{x y}=\frac{d y}{y^{2}}=\frac{d z}{x y z-z x^{2}}$
be the given simultaneous differential equation.
Taking first and second ratios of (i) in which third variable z is absent, we have
$\frac{d x}{x y}=\frac{d y}{y^{2}} \Rightarrow \frac{d x}{x}=\frac{d y}{y}$
Integrating, we get,
$\log x=\log y+\log \mathrm{c}_{1}$ i.e. $\mathrm{x}=\mathrm{c}_{1} \mathrm{y} \ldots \ldots$ (ii)
Now taking second and third ratios of (i), we have
$\frac{d y}{y^{2}}=\frac{d z}{x y z-z x^{2}} \Rightarrow \frac{d y}{y^{2}}=\frac{d z}{c_{1} y^{2} z-z c_{1}{ }^{2} y^{2}} \quad$ by (ii)
$\Rightarrow d y=\frac{d z}{\left(c_{1}-c_{1}{ }^{2}\right) z}$
Integrating, we get,
$y=\frac{1}{\left(c_{1}-c_{1}{ }^{2}\right)} \log z+c_{2}$
i.e. $y=\frac{1}{\left[\frac{x}{y}-\left(\frac{x}{y}\right)^{2}\right]} \log z+c_{2}$ by (ii)
i.e. $y=\frac{y^{2}}{\left(x y-x^{2}\right)} \log z+\mathrm{c}_{2}$
be the required general solution of given equation.
Ex.: Solve $\frac{d x}{1}=\frac{d y}{3}=\frac{d z}{5 z+\tan (y-3 x)}$
Solution: Let $\frac{d x}{1}=\frac{d y}{3}=\frac{d z}{5 z+\tan (y-3 x)} \ldots \ldots$
be the given simultaneous differential equation.
Taking first and second ratios of (i) in which third variable z is absent, we have
$\frac{d x}{1}=\frac{d y}{3} \Rightarrow \mathrm{dy}=3 \mathrm{dx}$
Integrating, we get,
$y=3 x+c_{1}$ i.e. $y-3 x=c_{1}$
Now taking first and third ratios of (i), we have
$\frac{d x}{1}=\frac{d z}{5 z+\tan (y-3 x)} \Rightarrow d x=\frac{d z}{5 z+\tan c_{1}}$
by (ii)
Integrating, we get,
$x=\frac{1}{5} \log \left(5 z+\operatorname{tanc}_{1}\right)+\mathrm{c}_{2}$
i.e. $5 x=\log [5 z+\tan (y-3 x)]+5 \mathrm{c}_{2}$ by (ii)
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{y}=\frac{d y}{x}=\frac{d z}{x y z^{2}\left(x^{2}-y^{2}\right)}$
Solution: Let $\frac{d x}{y}=\frac{d y}{x}=\frac{d z}{x y z^{2}\left(x^{2}-y^{2}\right)} \ldots \ldots$ (i)
be the given simultaneous differential equation.
Taking first and second ratios of (i) in which third variable z is absent, we have $\frac{d x}{y}=\frac{d y}{x} \Rightarrow \mathrm{xdx}=\mathrm{ydy} \Rightarrow 2 \mathrm{xdx}-2 \mathrm{ydy}=0$
Integrating, we get,
$x^{2}-y^{2}=c_{1}$

Now taking first and third ratios of (i), we have
$\frac{d x}{y}=\frac{d z}{x y z^{2}\left(x^{2}-y^{2}\right)} \Rightarrow x d x=\frac{d z}{c_{1} z^{2}} \quad$ by (ii)
Integrating, we get,
$\frac{x^{2}}{2}=-\frac{1}{c_{1} z}+c_{2}$
i.e. $\frac{x^{2}}{2}=-\frac{1}{z\left(x^{2}-y^{2}\right)}+\mathrm{c}_{2} \quad$ by (ii)
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{z}=\frac{d y}{-z}=\frac{d z}{z^{2}+(x+y)^{2}}$
Solution: Let $\frac{d x}{z}=\frac{d y}{-z}=\frac{d z}{z^{2}+(x+y)^{2}}$
be the given simultaneous differential equation.
Taking first and second ratios of (i) in which third variable z is absent, we have
$\frac{d x}{z}=\frac{d y}{-z} \Rightarrow d x=-\mathrm{dy} \Rightarrow \mathrm{dx}+\mathrm{dy}=0$
Integrating, we get,
$x+y=c_{1}$
Now taking first and third ratios of (i), we have
$\frac{d x}{z}=\frac{d z}{z^{2}+(x+y)^{2}} \Rightarrow 2 d x=\frac{2 z d z}{z^{2}+c_{1}{ }^{2}} \quad$ by (ii)
Integrating, we get,
$2 \mathrm{x}=\log \left(z^{2}+c_{1}{ }^{2}\right)+\mathrm{c}_{2}$
i.e. $2 \mathrm{x}=\log \left[z^{2}+(x+y)^{2}\right]+\mathrm{c}_{2} \quad$ by (ii)
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{x+y}=\frac{d y}{x+y}=\frac{d z}{-x-y-2 z}$
Solution: Let $\frac{d x}{x+y}=\frac{d y}{x+y}=\frac{d z}{-x-y-2 z}$
be the given simultaneous differential equation.
Taking first and second ratios of (i) in which third variable z is absent, we have
$\frac{d x}{x+y}=\frac{d y}{x+y} \Rightarrow \mathrm{dx}=\mathrm{dy}$
Integrating, we get,
$\mathrm{x}=\mathrm{y}+\mathrm{c}_{1}$
Now taking second and third ratios of (i), we have
$\frac{d y}{x+y}=\frac{d z}{-x-y-2 z} \Rightarrow \frac{d y}{y+c_{1}+y}=\frac{d z}{-y-c_{1}-y-2 z} \quad$ by (ii)
$\Rightarrow \frac{d y}{2 \mathrm{y}+c_{1}}=\frac{d z}{-2 \mathrm{y}-c_{1}-2 z}$
$\Rightarrow-2 \mathrm{ydy}-c_{1} d y-2 \mathrm{zdy}=2 \mathrm{ydz}+c_{1} d z$
$\Rightarrow 2 \mathrm{ydy}+c_{1} d y+2 \mathrm{zdy}+2 \mathrm{ydz}+c_{1} d z=0$
$\Rightarrow \mathrm{dy}^{2}+c_{1} d(y+z)+2 \mathrm{~d}(\mathrm{yz})=0$
Integrating, we get,
$\mathrm{y}^{2}+c_{1}(y+z)+2 \mathrm{yz}=\mathrm{c}_{2}$
i.e. $\mathrm{y}^{2}+(x-y)(y+z)+2 \mathrm{yz}=\mathrm{c}_{2} \quad$ by (ii)
be the required general solution of given equation.

Rule-II: Method of Multipliers:

Let $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R} \ldots$ (i) be the given simultaneous differential equation.
If possible there exists a multipliers $1, \mathrm{~m}, \mathrm{n}$ which are functions of x or constants
such that $\mathrm{P}+\mathrm{mQ}+\mathrm{nR}=0$, then $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}=\frac{1 \mathrm{dx}+\mathrm{mdy}+\mathrm{ndz}}{\mathrm{P}+\mathrm{mQ}+\mathrm{nR}}$
Now $1 P+m Q+n R=0 \Rightarrow l d x+m d y+n d z=0$
Integrating we get a solution say
$\emptyset(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{c}_{1}$ i.e. $\varnothing(\mathrm{x}, \mathrm{y}, \mathrm{z})-\mathrm{c}_{1}=0 \ldots$ (ii)
Again choose multipliers $1_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1}$ which are functions of x or constants such that
$l_{1} \mathrm{P}+m_{1} \mathrm{Q}+n_{1} \mathrm{R}=0$ then $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}=\frac{l_{1} \mathrm{dx}+m_{1} \mathrm{dy}+n_{1} \mathrm{dz}}{l_{1} \mathrm{P}+m_{1} \mathrm{Q}+n_{1} \mathrm{R}}$
and $l_{1} \mathrm{P}+m_{1} \mathrm{Q}+n_{1} \mathrm{R}=0 \Rightarrow l_{1} \mathrm{dx}+m_{1} \mathrm{dy}+n_{1} \mathrm{dz}=0$
Integrating we get a solution say
$\psi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{c}_{2}$ i.e. $\psi(\mathrm{x}, \mathrm{y}, \mathrm{z})-\mathrm{c}_{2}=0 \ldots$ (iii)
By (ii) and (iii), the G.S. of (i) is
$\left[\varnothing(\mathrm{x}, \mathrm{y}, \mathrm{z})-\mathrm{c}_{1}\right][\psi(\mathrm{x}, \mathrm{y}, \mathrm{z})-\mathrm{c}]=0$
Ex.: Solve $\frac{d x}{z-y}=\frac{d y}{x-z}=\frac{d z}{y-x}$
Solution: Let $\frac{d x}{z-y}=\frac{d y}{x-z}=\frac{d z}{y-x} \ldots \ldots$.
be the given simultaneous differential equation.
Taking multipliers $1,1,1$, we get,

Each Ratio of $(i)=\frac{\mathrm{dx}+\mathrm{dy}+\mathrm{dz}}{z-y+x-z+y-x}=\frac{\mathrm{dx}+\mathrm{dy}+\mathrm{dz}}{0}$
$\Rightarrow d x+d y+d z=0$
Integrating, we get,
$x+y+z=c_{1}$
i.e. $x+y+z-c_{1}=0$

Again by taking multipliers $\mathrm{x}, \mathrm{y}, \mathrm{z}$, we get,
Each Ratio of (i) $=\frac{x \mathrm{dx}+y \mathrm{dy}+z \mathrm{dz}}{x z-x y+y x-y z+z y-z x}=\frac{x \mathrm{dx}+y \mathrm{dy}+z \mathrm{dz}}{0}$
$\Rightarrow x \mathrm{dx}+y \mathrm{dy}+z \mathrm{dz}=0$
$\Rightarrow 2 x \mathrm{dx}+2 y \mathrm{dy}+2 z \mathrm{dz}=0$
Integrating, we get,
$x^{2}+y^{2}+z^{2}=c_{2}$
i.e. $x^{2}+y^{2}+z^{2}-c_{2}=0$

By (ii) and (iii),
$\left(x+y+z-c_{1}\right)\left(x^{2}+y^{2}+z^{2}-c_{2}\right)=0$
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)}$
Solution: Let $\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)}$
be the given simultaneous differential equation.
Taking multipliers $1,1,1$, we get,
Each Ratio of $(\mathrm{i})=\frac{\mathrm{dx}+\mathrm{dy}+\mathrm{dz}}{x(y-z)+y(z-x)+z(x-y)}=\frac{\mathrm{dx}+\mathrm{dy}+\mathrm{dz}}{x y-x z+y z-y x+z x-z y}=\frac{\mathrm{dx}+\mathrm{dy}+\mathrm{dz}}{0}$
$\Rightarrow d x+d y+d z=0$
Integrating, we get,
$x+y+z=c_{1}$
i.e. $x+y+z-c_{1}=0$

Again by taking multipliers $\frac{1}{\mathrm{x}}, \frac{1}{\mathrm{y}}, \frac{1}{\mathrm{z}}$, we get,
Each Ratio of $(i)=\frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z}{(y-z)+(z-x)+(x-y)}=\frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z}{0}$
$\Rightarrow \frac{1}{\mathrm{x}} \mathrm{dx}+\frac{1}{\mathrm{y}} \mathrm{dy}+\frac{1}{\mathrm{z}} \mathrm{dz}=0$
Integrating, we get,
$\log x+\log y+\log z=\log c_{2}$
i.e. $x y z=c_{2}$
i.e. $x y z-c_{2}=0$

By (ii) and (iii),

$$
\left(x+y+z-c_{1}\right)\left(x y z-c_{2}\right)=0
$$

be the required general solution of given equation.

Ex.: Solve $\frac{d x}{x\left(y^{2}-z^{2}\right)}=\frac{d y}{-y\left(z^{2}+x^{2}\right)}=\frac{d z}{z\left(x^{2}+y^{2}\right)}$
Solution: Let $\frac{d x}{x\left(y^{2}-z^{2}\right)}=\frac{d y}{-y\left(z^{2}+x^{2}\right)}=\frac{d z}{z\left(x^{2}+y^{2}\right)}$
be the given simultaneous differential equation.
Taking multipliers $\mathrm{x}, \mathrm{y}, \mathrm{z}$, we get,
Each Ratio of (i) $=\frac{x d x+y d y+z d z}{x^{2} y^{2}-x^{2} z^{2}-y^{2} z^{2}-y^{2} x^{2}+z^{2} x^{2}+z^{2} y^{2}}=\frac{x d x+y d y+z d z}{0}$
$\Rightarrow x d x+y d y+z d z=0$
$\Rightarrow 2 x d x+2 y d y+2 z d z=0$
Integrating, we get,
$x^{2}+y^{2}+z^{2}=c_{1}$
i.e. $x^{2}+y^{2}+z^{2}-c_{1}=0$

Again by taking multipliers $\frac{1}{x},-\frac{1}{y},-\frac{1}{z}$, we get,
Each Ratio of $(i)=\frac{\frac{1}{x} d x-\frac{1}{y} d y-\frac{1}{z} d z}{y^{2}-z^{2}+z^{2}+x^{2}-x^{2}-y^{2}}=\frac{\frac{1}{x} d x-\frac{1}{y} d y-\frac{1}{z} d z}{0}$
$\Rightarrow \frac{1}{x} d x-\frac{1}{y} d y-\frac{1}{z} d z=0 \Rightarrow \frac{1}{x} d x=\frac{1}{y} d y+\frac{1}{z} d z$
Integrating, we get,
$\log x=\log y+\log z+\log c_{2}$
i.e. $x=c_{2} y z$
i.e. $\mathrm{x}-\mathrm{c}_{2} \mathrm{yz}=0 \ldots$...(iii)

By (ii) and (iii),
$\left(x^{2}+y^{2}+z^{2}-c_{1}\right)\left(x-c_{2} y z\right)=0$
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{x\left(y^{2}+z\right)}=\frac{d y}{-y\left(x^{2}+z\right)}=\frac{d z}{z\left(x^{2}-y^{2}\right)}$
Solution: Let $\frac{d x}{x\left(y^{2}+z\right)}=\frac{d y}{-y\left(x^{2}+z\right)}=\frac{d z}{z\left(x^{2}-y^{2}\right)} \ldots \ldots$
be the given simultaneous differential equation.
Taking multipliers $\mathrm{x}, \mathrm{y},-1$, we get,
Each Ratio of (i) $=\frac{x d x+y d y-d z}{x^{2} y^{2}+x^{2} z-y^{2} x^{2}-y^{2} z-z x^{2}+z y^{2}}=\frac{x d x+y d y-d z}{0}$
$\Rightarrow x d x+y d y-d z=0$
$\Rightarrow 2 x d x+2 y d y-2 d z=0$
Integrating, we get,
$x^{2}+y^{2}-2 z=c_{1}$
i.e. $x^{2}+y^{2}-2 z-c_{1}=0$

Again by taking multipliers $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$, we get,
Each Ratio of (i) $=\frac{\frac{1}{x} \mathrm{~d} x+\frac{1}{y} \mathrm{~d} y+\frac{1}{\mathrm{z}} \mathrm{dz}}{y^{2}+z-x^{2}-z+x^{2}-y^{2}}=\frac{\frac{1}{\mathrm{x}} \mathrm{dx}+\frac{1}{\mathrm{y}} \mathrm{dy}+\frac{1}{\mathrm{z}} \mathrm{dz}}{0}$
$\Rightarrow \frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z=0$
Integrating, we get,
$\log x+\log y+\log z=\log c_{2}$
i.e. $x y z=c_{2}$
i.e. $x y z-\mathrm{c}_{2}=0$

By (ii) and (iii),
$\left(\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{z}-\mathrm{c}_{1}\right)\left(x y z-\mathrm{c}_{2}\right)=0$
be the required general solution of given equation.

Ex.: Solve $\frac{y z d x}{y-z}=\frac{z x d y}{z-x}=\frac{x y d z}{x-y}$
Solution: Let $\frac{y z d x}{y-z}=\frac{z x d y}{z-x}=\frac{x y d z}{x-y}$
be the given simultaneous differential equation.
Taking multipliers $1,1,1$, we get,
Each Ratio of (i) $=\frac{y z d x+z x d y+x y d z}{y-z+z-x+x-y}=\frac{\mathrm{d}(\mathrm{xyz})}{0}$
$\Rightarrow d(x y z)=0$

Integrating, we get,
$x y z=c_{1}$
i.e. $x y z-c_{1}=0 \ldots$..

Again by taking multipliers x, y, z, we get,
Each Ratio of (i) $=\frac{x y z \mathrm{dx}+x y z \mathrm{dy}+x y z \mathrm{dz}}{x y-x z+y z-y x+z x-z y}=\frac{x y z d(x+y+z)}{0}$
$\Rightarrow x y z d(x+y+z)=0$
$\Rightarrow d(x+y+z)=0$
Integrating, we get,
$x+y+z=c_{2}$
i.e. $x+y+z-c_{2}=0 \ldots$ (iii)

By (ii) and (iii),
$\left(x y z-c_{1}\right)\left(x+y+z-c_{2}\right)=0$
be the required general solution of given equation.

Ex.: Solve $\frac{a d x}{b c(y-z)}=\frac{b d y}{c a(z-x)}=\frac{c d z}{a b(x-y)}$
Solution: Let $\frac{a d x}{b c(y-z)}=\frac{b d y}{c a(z-x)}=\frac{c d z}{a b(x-y)}$
be the given simultaneous differential equation.
Taking multipliers, $\mathrm{a}, \mathrm{b}, \mathrm{c}$, we get,
Each Ratio of (i) $=\frac{a^{2} \mathrm{dx}+b^{2} \mathrm{dy}+c^{2} \mathrm{dz}}{a b c(y-z+z-x+x-y)}=\frac{a^{2} \mathrm{dx}+b^{2} \mathrm{dy}+c^{2} \mathrm{dz}}{0}$
$\Rightarrow a^{2} \mathrm{dx}+b^{2} \mathrm{dy}+c^{2} \mathrm{dz}=0$
Integrating, we get,
$a^{2} \mathrm{x}+b^{2} \mathrm{y}+c^{2} \mathrm{z}=\mathrm{c}_{1}$
i.e. $a^{2} \mathrm{x}+b^{2} \mathrm{y}+c^{2} \mathrm{z}-\mathrm{c}_{1}=0$

Again by taking multipliers $a x, b y, c z$, we get,
Each Ratio of (i) $=\frac{a^{2} \mathrm{xdx}+b^{2} \mathrm{ydy}+c^{2} \mathrm{zdz}}{a b c(x y-x z+y z-y x+z x-z y)}=\frac{a^{2} \mathrm{xdx}+b^{2} \mathrm{ydy}+c^{2} \mathrm{zdz}}{0}$
$\Rightarrow a^{2} \mathrm{xdx}+b^{2} \mathrm{ydy}+c^{2} \mathrm{zdz}=0$
$\Rightarrow a^{2} 2 \mathrm{xdx}+b^{2} 2 \mathrm{ydy}+c^{2} 2 \mathrm{zdz}=0$
Integrating, we get,
$a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}=c_{2}$
i.e. $a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}-\mathrm{c}_{2}=0$

By (ii) and (iii),
$\left(a^{2} \mathrm{x}+b^{2} \mathrm{y}+c^{2} \mathrm{z}-\mathrm{c}_{1}\right)\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}-\mathrm{c}_{2}\right)=0$
be the required general solution of given equation.
Ex.: Solve $\frac{a d x}{y z(b-c)}=\frac{b d y}{z x(c-a)}=\frac{c d z}{x y(a-b)}$
Solution: Let $\frac{a d x}{y z(b-c)}=\frac{b d y}{z x(c-a)}=\frac{c d z}{x y(a-b)}$
be the given simultaneous differential equation.
Taking multipliers $\mathrm{x}, \mathrm{y}, \mathrm{z}$, we get,
Each Ratio of $(\mathrm{i})==\frac{a x \mathrm{dx}+b y \mathrm{dy}+c z \mathrm{dz}}{x y z(b-c+c-a+a-b)}=\frac{a x \mathrm{dx}+b y \mathrm{dy}+c z \mathrm{dz}}{0}$
$\Rightarrow a x \mathrm{dx}+b y \mathrm{dy}+c z \mathrm{dz}=0$
$\Rightarrow 2 a x \mathrm{dx}+2 b y \mathrm{dy}+2 c z \mathrm{dz}=0$
Integrating, we get,

$$
\begin{equation*}
a x^{2}+b y^{2}+c z^{2}=\mathrm{c}_{1} \tag{ii}
\end{equation*}
$$

i.e. $a x^{2}+b y^{2}+c z^{2}-\mathrm{c}_{1}=0$

Again by taking multipliers $a x, b y, c z$, we get,
Each Ratio of (i) $==\frac{a^{2} \mathrm{xdx}+b^{2} \mathrm{ydy}+c^{2} \mathrm{zdz}}{x y z(a b-a c+b c-b a+c a-c b)}=\frac{a^{2} \mathrm{xdx}+b^{2} \mathrm{ydy}+c^{2} \mathrm{zdz}}{0}$
$\Rightarrow a^{2} \mathrm{xdx}+b^{2} \mathrm{ydy}+c^{2} \mathrm{zdz}=0$
$\Rightarrow a^{2} 2 \mathrm{xdx}+b^{2} 2 \mathrm{ydy}+c^{2} 2 \mathrm{zdz}=0$
Integrating, we get,
$a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}=c_{2}$
i.e. $a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}-c_{2}=0 \ldots$ (iii)

By (ii) and (iii),
$\left(a x^{2}+b y^{2}+c z^{2}-\mathrm{c}_{1}\right)\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}-c_{2}\right)=0$
be the required general solution of given equation.

Rule-III: Properties of Ratios:

Let $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R} \ldots$ (i) be the given simultaneous differential equation.
If there does not exists a multipliers $1, m, n$ such that $1 \mathrm{P}+\mathrm{mQ}+\mathrm{nR}=0$,
then choose the multipliers $\mathrm{P}_{1}, \mathrm{Q}_{1}, \mathrm{R}_{1}$ and $\mathrm{P}_{2}, \mathrm{Q}_{2}, \mathrm{R}_{2}$
such that $\mathrm{d}\left(\mathrm{P}_{1} \mathrm{P}+\mathrm{Q}_{1} \mathrm{Q}+\mathrm{R}_{1} \mathrm{R}\right)=\mathrm{P}_{1} \mathrm{dx}+\mathrm{Q}_{1} \mathrm{dy}+\mathrm{R}_{1} \mathrm{dz}$
and $\mathrm{d}\left(\mathrm{P}_{2} \mathrm{P}+\mathrm{Q}_{2} \mathrm{Q}+\mathrm{R}_{2} \mathrm{R}\right)=\mathrm{P}_{2} \mathrm{dx}+\mathrm{Q}_{2} \mathrm{dy}+\mathrm{R}_{2} \mathrm{dz}$, then we have
$\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}=\frac{P_{1} \mathrm{dx}+Q_{1} \mathrm{dy}+R_{1} \mathrm{dz}}{P_{1} \mathrm{P}+Q_{1} \mathrm{Q}+R_{1} \mathrm{R}}=\frac{P_{2} \mathrm{dx}+Q_{2} \mathrm{dy}+R_{2} \mathrm{dz}}{P_{2} \mathrm{P}+Q_{2} \mathrm{Q}+R_{2} \mathrm{R}}$
Taking any two pairs of suitable ratios, we get solutions say
$\emptyset(\mathrm{x}, \mathrm{y}, \mathrm{z})-\mathrm{c}_{1}=0 \ldots$ (ii) and $\psi(\mathrm{x}, \mathrm{y}, \mathrm{z})-\mathrm{c}_{2}=0 \ldots$ (iii)
By (ii) and (iii), the G.S. of (i) is

$$
\left[\emptyset(x, y, z)-c_{1}\right]\left[\psi(x, y, z)-c_{2}\right]=0
$$

Ex.: Solve $\frac{d x}{x^{2}-y^{2}-z^{2}}=\frac{d y}{2 x y}=\frac{d z}{2 x z}$
Solution: Let $\frac{d x}{x^{2}-y^{2}-z^{2}}=\frac{d y}{2 x y}=\frac{d z}{2 x z}$.
be the given simultaneous differential equation.
Taking second and third ratios of (i), we have
$\frac{d y}{2 x y}=\frac{d z}{2 x z} \Rightarrow \frac{d y}{y}=\frac{d z}{z}$
Integrating, we get,
$\log y=\log z+\log c_{1}$
i.e. $y=c_{1} z$
i.e. $y-c_{1} z=0$

Now by taking multipliers x, y, z, we get,
Each Ratio of (i) $=\frac{x d x+y d y+z d z}{x^{3}-x y^{2}-x z^{2}+2 x y^{2}+2 x z^{2}}=\frac{x d x+y d y+z d z}{x^{3}+x y^{2}+x z^{2}}=\frac{x d x+y d y+z d z}{x\left(x^{2}+y^{2}+z^{2}\right)}$
$\frac{d x}{x^{2}-y^{2}-z^{2}}=\frac{d y}{2 x y}=\frac{d z}{2 x z}=\frac{\mathrm{xdx}+\mathrm{ydy}+\mathrm{zdz}}{x\left(x^{2}+y^{2}+z^{2}\right)}$
Taking second and fourth ratios of (iii), we have,

$$
\begin{aligned}
& \frac{d y}{2 x y}=\frac{x d x+y d y+z d z}{x\left(x^{2}+y^{2}+z^{2}\right)} \\
& \Rightarrow \frac{d y}{y}=\frac{2 x d x+2 y d y+2 z d z}{\left(x^{2}+y^{2}+z^{2}\right)} \\
& \Rightarrow \frac{d y}{y}=\frac{\mathrm{d}\left(x^{2}+y^{2}+z^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)}
\end{aligned}
$$

Integrating, we get,
$\log y=\log \left(x^{2}+y^{2}+z^{2}\right)+\log c_{2}$
i.e. $y=c_{2}\left(x^{2}+y^{2}+z^{2}\right)$
i.e. $y-c_{2}\left(x^{2}+y^{2}+z^{2}\right)=0$

By (ii) and (iv),
$\left(y-c_{1} z\right)\left[y-c_{2}\left(x^{2}+y^{2}+z^{2}\right)\right]=0$
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{z(x+y)}=\frac{d y}{z(x-y)}=\frac{d z}{x^{2}+y^{2}}$
Solution: Let $\frac{d x}{z(x+y)}=\frac{d y}{z(x-y)}=\frac{d z}{x^{2}+y^{2}}$.
be the given simultaneous differential equation.
Taking first and second ratios of (i), we have

$$
\begin{aligned}
& \frac{d x}{z(x+y)}=\frac{d y}{z(x-y)} \Rightarrow \frac{d x}{(x+y)}=\frac{d y}{(x-y)} \\
& \Rightarrow x d x-y d x=x d y+y d y \\
& \Rightarrow x d x-y d x-x d y-y d y=0 \\
& \Rightarrow 2 x d x-2 y d x-2 x d y-2 y d y=0 \\
& \Rightarrow d\left(x^{2}-2 x y-y^{2}\right)=0
\end{aligned}
$$

Integrating, we get,
$x^{2}-2 x y-y^{2}=\mathrm{c}_{1}$
i.e. $x^{2}-2 x y-y^{2}-\mathrm{c}_{1}=0$.

Now by taking multipliers $\mathrm{x},-\mathrm{y},-\mathrm{z}$, we get,
Each Ratio of (i) $=\frac{x d x-y d y-z d z}{x^{2} z+x y z-x y z+y^{2} z-z x^{2}-z y^{2}}=\frac{x d x-y d y-z d z}{0}$
$x d x-y d y-z d z=0$
$\Rightarrow 2 x d x-2 y d y-2 z d z=0$
$\Rightarrow \mathrm{d}\left(x^{2}-y^{2}-z^{2}\right)=0$
Integrating, we get,
$x^{2}-y^{2}-z^{2}=c_{2}$
i.e. $x^{2}-y^{2}-z^{2}-\mathrm{c}_{2}=0 \ldots \ldots$

By (ii) and (iii),
$\left(x^{2}-2 x y-y^{2}-\mathrm{c}_{1}\right)\left(x^{2}-y^{2}-z^{2}-\mathrm{c}_{2}\right)=0$
be the required general solution of given equation.

Ex.: Solve $\frac{d x}{y+z}=\frac{d y}{z+x}=\frac{d z}{x+y}$
Solution: Let $\frac{d x}{y+z}=\frac{d y}{z+x}=\frac{d z}{x+y} \ldots \ldots$
be the given simultaneous differential equation.
By taking multipliers $1,1,1$, we get,
Each Ratio of (i) $=\frac{\mathrm{dx}+\mathrm{dy}+\mathrm{dz}}{y+z+z+x+x+y}$
i.e. Each Ratio of $(i)=\frac{d x+d y+d z}{2 x+2 y+2 z}$
i.e. Each Ratio of $(\mathrm{i})=\frac{\mathrm{d}(\mathrm{x}+\mathrm{y}+\mathrm{z})}{2(x+y+z)}$

Again by taking multipliers $1,-1,0$ and $0,1,-1$ we get,
Each Ratio of (i) $=\frac{\mathrm{dx}-\mathrm{dy}+0}{y+z-z-x+0}=\frac{0+\mathrm{dy}-\mathrm{dz}}{0+z+x-x-y}$
i.e. Each Ratio of (i) $=\frac{\mathrm{d} x-\mathrm{dy}}{y-x}=\frac{\mathrm{dy}-\mathrm{dz}}{z-y}$
i.e. Each Ratio of (i) $=\frac{\mathrm{d}(\mathrm{x}+\mathrm{y}+\mathrm{z})}{2(x+y+z)}=\frac{\mathrm{dx}-\mathrm{dy}}{y-x}=\frac{\mathrm{dx}-\mathrm{dz}}{z-x}$

Consider $\frac{\mathrm{dx}-\mathrm{dy}}{y-x}=\frac{\mathrm{dy}-\mathrm{dz}}{z-y}$
$\Rightarrow \frac{\mathrm{d}(\mathrm{x}-\mathrm{y})}{(x-y)}=\frac{\mathrm{d}(\mathrm{y}-\mathrm{z})}{(y-z)}$
Integrating, we get,
$\log (\mathrm{x}-\mathrm{y})=\log (\mathrm{y}-\mathrm{z})+\log _{2}$
i.e. $(x-y)=c_{1}(y-z)$
i.e. $(x-y)-c_{1}(y-z)=0$

Again consider $\frac{\mathrm{d}(\mathrm{x}+\mathrm{y}+\mathrm{z})}{2(x+y+z)}=\frac{\mathrm{dx}-\mathrm{dy}}{y-x}$
$\Rightarrow \frac{\mathrm{d}(\mathrm{x}+\mathrm{y}+\mathrm{z})}{(x+y+z)}=-2 \frac{\mathrm{~d}(\mathrm{x}-\mathrm{y})}{(x-y)}$
$\Rightarrow \frac{\mathrm{d}(\mathrm{x}+\mathrm{y}+\mathrm{z})}{(x+y+z)}+2 \frac{\mathrm{~d}(\mathrm{x}-\mathrm{y})}{(x-y)}=0$
Integrating, we get,
$\log (\mathrm{x}+\mathrm{y}+\mathrm{z})+2 \log (\mathrm{x}-\mathrm{y})=\log _{1}$
i.e. $(x+y+z)(x-y)^{2}=c_{2}$
i.e. $(x+y+z)(x-y)^{2}-c_{2}=0$...... (iii)

By (ii) and (iii),

$$
\left[(x-y)-c_{1}(y-z)\right]\left[(x+y+z)(x-y)^{2}-c_{2}\right]=0
$$

be the required general solution of given equation.

Ex.: Solve $\frac{d x}{y^{2}+y z+z^{2}}=\frac{d y}{z^{2}+z x+x^{2}}=\frac{d z}{x^{2}+x y+y^{2}}$
Solution: Let $\frac{d x}{y^{2}+y z+z^{2}}=\frac{d y}{z^{2}+z x+x^{2}}=\frac{d z}{x^{2}+x y+y^{2}}$.
be the given simultaneous differential equation.
By taking multipliers as $-1,1,0 ; 0,-1,1$ and $-1,0,1$, we have,
Each Ratio of (i) $=\frac{\mathrm{dy}-\mathrm{dx}}{z^{2}+z x+x^{2}-y^{2}-y z-z^{2}}=\frac{\mathrm{dz}-\mathrm{dy}}{x^{2}+x y+y^{2}-z^{2}-z x-x^{2}}=\frac{\mathrm{dz}-\mathrm{dx}}{x^{2}+x y+y^{2}-y^{2}-y z-z^{2}}$
i.e. Each Ratio of (i) $=\frac{\mathrm{dy}-\mathrm{dx}}{z x+x^{2}-y^{2}-y z}=\frac{\mathrm{dz}-\mathrm{dy}}{x y+y^{2}-z^{2}-z x}=\frac{\mathrm{dz}-\mathrm{dx}}{x^{2}+x y-y z-z^{2}}$
i.e. Each Ratio of $(\mathrm{i})=\frac{\mathrm{dy}-\mathrm{dx}}{(x-y)(x+y)+z(x-y)}=\frac{\mathrm{dz}-\mathrm{dy}}{x(y-z)+(y-z)(y+z)}=\frac{\mathrm{dz}-\mathrm{dx}}{(x-z)(x+z)+y(x-z)}$
i.e. Each Ratio of $(\mathrm{i})=\frac{\mathrm{dy}-\mathrm{dx}}{(x-y)(x+y+z)}=\frac{\mathrm{dz}-\mathrm{dy}}{(y-z)(x+y+z)}=\frac{\mathrm{dz}-\mathrm{dx}}{(x-z)(x+y+z)}$

Consider $\frac{\mathrm{dy}-\mathrm{dx}}{(x-y)(x+y+z)}=\frac{\mathrm{dz}-\mathrm{dy}}{(y-z)(x+y+z)}$
$\Rightarrow \frac{\mathrm{d}(\mathrm{y}-\mathrm{x})}{(y-x)}=\frac{\mathrm{d}(\mathrm{z}-\mathrm{y})}{(z-y)}$
Integrating, we get,
$\log (y-x)=\log (z-y)+\log c_{1}$
i.e. $(y-x)=c_{1}(z-y)$
i.e. $(y-x)-c_{1}(z-y)=0 \ldots \ldots$

Again consider $\frac{\mathrm{dy}-\mathrm{dx}}{(x-y)(x+y+z)}=\frac{\mathrm{dz}-\mathrm{dx}}{(x-z)(x+y+z)}$
$\Rightarrow \frac{\mathrm{d}(\mathrm{y}-\mathrm{x})}{(y-x)}=\frac{\mathrm{d}(\mathrm{z}-\mathrm{x})}{(\mathrm{z}-x)}$
Integrating, we get,
$\log (y-x)=\log (z-x)+\log _{2}$
i.e. $(y-x)=c_{2}(z-x)$
i.e. $(y-x)-c_{2}(z-x)=0 \ldots$... (iii)

By (ii) and (iii),
$\left[(y-x)-c_{1}(z-y)\right]\left[(y-x)-c_{2}(z-x)\right]=0$
be the required general solution of given equation.

MULTIPLE CHOICE QUESTIONS [MCQ'S]

1) If P, Q, R are the functions of x, y, z, then differential equation of the form $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$ is called $\ldots \ldots$. differential equation of first order.
[A]linear
[B] simultaneous
[C] homogeneous
[D] None of these
2) Solution of $\frac{d x}{0}=\frac{d y}{-z}=\frac{d z}{y}$ is......
$[A]\left(x-c_{1}\right)\left(y^{2}+z^{2}-c_{2}\right)=0$
[B] $\left(\mathrm{y}-\mathrm{c}_{1}\right)\left(\mathrm{x}^{2}+\mathrm{z}^{2}-\mathrm{c}_{2}\right)=0$
[C] $\left(z-c_{1}\right)\left(x^{2}+y^{2}-c_{2}\right)=0$
$[D]\left(x-c_{1}\right)\left(y^{2}-z^{2}-c_{2}\right)=0$
3) Solution of $\frac{d x}{z}=\frac{d y}{0}=\frac{d z}{-x}$ is......
[A] $\left(x-c_{1}\right)\left(y^{2}+\mathrm{z}^{2}-\mathrm{c}_{2}\right)=0$
[B] $\left(y-c_{1}\right)\left(x^{2}+z^{2}-c_{2}\right)=0$
[C] $\left(z-c_{1}\right)\left(x^{2}+y^{2}-c_{2}\right)=0$
$[\mathrm{D}]\left(\mathrm{x}-\mathrm{c}_{1}\right)\left(\mathrm{y}^{2}-\mathrm{z}^{2}-\mathrm{c}_{2}\right)=0$
4) Solution of $\frac{d x}{-x}=\frac{d y}{0}=\frac{d z}{z}$ is......
[A] $\left(\mathrm{x}-\mathrm{c}_{1}\right)\left(\mathrm{y}+\mathrm{z}-\mathrm{c}_{2}\right)=0$
[B] $\left(\mathrm{y}-\mathrm{c}_{1}\right)\left(\mathrm{x}+\mathrm{z}-\mathrm{c}_{2}\right)=0$
[C] $\left(\mathrm{y}-\mathrm{c}_{1}\right)\left(\mathrm{xz}-\mathrm{c}_{2}\right)=0$
$[\mathrm{D}]\left(\mathrm{x}-\mathrm{c}_{1}\right)\left(\mathrm{yz}-\mathrm{c}_{2}\right)=0$
5) Solution of $\frac{d x}{x^{2} z}=\frac{d y}{0}=\frac{d z}{-x^{2}}$ is......
$[\mathrm{A}]\left(\mathrm{x}-\mathrm{c}_{1}\right)\left(2 \mathrm{y}+\mathrm{z}^{2}-\mathrm{c}_{2}\right)=0$
[B] $\left(y-c_{1}\right)\left(2 x-z^{2}-c_{2}\right)=0$
$[C]\left(z-c_{1}\right)\left(x^{2}+y^{2}-\mathrm{c}_{2}\right)=0$
[D] $\left(y-c_{1}\right)\left(2 x+z^{2}-c_{2}\right)=0$
6) Solution of $\frac{d x}{y}=\frac{d y}{-x}=\frac{d z}{0}$ is......
$[A]\left(x^{2}+y^{2}-c_{1}\right)\left(z-c_{2}\right)=0$
[B] $\left(x^{2}-y^{2}-c_{1}\right)\left(z-c_{2}\right)=0$
$[C]\left(x+y-c_{1}\right)\left(z-c_{2}\right)=0$
[D] $\left(\mathrm{x}^{3}+\mathrm{y}^{3}-\mathrm{c}_{1}\right)\left(\mathrm{z}-\mathrm{c}_{2}\right)=0$
7) Taking first and second ratios of simultaneous D.E. $d x=d y=d z$, the solution is......
[A] $(x-y)(y+z)=c$
[B] $y-z=c$
$[C] x-y=c$
[D] $(\mathrm{x}+2 \mathrm{y})(\mathrm{y}+\mathrm{z})=\mathrm{c}$
8) Taking second and third ratios of simultaneous D.E. $d x=d y=d z$, the solution is......
$[A](x-y)(y+z)=c$
[B] $y-z=c$
$[C] x-y=c$
[D] $(x+2 y)(y+z)=c$
9) Taking first and third ratios of simultaneous D.E. $d x=d y=d z$, the solution is
[A] $x-z=c$
[B] $y-z=c$
[C] $x-y=c$
[D] $\mathrm{x}+\mathrm{z}=\mathrm{c}$
10) Solution of $d x=d y=d z$ is
$[A]\left(x-y-c_{1}\right)\left(x-z-c_{2}\right)=0$
[B] $\left(x+y-c_{1}\right)\left(x-z-c_{2}\right)=0$
$[C]\left(x-y-c_{1}\right)\left(x+z-c_{2}\right)=0$
D] $\left(\mathrm{x}+\mathrm{y}-\mathrm{c}_{1}\right)\left(\mathrm{x}+\mathrm{z}-\mathrm{c}_{2}\right)=0$
11) Taking first and second ratios of simultaneous D.E. $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}$, the solution is
[A] $x=c y$
[B] $x+y=c$
[C] $x-y=c$
[D] $x y=c$
12) Taking second and third ratios of simultaneous D.E. $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}$, the solution is.
[A] yz = c
[B] $y+z=c$
[C] $y-z=c$
[D] $y=c z$
13) Taking first and third ratios of simultaneous D.E. $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}$, the solution is
[A] $\mathrm{xz}=\mathrm{c}$
[B] $x=c z$
[C] $\mathrm{x}-\mathrm{z}=\mathrm{c}$
$[\mathrm{D}] \mathrm{x}+\mathrm{z}=\mathrm{c}$
14) Solution of $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}$ is......
$[A]\left(x-c_{1} y\right)\left(x-c_{2} z\right)=0$
$[B]\left(x+c_{1} y\right)\left(x-c_{2} z\right)=0$
$[C]\left(x-c_{1} y\right)\left(x+c_{2} z\right)=0$
$[D]\left(x+c_{1} y\right)\left(x+c_{2} z\right)=0$
15) Taking first and second ratios of simultaneous D.E. $\frac{d x}{y z}=\frac{d y}{z x}=\frac{d z}{x y}$, the solution is......
[A] $x^{2}=y^{2}$
[B] $x^{2}-y^{2}=c$
[C] $x^{2}-3 y^{2}=c$
[D] $4 x^{2}=5 y^{2}$
16) Taking first and third ratios of simultaneous D.E. $\frac{d x}{y z}=\frac{d y}{z x}=\frac{d z}{x y}$, the solution is \qquad
[A] $\mathrm{x}^{2}-\mathrm{z}^{2}=\mathrm{c}$
[B] $x^{2}+z^{2}=0$
[C] $x^{2}-3 z^{2}=0$
[D] $x^{2}=5 z^{2}+2$
17) Taking second and third ratios of simultaneous D.E. $\frac{d x}{y z}=\frac{d y}{z x}=\frac{d z}{x y}$, the solution is......
$[\mathrm{A}] \mathrm{y}^{2}-\mathrm{z}^{2}-\mathrm{c}=0[\mathrm{~B}] \mathrm{x}^{2}-\mathrm{z}^{2}=0$
[C] $x^{2}-3 z^{2}=c$
[D] None of these
18) Solution of $\frac{d x}{y z}=\frac{d y}{z x}=\frac{d z}{x y}$ is......
[A] $\left(x^{2}+y^{2}-c_{1}\right)\left(x^{2}-z^{2}-c_{2}\right)=0$
[B] $\left(x^{2}-y^{2}-c_{1}\right)\left(x^{2}+z^{2}-c_{2}\right)=0$
[C] $\left(x^{2}-y^{2}-c_{1}\right)\left(x^{2}-z^{2}-c_{2}\right)=0$
[D] $\left(x^{2}+y^{2}-c_{1}\right)\left(x^{2}+z^{2}-c_{2}\right)=0$
19) Taking first and second ratios of simultaneous differential equation $\frac{x d x}{y^{2} z}=\frac{d y}{x z}=\frac{d z}{y^{2}}$, the solution is
$[A] x^{3}+2 y^{3}=c$
[B] $x^{3}-y^{3}=c$
$[C] x^{3}+4 y^{3}=c$
[D] $2 x^{3}+3 y^{3}=c$
20) Taking first and third ratios of simultaneous D.E. $\frac{x d x}{y^{2} z}=\frac{d y}{x z}=\frac{d z}{y^{2}}$, the solution is
$[A] x^{2}+z^{2}=c$
[B] $x^{2}-z^{2}=c$
$[C] x^{2}+3 y^{2}=c$
$[D] 4 x^{2}+5 y^{2}=c$
21) Solution of $\frac{x d x}{y^{2} z}=\frac{d y}{x z}=\frac{d z}{y^{2}}$ is
$[A]\left(x^{3}-y^{3}-c_{1}\right)\left(x^{2}-z^{2}-c_{2}\right)=0$
[B] $\left(x^{3}+y^{3}-c_{1}\right)\left(x^{2}-z^{2}-c_{2}\right)=0$
[C] $\left(x^{3}-y^{3}-c_{1}\right)\left(x^{2}+z^{2}-c_{2}\right)=0$
$[D]\left(x^{3}+y^{3}-c_{1}\right)\left(x^{2}+z^{2}-c_{2}\right)=0$
22) Taking first and second ratio of simultaneous differential equation $\frac{d x}{1}=\frac{d y}{2}=\frac{d z}{5 z+\tan (y-2 x)}$, the solution is \qquad
[A] $x y=c$
[B] $x^{2}+z^{2}=c$
$[C] x=2 y+c$
[D] $y=2 x+c$
23) Taking first and second ratio of simultaneous differential equation $\frac{d x}{1}=\frac{d y}{3}=\frac{d z}{5 z+\tan (y-3 x)}$, the solution is $\ldots .$.
[A] $y-3 x-c_{1}=0$
[B] $y+3 x-c_{1}=0$
$[C] x-3 y-c_{1}=0$
$[D] x+3 y-c_{1}=0$
24) Taking first and second ratios of simultaneous D.E. $\frac{d x}{\tan x}=\frac{d y}{\tan y}=\frac{d z}{\operatorname{tanz}}$, the solution is \qquad
[A] $\sin x-\operatorname{csin} y=0$
[B] $\sin x-\operatorname{csin} z=0$
$[C] \sin x+c \sin y=0$
[D] siny $-\operatorname{csin} z=0$
25) Taking first and third ratios of simultaneous D.E. $\frac{d x}{\tan x}=\frac{d y}{\tan y}=\frac{d z}{\tan z}$, the solution is \qquad
[A] $\sin x-\operatorname{csin} y=0$
[B] $\sin x-\operatorname{csin} z=0$
[C] $\sin x+c \sin y=0$
[D] $\sin y-c \sin z=0$
26) Taking second and third ratios of simultaneous D.E. $\frac{d x}{\tan x}=\frac{d y}{\operatorname{tany}}=\frac{d z}{\operatorname{tanz}}$, the solution is
[A] $\sin x-\operatorname{csin} y=0$
[B] $\sin x-\operatorname{csin} z=0$
[C] $\sin x+\operatorname{csin} y=0$
[D] $\sin y-\operatorname{csin} z=0$
27) Solution of $\frac{d x}{\tan x}=\frac{d y}{\tan y}=\frac{d z}{\operatorname{tanz}}$ is......
$[\mathrm{A}](\sin x+c \sin y)(\sin x-c \sin z)=0 \quad[B](\sin x-c \sin y)(\sin x+c \sin z)=0$
$[C](\sin x-c \sin y)(\sin x-\operatorname{csin} z)=0$
[D] $(\sin x+\operatorname{csin} y)(\sin x+c \sin z)=0$
28) Taking first and second ratios of simultaneous D.E. $\frac{d x}{\cot x}=\frac{d y}{\cot y}=\frac{d z}{\cot z}$, the solution is
[A] $\sec x-\operatorname{csec} y=0$
[B] $\sec x-\operatorname{csec} z=0$
[C] secy $-\operatorname{csec} z=0$
[D] $\sec x+\operatorname{csec} y=0$
29) Taking first and third ratios of simultaneous D.E. $\frac{d x}{\cot x}=\frac{d y}{\cot y}=\frac{d z}{\cot z}$, the solution is
[A] secx $-\operatorname{csec} y=0$
[B] $\sec x-\operatorname{csec} z=0$
[C] secy $-\mathrm{csec} z=0$
[D] $\sec x+\operatorname{csec} y=0$
30) Taking second and third ratios of simultaneous D.E. $\frac{d x}{\cot x}=\frac{d y}{\cot y}=\frac{d z}{\cot z}$, the solution is......
$[\mathrm{A}]$ sec $\mathrm{x}-\mathrm{csec} \mathrm{y}=0$
[B] $\sec x-\operatorname{csec} z=0$
$[C]$ secy $-\operatorname{csec} z=0$
[D] $\sec x+\operatorname{csec} y=0$
31) Solution of $\frac{d x}{\cot x}=\frac{d y}{\cot y}=\frac{d z}{\operatorname{cotz}}$ is.....
[A] $(\sec x-\operatorname{csec} y)(\sec x-\operatorname{csec} z)=0$
[B] $(\sec x+\operatorname{csec} y)(\sec x-\operatorname{csec} z)=0$
$[C](\sec x-\operatorname{csec} y)(\sec x+\operatorname{csec} z)=0$
[D] $(\sec x+\operatorname{csec} y)(\sec x+c \sec z)=0$
32) Solution of $d x=d y=\operatorname{cosec} x d z$ is......
$[A]\left(x+y-c_{1}\right)\left(z+\cos x-c_{2}\right)=0$
[B] $\left(x-y-c_{1}\right)\left(z+\cos x-c_{2}\right)=0$
$[C]\left(x-y-c_{1}\right)\left(z-\cos x-c_{2}\right)=0$
[D] $\left(x+y-c_{1}\right)\left(z-\cos x-c_{2}\right)=0$
33) Taking first and second ratios of simultaneous D.E. $\frac{d x}{y}=\frac{d y}{x}=\frac{d z}{x y z^{2}\left(x^{2}-y^{2}\right)}$, the solution is
[A] $\mathrm{x}^{2}-\mathrm{y}^{2}=\mathrm{c}$
[B] $x^{2}+y^{2}=c$
[C] $\mathrm{x}=\mathrm{cy}$
[D] $\mathrm{x}-\mathrm{y}=\mathrm{c}$
34) Taking first and second ratios of simultaneous D.E. $\frac{d x}{z}=\frac{d y}{-z}=\frac{d z}{z^{2}+(x+y)^{2}}$, the solution is......
[A] $\mathrm{x}^{2}-\mathrm{y}^{2}=\mathrm{c}$
[B] $x^{2}+y^{2}=c$
[C] $\mathrm{x}=\mathrm{cy}$
[D] $x+y=c$
35) Taking first and second ratios of simultaneous D.E. $\frac{d x}{x+y}=\frac{d y}{x+y}=\frac{d z}{-x-y-2 z}$, the solution is......
[A] $x-y=c$
[B] $x+y=c$
[C] $\mathrm{x}=\mathrm{cy}$
[D] $x y=c$
36) Taking first and second ratios of simultaneous D.E. $\frac{d x}{x y}=\frac{d y}{y^{2}}=\frac{d z}{z x y-2 x^{2}}$, the solution is.
[A] $\mathrm{xy}=\mathrm{c}$
[B] $x^{2}+z^{2}=c$
[C] $x-y=c$
[D] $x / y=c$
37) Taking first and second ratios of simultaneous D.E. $\frac{d x}{y^{2}}=\frac{d y}{x^{2}}=\frac{d z}{x^{2} y^{2} z^{2}}$, the solution is
[A] $x^{2}+y^{2}=c$
[B] $x^{3}-y^{3}=c$
[C] $x^{3}+y^{3}=c$
[D] $x^{2}-y^{2}=c$
38) Taking second and third ratios of simultaneous D.E. $\frac{d x}{x^{2}+2 y^{2}}=\frac{d y}{-x y}=\frac{d z}{x z}$, the solution is.
[A] $\mathrm{yz}=\mathrm{c}$
$[B] \mathrm{xz}=\mathrm{c}$
[C] $x y=c$
[D] $\mathrm{y}-\mathrm{z}=\mathrm{c}$
39) Taking second and third ratios of simultaneous D.E. $\frac{d x}{x^{2}-y^{2}-z^{2}}=\frac{d y}{2 x y}=\frac{d z}{2 x z}$, the solution is
[A] yz = c
[B] $\mathrm{xz}=\mathrm{c}$
[C] $y=c z$
[D] $\mathrm{y}-\mathrm{z}=\mathrm{c}$
40) Taking first and second ratios of simultaneous D.E. $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z-a \sqrt{x^{2}+y^{2}+z^{2}}}$, the solution is \qquad
[A] $\mathrm{x}+\mathrm{y}=\mathrm{c}$
$[B] x y=c$
[C] $\mathrm{x}=\mathrm{cy}$
[D] $x-y=c$
41) The solution of simultaneous differential equation $\frac{d x}{a}=\frac{d y}{a}=d z$ is......
$[\mathrm{A}]\left(\mathrm{x}-\mathrm{ay}-\mathrm{c}_{1}\right)\left(\mathrm{y}+\mathrm{z}-\mathrm{c}_{2}\right)=0$
[B] $\left(x+a y-c_{1}\right)\left(y-z-c_{2}\right)=0$
$[C]\left(x-y-c_{1}\right)\left(y-a z-c_{2}\right)=0$
[D] $\left(x+a y-c_{1}\right)\left(y+a z-c_{2}\right)=0$
42) The solution set of $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}$ is......
[A] $\mathrm{xy}=\mathrm{C}_{1}, \mathrm{yz}=\mathrm{C}_{2}$
[B] $x=C_{1} y, y=C_{2} z$
$[\mathrm{C}] \mathrm{x}=\mathrm{C}_{1}+\mathrm{z}, \mathrm{y}=\mathrm{C}_{2} \mathrm{z}$
[D] $y=C_{1} z, y=C_{2}+x$
43) The solution set of $\frac{d x}{y}=\frac{d y}{x}=\frac{d z}{z}$ is.....
[A] $x^{2}-y^{2}=C_{1}$ and $x+y=C_{2} z$
[B] $x^{2}+y^{2}=C_{1}$ and $x-y=C_{2} z$
[C] $x^{2}+z^{2}=C_{1}, x+y+z=C_{2} z$
[D] None of these
44) The solution set of $\frac{d x}{y z}=\frac{d y}{z x}=\frac{d z}{x y}$ is......
[A] $x^{2}-y^{2}=C_{1}$ and $x^{2}-z^{2}=C_{2}$
[B] $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{C}_{1}$ and $\mathrm{x}^{2}-\mathrm{z}^{2}=\mathrm{C}_{2}$
$[C] x+y+z=C_{1}$ and $x^{2}+z^{2}=C_{2}$
[D] None of these
45) The solution set of $\frac{d x}{z}=\frac{d y}{0}=\frac{d z}{-x}$ is......
$[A] x^{2}+y^{2}=C_{1}$ and $y=C_{2}$
[B] $y=C_{1}$ and $x^{2}+z^{2}=C_{2}$
$[C] x^{2}+\mathrm{z}^{2}=\mathrm{C}_{1}$ and $\mathrm{z}=\mathrm{C}_{2}$
[D] None of these
46) The solution set of $\frac{d x}{y+z}=\frac{d y}{z+x}=\frac{d z}{x+y}$ is.....
[A] $y-x=C_{1}(z-y)$ and $(x-y)^{2}(x+y+z)=C_{2}$
$[B] x+y=C_{1}(y+z)$ and $(x-y)^{2}(x+y+z)=C_{2}$
[C] $y-z=C_{1}(x-y)$ and $(x+y)^{2}(x+y-z)=C_{2}$
[D] $x-y=C_{1}(y-z)$ and $(x+y+z)=C_{2}(x-y)^{2}$
47) If $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}=\frac{A}{l P+m Q+n R}$, then $\mathrm{A}=$
[A] $l d x+m d y+n d z$
[B] $m d x+l d y+n d z$
[C] $l d x-m d y+n d z$
[D] $l d x+m d y-n d z$
48) If $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}=\frac{x d x+y d y+z d z}{A}$, then $\mathrm{A}=\ldots \ldots$
[A] $x P+y Q+z R$
[B] $x P-y Q+z R$
[C] $x P+y Q-z R$
[D] $y P-x Q+z R$
49) Set of multipliers used to solve simultaneous D.E. $\frac{d x}{z-y}=\frac{d y}{x-z}=\frac{d z}{y-x}$ are ...
[A] $1,1,0$ and $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$
[B] $1,1,1$ and $\mathrm{x}, \mathrm{y}, \mathrm{z}$
[C] $1,0,1$ and $\mathrm{x}, \mathrm{y},-\mathrm{z}$
[D] $1,1,0$ and $\mathrm{x},-\mathrm{y},-\mathrm{z}$
50) Set of multipliers used to solve simultaneous D.E. $\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)}$ are ..
[A] $1,1,1$ and $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$
[B] $0,1,1$ and x, y, z
[C] $1,0,1$ and $\mathrm{x}, \mathrm{y},-\mathrm{z}$
[D] 1, 1, 0 and $\mathrm{x},-\mathrm{y},-\mathrm{z}$
51) Set of multipliers used to solve simultaneous D.E. $\frac{y z d x}{y-z}=\frac{z x d y}{z-x}=\frac{x y d z}{x-y}$ are \ldots
[A] $1,0,1$ and $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$
[B] $1,1,1$ and $\mathrm{x}, \mathrm{y}, \mathrm{z}$
[C] $1,0,1$ and $\mathrm{x}, \mathrm{y},-\mathrm{z}$
[D] 1, 1, 0 and $\mathrm{x},-\mathrm{y},-\mathrm{z}$
52) Set of multipliers used to solve simultaneous D.E. $\frac{a d x}{b c(y-z)}=\frac{b d y}{c a(z-x)}=\frac{c d z}{a b(x-y)}$ are \ldots
[A] $1,1,1$ and $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$
[B] a, $-b,-c$ and x, y, z
$[\mathrm{C}] \mathrm{a}, \mathrm{b}, \mathrm{c}$ and ax, by, cz
[D] a, b, -c and $\mathrm{x},-\mathrm{y},-\mathrm{z}$
53) Set of multipliers used to solve simultaneous D.E. $\frac{a d x}{(b-c) y z}=\frac{b d y}{(c-a) z x}=\frac{c d z}{(a-b) x y}$ are \ldots
[A] $1,1,1$ and $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$
[B] x, y, z and $a x, b y, c z$
[C] a, b, c and ax, -by, cz
[D] a, b, -c and $x,-y,-z$
54) Set of multipliers used to solve simultaneous D.E. $\frac{d x}{x\left(y^{2}-z^{2}\right)}=\frac{d y}{-y\left(z^{2}+x^{2}\right)}=\frac{d z}{z\left(x^{2}+y^{2}\right)}$ are ...
[A] $1,1,1$ and $\mathrm{x},-\mathrm{y}, \mathrm{z}$
[B] $1,0,1$ and $x, y,-z$
[C] $-1,0,1$ and $\mathrm{x},-\mathrm{y},-\mathrm{z}$
[D] $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and $\frac{1}{x},-\frac{1}{y},-\frac{1}{z}$
55) Set of multipliers used to solve simultaneous D.E. $\frac{d x}{z(x+y)}=\frac{d y}{z(x-y)}=\frac{d z}{x^{2}+y^{2}}$ are ..
[A] $x, y,-z$ and $x,-y,-z$
[B] $-x, y, z$ and $x,-y,-z$
[C] $y, x,-z$ and $x,-y,-z$
[D] y, x, z and $x, y,-z$
56) Set of multipliers used to solve simultaneous D.E. $\frac{d x}{x\left(y^{2}+z\right)}=\frac{d y}{-y\left(x^{2}+z\right)}=\frac{d z}{z\left(x^{2}-y^{2}\right)}$ are ...
[A] $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ and $\mathrm{x}, \mathrm{y},-1$
[B] $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and $1, \mathrm{y}, \mathrm{z}$
[C] $1,1,1$ and $\mathrm{x}, \mathrm{y}, \mathrm{z}$
[D] None of these
57) Set of multipliers used to solve simultaneous D.E. $\frac{d x}{x\left(2 y^{4}-z^{4}\right)}=\frac{d y}{y\left(z^{4}-2 x^{4}\right)}=\frac{d z}{z\left(x^{4}-y^{4}\right)}$ are ..
[A] $\frac{1}{x}, \frac{1}{y}, \frac{2}{z}$ and $\mathrm{x}^{3}, \mathrm{y}^{3}, \mathrm{z}^{3}$
[B] $\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$ and $1, \mathrm{y}, \mathrm{z}$
[C] $1,1,1$ and x^{4}, y^{4}, z^{4}
[D] None of these
58) Set of multipliers used to solve simultaneous D.E. $\frac{d x}{m z-n y}=\frac{d y}{n x-l z}=\frac{d z}{l y-m x}$ are ...
[A] x, y, -z and $1,0,0$
[B] $-\mathrm{x}, \mathrm{y}, \mathrm{z}$ and $\mathrm{l},-\mathrm{m},-\mathrm{n}$
[C] $y, x,-z$ and $1,1,1$
[D] $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and $\mathrm{l}, \mathrm{m}, \mathrm{n}$
59) If we use multipliers $1,1,0$ to solve simultaneous D.E. $\frac{d x}{1+y}=\frac{d y}{1+x}=\frac{d z}{z}$, then each ratio $=$ \qquad
[A] $\frac{d x+d z}{2+x+z}$
[B] $\frac{d x+d y}{1+x+y}$
[C] $\frac{d x+d y}{2+y}$
[D] $\frac{d x+d y}{2+x+y}$
60) If we use multipliers $\mathrm{a}, \mathrm{b}, 1$ to solve simultaneous D.E. $\frac{d x}{y}=\frac{d y}{-x}=\frac{d z}{b x-a y}$, then the solution is \qquad
[A] ax+by $=c_{1}$
[B] $x+y+z=c_{1}$
[C] $a x-y+z=c_{1}$
[D] $a x+b y+z=c_{1}$

UNIT-3: TOTAL DIFFERENTLAL OR PFAFFIAN DIFFERENTLAL EQUATIONS

Pfaffian Differential Equation of First Order: The differential equation of the form $\mathrm{u}_{1} \mathrm{dx}_{1}+\mathrm{u}_{2} \mathrm{dx}_{2}+\ldots \ldots+\mathrm{u}_{\mathrm{n}} \mathrm{dx}_{\mathrm{n}}=0$ is called Pfaffian differential equation or total differential equation in n independent variables $x_{1}, x_{2}, \ldots \ldots, x_{n}$.
Pfaffian Differential Equation: If P, Q, R are the functions of x, y, z, then differential equation of the form Pdx $+\mathrm{Qdy}+\mathrm{Rdz}=0$ is called Pfaffian differential equation or total differential equation.
Exact Differential Equation: A Pfaffian differential equation Pdx + Qdy $+\mathrm{Rdz}=0$ is said to be exact if there exists a function $\mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ such that $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=\mathrm{du}$.
Integrable Differential Equation: A Pfaffian differential equation Pdx $+\mathrm{Qdy}+\mathrm{Rdz}=0$ is said to be integrable if it is either exact or can be made exact.
Note: Every exact differential equation is integrable. But every integrable differential equation may not be exact.

The Necessary Condition: If the Pfaffian differential equation Pdx $+\mathrm{Qdy}+\mathrm{Rdz}=0$ is integrable, then $P\left(\frac{\partial Q}{\partial z}-\frac{\partial R}{\partial y}\right)+Q\left(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z}\right)+R\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=0$
Proof: Let the differential equation $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$
where P, Q, R are the functions of x, y, z be integrable say its integral is $\mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{c}$
\therefore equation (i) is either exact or can be made exact.
By total differentiation

$$
\begin{equation*}
d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z \tag{iii}
\end{equation*}
$$

As (ii) is an integral of (i), we have,
$\frac{\frac{\partial u}{\partial x}}{P}=\frac{\frac{\partial u}{\partial y}}{Q}=\frac{\frac{\partial u}{\partial z}}{R}=\lambda \Rightarrow \lambda P=\frac{\partial u}{\partial x}, \lambda Q=\frac{\partial u}{\partial y}, \lambda R=\frac{\partial u}{\partial z}$
From the first two equations of (iv), we get,
$\frac{\partial}{\partial y}(\lambda P)=\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial^{2} u}{\partial y \partial x}=\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right)=\frac{\partial}{\partial x}(\lambda Q)$
i.e. $\lambda \frac{\partial P}{\partial y}+P \frac{\partial \lambda}{\partial y}=\lambda \frac{\partial Q}{\partial x}+Q \frac{\partial \lambda}{\partial x}$
$\therefore \lambda\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right)=\mathrm{Q} \frac{\partial \lambda}{\partial \mathrm{x}}-\mathrm{P} \frac{\partial \lambda}{\partial \mathrm{y}}$
Similarly, $\lambda\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)=\mathrm{R} \frac{\partial \lambda}{\partial \mathrm{y}}-\mathrm{Q} \frac{\partial \lambda}{\partial \mathrm{z}}$
$\lambda\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)=\mathrm{P} \frac{\partial \lambda}{\partial \mathrm{z}}-\mathrm{R} \frac{\partial \lambda}{\partial \mathrm{x}}$
Consider (v) $\times \mathrm{R}+(\mathrm{vi}) \times \mathrm{P}+(\mathrm{vii}) \times \mathrm{Q}$, we get,
$\mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right)=0$

Sufficient Condition for Integrability: The Pfaffian differential equation
$P d x+Q d y+R d z=0$ is integrable if $P\left(\frac{\partial Q}{\partial z}-\frac{\partial R}{\partial y}\right)+Q\left(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z}\right)+R\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=0$.
Condition for Exactness: The Pfaffian differential equation $P d x+Q d y+R d z=0$ is exact if $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}$ and $\frac{\partial R}{\partial x}=\frac{\partial P}{\partial z}$.
Method of Solution by Inspection: The Pfaffian differential equation $P d x+Q d y+R d z=0$ can be solved by arranging the terms or dividing by suitable function of x, y, z. The modified equation may contain several parts which are exact differentials. The following list will help to re-write the given equation in differential form:
i) $y d x+x d y=d(x y)$
ii) $y z d x+x z d y+x y d z=d(x y z)$
iii) $2(x d x+y d y)=d\left(x^{2}+y^{2}\right)$
iv) $2(x d x+y d y+z d z)=d\left(x^{2}+y^{2}+z^{2}\right)$
v) $y^{2} d x+2 x y d y=d\left(x y^{2}\right)$
vi) $\frac{d f(x, y, z)}{f(x, y, z)}=d[\log f(x, y, z)]$
vii) $\frac{x d y-y d x}{x^{2}}=d\left(\frac{y}{x}\right)$
viii) $\frac{y d x-x d y}{y^{2}}=d\left(\frac{x}{y}\right)$
ix) $\frac{x d y+y d x}{x y}=d(\log x y)$
x) $\frac{x d y-y d x}{x y}=d\left(\log \frac{y}{x}\right)$
xi) $\frac{x d y-y d x}{x^{2}+y^{2}}=d\left(\tan ^{-1} \frac{y}{x}\right)$
xii) $\frac{x d y+y d x}{x^{2}+y^{2}}=d\left[\frac{1}{2} \log \left(x^{2}+y^{2}\right)\right]$

Ex. Show that the given equation $(y z+2 x) d x+(z x-2 z) d y+(x y-2 y) d z=0$ is exact.
(Oct. 2019)
Proof: Let $(y z+2 x) d x+(z x-2 z) d y+(x y-2 y) d z=0$ be the given equation, comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,
$P=y z+2 x, Q=z x-2 z$ and $R=x y-2 y$
$\therefore \frac{\partial \mathrm{P}}{\partial \mathrm{y}}=\mathrm{z}, \frac{\partial \mathrm{P}}{\partial \mathrm{z}}=\mathrm{y}, \frac{\partial \mathrm{Q}}{\partial \mathrm{x}}=\mathrm{z}, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=\mathrm{x}-2, \frac{\partial \mathrm{R}}{\partial \mathrm{x}}=\mathrm{y}$ and $\frac{\partial \mathrm{R}}{\partial \mathrm{y}}=\mathrm{x}-2$
$\therefore \frac{\partial \mathrm{P}}{\partial \mathrm{y}}=\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=\frac{\partial \mathrm{R}}{\partial \mathrm{y}}$ and $\frac{\partial \mathrm{R}}{\partial \mathrm{x}}=\frac{\partial \mathrm{P}}{\partial \mathrm{z}}$
Hence the given equation is exact is proved.

Ex. Show that the given equation $\left(x^{2}-y z\right) d x+\left(y^{2}-z x\right) d y+\left(z^{2}-x y\right) d z=0$ is exact.
Proof: Let $\left(x^{2}-y z\right) d x+\left(y^{2}-z x\right) d y+\left(z^{2}-x y\right) d z=0$ be the given equation,
comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,
$P=x^{2}-y z, Q=y^{2}-z x$ and $R=z^{2}-x y$
$\therefore \frac{\partial P}{\partial y}=-\mathrm{z}, \frac{\partial \mathrm{P}}{\partial \mathrm{z}}=-\mathrm{y}, \frac{\partial \mathrm{Q}}{\partial \mathrm{x}}=-\mathrm{z}, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=-\mathrm{x}, \frac{\partial \mathrm{R}}{\partial \mathrm{x}}=-\mathrm{y}$ and $\frac{\partial \mathrm{R}}{\partial \mathrm{y}}=-\mathrm{x}$
$\therefore \frac{\partial \mathrm{P}}{\partial \mathrm{y}}=\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=\frac{\partial \mathrm{R}}{\partial \mathrm{y}}$ and $\frac{\partial \mathrm{R}}{\partial \mathrm{x}}=\frac{\partial \mathrm{P}}{\partial \mathrm{z}}$
Hence the given equation is exact is proved.

Ex. Show that the given equation $\left(y z-x^{3}\right) d x+\left(z x-y^{3}\right) d y+\left(x y-z^{3}\right) d z=0$ is exact.
Proof: Let $\left(y z-x^{3}\right) d x+\left(z x-y^{3}\right) d y+\left(x y-z^{3}\right) d z=0$ be the given equation,
comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,
$P=y z-x^{3}, Q=z x-y^{3}$ and $R=x y-z^{3}$
$\therefore \frac{\partial P}{\partial y}=z, \frac{\partial P}{\partial z}=y, \frac{\partial Q}{\partial x}=z, \frac{\partial Q}{\partial z}=x, \frac{\partial R}{\partial x}=y$ and $\frac{\partial R}{\partial y}=x$
$\therefore \frac{\partial \mathrm{P}}{\partial \mathrm{y}}=\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=\frac{\partial \mathrm{R}}{\partial \mathrm{y}}$ and $\frac{\partial \mathrm{R}}{\partial \mathrm{x}}=\frac{\partial \mathrm{P}}{\partial \mathrm{z}}$
Hence the given equation is exact is proved.

Ex. Show that the given equation $\left(2 x+y^{2}+2 x z\right) d x+2 x y d y+x^{2} d z=0$ is exact.
Proof: Let $\left(2 x+y^{2}+2 x z\right) d x+2 x y d y+x^{2} d z=0$ be the given equation,
comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,
$P=2 x+y^{2}+2 x z, Q=2 x y$ and $R=x^{2}$
$\therefore \frac{\partial P}{\partial y}=2 y, \frac{\partial P}{\partial z}=2 x, \frac{\partial Q}{\partial x}=2 y, \frac{\partial Q}{\partial z}=0, \frac{\partial R}{\partial x}=2 x$ and $\frac{\partial R}{\partial y}=0$
$\therefore \frac{\partial \mathrm{P}}{\partial \mathrm{y}}=\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=\frac{\partial \mathrm{R}}{\partial \mathrm{y}}$ and $\frac{\partial \mathrm{R}}{\partial \mathrm{x}}=\frac{\partial \mathrm{P}}{\partial \mathrm{z}}$
\therefore the given equation is exact is proved.

Ex. Show that the equation $\left(2 x+y^{2}+2 x z\right) d x+2 x y d y+x^{2} d z=0$ is integrable.
Proof: Let $\left(2 x+y^{2}+2 x z\right) d x+2 x y d y+x^{2} d z=0$ be the given equation, comparing it with $P d x+Q d y+R d z=0$, we get,

$$
\begin{aligned}
& \mathrm{P}=2 \mathrm{x}+\mathrm{y}^{2}+2 \mathrm{xz}, \mathrm{Q}=2 \mathrm{xy} \text { and } \mathrm{R}=\mathrm{x}^{2} \\
& \therefore \frac{\partial \mathrm{P}}{\partial \mathrm{y}}=2 \mathrm{y}, \frac{\partial \mathrm{P}}{\partial \mathrm{z}}=2 \mathrm{x}, \frac{\partial \mathrm{Q}}{\partial \mathrm{x}}=2 \mathrm{y}, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=0, \frac{\partial \mathrm{R}}{\partial \mathrm{x}}=2 \mathrm{x} \text { and } \frac{\partial \mathrm{R}}{\partial \mathrm{y}}=0 \\
& \therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right) \\
& =\left(2 \mathrm{x}+\mathrm{y}^{2}+2 \mathrm{xz}\right)(0-0)+2 \mathrm{x}(2 \mathrm{x}-2 \mathrm{x})+\mathrm{x}^{2}(2 \mathrm{y}-2 \mathrm{y}) \\
& =0
\end{aligned}
$$

Hence the given equation is integrable is proved.
Ex. Show that the equation $y z^{2}\left(x^{2}-y z\right) d x+z x^{2}\left(y^{2}-x z\right) d y+x y^{2}\left(z^{2}-x y\right) d z=0$ is integrable. Is it exact? Verify.
Proof: Let $y z^{2}\left(x^{2}-y z\right) d x+z x^{2}\left(y^{2}-x z\right) d y+x y^{2}\left(z^{2}-x y\right) d z=0$ be the given equation, comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,

$$
\begin{aligned}
& P=y z^{2}\left(x^{2}-y z\right)=x^{2} y z^{2}-y^{2} z^{3}, Q=z x^{2}\left(y^{2}-x z\right)=x^{2} z y^{2}-x^{3} z^{2} \text { and } \\
& R=x y^{2}\left(z^{2}-x y\right)=x y^{2} z^{2}-x^{2} y^{3} \\
& \therefore \frac{\partial P}{\partial y}=x^{2} z^{2}-2 y z^{3}, \frac{\partial P}{\partial z}=2 x^{2} y z-3 y^{2} z^{2}, \frac{\partial Q}{\partial x}=2 x z y^{2}-3 x^{2} z^{2}, \frac{\partial Q}{\partial z}=x^{2} y^{2}-2 x^{3} z \text {, } \\
& \frac{\partial R}{\partial x}=y^{2} z^{2}-2 x y^{3} \text { and } \frac{\partial R}{\partial y}=2 x y z^{2}-3 x^{2} y^{2} \\
& \therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right) \\
& =\left(x^{2} y z^{2}-y^{2} z^{3}\right)\left(x^{2} y^{2}-2 x^{3} z-2 x y z^{2}+3 x^{2} y^{2}\right)+\left(x^{2} z y^{2}-x^{3} z^{2}\right)\left(y^{2} z^{2}-2 x y^{3}-2 x^{2} y z\right. \\
& \left.+3 y^{2} z^{2}\right)+\left(x y^{2} z^{2}-x^{2} y^{3}\right)\left(x^{2} z^{2}-2 y z^{3}-2 x z y^{2}+3 x^{2} z^{2}\right) \\
& =\left(x^{2} y z^{2}-y^{2} z^{3}\right)\left(4 x^{2} y^{2}-2 x^{3} z-2 x y z^{2}\right)+\left(x^{2} z y^{2}-x^{3} z^{2}\right)\left(4 y^{2} z^{2}-2 x y^{3}-2 x^{2} y z\right) \\
& +\left(x y^{2} z^{2}-x^{2} y^{3}\right)\left(4 x^{2} z^{2}-2 y z^{3}-2 x z y^{2}\right) \\
& =\left(x^{2} y z^{2}-y^{2} z^{3}\right)\left(4 x^{2} y^{2}-2 x^{3} z-2 x y z^{2}\right)+\left(x^{2} z y^{2}-x^{3} z^{2}\right)\left(4 y^{2} z^{2}-2 x y^{3}-2 x^{2} y z\right) \\
& +\left(x y^{2} z^{2}-x^{2} y^{3}\right)\left(4 x^{2} z^{2}-2 y z^{3}-2 x z y^{2}\right) \\
& =4 x^{4} y^{3} z^{2}-4 x^{2} y^{4} z^{3}-2 x^{5} y z^{3}+2 x^{3} y^{2} z^{4}-2 x^{3} y^{2} z^{4}+2 x y^{3} z^{5}+4 x^{2} y^{4} z^{3}-4 x^{3} y^{2} z^{4}-2 x^{3} y^{5} z \\
& +2 x^{4} y^{3} z^{2}-2 x^{4} y^{3} z^{2}+2 x^{5} y z^{3}+4 x^{3} y^{2} z^{4}-4 x^{4} y^{3} z^{2}-2 x y^{3} z^{5}+2 x^{2} y^{4} z^{3}-2 x^{2} y^{4} z^{3}+2 x^{3} y^{5} z \\
& =0
\end{aligned}
$$

Hence the given equation is integrable is proved.
But it is not exact $\because \frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial z} \neq \frac{\partial R}{\partial y}$ and $\frac{\partial R}{\partial x} \neq \frac{\partial P}{\partial z}$

Ex. Solve $(y+z) d x+d y+d z=0$.
Proof: Let $(y+z) d x+d y+d z=0$ be the given equation, comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,

$$
P=y+z, Q=1 \text { and } R=1
$$

$$
\therefore \frac{\partial \mathrm{P}}{\partial \mathrm{y}}=1, \frac{\partial \mathrm{P}}{\partial \mathrm{z}}=1, \frac{\partial \mathrm{Q}}{\partial \mathrm{x}}=0, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=0, \frac{\partial \mathrm{R}}{\partial \mathrm{x}}=0 \text { and } \frac{\partial \mathrm{R}}{\partial \mathrm{y}}=0
$$

$$
\therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right)
$$

$$
=(y+z)(0-0)+(0-1)+(1-0)
$$

$$
=0-1+1
$$

$$
=0
$$

\therefore The given equation is integrable.
Divide the given equation by $(y+z)$, we get,
$d x+\frac{d y+d z}{y+z}=0$
Integrating, we get,
$x+\log (y+z)=c$
be the solution of given equation.

Ex. Solve $x d y-y d x-2 x^{2} z d z=0$.
Proof: Let $x d y-y d x-2 x^{2} z d z=0$ be the given equation,
comparing it with $P d x+Q d y+R d z=0$, we get,
$P=-y, Q=x$ and $R=-2 x^{2} z$
$\therefore \frac{\partial P}{\partial y}=-1, \frac{\partial P}{\partial z}=0, \frac{\partial Q}{\partial x}=1, \frac{\partial Q}{\partial z}=0, \frac{\partial R}{\partial x}=-4 x z$ and $\frac{\partial R}{\partial y}=0$
$\therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right)$

$$
\begin{aligned}
& =(-y)(0-0)+x(-4 x z-0)-2 x^{2} z(-1-1) \\
& =0-4 x^{2} z+4 x^{2} z \\
& =0
\end{aligned}
$$

\therefore The given equation is integrable.
Divide the given equation by x^{2}, we get,

$$
\frac{x d y-y d x}{x^{2}}-2 z d z=0
$$

i. e. $d\left(\frac{y}{x}\right)-d\left(z^{2}\right)=0$

Integrating, we get,
$\frac{\mathrm{y}}{\mathrm{x}}-\mathrm{z}^{2}=\mathrm{c}$
$\therefore \mathrm{y}-\mathrm{xz}^{2}=\mathrm{cx}$
be the solution of given equation.

Ex. Solve zydx $=z x d y+y^{2} d z$.
Proof: Let $z y d x=z x d y+y^{2} d z$
i.e. $z y d x-z x d y-y^{2} d z=0$ be the given equation,
comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,

$$
\begin{aligned}
& \mathrm{P}=\mathrm{zy}, \mathrm{Q}=-\mathrm{zx} \text { and } \mathrm{R}=-\mathrm{y}^{2} \\
& \begin{aligned}
\therefore \frac{\partial \mathrm{P}}{\partial \mathrm{y}}=\mathrm{z}, \frac{\partial \mathrm{P}}{\partial \mathrm{z}}=\mathrm{y}, \frac{\partial \mathrm{Q}}{\partial \mathrm{x}}=-\mathrm{z}, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=-\mathrm{x}, \frac{\partial \mathrm{R}}{\partial \mathrm{x}}=0 \text { and } \frac{\partial \mathrm{R}}{\partial \mathrm{y}}=-2 \mathrm{y} \\
\therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right) \\
\quad=(\mathrm{zy})(-\mathrm{x}+2 \mathrm{y})-\mathrm{zx}(0-\mathrm{y})-\mathrm{y}^{2}(\mathrm{z}+\mathrm{z}) \\
\quad=-\mathrm{xyz}+2 \mathrm{y}^{2} \mathrm{z}+\mathrm{xyz}-2 \mathrm{y}^{2} \mathrm{z} \\
\quad=0
\end{aligned}
\end{aligned}
$$

\therefore The given equation is integrable.
Divide the given equation by $\mathrm{y}^{2} \mathrm{z}$, we get,

$$
\frac{y d x-x d y}{y^{2}}-\frac{d z}{z}=0
$$

i. e. $d\left(\frac{x}{y}\right)-\frac{d z}{z}=0$

Integrating, we get,
$\frac{x}{y}-\log z=c$
$\therefore \mathrm{x}-\mathrm{y} \log \mathrm{z}=\mathrm{cy}$
be the solution of given equation.
Ex. Solve $x z^{2} d x-z d y+y d z=0$.
Proof: Let $x z^{2} d x-z d y+y d z=0$ be the given equation,
comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,

$$
\begin{aligned}
& P=x^{2}, Q=-z \text { and } R=y \\
& \therefore \frac{\partial P}{\partial y}=0, \frac{\partial P}{\partial z}=2 x z, \frac{\partial Q}{\partial x}=0, \frac{\partial Q}{\partial z}=-1, \frac{\partial R}{\partial x}=0 \text { and } \frac{\partial R}{\partial y}=1
\end{aligned}
$$

$$
\begin{aligned}
\therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}\right. & \left.-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right) \\
& =\left(\mathrm{xz}^{2}\right)(-1-1)-\mathrm{z}(0-2 \mathrm{xz})+\mathrm{y}(0-0) \\
& =-2 \mathrm{xz}^{2}+2 \mathrm{xz}^{2}+0 \\
& =0
\end{aligned}
$$

\therefore The given equation is integrable.
Divide the given equation by z^{2}, we get,
$x d x-\frac{z d y-y d z}{z^{2}}=0$
i.e. $\frac{1}{2} d\left(x^{2}\right)-d\left(\frac{y}{z}\right)=0$
i.e. $d\left(x^{2}\right)-2 d\left(\frac{y}{z}\right)=0$

Integrating, we get,
$x^{2}-2\left(\frac{y}{z}\right)=c$
$\therefore \mathrm{x}^{2} \mathrm{z}-2 \mathrm{y}=\mathrm{cz}$
be the solution of given equation.

Ex. Solve $(x-y) d x-x d y+z d z=0$.
Proof: Let $(x-y) d x-x d y+z d z=0$ be the given equation,
comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,
$P=x-y, Q=-x$ and $R=z$
$\therefore \frac{\partial \mathrm{P}}{\partial \mathrm{y}}=-1, \frac{\partial \mathrm{P}}{\partial \mathrm{z}}=0, \frac{\partial \mathrm{Q}}{\partial \mathrm{x}}=-1, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=0, \frac{\partial \mathrm{R}}{\partial \mathrm{x}}=0$ and $\frac{\partial \mathrm{R}}{\partial \mathrm{y}}=0$
$\therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right)$
$=(x-y)(0-0)-x(0-0)+z(-1+1)$

$$
=0
$$

\therefore The given equation is integrable.
Rearrange the terms of given equation as:
$x d x-y d x-x d y+z d z=0$
i.e. $2 x d x-2(y d x+x d y)+2 z d z=0$
i.e. $d\left(x^{2}\right)-2 d(x y)+d\left(z^{2}\right)=0$

Integrating, we get,
$x^{2}-2 x y+z^{2}=c$
be the solution of given equation.

Ex. Solve $(a-z)(y d x+x d y)+x y d z=0$.
Proof: Let $(a-z)(y d x+x d y)+x y d z=0$
i.e. $(a-z) y d x+(a-z) x d y+x y d z=0$ be the given equation,
comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,

$$
\begin{aligned}
& \mathrm{P}=(\mathrm{a}-\mathrm{z}) \mathrm{y}, \mathrm{Q}=(\mathrm{a}-\mathrm{z}) \mathrm{x} \text { and } \mathrm{R}=\mathrm{xy} \\
& \begin{aligned}
\therefore \frac{\partial \mathrm{P}}{\partial \mathrm{y}}=\mathrm{a}-\mathrm{z}, \frac{\partial \mathrm{P}}{\partial \mathrm{z}}=-\mathrm{y}, \frac{\partial \mathrm{Q}}{\partial \mathrm{x}}=\mathrm{a}-\mathrm{z}, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=-\mathrm{x}, \frac{\partial \mathrm{R}}{\partial \mathrm{x}}=\mathrm{y} \text { and } \frac{\partial \mathrm{R}}{\partial \mathrm{y}}=\mathrm{x} \\
\begin{aligned}
\therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial y}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right) \\
\quad=(\mathrm{a}-\mathrm{z}) \mathrm{y}(-\mathrm{x}-\mathrm{x})+(\mathrm{a}-\mathrm{z}) \mathrm{x}(\mathrm{y}+\mathrm{y})+\mathrm{xy}(\mathrm{a}-\mathrm{z}-\mathrm{a}+\mathrm{z}) \\
\quad=-2(\mathrm{a}-\mathrm{z}) \mathrm{xy}+2(\mathrm{a}-\mathrm{z}) \mathrm{xy}+0
\end{aligned} \\
\quad=0
\end{aligned}
\end{aligned}
$$

\therefore The given equation is integrable.
Divide the given equation by $x y(a-z)$, we get,
$\frac{y d x+x d y}{x y}+\frac{d z}{a-z}=0$
i. e. $\frac{d(x y)}{x y}-\frac{d(z-a)}{z-a}=0$

Integrating, we get,
$\log x y-\log (z-a)=\log c$
i.e. $\frac{x y}{z-a}=c$
$\therefore \mathrm{xy}=\mathrm{c}(\mathrm{z}-\mathrm{a})$
be the solution of given equation.

Ex. Solve $\left(x^{2}-y z\right) d x+\left(y^{2}-z x\right) d y+\left(z^{2}-x y\right) d z=0$.
Proof: Let $\left(x^{2}-y z\right) d x+\left(y^{2}-z x\right) d y+\left(z^{2}-x y\right) d z=0$ be the given equation,
comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,
$P=x^{2}-y z, Q=y^{2}-z x$ and $R=z^{2}-x y$
$\therefore \frac{\partial P}{\partial y}=-z, \frac{\partial P}{\partial z}=-y, \frac{\partial Q}{\partial x}=-z, \frac{\partial Q}{\partial z}=-x, \frac{\partial R}{\partial x}=-y$ and $\frac{\partial R}{\partial y}=-x$
$\therefore \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}$ and $\frac{\partial R}{\partial x}=\frac{\partial P}{\partial z}$
\therefore The given equation exacts and hence integrable.
Now we rearrange the terms as:
$\left(x^{2} d x+y^{2} d y+z^{2} d z\right)-(y z d x+z x d y+x y d z)=0$
$\therefore\left(3 x^{2} d x+3 y^{2} d y+3 z^{2} d z\right)-3(y z d x+z x d y+x y d z)=0$
$\therefore \mathrm{d}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}\right)-3 \mathrm{~d}(\mathrm{xyz})=0$
Integrating, we get,
$x^{3}+y^{3}+z^{3}-3 x y z=c$
be the solution of given equation.

Ex. Solve $\left(y^{2}+z^{2}-x^{2}\right) d x-2 x y d y-2 x z d z=0$.
(Oct. 2019)
Proof: Let $\left(y^{2}+z^{2}-x^{2}\right) d x-2 x y d y-2 x z d z=0$ be the given equation,
comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,
$P=y^{2}+z^{2}-x^{2}, Q=-2 x y$ and $R=-2 x z$
$\therefore \frac{\partial P}{\partial y}=2 y, \frac{\partial P}{\partial z}=2 z, \frac{\partial Q}{\partial x}=-2 y, \frac{\partial Q}{\partial z}=0, \frac{\partial \mathrm{R}}{\partial \mathrm{x}}=-2 \mathrm{z}$ and $\frac{\partial \mathrm{R}}{\partial y}=0$
$\therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right)$
$=\left(y^{2}+z^{2}-x^{2}\right)(0-0)-2 x y(-2 z-2 z)-2 x z(2 y+2 y)$
$=0+8 x y z-8 x y z$
$=0$
\therefore The given equation integrable.
Now we rearrange the terms as:
$\left(x^{2}+y^{2}+z^{2}\right) d x-2 x^{2} d x-2 x y d y-2 x z d z=0$
i.e. $\left(x^{2}+y^{2}+z^{2}\right) d x-x(2 x d x+2 y d y+2 z d z)=0$
i.e. $\left(x^{2}+y^{2}+z^{2}\right) d x-x d\left(x^{2}+y^{2}+z^{2}\right)=0$

Dividing by $x\left(x^{2}+y^{2}+z^{2}\right)$, we get,
$\therefore \frac{\mathrm{dx}}{\mathrm{x}}-\frac{\mathrm{d}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)}=0$
i.e. $\frac{d x}{x}=\frac{d\left(x^{2}+y^{2}+z^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)}$

Integrating, we get,
$\log x=\log \left(x^{2}+y^{2}+z^{2}\right)+\log c$
$\therefore \mathrm{x}=\mathrm{c}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)$
be the solution of given equation.

Ex. Solve $2 y z d x+z x d y-x y(1+z) d z=0$.
Proof: Let $2 y z d x+z x d y-x y(1+z) d z=0$ be the given equation,
comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,

$$
\begin{aligned}
& \mathrm{P}=2 \mathrm{yz}, \mathrm{Q}=\mathrm{zx} \text { and } \mathrm{R}=-\mathrm{xy}(1+\mathrm{z}) \\
& \begin{aligned}
& \therefore \frac{\partial \mathrm{P}}{\partial \mathrm{y}}==2 \mathrm{z}, \frac{\partial \mathrm{P}}{\partial \mathrm{z}}=2 \mathrm{y}, \frac{\partial \mathrm{Q}}{\partial \mathrm{x}}=\mathrm{z}, \frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=\mathrm{x}, \frac{\partial \mathrm{R}}{\partial \mathrm{x}}=-\mathrm{y}(1+\mathrm{z}) \text { and } \frac{\partial \mathrm{R}}{\partial \mathrm{y}}=-\mathrm{x}(1+\mathrm{z}) \\
& \begin{aligned}
\therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}\right. & \left.-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right) \\
& =(2 \mathrm{yz})[\mathrm{x}+\mathrm{x}(1+\mathrm{z})]+\mathrm{zx}[-\mathrm{y}(1+\mathrm{z})-2 \mathrm{y})-\mathrm{xy}(1+\mathrm{z})(2 \mathrm{z}-\mathrm{z}) \\
& =(2 \mathrm{yz})(2 \mathrm{x}+\mathrm{xz})+\mathrm{zx}(-\mathrm{yz}-3 \mathrm{y})-\mathrm{xyz}(1+\mathrm{z}) \\
& =4 \mathrm{xyz}+2 \mathrm{xyz}^{2}-\mathrm{xyz}^{2}-3 \mathrm{xyz}-\mathrm{xyz}-\mathrm{xyz}^{2} \\
& =0
\end{aligned}
\end{aligned} .
\end{aligned}
$$

\therefore The given equation integrable.
Divide the given equation by xyz , we get,
$\frac{2 d x}{x}+\frac{d y}{y}-\left(\frac{1}{z}+1\right) d z=0$
Integrating, we get,
$2 \log x+\log y-\log z-z=\log c$
i.e. $\log x^{2}+\log y-\log z-\log e^{z}=\log c$
i.e. $\log \left(\frac{x^{2} y}{\mathrm{ze}^{\mathrm{z}}}\right)=\log c$
$\therefore \frac{\mathrm{x}^{2} \mathrm{y}}{\mathrm{ze}^{\mathrm{z}}}=\mathrm{c}$
i.e. $x^{2} y=c z e^{z}$
be the solution of given equation.
Ex. Solve $\left(2 x^{2}+2 x y+2 x z^{2}+1\right) d x+d y+2 z d z=0$.
Proof: Let $\left(2 x^{2}+2 x y+2 x z^{2}+1\right) d x+d y+2 z d z=0$ be the given equation,
comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,
$P=2 x^{2}+2 x y+2 x z^{2}+1, Q=1$ and $R=2 z$
$\therefore \frac{\partial P}{\partial y}=2 x, \frac{\partial P}{\partial z}=4 x z, \frac{\partial Q}{\partial x}=0, \frac{\partial Q}{\partial z}=0, \frac{\partial \mathrm{R}}{\partial \mathrm{x}}=0$ and $\frac{\partial \mathrm{R}}{\partial \mathrm{y}}=0$

$$
\begin{aligned}
\therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}\right. & \left.-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right) \\
& =\left(2 \mathrm{x}^{2}+2 \mathrm{xy}+\mathrm{xz}^{2}+1\right)(0-0)+(0-4 \mathrm{xz})+2 \mathrm{z}(2 \mathrm{x}-0) \\
& =0-4 \mathrm{xz}+4 \mathrm{xz} \\
& =0
\end{aligned}
$$

\therefore The given equation integrable.

Rearrange the given terms as:
$2 x\left(x+y+z^{2}\right) d x+d x+d y+2 z d z=0$
Divide the given equation by $\left(x+y+z^{2}\right)$, we get,
$2 x d x+\frac{d x+d y+2 z d z}{x+y+z^{2}}=0$
i. e. $d\left(x^{2}\right)+\frac{d\left(x+y+z^{2}\right)}{x+y+z^{2}}=0$

Integrating, we get,
$x^{2}+\log \left(x+y+z^{2}\right)=c$
be the solution of given equation.

Ex. Solve $\frac{y z}{x^{2}+y^{2}} d x-\frac{x z}{x^{2}+y^{2}} d y-\tan ^{-1} \frac{y}{x} d z=0$
Proof: Let $\frac{y z}{x^{2}+y^{2}} d x-\frac{x z}{x^{2}+y^{2}} d y-\tan ^{-1} \frac{y}{x} d z=0$ be the given equation,
comparing it with $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$, we get,

$$
\begin{aligned}
& P=\frac{y z}{x^{2}+y^{2}}, Q=-\frac{x z}{x^{2}+y^{2}} \text { and } R=-\tan ^{-1} \frac{y}{x} \\
& \therefore \frac{\partial \mathrm{P}}{\partial \mathrm{y}}=\mathrm{z} \frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-2 \mathrm{y}^{2}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}=\frac{\mathrm{z}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}, \frac{\partial \mathrm{P}}{\partial \mathrm{z}}=\frac{\mathrm{y}}{\mathrm{x}^{2}+\mathrm{y}^{2}} \text {, } \\
& \frac{\partial Q}{\partial x}=-z \frac{\left(x^{2}+y^{2}\right)-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{z\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}, \frac{\partial Q}{\partial z}=-\frac{x}{x^{2}+y^{2}}, \\
& \frac{\partial R}{\partial x}=-\frac{1}{1+\left(\frac{y}{x}\right)^{2}}\left(\frac{-y}{x^{2}}\right)=\frac{y}{x^{2}+y^{2}} \text { and } \frac{\partial R}{\partial y}=-\frac{1}{1+\left(\frac{y}{x}\right)^{2}}\left(\frac{1}{x}\right)=\frac{-x}{x^{2}+y^{2}} \\
& \therefore \mathrm{P}\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}-\frac{\partial \mathrm{R}}{\partial \mathrm{y}}\right)+\mathrm{Q}\left(\frac{\partial \mathrm{R}}{\partial \mathrm{x}}-\frac{\partial \mathrm{P}}{\partial \mathrm{z}}\right)+\mathrm{R}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{y}}-\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right) \\
& =\frac{y z}{x^{2}+y^{2}}\left[-\frac{x}{x^{2}+y^{2}}+\frac{x}{x^{2}+y^{2}}\right]-\frac{x z}{x^{2}+y^{2}}\left[\frac{y}{x^{2}+y^{2}}-\frac{y}{x^{2}+y^{2}}\right] \\
& -\tan ^{-1}\left(\frac{y}{x}\right)\left[\frac{z\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}-\frac{z\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}\right] \\
& =0
\end{aligned}
$$

\therefore The given equation is integrable.
Rearrange the given equation as:
$z\left[\frac{y d x-x d y}{x^{2}+y^{2}}\right]-\tan ^{-1} \frac{y}{x} d z=0$
i.e. $z\left[\frac{x d y-y d x}{x^{2}+y^{2}}\right]+\tan ^{-1} \frac{y}{x} d z=0$
i. e. $\frac{1}{\tan ^{-1} \frac{y}{x}}\left[\frac{x d y-y d x}{x^{2}+y^{2}}\right]+\frac{d z}{z}=0$
i. e. $\frac{d\left(\tan ^{-1} \frac{y}{x}\right)}{\tan ^{-1} \frac{y}{x}}+\frac{d z}{z}=0$

Integrating, we get,
$\log \tan ^{-1} \frac{y}{x}+\log z=\log c$
$\therefore z \tan ^{-1} \frac{\mathrm{y}}{\mathrm{x}}=\mathrm{c}$
be the solution of given equation.

Homogeneous Equation: If P, Q, R, are homogeneous functions of same degree of variables $\mathrm{x}, \mathrm{y}, \mathrm{z}$, then the Pfaffian differential equation $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$ is called homogeneous equation.
Method of Solving Homogeneous Equation: If $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$ is homogeneous equation, then find $P x+Q y+R z$.
Case-i) If $\rho=P x+Q y+R z \neq 0$, then
step-1) Find an I.F. $\frac{1}{\rho}$ of given homogeneous equation.
2) Multiply given equation by $\frac{1}{\rho}$.
3) Find $d(\rho)$.
4) Express given equation in the form $\frac{d(\rho)}{\rho} \pm \ldots$
5) By integrating we get, the solution.

Case-ii) If $\rho=P x+Q y+R z=0$, then
step-1) Verify given homogeneous equation is integrable.
2) Put $x=z u$ and $y=z v$, hence $d x=u d z+z d u$ and $d y=v d z+z d v$ into the equation.
3) case-a) If coefficient of $d z$ is zero, then we get equation in two variables u and v, regrouping and integrating we get solution.
4) case-b) If coefficient of dz is not zero, then we will be able to separate the equation into form $\frac{f(u, v) d u+g(u, v) d v}{f(u, v)}+\frac{d z}{z}=0$
5) Take $\rho=\mathrm{f}(\mathrm{u}, \mathrm{v})$ and find $\mathrm{d}(\rho)$.
6) Express given equation in the form $\frac{d(\rho)}{\rho} \pm \ldots$ and rearrange the terms.
7) By integrating we get, the solution.

Remark: If $\mathrm{Px}+\mathrm{Qy}+\mathrm{Rz} \neq 0$, then the homogeneous equation $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$ is always integrable. But if $\mathrm{Px}+\mathrm{Qy}+\mathrm{Rz}=0$, then it may or may not be integrable.

Ex. Solve $z(z-y) d x+z(z+x) d y+x(x+y) d z=0$
Proof: Let $z(z-y) d x+z(z+x) d y+x(x+y) d z=0$ be the given homogeneous equation,
with $\mathrm{P}=\mathrm{z}(\mathrm{z}-\mathrm{y}), \mathrm{Q}=\mathrm{z}(\mathrm{z}+\mathrm{x})$ and $\mathrm{R}=\mathrm{x}(\mathrm{x}+\mathrm{y})$

$$
\begin{aligned}
\therefore \rho & =P x+Q y+R z=x z(z-y)+y z(z+x)+x z(x+y) \\
& =x z^{2}-x y z+y z^{2}+x y z+x^{2} z+x y z \\
& =x z^{2}+y z^{2}+x^{2} z+x y z \\
& =z\left(x z+y z+x^{2}+x y\right) \\
& =z(x+y)(z+x) \neq 0
\end{aligned}
$$

\therefore The given equation is integrable.
Divide the given equation by $\mathrm{z}(\mathrm{x}+\mathrm{y})(\mathrm{z}+\mathrm{x})$, we get,
$\frac{z(z-y)}{z(x+y)(z+x)} \mathrm{dx}+\frac{z(z+x)}{z(x+y)(z+x)} \mathrm{dy}+\frac{x(x+y)}{z(x+y)(z+x)} \mathrm{dz}=0$
i. e. $\frac{(z-y)}{(x+y)(z+x)} \mathrm{dx}+\frac{1}{(x+y)} \mathrm{dy}+\frac{x}{z(z+x)} \mathrm{dz}=0$
i.e. $\frac{[(z+x)-(x+y)]}{(x+y)(z+x)} \mathrm{dx}+\frac{1}{(x+y)} \mathrm{dy}+\frac{[(z+x)-z]}{z(z+x)} \mathrm{dz}=0$
i.e. $\frac{1}{(x+y)} \mathrm{dx}-\frac{1}{(z+x)} \mathrm{dx}+\frac{1}{(x+y)} \mathrm{dy}+\frac{1}{z} \mathrm{dz}-\frac{1}{(z+x)} \mathrm{dz}=0$
i.e. $\frac{d x+d y}{(x+y)}-\frac{d x+d z}{(z+x)}+\frac{d z}{z}=0$
i.e. $\frac{d(x+y)}{(x+y)}+\frac{d z}{z}=\frac{d(x+z)}{(x+z)}$

Integrating, we get,
$\log (\mathrm{x}+\mathrm{y})+\log \mathrm{z}=\log (\mathrm{x}+\mathrm{z})+\log \mathrm{c}$
$\therefore(\mathrm{x}+\mathrm{y}) \mathrm{z}=\mathrm{c}(\mathrm{x}+\mathrm{z})$
be the solution of given equation.

Ex. Solve $y(\mathrm{y}+\mathrm{z}) \mathrm{dx}+\mathrm{x}(\mathrm{x}-\mathrm{z}) \mathrm{dy}+\mathrm{x}(\mathrm{x}+\mathrm{y}) \mathrm{d} \mathrm{z}=0$
Proof: Let $y(y+z) d x+x(x-z) d y+x(x+y) d z=0$ be the given homogeneous equation,
with $\mathrm{P}=y(\mathrm{y}+\mathrm{z}), \mathrm{Q}=\mathrm{x}(\mathrm{x}-\mathrm{z})$ and $\mathrm{R}=\mathrm{x}(\mathrm{x}+\mathrm{y})$
$\therefore \rho=\mathrm{Px}+\mathrm{Qy}+\mathrm{Rz}=\mathrm{x} y(\mathrm{y}+\mathrm{z})+\mathrm{yx}(\mathrm{x}-\mathrm{z})+\mathrm{zx}(\mathrm{x}+\mathrm{y})$
$=x y^{2}+x y z+x^{2} y-x y z+x^{2} z+x y z$
$=x y^{2}+x^{2} y+x^{2} z+x y z$
$=x\left(y^{2}+x y+x z+y z\right)$
$=x(x+y)(y+z) \neq 0$
\therefore The given equation is integrable.
Divide the given equation by $\mathrm{x}(\mathrm{x}+\mathrm{y})(\mathrm{y}+\mathrm{z})$, we get,
$\frac{y(y+z)}{x(x+y)(y+z)} \mathrm{dx}+\frac{x(x-z)}{x(x+y)(y+z)} \mathrm{dy}+\frac{x(x+y)}{x(x+y)(y+z)} \mathrm{dz}=0$
i.e. $\frac{y}{x(x+y)} \mathrm{dx}+\frac{(x-z)}{(x+y)(y+z)} \mathrm{dy}+\frac{1}{(y+z)} \mathrm{dz}=0$
i.e. $\frac{[(x+y)-x]}{x(x+y)} \mathrm{d} \mathrm{x}+\frac{[(x+y)-(y+z)]}{(x+y)(y+z)} \mathrm{dy}+\frac{1}{(y+z)} \mathrm{dz}=0$
i.e. $\frac{1}{x} \mathrm{dx}-\frac{1}{(x+y)} \mathrm{dx}+\frac{1}{(y+z)} \mathrm{dy}-\frac{1}{(x+y)} \mathrm{dy}+\frac{1}{(y+z)} \mathrm{dz}=0$
i.e. $\frac{d x}{x}-\frac{d x+d y}{(x+y)}+\frac{d y+d z}{(y+z)}=0$
i.e. $\frac{d x}{x}+\frac{d(y+z)}{(y+z)}=\frac{d(x+y)}{(x+y)}$

Integrating, we get,
$\log x+\log (y+z)=\log (x+y)+\log c$
$\therefore \mathrm{x}(\mathrm{y}+\mathrm{z})=\mathrm{c}(\mathrm{x}+\mathrm{y})$
be the solution of given equation.

Ex. Solve $\left(y^{2}+y z\right) d x+\left(z^{2}+z x\right) d y+\left(y^{2}-x y\right) d z=0$
Proof: Let $\left(y^{2}+y z\right) d x+\left(z^{2}+z x\right) d y+\left(y^{2}-x y\right) d z=0$
be the given homogeneous equation,
with $P=y^{2}+y z, Q=z^{2}+z x$ and $R=y^{2}-x y$

$$
\begin{aligned}
\therefore \rho & =P x+Q y+R z=x\left(y^{2}+y z\right)+y\left(z^{2}+z x\right)+z\left(y^{2}-x y\right) \\
& =x y^{2}+x y z+y z^{2}+x y z+y^{2} z-x y z \\
& =x y^{2}+y z^{2}+y^{2} z+x y z \\
& =y\left(x y+z^{2}+y z+x z\right) \\
& =y(x+z)(y+z) \neq 0
\end{aligned}
$$

\therefore The given equation is integrable.
Divide the given equation by $\mathrm{y}(\mathrm{x}+\mathrm{z})(\mathrm{y}+\mathrm{z})$, we get,
$\frac{y(y+z)}{y(x+z)(y+z)} \mathrm{dx}+\frac{z(x+z)}{y(x+z)(y+z)} \mathrm{dy}+\frac{y(y-x)}{y(x+z)(y+z)} \mathrm{dz}=0$
i. e. $\frac{1}{(x+z)} \mathrm{dx}+\frac{z}{y(y+z)} \mathrm{dy}+\frac{y-x}{(x+z)(y+z)} \mathrm{dz}=0$
i.e. $\frac{1}{(x+z)} \mathrm{dx}+\frac{[(y+z)-y]}{y(y+z)} \mathrm{dy}+\frac{[(y+z)-(x+z)]}{(x+z)(y+z)} \mathrm{dz}=0$
i.e. $\frac{1}{(x+z)} d x+\frac{1}{y} d y-\frac{1}{(y+z)} d y+\frac{1}{(x+z)} d z-\frac{1}{(y+z)} d z=0$
i.e. $\frac{d x+d z}{(x+z)}+\frac{1}{y} d y-\frac{d y+d z}{(y+z)}=0$
i.e. $\frac{d(x+z)}{(x+z)}+\frac{d y}{y}=\frac{d(y+z)}{(y+z)}$

Integrating, we get,
$\log (x+z)+\log y=\log (y+z)+\log c$
$\therefore(\mathrm{x}+\mathrm{z}) \mathrm{y}=\mathrm{c}(\mathrm{y}+\mathrm{z})$
be the solution of given equation.

Ex. Solve $\left(y z+z^{2}\right) d x-x z d y+x y d z=0$
Proof: Let $\left(y z+z^{2}\right) d x-x z d y+x y d z=0$ be the given homogeneous equation,

$$
\begin{aligned}
& \text { with } P=y z+z^{2}, Q=-x z \text { and } R=x y \\
& \begin{aligned}
\therefore \rho & =P x+Q y+R z=x\left(y z+z^{2}\right)+y(-x z)+z(x y) \\
& =x y z+x z^{2}-x y z+x y z \\
& =x y z+x z^{2} \\
& =x z(y+z) \neq 0
\end{aligned}
\end{aligned}
$$

\therefore The given equation is integrable.

Divide the given equation by $\mathrm{xz}(\mathrm{y}+\mathrm{z})$, we get,
$\frac{z(y+z)}{x z(y+z)} \mathrm{dx}-\frac{x z}{x z(y+z)} \mathrm{dy}+\frac{x y}{x z(y+z)} \mathrm{dz}=0$
i.e. $\frac{1}{x} \mathrm{dx}-\frac{1}{(y+z)} \mathrm{dy}+\frac{y}{z(y+z)} \mathrm{dz}=0$
i.e. $\frac{1}{x} \mathrm{dx}-\frac{1}{(y+z)} \mathrm{dy}+\frac{[(y+z)-z]}{z(y+z)} \mathrm{dz}=0$
i.e. $\frac{1}{x} \mathrm{dx}-\frac{1}{(y+z)} \mathrm{dy}+\frac{1}{z} \mathrm{dz}-\frac{1}{(y+z)} \mathrm{dz}=0$
i.e.. $\frac{1}{x} \mathrm{dx}+\frac{1}{z} \mathrm{dz}-\frac{d y+d z}{(y+z)}=0$
i.e. $\frac{d x}{x}+\frac{d z}{z}=\frac{d(y+z)}{(y+z)}$

Integrating, we get,
$\log x+\log z=\log (y+z)+\log c$
$\therefore \mathrm{xz}=\mathrm{c}(\mathrm{y}+\mathrm{z})$
be the solution of given equation.
Ex. Solve $z^{2} d x+\left(z^{2}-2 y z\right) d y+\left(2 y^{2}-y z-x z\right) d z=0$
Proof: Let $z^{2} d x+\left(z^{2}-2 y z\right) d y+\left(2 y^{2}-y z-x z\right) d z=0$
be the given homogeneous equation,
with $P=z^{2}, Q=z^{2}-2 y z$ and $R=2 y^{2}-y z-x z$ and is integrable.

$$
\begin{aligned}
\therefore \rho & =P x+Q y+R z=x z^{2}+y\left(z^{2}-2 y z\right)+z\left(2 y^{2}-y z-x z\right) \\
& =x z^{2}+y z^{2}-2 y^{2} z+2 z y^{2}-y z^{2}-x z^{2} \\
& =0
\end{aligned}
$$

\therefore To solve the given equation put $\mathrm{x}=\mathrm{zu}$ and $\mathrm{y}=\mathrm{zv}$,
$\therefore \mathrm{dx}=\mathrm{udz}+\mathrm{zdu}$ and $\mathrm{dy}=\mathrm{vdz}+\mathrm{zdv}$
\therefore the given equation becomes
$z^{2}(u d z+z d u)+\left(z^{2}-2 v z^{2}\right)(v d z+z d v)+\left(2 z^{2} v^{2}-z^{2} v-u z^{2}\right) d z=0$
i.e. $\left.z^{3} d u+z^{3}(1-2 v) d v\right)+\left(z^{2} u+z^{2} v-2 z^{2} v^{2}+2 z^{2} v^{2}-z^{2} v-u z^{2}\right) d z=0$
i.e. $\left.z^{3} d u+z^{3}(1-2 v) d v\right)+0 d z=0$
i.e. $d u+(1-2 v) d v=0$

Integrating, we get,
$u+v-v^{2}=c$
$\therefore \frac{x}{z}+\frac{y}{z}-\frac{y^{2}}{z^{2}}=\mathrm{c}$
i.e. $(x+y) z-y^{2}=c z^{2}$
be the solution of given equation.

Ex. Solve yzdx $+2 z x d y-3 x y d z=0$
Proof: Let yzdx $+2 z x d y-3 x y d z=0$ be the given homogeneous equation,
with $\mathrm{P}=\mathrm{yz}, \mathrm{Q}=2 \mathrm{zx}$ and $\mathrm{R}=-3 \mathrm{xy}$ and is integrable.
$\therefore \rho=\mathrm{Px}+\mathrm{Qy}+\mathrm{Rz}=\mathrm{xyz}+2 \mathrm{yzx}-3 \mathrm{zxy}=0$
\therefore To solve the given equation put $\mathrm{x}=\mathrm{zu}$ and $\mathrm{y}=\mathrm{zv}$,
$\therefore \mathrm{dx}=\mathrm{udz}+\mathrm{zdu}$ and $\mathrm{dy}=\mathrm{vdz}+\mathrm{zdv}$
\therefore the given equation becomes
$v z^{2}(u d z+z d u)+\left(2 z^{2} u\right)(v d z+z d v)-\left(3 z^{2} u v\right) d z=0$
i.e. $v z^{3} d u+2 u z^{3} d v+\left(u v z^{2}+2 z^{2} u v-3 z^{2} u v\right) d z=0$
i.e. $v z^{3} d u+2 u z^{3} d v+0 d z=0$
i.e. $v d u+2 u d v=0$
i.e. $\frac{d u}{u}+2 \frac{d v}{v}=0$

Integrating, we get,
$\log u+2 \log v=\log c$
$\therefore u v^{2}=\mathrm{c}$
i.e. $\frac{x}{z}\left(\frac{y^{2}}{z^{2}}\right)=\mathrm{c}$
i.e. $x y^{2}=c z^{3}$
be the solution of given equation.

Ex. Solve $y z^{2}\left(x^{2}-y z\right) d x+z x^{2}\left(y^{2}-x z\right) d y+x y^{2}\left(z^{2}-x y\right) d z=0$
Proof: Let $y z^{2}\left(x^{2}-y z\right) d x+z x^{2}\left(y^{2}-x z\right) d y+x y^{2}\left(z^{2}-x y\right) d z=0$
be the given homogeneous equation, which is integrable with
$P=y z^{2}\left(x^{2}-y z\right), Q=z x^{2}\left(y^{2}-x z\right)$ and $R=x y^{2}\left(z^{2}-x y\right)$
$\therefore P x+Q y+R z=x y z^{2}\left(x^{2}-y z\right)+y z x^{2}\left(y^{2}-x z\right)+\mathrm{Zxy}^{2}\left(\mathrm{z}^{2}-x y\right)$

$$
=x y z\left(x^{2} z-y z^{2}+x y^{2}-x^{2} z+y z^{2}-x y^{2}\right)
$$

\therefore To solve the given equation put $\mathrm{x}=\mathrm{zu}$ and $\mathrm{y}=\mathrm{zv}$,
$\therefore \mathrm{dx}=\mathrm{udz}+\mathrm{zdu}$ and $\mathrm{dy}=\mathrm{vdz}+\mathrm{zdv}$
\therefore the given equation becomes
$v z^{3}\left(u^{2} z^{2}-v z^{2}\right)(u d z+z d u)+u^{2} z^{3}\left(v^{2} z^{2}-u z^{2}\right)(v d z+z d v)+u v^{2} z^{3}\left(z^{2}-u v z^{2}\right) d z=0$
i.e. $z^{5}\left[\left(u^{2} v-v^{2}\right)(u d z+z d u)+\left(u^{2} v^{2}-u^{3}\right)(v d z+z d v)+\left(u v^{2}-u^{2} v^{3}\right) d z\right]=0$
i.e. $\left(u^{2} v-v^{2}\right) z d u+\left(u^{2} v^{2}-u^{3}\right) z d v+\left(u^{3} v-u v^{2}+u^{2} v^{3}-u^{3} v+u v^{2}-u^{2} v^{3}\right) d z=0$
i.e. $\left(u^{2}-v\right) v z d u+\left(v^{2}-u\right) u^{2} z d v=0$
i.e. $u^{2} v d u-v^{2} d u+u^{2} v^{2} d v-u^{3} d v=0$
i.e. $u^{2}(v d u-u d v)+u^{2} v^{2} d v-v^{2} d u=0$

Dividing by $u^{2} v^{2}$, we get,
i.e. $\frac{v d u-u d v}{v^{2}}+d v-\frac{d u}{u^{2}}=0$
i.e. $d\left(\frac{u}{v}\right)+d v+d\left(\frac{1}{u}\right)=0$

Integrating, we get,
$\frac{u}{v}+\mathrm{v}+\frac{1}{u}=\mathrm{c}$
$\therefore \mathrm{u}^{2}+\mathrm{uv}^{2}+\mathrm{v}=$ cuv
i.e. $\left(\frac{x^{2}}{z^{2}}\right)+\frac{x}{z}\left(\frac{y^{2}}{z^{2}}\right)+\frac{y}{z}=c\left(\frac{x}{z}\right)\left(\frac{y}{z}\right)$
i.e. $x^{2} z+x y^{2}+y z^{2}=c x y z$
be the solution of given equation.

MULTIPLE CHOICE QUESTIONS [MCQ'S)]

1) The differential equation of the form $u_{1} \mathrm{dx}_{1}+\mathrm{u}_{2} \mathrm{dx}_{2}+\ldots . .+\mathrm{u}_{\mathrm{n}} \mathrm{dx}_{\mathrm{n}}=0$ is called differential equation in n independent variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots, \mathrm{x}_{\mathrm{n}}$.
A) Pfaffian
B) Linear
C) Homogeneous
D) None of these
2) Pfaffian differential equation is also called differential equation.
A) linear
B) total
C) homogeneous
D) None of these
3) If P, Q, R, are functions of x, y, z, then the differential equation $P d x+Q d y+R d z=0$ is called differential equation.
A) simultaneous
B) Pfaffian
C) linear
D) Non Linear
4) If there exists a function $u(x, y, z)$, such that $P d x+Q d y+R d z=d u$, then the Pfaffian differential equation $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$ is said to be $\ldots \ldots$
A) exact
B) not exact
C) may or may not be exact
D) None of these
5) Pfaffian differential equation $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$ is said to be $\ldots \ldots$, if the equation is exact or can be made exact.
A) not integrable
B) integrable
C) linear
D) None of these
6) Statement 'Every exact differential equation is integrable.' is \qquad
A) true
B) false
C) may be true or false
D) None of these
7) Every exact differential equation is
A) not integrable
B) integrable
C) may or may not integrable
D) None of these
8) Statement 'Every integrable differential equation is exact' is
A) true
B) false
C) may be true or false
D) None of these
9) An integrable differential equation
A) is exact
B) is not exact
C) may or may not exact
D) None of these
10) If the Pfaffian differential equation $P d x+Q d y+R d z=0$ satisfies the conditions $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}$ and $\frac{\partial R}{\partial x}=\frac{\partial P}{\partial z}$, then given equation is
A) exact
B) not exact
C) may or may not exact
D) None of these
11) If the Pfaffian differential equation $P d x+Q d y+R d z=0$ is exact, then it satisfies the conditions......
A) $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$
B) $\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}$
C) $\frac{\partial R}{\partial x}=\frac{\partial P}{\partial z}$
D) All above
12) If the differential equation $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$ is exact, then
$\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y} \& \frac{\partial R}{\partial x}=\ldots \ldots$
A) $\frac{\partial P}{\partial z}$
B) $\frac{\partial P}{\partial y}$
C) $\frac{\partial z}{\partial P}$
D) $\frac{\partial y}{\partial P}$
13) The differential equation $(y z+2 x) d x+(z x-2 z) d y+(x y-2 y) d z=0$ is \qquad
A) exact
B) not exact
C) may or may not exact
D) None of these
14) The differential equation $\left(x^{2}-y z\right) d x+\left(y^{2}-z x\right) d y+\left(z^{2}-x y\right) d z=0$ is
A) exact
B) not exact
C) may or may not exact
D) None of these
15) The differential equation $\left(y z-x^{3}\right) d x+\left(z x-y^{3}\right) d y+\left(x y-z^{3}\right) d z=0$ is
A) exact
B) not exact
C) may or may not exact
D) None of these
16) The differential equation $\left(2 x+y^{2}+2 x z\right) d x+2 x y d y+x^{2} d z=0$ is.
A) exact
B) not exact
C) may or may not exact
D) None of these
17) The differential equation $(y+z) d x+(z+x) d y+(x+y) d z=0$ is......
A) exact
B) not exact
C) may or may not exact
D) None of these
18) The differential equation $(y+z) d x+d y+d z=0$ is
A) exact
B) not exact
C) may or may not exact
D) None of these
19) For the differential equation $x d x+y d y+z d z=0$. Which of the following is true?
A) $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$
B) $\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}$
C) $\frac{\partial R}{\partial x}=\frac{\partial P}{\partial z}$
D) All above
20) For the differential equation $(y+z) d x+(z+x) d y+(x+y) d z=0$. Which of the following is true?
A) $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$
B) $\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}$
C) $\frac{\partial R}{\partial x}=\frac{\partial P}{\partial z}$
D) All above
21) The differential equation $\left(2 x+y^{2}+2 x z\right) d x+2 x y d y+x^{2} d z=0$ is
A) not integrable
B) integrable
C) may or may not integrable
D) None of these
22) The differential equation $(y+z) d x+d y+d z=0$ is
A) integrable
B) not integrable
C) may or may not integrable
D) None of these
23) If the differential equation $P d x+Q d y+R d z=0$ is $(a-z)(y d x+x d y)+x y d z=0$, then $\mathrm{P}=\ldots \ldots$.
A) $a-z$
B) $(a-z) y$
C) $(a-z) x$
D) $x y$
24) If the differential equation $P d x+Q d y+R d z=0$ is $(a-z)(y d x+x d y)+x y d z=0$, then $\mathrm{Q}=$ \qquad
A) $a-z$
B) $(a-z) y$
C) $(a-z) x$
D) $x y$
25) If the differential equation $P d x+Q d y+R d z=0$ is $z y d x=z x d y+y^{2} d z$, then $\mathrm{Q}=$ \qquad
A) zx
B) $-z x$
C) zy
D) y^{2}
26) If the differential equation $P d x+Q d y+R d z=0$ is $z y d x=z x d y+y^{2} d z$, then $\mathrm{R}=$ \qquad
A) zy
B) $-z x$
C) y^{2}
D) $-y^{2}$
27) If the differential equation $P d x+Q d y+R d z=0$ is $2 x^{2} y d x+3 x y^{2} d y+z d z=0$, then the value of P is
A) $2 x^{2} y$
B) $3 x y^{2}$
C) z
D) x^{3}
28) If the differential equation $P d x+Q d y+R d z=0$ is $(y z+2 x) d x+(z x-2 z) d y+(x y-2 y) d z=0$, then $Q=$ \qquad
A) $y z+2 x$
B) $\mathrm{zx}-2 \mathrm{z}$
C) $x y-2 y$
D) None of these
29) If the differential equation $P d x+Q d y+R d z=0$ is
$\left(y z-x^{3}\right) d x+\left(z x-y^{3}\right) d y+\left(x y-z^{3}\right) d z=0$, then $R=$
A) $y z-x^{3}$
B) $z x-y^{3}$
C) $x y-z^{3}$
D) 0
30) If the differential equation $P d x+Q d y+R d z=0$ is $(y z+x y z) d x+(z x+x y z) d y+(x y+x y z) d z=0$, then $Q=$
A) $y z+x y z$
B) $z x+x y z$
C) $x y+x y z$
D) $x y+x y z+y z$
31) If the differential equation $P d x+Q d y+R d z=0$ is $2 x^{2} y d x+3 x y^{2} d y+z d z=0$, then $\frac{\partial P}{\partial y}=$
A) $2 x^{2}$
B) $3 x y^{2}$
C) z
D) x^{3}
32) If the differential equation $P d x+Q d y+R d z=0$ is $2 x^{2} y d x+3 x y^{2} d y+z d z=0$, then $\frac{\partial \mathrm{P}}{\partial \mathrm{z}}=\ldots \ldots$
A) $2 x^{2}$
B) $3 x y^{2}$
C) z
D) 0
33) If the differential equation $P d x+Q d y+R d z=0$ is $2 x^{2} y d x+3 x y^{2} d y+z d z=0$, then $\frac{\partial Q}{\partial x}=\ldots \ldots$
A) $2 x^{2}$
B) $3 y^{2}$
C) z
D) x^{3}
34) If the differential equation $P d x+Q d y+R d z=0$ is $2 x^{2} y d x+3 x y^{2} d y+z d z=0$, then $\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=$
A) $2 x^{2}$
B) $3 y^{2}$
C) z
D) 0
35) If the differential equation $P d x+Q d y+R d z=0$ is $2 x^{2} y d x+3 x y^{2} d y+z d z=0$, then $\frac{\partial R}{\partial x}=\ldots \ldots$
A) $2 x^{2}$
B) $3 y^{2}$
C) z
D) 0
36) If the differential equation $P d x+Q d y+R d z=0$ is $2 x^{2} y d x+3 x y^{2} d y+z d z=0$, then $\frac{\partial \mathrm{R}}{\partial \mathrm{y}}=$
A) $2 x^{2}$
B) $3 y^{2}$
C) z
D) 0
37) If the differential equation $P d x+Q d y+R d z=0$ is $(a-z)(y d x+x d y)+x y d z=0$, then $\frac{\partial P}{\partial y}=\ldots \ldots$
A) $a-z$
B) $(a-z) y$
C) $(a-z) x$
D) x
38) If the differential equation $P d x+Q d y+R d z=0$ is $(a-z)(y d x+x d y)+x y d z=0$, then $\frac{\partial P}{\partial z}=\ldots \ldots$
A) $a-z$
B) $(a-z) y$
C) -y
D) y
39) If the differential equation $P d x+Q d y+R d z=0$ is $(a-z)(y d x+x d y)+x y d z=0$, then $\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}=$
A) $a-z$
B) $(a-z) x$
C) x
D) $-x$
40) If the differential equation $P d x+Q d y+R d z=0$ is $(a-z)(y d x+x d y)+x y d z=0$, then $\frac{\partial Q}{\partial z}=\ldots \ldots$
A) $a-z$
B) $(a-z) x$
C) x
D) $-x$
41) If the differential equation $P d x+Q d y+R d z=0$ is $z y d x=z x d y+y^{2} d z$, then $\frac{\partial \mathrm{R}}{\partial \mathrm{y}}=$.
A) z
B) 0
C) $-2 y$
D) $2 y$
42) If the differential equation $P d x+Q d y+R d z=0$ is $z y d x=z x d y+y^{2} d z$, then $\frac{\partial Q}{\partial x}=\ldots \ldots$
A) $-z$
B) z
C) $-2 y$
D) $2 y$
43) If the differential equation $P d x+Q d y+R d z=0$ is $z y d x=z x d y+y^{2} d z$, then $\frac{\partial \mathrm{Q}}{\partial \mathrm{z}}=$
A) x
B) $-x$
C) $-2 y$
D) 2 y
44) To solve the equation $(y+z) d x+d y+d z=0$, we divide the equation by
A) z
B) y
C) $y+z$
D) $x y z$
45) To solve the equation $x d y-y d x-2 x^{2} z d z=0$, we divide the equation by \ldots...
A) $x^{2} z$
B) x^{2}
C) $x y$
D) $x y z$
46) To solve the equation $z y d x=z x d y+y^{2} d z$, we divide the equation by $\ldots \ldots$.
A) $y^{2} z$
B) zy
C) zx
D) $x y z$
47) To solve the equation $x z^{2} d x-z d y+y d z=0$, we divide the equation by $\ldots \ldots$
A) $x z^{2}$
B) x
C) z^{2}
D) $x y z$
48) To solve the equation $\left(y^{2}+z^{2}-x^{2}\right) d x-2 x y d y-2 x z d z=0$, we rearrange the terms
by adding and subtracting
A) $x^{2} d x$
B) $y^{2} d x$
C) $z^{2} d x$
D) $x y z$
49) Solution of equation $y d x+x d y=0$ is \ldots...
A) $x y=c$
B) $\mathrm{yz}=\mathrm{c}$
C) $\mathrm{zx}=\mathrm{c}$
D) $x y z=c$
50) Solution of equation $y z d x+x z d y+x y d z=0$ is
A) $x y=c$
B) $\mathrm{yz}=\mathrm{c}$
C) $\mathrm{zx}=\mathrm{c}$
D) $x y z=c$
51) Solution of equation $(y+z) d x+d y+d z=0$ is \qquad
A) $x+\log (y+z)=c$
B) $\log x+y+z=c$
C) $y+z=c$
D) $x+y+z=c$
52) If P, Q, R, are homogeneous functions of x, y, z, of same degree, then the Pfaffian differential equation $P d x+Q d y+R d z=0$ is called $\ldots .$. differential equation
A) simultaneous
B) homogeneous
C) linear
D) Non Linear
53) The Pfaffian differential equation $(x-y) d x-x d y+z d z=0$ is \qquad equation.
A) homogeneous
B) non homogeneous
C) may or may not homogeneous
D) None of these
54) The Pfaffian differential equation $2(y+z) d x-(x+z) d y+(2 y-x+z) d z=0$ is \qquad
A) homogeneous equation
B) non homogeneous equation
C) simultaneous equation
D) None of these
55) The differential equation $\left(y^{2}+z^{2}-x^{2}\right) d x-2 x y d y-2 x z d z=0$ is $\ldots .$. . equation.
A) not homogeneous
B) homogeneous
C) may or may not homogeneous
D) None of these
56) The differential equation $y z^{2}\left(x^{2}-y z\right) d x+z x^{2}\left(y^{2}-x z\right) d y+x y^{2}\left(z^{2}-x y\right) d z=0$ is equation.
A) simultaneous
B) homogeneous
C) linear
D) Non homogeneous
57) If $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$ is homogeneous differential equation with $\rho=P x+Q y+R z \neq 0$, then it is always integrable since it has an I.F. $=\ldots$
A) ρ
B) $\frac{1}{\rho}$
C) e^{ρ}
D) None of these
58) For homogeneous differential equation $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$,
if $\rho=P x+Q y+R z \neq 0$, then the differential equation is always
A) integrable
B) not integrable
C) may or may not integrable
D) None of these
59) For homogeneous differential equation $P d x+Q d y+R d z=0$ if $\rho=P x+Q y+R z=0$, then the differential equation is \qquad
A) integrable
B) not integrable
C) may or may not integrable
D) None of these
60) For homogeneous differential equation $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$,
if $\rho=P x+Q y+R z=0$, then to solve this equation we put
A) $x=z u$ and $y=z v$
B) $u=x z$ and $v=y z$
C) $z=x u$ and $z=y v$
D) None of these

UNIT-4: DIFFERENCE EQUNTIONS

Shift Operator: Shift operator E is defined as $\operatorname{Ef}(x)=f(x+h)$.
Note: $E^{2} f(x)=E[E f(x)]=E f(x+h)=f(x+2 h)$, Similarly $E^{3} f(x)=f(x+3 h)$ and so on,
In general $E^{n} f(x)=f(x+n h)$, where n is any real number.
Forward difference Operator: Forward difference operator Δ is defined as $\Delta \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})$.
Note: i) $\Delta f(x)=f(x+h)-f(x)$ is called first forward difference of $f(x)$ and $\Delta^{n} f(x)$ is called $n^{\text {th }}$ forward difference of $f(x)$.
ii) $\Delta \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})=\mathrm{Ef}(\mathrm{x})-\mathrm{f}(\mathrm{x})=(\mathrm{E}-1) \mathrm{f}(\mathrm{x})$
$\therefore \Delta=\mathrm{E}-1$ i.e $\mathrm{E}=\Delta+1$
be the relation between shift operator and forward difference operator.
Difference Equations: A relation of the form $\mathrm{F}\left[\mathrm{x}, \mathrm{y}, \frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}, \frac{\Delta^{2} y}{\Delta \mathrm{x}^{2}}, \ldots, \ldots, \frac{\Delta^{n} y}{\Delta \mathrm{x}^{n}}\right]=0$ is called a difference equation.
Note: i) If $\mathrm{y}=\mathrm{f}(\mathrm{x})$, then $\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}=\frac{f(x+\mathrm{h})-f(x)}{\mathrm{h}}=\frac{E f(x)-f(x)}{\mathrm{h}}=\frac{(E-1) f(x)}{\mathrm{h}}$,
$\frac{\Delta^{2} y}{\Delta \mathrm{x}^{2}}=\frac{f(x+2 \mathrm{~h})-2 f(x+\mathrm{h})+f(x)}{\mathrm{h}^{2}}=\frac{\mathrm{E}^{2} f(x)-2 E f(x)+f(x)}{\mathrm{h}^{2}}=\frac{(\mathrm{E}-1)^{2} f(x)}{\mathrm{h}^{2}}$,
and so on, ingeneral, $\frac{\Delta^{n} y}{\Delta \mathrm{x}^{n}}=\frac{(\mathrm{E}-1)^{n} f(x)}{\mathrm{h}^{n}}$. Where h is the interval of differencing.
ii) If $\mathrm{y}=\mathrm{f}(\mathrm{x})$, then a relation of the form
$\varphi[\mathrm{x}, \mathrm{f}(\mathrm{x}), f(x+\mathrm{h}), f(x+2 \mathrm{~h}), \ldots \ldots, f(x+n \mathrm{~h})]=0$ is called a difference equation.
Order of a difference equation: The difference between the largest and smallest arguments for the function involved divided by h is called order of a difference equation.
e.g. Order of a difference equation
$\varphi[\mathrm{x}, \mathrm{f}(\mathrm{x}), f(x+\mathrm{h}), f(x+2 \mathrm{~h}), \ldots \ldots, f(x+n \mathrm{~h})]=0$ is $\frac{(x+n \mathrm{~h})-(x)}{\mathrm{h}}=\mathrm{n}$.
Solution of a difference equation: Any function which satisfies the given difference equation is called solution of a difference equation.
Subscript Notation: $y=f(x)$ is written in subscript form as $y_{x}=f(x)$ and $y_{x+n}=f(x+n h)$.
e.g. i) The difference equation $f(x+2 \mathrm{~h})-5 f(x+\mathrm{h})+6 f(x)=0$ is written in subscript form as $\mathrm{y}_{\mathrm{x}+2}-5 \mathrm{y}_{\mathrm{x}+1}+6 \mathrm{y}_{\mathrm{x}}=0$.
ii) A difference equation $\varphi[\mathrm{x}, \mathrm{f}(\mathrm{x}), f(x+\mathrm{h}), f(x+2 \mathrm{~h}), \ldots \ldots, f(x+n \mathrm{~h})]=0$
is written in subscript form as $\varphi\left[\mathrm{x}, \mathrm{y}_{\mathrm{x}}, \mathrm{y}_{\mathrm{x}+1}, \mathrm{y}_{\mathrm{x}+2}, \ldots \ldots, \mathrm{y}_{\mathrm{x}+\mathrm{n}}\right]=0$.
Note: Difference equation $\varphi\left[\mathrm{x}, \mathrm{y}_{\mathrm{x}}, \mathrm{y}_{\mathrm{x}+1}, \mathrm{y}_{\mathrm{x}+2}, \ldots \ldots, \mathrm{y}_{\mathrm{x}+\mathrm{n}}\right]=0$ is also expressed as $\varphi\left[\mathrm{x}, \mathrm{y}_{\mathrm{x}}, E \mathrm{Ey}_{\mathrm{x}}, \mathrm{E}^{2} \mathrm{y}_{\mathrm{x}}, \ldots \ldots, \mathrm{E}_{\mathrm{y}}^{\mathrm{n}} \mathrm{y}_{\mathrm{x}}\right]=0$.
Linear Difference Equation: An equation of the form
$\mathrm{a}_{0}(\mathrm{x}) \mathrm{E}^{\mathrm{n}} \mathrm{y}_{\mathrm{x}}+\mathrm{a}_{1}(\mathrm{x}) \mathrm{E}^{\mathrm{n}-1} \mathrm{y}_{\mathrm{x}}+\mathrm{a}_{2}(\mathrm{x}) \mathrm{E}^{\mathrm{n}-2} \mathrm{y}_{\mathrm{x}}+\ldots \ldots+\mathrm{a}_{\mathrm{n}}(\mathrm{x}) \mathrm{y}_{\mathrm{x}}=\mathrm{R}(\mathrm{x})$ i.e. $\Phi(\mathrm{E}) \mathrm{y}_{\mathrm{x}}=\mathrm{R}(\mathrm{x})$
where $\Phi(E)=a_{0}(x) E^{n}+a_{1}(x) E^{n-1}+a_{2}(x) E^{n-2}+\ldots \ldots+a_{n}(x), a_{0}(x) \neq 0$ and $\mathrm{a}_{\mathrm{i}}(\mathrm{x})(\mathrm{i}=0,1,2, \ldots \ldots)$ are constants, then the equation (1) is called a linear difference equation with constant coefficients.
Non-Linear Difference Equation: If a difference equation is not of the form $\Phi(E) y_{x}=R(x)$, then the equation it is called a non-linear difference equation.
e. g. i) $\left(E^{3}-6 E^{2}+12\right) y_{x}=0$ is a linear difference equation with constant coefficients.
ii) $\left(x E^{2}-x E+4\right) y_{x}=4 x+1$ is a linear difference equation with variable coefficients.
iii) $y_{x}^{2}+y_{x} y_{x+1}=10 \mathrm{x}$ is a non-linear difference equation.

Formulation of Difference Equation: From the general solution of a difference equation which contain k arbitrary constants, to find a difference equation, we operate Δ, k times on this G.S. and eliminate these arbitrary constants.
Note: In this unit we take interval difference $h=1$
i.e. $\operatorname{Ef}(x)=f(x+1) \& \Delta f(x)=f(x+1)-f(x)$

Ex. Given $\mathrm{f}(\mathrm{x})=\mathrm{c} \cdot 3^{\mathrm{x}}+\mathrm{x} \cdot 3^{\mathrm{x}-1}$, find the corresponding difference equation.
Solution: Given solution $\mathrm{f}(\mathrm{x})=\mathrm{c} .3^{\mathrm{x}}+\mathrm{x} .3^{\mathrm{x}-1}$, contain only one arbitrary constant, so we operate Δ once on this $f(x)$, we get,

$$
\begin{aligned}
& \Delta \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+1)-\mathrm{f}(\mathrm{x})=\mathrm{c} \cdot 3^{\mathrm{x}+1}+(\mathrm{x}+1) \cdot 3^{\mathrm{x}}-\mathrm{c} \cdot 3^{\mathrm{x}}-\mathrm{x} \cdot 3^{\mathrm{x}-1} \\
&=3 \mathrm{c} \cdot 3^{\mathrm{x}}+3 \mathrm{x} \cdot 3^{\mathrm{x-1}}+3 \cdot 3^{\mathrm{x}-1}-\mathrm{c} \cdot 3^{\mathrm{x}}-\mathrm{x} \cdot 3^{\mathrm{x}-1} \\
&=2 \mathrm{c} \cdot 3^{\mathrm{x}}+(2 \mathrm{x}+3) 3^{\mathrm{x}-1} \\
&=2\left[\mathrm{f}(\mathrm{x})-\mathrm{x} \cdot 3^{\mathrm{x}-1}\right]+(2 \mathrm{x}+3) 3^{\mathrm{x}-1} \text { from given equation } \mathrm{c} \cdot 3^{\mathrm{x}}=\mathrm{f}(\mathrm{x})-\mathrm{x} \cdot 3^{\mathrm{x}-1} \\
& \therefore \mathrm{f}(\mathrm{x}+1)-\mathrm{f}(\mathrm{x})=2 \mathrm{f}(\mathrm{x})-2 \mathrm{x} \cdot 3^{\mathrm{x}-1}+2 \mathrm{x} \cdot 3^{\mathrm{x}-1}+3^{\mathrm{x}}
\end{aligned}
$$

i. e. $f(x+1)-3 f(x)=3^{x}$ be the required difference equation.

Ex. Given $u_{x}=c_{1} 2^{x}+c_{2} 3^{x}+\frac{1}{2}$, find the corresponding difference equation.
Solution: Given solution $u_{x}=c_{1} 2^{x}+c_{2} 3^{x}+\frac{1}{2}$ contain two arbitrary constants,
so we operate Δ twice on this u_{x}, we get,

$$
\begin{align*}
\Delta \mathrm{u}_{\mathrm{x}} & =\mathrm{u}_{\mathrm{x}+1}-\mathrm{u}_{\mathrm{x}}=\mathrm{c}_{1} 2^{\mathrm{x}+1}+\mathrm{c}_{2} 3^{\mathrm{x}+1}+\frac{1}{2}-\mathrm{c}_{1} 2^{\mathrm{x}}-\mathrm{c}_{2} 3^{\mathrm{x}}-\frac{1}{2} \\
& =2 \mathrm{c}_{1} 2^{\mathrm{x}}+3 \mathrm{c}_{2} 3^{\mathrm{x}}-\mathrm{c}_{1} 2^{\mathrm{x}}-\mathrm{c}_{2} 3^{\mathrm{x}} \\
& =\mathrm{c}_{1} 2^{\mathrm{x}}+2 \mathrm{c}_{2} 3^{\mathrm{x}} \ldots \ldots \text { (i) } \\
\Delta^{2} \mathrm{u}_{\mathrm{x}} & =\mathrm{c}_{1} 2^{\mathrm{x}+1}+2 \mathrm{c}_{2} 3^{\mathrm{x}+1}-\mathrm{c}_{1} 2^{\mathrm{x}}-2 \mathrm{c}_{2} 3^{\mathrm{x}} \\
& =2 \mathrm{c}_{1} 2^{\mathrm{x}}+6 \mathrm{c}_{2} 3^{\mathrm{x}}-\mathrm{c}_{1} 2^{\mathrm{x}}-2 \mathrm{c}_{2} 3^{\mathrm{x}} \\
& =\mathrm{c}_{1} 2^{\mathrm{x}}+4 \mathrm{c}_{2} 3^{\mathrm{x}} \quad \ldots \ldots . \text { (ii) } \tag{ii}
\end{align*}
$$

Now equation (ii) - (i) gives,

$$
\Delta^{2} \mathrm{u}_{\mathrm{x}}-\Delta \mathrm{u}_{\mathrm{x}}=\mathrm{c}_{1} 2^{\mathrm{x}}+4 \mathrm{c}_{2} 3^{\mathrm{x}}-\mathrm{c}_{1} 2^{\mathrm{x}}-2 \mathrm{c}_{2} 3^{\mathrm{x}}=2 \mathrm{c}_{2} 3^{\mathrm{x}}
$$

From (i), we get,

$$
\Delta u_{x}=c_{1} 2^{x}+\Delta^{2} u_{x}-\Delta u_{x} \text { i.e. } c_{1} 2^{x}=2 \Delta u_{x}-\Delta^{2} u_{x}
$$

Hence from given equation, we have,

$$
\begin{aligned}
\mathrm{u}_{\mathrm{x}} & =2 \Delta \mathrm{u}_{\mathrm{x}}-\Delta^{2} \mathrm{u}_{\mathrm{x}}+\frac{1}{2}\left(\Delta^{2} \mathrm{u}_{\mathrm{x}}-\Delta \mathrm{u}_{\mathrm{x}}\right)+\frac{1}{2} \\
& =\frac{3}{2} \Delta \mathrm{u}_{\mathrm{x}}-\frac{1}{2} \Delta^{2} \mathrm{u}_{\mathrm{x}}+\frac{1}{2} \\
& =\frac{3}{2}\left(\mathrm{u}_{\mathrm{x}+1}-\mathrm{u}_{\mathrm{x}}\right)-\frac{1}{2}\left(\mathrm{u}_{\mathrm{x}+2}-2 \mathrm{u}_{\mathrm{x}+1}+\mathrm{u}_{\mathrm{x}}\right)+\frac{1}{2} \\
\therefore & 2 \mathrm{u}_{\mathrm{x}}=3 \mathrm{u}_{\mathrm{x}+1}-3 \mathrm{u}_{\mathrm{x}}-\mathrm{u}_{\mathrm{x}+2}+2 \mathrm{u}_{\mathrm{x}+1}-\mathrm{u}_{\mathrm{x}}+1 \\
\therefore & \mathrm{u}_{\mathrm{x}+2}-5 \mathrm{u}_{\mathrm{x}+1}+6 \mathrm{u}_{\mathrm{x}}=1 \text { be the required difference equation. }
\end{aligned}
$$

Ex. Form the difference equation corresponding to the family of curves $y=a x^{2}+b x-3$,
Solution: Given family of curves $y_{x}=a x^{2}+b x-3$ contain two arbitrary constants,
so we operate Δ twice on this y_{x}, we get,

$$
\begin{align*}
\Delta y_{x}= & y_{x+1}-y_{x}=a(x+1)^{2}+b(x+1)-3-\mathrm{ax}^{2}-\mathrm{bx}+3 \\
& =2 a \mathrm{ax}+\mathrm{a}+\mathrm{b} \ldots \ldots .(\mathrm{i}) \tag{i}\\
\Delta^{2} \mathrm{y}_{\mathrm{x}} & =2 \mathrm{a}(\mathrm{x}+1)+\mathrm{a}+\mathrm{b}-2 \mathrm{ax}-\mathrm{a}-\mathrm{b} \\
& =2 \mathrm{a} \\
\therefore \mathrm{a}= & \frac{1}{2} \Delta^{2} \mathrm{y}_{\mathrm{x}}
\end{align*}
$$

Putting in (i), we get,
$\Delta y_{x}=x \Delta^{2} y_{x}+\frac{1}{2} \Delta^{2} y_{x}+b$
$\therefore \mathrm{b}=\Delta \mathrm{y}_{\mathrm{x}}-\mathrm{x} \Delta^{2} \mathrm{y}_{\mathrm{x}}-\frac{1}{2} \Delta^{2} \mathrm{y}_{\mathrm{x}}$
Hence from given equation, we have,
$\mathrm{y}_{\mathrm{x}}=\mathrm{x}^{2} \frac{1}{2} \Delta^{2} \mathrm{y}_{\mathrm{x}}+\mathrm{x}\left(\Delta \mathrm{y}_{\mathrm{x}}-\mathrm{x} \Delta^{2} \mathrm{y}_{\mathrm{x}}-\frac{1}{2} \Delta^{2} \mathrm{y}_{\mathrm{x}}\right)-3$
$\therefore 2 \mathrm{y}_{\mathrm{x}}=\mathrm{x}^{2} \Delta^{2} \mathrm{y}_{\mathrm{x}}+2 \mathrm{x} \Delta \mathrm{y}_{\mathrm{x}}-2 \mathrm{x}^{2} \Delta^{2} \mathrm{y}_{\mathrm{x}}-\mathrm{x} \Delta^{2} \mathrm{y}_{\mathrm{x}}-6$
$\therefore 2 \mathrm{y}_{\mathrm{x}}=-\left(\mathrm{x}^{2}+\mathrm{x}\right) \Delta^{2} \mathrm{y}_{\mathrm{x}}+2 \mathrm{x} \Delta \mathrm{y}_{\mathrm{x}}-6$
$\therefore 2 y_{x}=-\left(\mathrm{x}^{2}+\mathrm{x}\right)\left(\mathrm{y}_{\mathrm{x}+2}-2 \mathrm{y}_{\mathrm{x}+1}+\mathrm{y}_{\mathrm{x}}\right)+2 \mathrm{x}\left(\mathrm{y}_{\mathrm{x}+1}-\mathrm{y}_{\mathrm{x}}\right)-6$
$\therefore 2 y_{x}=-\left(x^{2}+x\right) y_{x+2}+2\left(x^{2}+x\right) y_{x+1}-\left(x^{2}+x\right) y_{x}+2 x y_{x+1}-2 x y_{x}-6$
$\therefore 2 y_{x}=-\left(\mathrm{x}^{2}+\mathrm{x}\right) \mathrm{y}_{\mathrm{x}+2}+2\left(\mathrm{x}^{2}+2 \mathrm{x}\right) \mathrm{y}_{\mathrm{x}+1}-\left(\mathrm{x}^{2}+3 \mathrm{x}\right) \mathrm{y}_{\mathrm{x}}-6$
$\therefore\left(\mathrm{x}^{2}+\mathrm{x}\right) \mathrm{y}_{\mathrm{x}+2}-2\left(\mathrm{x}^{2}+2 \mathrm{x}\right) \mathrm{y}_{\mathrm{x}+1}+\left(\mathrm{x}^{2}+3 \mathrm{x}+2\right) \mathrm{y}_{\mathrm{x}}+6=0$
be the required difference equation.

Ex. Form the difference equation given that $y_{n}=A 3^{n}+B 5^{n}$, where A and B are arbitrary constants.
Solution: Given equation $y_{n}=A 3^{n}+B 5^{n}$.
$\therefore y_{n+1}=A 3^{n+1}+B 5^{n+1}=3 A 3^{n}+5 B 5^{n}$
$\& y_{n+2}=A 3^{n+2}+B 5^{n+2}=9 A 3^{n}+25 B 5^{n}$
Eliminating A and B from equations (i), (ii), (iii), we get,
$\left|\begin{array}{ccc}y_{n} & 1 & 1 \\ y_{n+1} & 3 & 5 \\ y_{n+2} & 9 & 25\end{array}\right|=0$
i.e. $y_{n}\left(-25 y_{n+1}+5 y_{n+2}+9 y_{n+1}-3 y_{n+2}=0\right.$
i.e. $2 y_{n+2^{-}} 16 y_{n+1}+30 y_{n}=0$
i.e. $y_{n+2^{-}} 8 y_{n+1}+15 y_{n}=0$
be the required difference equation.

Ex. Form the difference equation corresponding to the following general solution:
a) $y=c_{1} x^{2}+c_{2} x+c_{3}$
b) $\mathrm{y}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{n}\right)(-2)^{\mathrm{n}}$

Solution: a) Given solution $y_{x}=c_{1} x^{2}+c_{2} x+c_{3}$
contain three arbitrary constants $\mathrm{c}_{1}, \mathrm{c}_{2}$ and c_{3}, so we operate Δ thrice on this y_{x}, we get

$$
\begin{align*}
\Delta \mathrm{y}_{\mathrm{x}} & =\mathrm{y}_{\mathrm{x}+1}-\mathrm{y}_{\mathrm{x}}=\mathrm{c}_{1}(\mathrm{x}+1)^{2}+\mathrm{c}_{2}(\mathrm{x}+1)+\mathrm{c}_{3}-\mathrm{c}_{1} \mathrm{x}^{2}-\mathrm{c}_{2} \mathrm{x}-\mathrm{c}_{3} \\
& =2 \mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{1}+\mathrm{c}_{2} \ldots \ldots(2) \\
\Delta^{2} \mathrm{y}_{\mathrm{x}} & =\left[2 \mathrm{c}_{1}(\mathrm{x}+1)+\mathrm{c}_{1}+\mathrm{c}_{2}\right]-\left[2 \mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{1}+\mathrm{c}_{2}\right] \\
& =2 \mathrm{c}_{1} \ldots \ldots \text { (3) } \tag{3}
\end{align*}
$$

$\& \Delta^{3} \mathrm{y}_{\mathrm{x}}=2 \mathrm{c}_{1}-2 \mathrm{c}_{1}$
$\therefore(\mathrm{E}-1)^{3} \mathrm{y}_{\mathrm{x}}=0$
$\therefore\left(\mathrm{E}^{3}-3 \mathrm{E}^{2}+3 \mathrm{E}-1\right) \mathrm{y}_{\mathrm{x}}=0$
$\therefore y_{x+3}-3 y_{x+2}+3 y_{x+1}-y_{x}=0$ be the required difference equation.
b) Given solution $y_{n}=\left(c_{1}+c_{2} n\right)(-2)^{n} \quad$ i.e. $y_{n}=c_{1}(-2)^{n}+c_{2} n(-2)^{n}$
contain two arbitrary constants c_{1} and c_{2}.
$\therefore \mathrm{y}_{\mathrm{n}+1}=\mathrm{c}_{1}(-2)^{\mathrm{n}+1}+\mathrm{c}_{2}(\mathrm{n}+1)(-2)^{\mathrm{n}+1}=-2 \mathrm{c}_{1}(-2)^{\mathrm{n}}-2 \mathrm{c}_{2}(\mathrm{n}+1)(-2)^{\mathrm{n}}$
$\& y_{n+2}=c_{1}(-2)^{n+2}+c_{2}(n+2)(-2)^{n+2}=4 c_{1}(-2)^{n}+4 c_{2}(n+2)(-2)^{n}$
Eliminating c_{1} and c_{2} from equations (i), (ii), (iii), we get,
$\left|\begin{array}{ccc}y_{n} & 1 & n \\ y_{n+1} & -2 & -2(n+1) \\ y_{n+2} & 4 & 4(n+2)\end{array}\right|=0$
i.e. $y_{n}[-8 n-16+8 n+8]-y_{n+1}[4 n+8-4 n]+y_{n+2}[-2 n-2+2 n]=0$
i.e. $-2 y_{n+2^{-}} 8 y_{n+1}-8 y_{n}=0$
i.e. $y_{n+2}+4 y_{n+1}+4 y_{n}=0$
be the required difference equation.

Ex. Find the order of the difference equation $y_{x+2}-7 y_{x}=5$
Solution: Given difference equation is $y_{x+2}-7 y_{x}=5$
Here difference between the highest subscript and lowest subscript $=x+2-x=2$ \therefore order of given difference equation is 2 .

Ex. Find the order of the difference equation $y_{x+4}-5 y_{x+2}+6 y_{x}=0$.
Solution: Given difference equation is $y_{x+4}-5 y_{x+2}+6 y_{x}=0$.
Here difference between the highest subscript and lowest subscript $=x+4-x=4$
\therefore order of given difference equation is 4 .
Ex. Find the order of the difference equation $\Delta^{3} y_{x}+2 \Delta y_{x}+y_{x}=x+3$.
Solution: Given difference equation is $\Delta^{3} y_{x}+2 \Delta y_{x}+y_{x}=x+3$
i.e. $(\mathrm{E}-1)^{3} \mathrm{y}_{\mathrm{x}}+2(\mathrm{E}-1) \mathrm{y}_{\mathrm{x}}+\mathrm{y}_{\mathrm{x}}=\mathrm{x}+3$
i.e. $\left(E^{3}-3 E^{2}+3 E-1\right) y_{x}+(2 E-2) y_{x}+y_{x}=x+3$
i.e. $y_{x+3}-3 y_{x+2}+3 y_{x+1}-y_{x}+2 y_{x+1}-2 y_{x}+y_{x}=x+3$

Here difference between the highest subscript and lowest subscript $=\mathrm{x}+3-\mathrm{x}=3$
\therefore order of given difference equation is 3 .

Ex. Show that $\mathrm{y}_{\mathrm{x}}=\frac{x(x-1)}{2}$ is a solution of the difference equation $\mathrm{y}_{\mathrm{x}+1}-\mathrm{y}_{\mathrm{x}}=\mathrm{x}$.
Proof: We have $\mathrm{y}_{\mathrm{x}}=\frac{x(x-1)}{2}$

$$
\therefore \mathrm{y}_{\mathrm{x}+1}=\frac{(x+1) x}{2}
$$

Consider

$$
\begin{aligned}
\mathrm{LHS} & =\mathrm{y}_{\mathrm{x}+1}-\mathrm{y}_{\mathrm{x}} \\
& =\frac{(x+1) x}{2}-\frac{x(x-1)}{2} \\
& =\frac{x}{2}[\mathrm{x}+1-\mathrm{x}+1] \\
& =\mathrm{x} \\
& =\text { RHS }
\end{aligned}
$$

$\therefore \mathrm{y}_{\mathrm{x}}=\frac{x(x-1)}{2}$ is a solution of the given difference equation is proved.

Ex. Show that $y_{x}=1-\frac{2}{x}, x=1,2,3, \ldots$ is a solution of the first order difference equation $(\mathrm{x}+1) \mathrm{y}_{\mathrm{x}+1}+\mathrm{xy}_{\mathrm{x}}=2 \mathrm{x}-3, \mathrm{x}=1,2,3, \ldots$
Proof: We have $y_{x}=1-\frac{2}{x}, x=1,2,3, \ldots$

$$
\therefore \mathrm{y}_{\mathrm{x}+1}=1-\frac{2}{x+1}
$$

Consider

$$
\begin{aligned}
\mathrm{LHS} & =(\mathrm{x}+1) \mathrm{y}_{\mathrm{x}+1}+\mathrm{xy} \\
& =(\mathrm{x}+1)\left(1-\frac{2}{x+1}\right)+\mathrm{x}\left(1-\frac{2}{x}\right) \\
& =\mathrm{x}+1-2+\mathrm{x}-2 \\
& =2 \mathrm{x}-3
\end{aligned}
$$

= RHS
$\therefore \mathrm{y}_{\mathrm{x}}=1-\frac{2}{x}, \mathrm{x}=1,2,3, \ldots$ is a solution of the given difference equation is proved.

Ex. Show that $y_{x}=c_{1}+c_{2} 2^{x}-x$ is a solution of the difference equation

$$
y_{x+2}-3 y_{x+1}+2 y_{x}=1
$$

Proof: We have $y_{x}=c_{1}+c_{2} 2^{x}-x$
$\therefore \mathrm{y}_{\mathrm{x}+1}=\mathrm{c}_{1}+\mathrm{c}_{2} 2^{\mathrm{x}+1}-(\mathrm{x}+1)=\mathrm{c}_{1}+2 \mathrm{c}_{2} 2^{\mathrm{x}}-\mathrm{x}-1$
$\& y_{x+2}=c_{1}+c_{2} 2^{x+2}-(x+2)=c_{1}+4 c_{2} 2^{x}-x-2$

Consider

LHS $=y_{x+2}-3 y_{x+1}+2 y_{x}$

$$
\begin{aligned}
& =c_{1}+4 c_{2} 2^{x}-x-2-3\left[c_{1}+2 c_{2} 2^{x}-x-1\right]+2\left[c_{1}+c_{2} 2^{x}-x\right] \\
& =c_{1}+4 c_{2} 2^{x}-x-2-3 c_{1}-6 c_{2} 2^{x}+3 x+3+2 c_{1}+2 c_{2} 2^{x}-2 x \\
& =1 \\
& =\text { RHS }
\end{aligned}
$$

$\therefore \mathrm{y}_{\mathrm{x}}=\mathrm{c}_{1}+\mathrm{c}_{2} 2^{\mathrm{x}}-\mathrm{x}$ is a solution of the given difference equation is proved.

Second Order Homogenous Difference Equations: If $\mathrm{a}_{2} \neq 0$, then $\mathrm{y}_{\mathrm{x}+2}+\mathrm{a}_{1} \mathrm{y}_{\mathrm{x}+1}+\mathrm{a}_{2} \mathrm{y}_{\mathrm{x}}=0$ is called second order homogenous difference equation.

General Homogenous Difference Equations:

If $a_{n} \neq 0$, then $y_{x+n}+a_{1} y_{x+n-1}+a_{2} y_{x+n-2}+\ldots \ldots .+a_{n-1} y_{x+1}+a_{n} y_{x}=0$
is called $\mathrm{n}^{\text {th }}$ order homogenous difference equation.
Auxiliary Equations: When $\mathrm{y}_{\mathrm{x}}=\mathrm{m}^{\mathrm{x}}$, the auxiliary equation of general $\mathrm{n}^{\text {th }}$ order homogenous difference equation is $m^{n}+a_{1} m^{n-1}+a_{2} m^{n-2}+\ldots . .+a_{n-1} m+a_{n}=0$
Remark: i) If m_{1} and m_{2} are distinct real roots of an auxiliary equation $m^{2}+a_{1} m+a_{2}=0$ of given second order homogenous difference equation, then the solution is $\mathrm{y}_{\mathrm{x}}=\mathrm{c}_{1} m_{1}^{x}+\mathrm{c}_{2} m_{2}^{x}$.
ii) If m_{1} and m_{2} are equal real roots of an auxiliary equation $m^{2}+a_{1} m+a_{2}=0$ of given second order homogenous difference equation, then the solution is $\mathrm{y}_{\mathrm{x}}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} x\right) m_{1}^{x}$.
iii) If $\mathrm{m}=\alpha \pm i \beta$ are the complex roots of an auxiliary equation $m^{2}+a_{1} m+a_{2}=0$ of given second order homogenous difference equation, then the solution is $\mathrm{y}_{\mathrm{x}}=\rho^{\mathrm{x}}\left(\mathrm{c}_{1} \cos \mathrm{x} \theta+\mathrm{c}_{2} \sin \mathrm{x} \theta\right)$ where $\rho=\sqrt{\alpha^{2}+\beta^{2}}, \theta=\tan ^{-1}\left(\frac{\beta}{\alpha}\right)$ and $\mathrm{c}_{1}, \mathrm{c}_{2}$ are constants.
iv) If $m_{1}, m_{2}, \ldots, m_{n}$ are distinct real roots of an auxiliary equation of given $\mathrm{n}^{\text {th }}$ order homogenous difference equation, then the solution is $\mathrm{y}_{\mathrm{x}}=\mathrm{c}_{1} m_{1}^{x}+\mathrm{c}_{2} m_{2}^{x}+\ldots \ldots+\mathrm{c}_{\mathrm{n}} m_{n}^{x}$
v) If $m_{1}, m_{2}, \ldots, m_{k}$ are equal real roots of an auxiliary equation of given $\mathrm{n}^{\text {th }}$

$$
\mathrm{y}_{\mathrm{x}}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} x+\cdots+c_{k} x^{k-1}\right) m_{1}^{x} .
$$

Ex. Solve the difference equation $\mathrm{y}_{\mathrm{x}+3}-3 \mathrm{y}_{\mathrm{x}+2}-10 \mathrm{y}_{\mathrm{x}+1}+24 \mathrm{y}_{\mathrm{x}}=0$.
Solution: Given difference equation is $y_{x+3}-3 y_{x+2}-10 y_{x+1}+24 y_{x}=0$.
When we take $y_{x}=m^{x}$, the A.E.is
$m^{3}-3 m^{2}-10 m+24=0$
$(m-2)(m+3)(m-4)=0$
$\therefore \mathrm{m}=2,-3,4$ are the roots of an A.E.
Thus, the G.S. is
$y_{x}=C_{1} 2^{x}+C_{2}(-5)^{x}+C_{3} 4^{x}$.
Ex. Solve the difference equation $y_{x+2}-7 y_{x+1}+12 y_{x}=0$.
Solution: Given difference equation is $\mathrm{y}_{\mathrm{x}+2}-7 \mathrm{y}_{\mathrm{x}+1}+12 \mathrm{y}_{\mathrm{x}}=0$.
When we take $\mathrm{y}_{\mathrm{x}}=\mathrm{m}^{\mathrm{x}}$, the A.E.is
$m^{2}-7 m+12=0$
$(m-3)(m-4)=0$
$\therefore \mathrm{m}=3,4$ are the roots of an A.E.
Thus, the G.S. is
$\mathrm{y}_{\mathrm{x}}=\mathrm{C}_{1} 3^{\mathrm{x}}+\mathrm{C}_{2} 4^{\mathrm{x}}$
Ex. Solve the difference equation $y_{x+4}-4 y_{x+3}+6 y_{x+2}-4 y_{x+1}+y_{x}=0$.
Solution: Given difference equation is $y_{x+4}-4 y_{x+3}+6 y_{x+2}-4 y_{x+1}+y_{x}=0$.
When we take $\mathrm{y}_{\mathrm{x}}=\mathrm{m}^{\mathrm{x}}$, the A.E.is
$m^{4}-4 m^{3}+6 m^{2}-4 m+1=0$
$(m-1)^{4}=0$
$\therefore \mathrm{m}=1,1,1,1$ are the roots of an A.E.
Thus, the G.S. is

$$
y_{x}=\left(C_{1}+C_{2} x+C_{3} x^{2}+C_{4} x^{3}\right) \cdot 1^{x}=C_{1}+C_{2} x+C_{3} x^{2}+C_{4} x^{3}
$$

Ex. Solve the difference equation $\mathrm{y}_{\mathrm{x}+4}-8 \mathrm{y}_{\mathrm{x}+3}+18 \mathrm{y}_{\mathrm{x}+2}-27 \mathrm{y}_{\mathrm{x}}=0$.
Solution: Given difference equation is $y_{x+4}-8 y_{x+3}+18 y_{x+2}-27 y_{x}=0$.
When we take $\mathrm{y}_{\mathrm{x}}=\mathrm{m}^{\mathrm{x}}$, the A.E.is
$m^{4}-8 m^{3}+18 m^{2}-27=0$
$(m+1)(m-3)^{3}=0 \quad \therefore m=-1,3,3,3$ are the roots of an A.E.
Thus, the G.S. is
$y_{x}=C_{1}(-1)^{x}+\left(C_{2}+C_{3} x+C_{4} X^{2}\right) \cdot 3^{x}$
Ex. Solve the difference equation $y_{x+3}+y_{x+2}-8 y_{x+1}-12 y_{x}=0$.
Solution: Given difference equation is $y_{x+3}+y_{x+2}-8 y_{x+1}-12 y_{x}=0$.
When we take $\mathrm{y}_{\mathrm{x}}=\mathrm{m}^{\mathrm{x}}$, the A.E.is
$m^{3}+m^{2}-8 m-12=0$
$(m-3)\left(m^{2}+4 m+4\right)=0$
$(m-3)(m+2)^{2}=0$
$\therefore \mathrm{m}=3,-2,-2$ are the roots of an A.E.
Thus, the G.S. is
$\mathrm{y}_{\mathrm{x}}=\mathrm{C}_{1} 3^{\mathrm{x}}+\left(\mathrm{C}_{2}+\mathrm{C}_{3} \mathrm{X}\right) \cdot(-2)^{\mathrm{x}}$
Ex. Solve the difference equation $2 \mathrm{y}_{\mathrm{x}+2}-5 \mathrm{y}_{\mathrm{x}+1}+2 \mathrm{y}_{\mathrm{x}}=0$. Also find the particular solution satisfying the initial conditions $\mathrm{y}_{0}=0$ and $\mathrm{y}_{1}=1$.
Solution: Given difference equation is $2 \mathrm{y}_{\mathrm{x}+2}-5 \mathrm{y}_{\mathrm{x}+1}+2 \mathrm{y}_{\mathrm{x}}=0$.
When we take $\mathrm{y}_{\mathrm{x}}=\mathrm{m}^{\mathrm{x}}$, the A.E.is
$2 m^{2}-5 m+2=0$
$(2 m-1)(m-2)=0$
$\therefore \mathrm{m}=\frac{1}{2}, 2$ are the roots of an A.E.
Thus, the G.S. is
$\mathrm{y}_{\mathrm{x}}=\mathrm{C}_{1}\left(\frac{1}{2}\right)^{\mathrm{x}}+\mathrm{C}_{2} 2^{\mathrm{x}}$
When $\mathrm{x}=0$ and $\mathrm{x}=1$, we get,
$\mathrm{y}_{0}=\mathrm{C}_{1}+\mathrm{C}_{2}=0$ and $\mathrm{y}_{1}=\frac{1}{2} \mathrm{C}_{1}+2 \mathrm{C}_{2}=1$
Solving these, we get $\mathrm{C}_{1}=-\frac{2}{3}$ and $\mathrm{C}_{2}=\frac{2}{3}$
\therefore The particular solution is $y_{x}=-\frac{2}{3}\left(\frac{1}{2}\right)^{x}+\frac{2}{3} 2^{x}$
Ex. Solve the difference equation $9 y_{\mathrm{x}+2}-6 \mathrm{y}_{\mathrm{x}+1}+\mathrm{y}_{\mathrm{x}}=0$. Also find the particular solution satisfying the initial conditions $y_{0}=0$ and $y_{1}=1$.
Solution: Given difference equation is $9 y_{\mathrm{x}+2}-6 \mathrm{y}_{\mathrm{x}+1}+\mathrm{y}_{\mathrm{x}}=0$.

When we take $y_{x}=m^{x}$, the A.E.is
$9 m^{2}-6 m+1=0$
$(3 m-1)^{2}=0$
$\therefore \mathrm{m}=\frac{1}{3}, \frac{1}{3}$ are the roots of an A.E.
Thus, the G.S. is
$y_{x}=\left(C_{1}+C_{2} x\right)\left(\frac{1}{3}\right)^{x}$
When $x=0$ and $x=1$, we get,
$y_{0}=C_{1}=0$ and $y_{1}=\frac{1}{3}\left(C_{1}+C_{2}\right)=1$
Solving these, we get $\mathrm{C}_{1}=0$ and $\mathrm{C}_{2}=3$
\therefore The particular solution is $\mathrm{y}_{\mathrm{x}}=2\left(\frac{1}{3}\right)^{\mathrm{x}} \mathrm{X}$
Ex. Solve the difference equation $y_{x+2}+y_{x}=0$ with $y_{0}=0$ and $y_{1}=1$.
Solution: Given difference equation is $y_{x+2}+y_{x}=0$.
When we take $y_{x}=m^{x}$, the A.E.is
$m^{2}+1=0$
$\therefore \mathrm{m}= \pm i=\cos \frac{\pi}{2}+\mathrm{i} \sin \frac{\pi}{2}$ are the roots of an A.E. with $\rho=1$ and $\theta=\frac{\pi}{2}$
Thus, the G.S. is
$\mathrm{y}_{\mathrm{x}}=\mathrm{C}_{1} \cos \frac{\pi}{2} x+\mathrm{C}_{2} \sin \frac{\pi}{2} x$
When $x=0$ and $x=1$, we get,
$y_{0}=C_{1}=0$ and $y_{1}=C_{2}=1$
\therefore The particular solution is $\mathrm{y}_{\mathrm{x}}=\sin \frac{\pi}{2} x$
Ex. Solve $y_{x+1}-2 y_{x} \cos \alpha+y_{x-1}=0$.
Solution: Given difference equation is $\mathrm{y}_{\mathrm{x}+1}-2 \mathrm{y}_{\mathrm{x}} \cos \alpha+\mathrm{y}_{\mathrm{x}-1}=0$.
When we take $y_{x-1}=\mathrm{m}^{\mathrm{x}}$, the A.E.is
$m^{2}-2 m \cos \alpha+1=0$
$\therefore \mathrm{m}=\frac{2 \cos \alpha \pm \sqrt{4 \cos ^{2} \alpha-4}}{2}=\cos \alpha \pm i \sin \alpha$ are the roots of an A.E.
with $\rho=1$ and $\theta=\alpha$
Thus, the G.S. is

$$
\mathrm{y}_{\mathrm{x}}=\mathrm{C}_{1} \cos \alpha x+\mathrm{C}_{2} \sin \alpha x
$$

Ex. Solve the difference equation $3 y_{x+2}-6 y_{x+1}+4 y_{x}=0$. Also find the particular solution satisfying the initial conditions $y_{0}=0$ and $y_{1}=1$.
Solution: Given difference equation is $3 y_{x+2}-6 y_{x+1}+4 y_{x}=0$.
When we take $y_{x}=m^{x}$, the A.E. is
$3 m^{2}-6 m+4=0$
$\therefore \mathrm{m}=\frac{6 \pm \sqrt{36-48}}{6}=1 \pm \frac{1}{\sqrt{3}} i=\frac{2}{\sqrt{3}}\left(\cos \frac{\pi}{6}+\mathrm{i} \sin \frac{\pi}{6}\right)$ are the roots of an A.E.
with $\rho=\frac{2}{\sqrt{3}}$ and $\theta=\frac{\pi}{6}$
Thus, the G.S. is
$\mathrm{y}_{\mathrm{x}}=\left(\frac{2}{\sqrt{3}}\right)^{\mathrm{x}}\left(\mathrm{C}_{1} \cos \frac{\pi}{6} x+\mathrm{C}_{2} \sin \frac{\pi}{6} x\right)$
Fibonacci Sequence: A sequence of type $0,1,1,2,3,5,8, \ldots \ldots$ is called Fibonacci sequence. which is formulated in difference equation form as $y_{x+1}=y_{x}+y_{x-1}$ i.e. $y_{x+2}-y_{x+1}-y_{x}=0$ i.e. $\left(E^{2}-E-1\right) y_{x}=0$ with $y_{0}=0$ and $y_{1}=1$ is called Fibonacci difference equation.

Formulation of Fibonacci difference equation:

Fibonacci sequence $0,1,1,2,3,5,8, \ldots \ldots$ is formulated in difference equation form as $y_{x+1}=y_{x}+y_{x-1}$ i.e. $y_{x+2}-y_{x+1}-y_{x}=0$ with $y_{0}=0$ and $y_{1}=1$
Method of solving Fibonacci difference equation:
Let. $y_{x+2}-y_{x+1}-y_{x}=0$ i.e. $\left(E^{2}-E-1\right) y_{x}=0$ with $y_{0}=0$ and $y_{1}=1$
be the Fibonacci difference equation.
When we take $y_{x}=m^{x}$, the A.E. is
$\mathrm{m}^{2}-\mathrm{m}-1=0$
$\therefore \mathrm{m}=\frac{1 \pm \sqrt{1+4}}{2}=\frac{1}{2} \pm \frac{\sqrt{5}}{2}$ are the roots of an A.E.
\therefore The G. S. of the given Fibonacci difference equation is
$y_{x}=c_{1}\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right)^{x}+c_{2}\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right)^{x}$
i.e. $y_{x}=\frac{1}{2^{x}}\left[c_{1}(1+\sqrt{5})^{x}+c_{2}(1-\sqrt{5})^{x}\right]$

Now $\mathrm{y}_{0}=0$ and $\mathrm{y}_{1}=1$ gives
$0=\mathrm{c}_{1}+\mathrm{c}_{2} \ldots \ldots$ (i) and
$1=\frac{1}{2}\left[c_{1}(1+\sqrt{5})+c_{2}(1-\sqrt{5})\right]$
$=\frac{1}{2}\left[\mathrm{c}_{1}+c_{1} \sqrt{5}+\mathrm{c}_{2}-c_{2} \sqrt{5}\right]$
$1=\frac{\sqrt{5}}{2}\left[c_{1}-c_{2}\right]$
i.e. $c_{1}-c_{2}=\frac{2}{\sqrt{5}}$

Adding equation (i) and (ii), we get,
$2 c_{1}=\frac{2}{\sqrt{5}} \quad$ i.e. $c_{1}=\frac{1}{\sqrt{5}}$
Putting in (i), we get, $c_{2}=-\frac{1}{\sqrt{5}}$
\therefore Required particular solution of Fibonacci difference equation is
$y_{x}=\frac{1}{2^{x}}\left[\frac{1}{\sqrt{5}}(1+\sqrt{5})^{x}-\frac{1}{\sqrt{5}}(1-\sqrt{5})^{x}\right]$
i.e. $y_{x}=\frac{1}{\sqrt{5}}\left[(1+\sqrt{5})^{x}-(1-\sqrt{5})^{x}\right] \cdot 2^{-x}$

Theorem: If $y_{x}^{(1)}, y_{x}^{(2)}, \ldots . y_{x}^{(n)}$ are any n solutions of $\mathrm{n}^{\text {th }}$ order homogeneous linear difference equation with constant coefficients $\left(a_{0} E^{n}+a_{1} E^{n-1}+\ldots . .+a_{n}\right) y_{x}=0$, i.e. $a_{0} y_{x+n}+a_{1} y_{x+n-1}+a_{2} y_{x+n-2}+\ldots \ldots+a_{n-1} y_{x+1}+a_{n} y_{x}=0$, then combination $\lambda_{1} y_{x}^{(1)}+\lambda_{2} y_{x}^{(2)}+\ldots .+\lambda_{n} y_{x}^{(n)}$ is also solution, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are arbitrary constants.
Proof: As $y_{x}^{(1)}, y_{x}^{(2)}, \ldots y_{x}^{(n)}$ are any n solutions of the given homogeneous linear difference equation $\mathrm{a}_{0} \mathrm{y}_{\mathrm{x}+\mathrm{n}}+\mathrm{a}_{1} \mathrm{y}_{\mathrm{x}+\mathrm{n}-1}+\mathrm{a}_{2} \mathrm{y}_{\mathrm{x}+\mathrm{n}-2}+\ldots \ldots+\mathrm{a}_{\mathrm{n}-1} \mathrm{y}_{\mathrm{x}+1}+\mathrm{a}_{\mathrm{n}} \mathrm{y}_{\mathrm{x}}=0$
$\therefore \mathrm{a}_{0} y_{x+n}^{(1)}+\mathrm{a}_{1} y_{x+n-1}^{(1)}+\mathrm{a}_{2} y_{x+n-2}^{(1)}+\ldots . .+\mathrm{a}_{\mathrm{n}-1} y_{x+1}^{(1)}+\mathrm{a}_{\mathrm{n}} y_{x}^{(1)}=0$.

$$
\begin{equation*}
\mathrm{a}_{0} y_{x+n}^{(2)}+\mathrm{a}_{1} y_{x+n-1}^{(2)}+\mathrm{a}_{2} y_{x+n-2}^{(2)}+\ldots \ldots+\mathrm{a}_{\mathrm{n}-1} y_{x+1}^{(2)}+\mathrm{a}_{\mathrm{n}} y_{x}^{(2)}=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{a}_{0} y_{x+n}^{(n)}+\mathrm{a}_{1} y_{x+n-1}^{(n)}+\mathrm{a}_{2} y_{x+n-2}^{(n)}+\ldots \ldots+\mathrm{a}_{\mathrm{n}-1} y_{x+1}^{(n)}+\mathrm{a}_{\mathrm{n}} y_{x}^{(n)}=0 \tag{n}
\end{equation*}
$$

Multiplying equation (1) by λ_{1}, (2) by λ_{2}, \ldots, (n) by λ_{n} and adding we get

$$
\begin{aligned}
& \lambda_{1}\left[\mathrm{a}_{0} y_{x+n}^{(1)}+\mathrm{a}_{1} y_{x+n-1}^{(1)}+\mathrm{a}_{2} y_{x+n-2}^{(1)}+\ldots \ldots+\mathrm{a}_{\mathrm{n}-1} y_{x+1}^{(1)}+\mathrm{a}_{\mathrm{n}} y_{x}^{(1)}\right] \\
& +\lambda_{2}\left[\mathrm{a}_{0} y_{x+n}^{(2)}+\mathrm{a}_{1} y_{x+n-1}^{(2)}+\mathrm{a}_{2} y_{x+n-2}^{(2)}+\ldots . .+\mathrm{a}_{\mathrm{n}-1} y_{x+1}^{(2)}+\mathrm{a}_{\mathrm{n}} y_{x}^{(2)}\right]+\ldots . \\
& +\left[\mathrm{a}_{0} y_{x+n}^{(n)}+\mathrm{a}_{1} y_{x+n-1}^{(n)}+\mathrm{a}_{2} y_{x+n-2}^{(n)}+\ldots \ldots+\mathrm{a}_{\mathrm{n}-1} y_{x+1}^{(n)}+\mathrm{a}_{\mathrm{n}} y_{x}^{(n)}\right]=0
\end{aligned}
$$

i.e. $\mathrm{a}_{0}\left[\lambda_{1} y_{x+n}^{(1)}+\lambda_{2} y_{x+n}^{(2)}+\ldots .+\lambda_{n} y_{x+n}^{(n)}\right]+\mathrm{a}_{1}\left[\lambda_{1} y_{x+n-1}^{(1)}+\lambda_{2} y_{x+n-1}^{(2)}+\ldots .+\lambda_{n} y_{x+n-1}^{(n)}\right]$ $+\mathrm{a}_{2}\left[\lambda_{1} y_{x+n-2}^{(1)}+\lambda_{2} y_{x+n-2}^{(2)}+\ldots .+\lambda_{n} y_{x+n-2}^{(n)}\right]+\ldots \ldots$
$+\mathrm{a}_{\mathrm{n}}\left[\lambda_{1} y_{x}^{(1)}+\lambda_{2} y_{x}^{(2)}+\ldots+\lambda_{n} y_{x}^{(n)}\right]=0$
$\therefore \lambda_{1} y_{x}^{(1)}+\lambda_{2} y_{x}^{(2)}+\ldots+\lambda_{n} y_{x}^{(n)}$ is solution of given difference equation is proved.

Theorem: If Y is a solutions of $\mathrm{n}^{\text {th }}$ order homogeneous linear difference equation with constant coefficients $a_{0} y_{x+n}+a_{1} y_{x+n-1}+a_{2} y_{x+n-2}+\ldots \ldots+a_{n} y_{x}=0$, and Y^{*} is a solutions of non-homogeneous linear difference equation with constant coefficients $a_{0} y_{x+n}+a_{1} y_{x+n-1}+a_{2} y_{x+n-2}+\ldots \ldots+a_{n} y_{k x}=R_{x}$ then $Y+Y^{*}$ is a solution of $a_{0} y_{x+n}+a_{1} y_{x+n-1}+a_{2} y_{x+n-2}+\ldots \ldots+a_{n} y_{x}=R_{x}$
Proof: As Y is a solutions of the given homogeneous linear difference equation

$$
\begin{gather*}
a_{0} y_{x+n}+a_{1} y_{x+n-1}+a_{2} y_{x+n-2}+\ldots \ldots+a_{n} y_{x}=0 \\
\therefore a_{0} Y_{x+n}+a_{1} Y_{x+n-1}+a_{2} Y_{x+n-2}+\ldots \ldots+a_{n} Y_{x}=0 . \tag{1}
\end{gather*}
$$

Also Y^{*} is a solutions of the non-homogeneous linear difference equation

$$
\begin{align*}
& \mathrm{a}_{0} \mathrm{y}_{\mathrm{x}+\mathrm{n}}+\mathrm{a}_{1} \mathrm{y}_{\mathrm{x}+\mathrm{n}-1}+\mathrm{a}_{2} \mathrm{y}_{\mathrm{x}+\mathrm{n}-2}+\ldots \ldots+\mathrm{a}_{\mathrm{n}} \mathrm{y}_{\mathrm{x}}=\mathrm{R}_{\mathrm{x}} \\
\therefore & \mathrm{a}_{0} Y_{x+n}^{*}+\mathrm{a}_{1} Y_{x+n-1}^{*}+\mathrm{a}_{2} Y_{x+n-2}^{*}+\ldots . .+\mathrm{a}_{\mathrm{n}} Y_{x}^{*}=\mathrm{R}_{\mathrm{x}} \tag{2}
\end{align*}
$$

Adding equation (1) \& (2), we get

$$
\begin{aligned}
& a_{0} Y_{x+n}+a_{1} Y_{x+n-1}+a_{2} Y_{x+n-2}+\ldots \ldots+a_{n} Y_{x} \\
& \quad+a_{0} Y_{x+n}^{*}+a_{1} Y_{x+n-1}^{*}+a_{2} Y_{x+n-2}^{*}+\ldots \ldots+a_{n} Y_{x}^{*}=R_{x} \\
& a_{0}\left(Y_{x+n}+Y_{x+n}^{*}\right)+a_{1}\left(Y_{x+n-1}+Y_{x+n-1}^{*}\right)+a_{2}\left(Y_{x+n-2}+Y_{x+n-2}^{*}\right)+\ldots \ldots+a_{n}\left(Y_{x}+Y_{x}^{*}\right)=R_{x} \\
& \text { Hence } Y+Y^{*} \text { is a solution of } a_{0} y_{x+n}+a_{1} y_{x+n-1}+a_{2} y_{x+n-2}+\ldots \ldots+a_{n} y_{x}=R_{x} \\
& \text { is proved. }
\end{aligned}
$$

Non-Homogenous Linear Difference Equations: If $a_{2} \neq 0$, then $y_{x+2}+a_{1} y_{x+1}+a_{2} y_{x}=f(x)$ is called second order homogenous linear difference equation.

General Non-Homogenous Difference Equations:

If $a_{0} \neq 0$, then $\left(a_{0} E^{n}+a_{1} E^{n-1}+a_{2} E^{n-2}+\ldots \ldots+a_{n}\right) y_{x}=f(x)$ i.e. $\Phi(E) y_{x}=f(x)$ is called $\mathrm{n}^{\text {th }}$ order non-homogenous linear difference equation.
Remark: i) If $\Phi(a) \neq 0$, then particular solution of non-homogenous linear difference equation $\Phi(E) y_{x}=a^{x}$ is $\frac{1}{\Phi(E)} a^{x}=\frac{a^{x}}{\Phi(a)}$
ii) If $\Phi(a)=0$ i.e. $\Phi(E)=(E-a)^{n} \psi(E)$ with $\psi(a) \neq 0$, then particular solution of non-homogenous linear difference equation $\Phi(E) y_{x}=a^{x}$ is

$$
\frac{1}{\Phi(\mathrm{E})} \mathrm{a}^{\mathrm{x}}=\frac{1}{(E-a)^{n} \Psi(\mathrm{E})} \mathrm{a}^{\mathrm{x}}=\frac{x(x-1)(x-2) \ldots(x-n+1) a^{x-n}}{\mathrm{n}!\Psi(\mathrm{a})}
$$

iii) If non-homogenous linear difference equation is of type $\Phi(E) y_{x}=f(x)$, where $f(x)$ is polynomial in x of degree r, then its particular solution is

$$
\frac{1}{\Phi(\mathrm{E})} \mathrm{f}(\mathrm{x})=\frac{1}{\Phi(1+\Delta)} \mathrm{f}(\mathrm{x})
$$

We expand $\frac{1}{\Phi(1+\Delta)}$ in ascending powers of Δ and operate on $f(x)$.
iv) If non-homogenous linear difference equation is of type $\Phi(E) y_{x}=a^{x} f(x)$, then its particular solution is $\frac{1}{\Phi(E)} a^{x} f(x)=a^{x} \frac{1}{\Phi(a E)} f(x)$
v) If non-homogenous linear difference equation is of type $\Phi(E) y_{x}=\operatorname{cosax}$, then its particular solution is $\frac{1}{\Phi(E)} \operatorname{cosax}=$ Real part of $\frac{1}{\Phi(E)} e^{\text {iax }}$
vi) If non-homogenous linear difference equation is of type $\Phi(\mathrm{E}) \mathrm{y}_{\mathrm{x}}=\operatorname{sinax}$, then its particular solution is $\frac{1}{\Phi(E)} \operatorname{sinax}=$ Imaginary part of $\frac{1}{\Phi(E)} e^{\text {iax }}$

Ex. Solve the following difference equations:
a) $y_{x+1}-3 y_{x}=1$
b) $y_{x+1}-3 y_{x}=0, y_{0}=2$

Solution: a) Let $y_{x+1}-3 y_{x}=1 \quad$ i.e. $(E-3) y_{x}=1$
be the given non-homogeneous linear difference equation.
When we take $\mathrm{y}_{\mathrm{x}}=\mathrm{m}^{\mathrm{x}}$, the A.E.is
$\mathrm{m}-3=0$
$\therefore \mathrm{m}=3$ is the roots of an A. E.
\therefore The G. S. of reduced homogeneous difference equation is

$$
y_{x}=c 3^{x}
$$

Now particular solution of given non-homogeneous equation is

$$
\begin{aligned}
\text { P.S. } & =\frac{1}{(\mathrm{E}-3)} 1 \\
& =\frac{1}{(\mathrm{E}-3)} 1^{\mathrm{x}} \\
& =\frac{1}{(1-3)} \\
& =-\frac{1}{2}
\end{aligned}
$$

Hence G.S. of given equation is $y_{x}=$ G.S. + P.S.
i.e. $y_{x}=c 3^{x}-\frac{1}{2}$
b) Let $y_{x+1}-3 y_{x}=0$ i.e. $(E-3) y_{x}=0$
be the given homogeneous linear difference equation.
When we take $y_{x}=m^{x}$, the A.E.is
$m-3=0$
$\therefore \mathrm{m}=3$ is the roots of an A. E.
\therefore The G. S. of given homogeneous difference equation is
$y_{x}=c 3^{x}$
Now $\mathrm{y}_{0}=2$ gives $\mathrm{c} 3^{0}=2$ i.e. $2=\mathrm{c}$
Hence particular solution of given equation is
$\mathrm{y}_{\mathrm{x}}=2.3^{\mathrm{x}}$
Ex. Solve the following equation $\mathrm{y}_{\mathrm{x}+2}-3 \mathrm{y}_{\mathrm{x}+1}+2 \mathrm{y}_{\mathrm{x}}=1$.
Solution: Let $\mathrm{y}_{\mathrm{x}+2}-3 \mathrm{y}_{\mathrm{x}+1}+2 \mathrm{y}_{\mathrm{x}}=1$
i.e. $\left(E^{2}-3 E+2\right) y_{x}=1$
be the given non-homogeneous linear difference equation.
When we take $y_{x}=m^{x}$, the A.E. is
$m^{2}-3 m+2=0$
$(m-1)(m-2)=0$
$\therefore \mathrm{m}=1,2$ are the roots of an A.E.
Thus, the G.S. of reduced homogeneous equation is

$$
\mathrm{y}_{\mathrm{x}}=\mathrm{C}_{1}+\mathrm{C}_{2} 2^{\mathrm{x}}
$$

Now particular solution of given non-homogeneous equation is
P.S. $=\frac{1}{\left(E^{2}-3 E+2\right)} 1$

$$
\begin{aligned}
& =\frac{1}{(\mathrm{E}-1)(\mathrm{E}-2)} 1^{\mathrm{x}} \\
& =\frac{\mathrm{x}}{(1-2)} \\
& =-\mathrm{x}
\end{aligned}
$$

Hence G.S. of given equation is $y_{x}=$ G.S. + P.S.
i.e. $y_{x}=C_{1}+C_{2} 2^{x}-x$

Ex. Solve $y_{x+2}-3 y_{x+1}+2 y_{x}=a^{x}$, where a is some constant

Solution: Let $\mathrm{y}_{\mathrm{x}+2}-3 \mathrm{y}_{\mathrm{x}+1}+2 \mathrm{y}_{\mathrm{x}}=\mathrm{a}^{\mathrm{x}}$
i.e. $\left(E^{2}-3 E+2\right) y_{x}=a^{x}$, where a is some constant
be the given non-homogeneous linear difference equation.
When we take $\mathrm{y}_{\mathrm{x}}=\mathrm{m}^{\mathrm{x}}$, the A.E. is
$m^{2}-3 m+2=0$
$(m-1)(m-2)=0$
$\therefore \mathrm{m}=1,2$ are the roots of an A.E.
Thus, the G.S. of reduced homogeneous equation is
$\mathrm{y}_{\mathrm{x}}=\mathrm{C}_{1}+\mathrm{C}_{2} 2^{\mathrm{x}}$
Now particular solution of given non-homogeneous equation is
P.S. $=\frac{1}{\left(E^{2}-3 E+2\right)} \mathrm{a}^{\mathrm{x}}$

$$
\begin{aligned}
& =\frac{1}{(\mathrm{E}-1)(\mathrm{E}-2)} \mathrm{a}^{\mathrm{x}} \\
& =\frac{a^{x}}{(\mathrm{a}-1)(\mathrm{a}-2)} \text { when } \mathrm{a} \neq 1 \text { and } \mathrm{a} \neq 2
\end{aligned}
$$

If $\mathrm{a}=1$, then P.S. $=\frac{1}{\left(E^{2}-3 \mathrm{E}+2\right)} 1^{\mathrm{x}}=\frac{1}{(\mathrm{E}-1)(\mathrm{E}-2)} 1^{\mathrm{x}}=\frac{x^{x-1}}{1!(1-2)}=-\mathrm{x}$
If $\mathrm{a}=2$, then P.S. $=\frac{1}{\left(E^{2}-3 \mathrm{E}+2\right)} 2^{\mathrm{x}}=\frac{1}{(\mathrm{E}-1)(\mathrm{E}-2)} 2^{\mathrm{x}}=\frac{x 2^{x-1}}{1!(2-1)}=\mathrm{x} 2^{\mathrm{x}-1}$
Hence complete solution of given equation is $y_{x}=$ G.S. + P.S.
i.e. $y_{x}=C_{1}+C_{2} 2^{x}+\frac{a^{x}}{(a-1)(a-2)}$ when $\mathrm{a} \neq 1$ and $\mathrm{a} \neq 2$

$$
\begin{array}{ll}
\mathrm{y}_{\mathrm{x}}=\mathrm{C}_{1}+\mathrm{C}_{2} 2^{\mathrm{x}}-\mathrm{x} & \text { when } \mathrm{a}=1 \\
\mathrm{y}_{\mathrm{x}}=\mathrm{C}_{1}+\mathrm{C}_{2} 2^{\mathrm{x}}+\mathrm{x} 2^{\mathrm{x}-1} & \text { when } \mathrm{a}=2
\end{array}
$$

Ex. Solve $y_{x+2}-4 y_{x+1}+4 y_{x}=3^{x}+2^{x}+4$.

Solution: Let $y_{x+2}-4 y_{x+1}+4 y_{x}=3^{x}+2^{x}+4$.
i.e. $\left(E^{2}-4 E+4\right) y_{x}=3^{x}+2^{x}+4$
be the given non- homogeneous linear difference equation.
When we take $y_{x}=m^{x}$, the A.E. is
$m^{2}-4 m+4=0$
$(\mathrm{m}-2)^{2}=0$
$\therefore \mathrm{m}=2,2$ are the roots of an A.E.

Thus, the G.S. of reduced homogeneous equation is
$\mathrm{y}_{\mathrm{x}}=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) 2^{\mathrm{x}}$
Now particular solution of given non-homogeneous equation is
P.S. $=\frac{1}{\left(E^{2}-4 \mathrm{E}+4\right)}\left(3^{\mathrm{x}}+2^{\mathrm{x}}+4\right)$

$$
\begin{aligned}
& =\frac{1}{(E-2)^{2}}\left(3^{\mathrm{x}}+2^{\mathrm{x}}+4.1^{\mathrm{x}}\right) \\
& =\frac{1}{(E-2)^{2}}\left(3^{\mathrm{x}}\right)+\frac{1}{(E-2)^{2}}\left(2^{\mathrm{x}}\right)+\frac{1}{(E-2)^{2}}\left(4.1^{\mathrm{x}}\right) \\
& =\frac{3^{x}}{(3-2)^{2}}+\frac{x(x-1) 2^{x-2}}{2!}+\frac{4.1^{x}}{(1-2)^{2}} \\
& =3^{\mathrm{x}}+x(x-1) 2^{x-3}+4
\end{aligned}
$$

Hence G.S. of given equation is $\mathrm{y}_{\mathrm{x}}=$ G.S. + P.S.
i.e. $\mathrm{y}_{\mathrm{x}}=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) 2^{\mathrm{x}}+3^{\mathrm{x}}+x(x-1) 2^{x-3}+4$

Ex. Solve $y_{x+2}-4 y_{x+1}+3 y_{x}=3^{x}+1$.
Solution: Let $\mathrm{y}_{\mathrm{x}+2}-4 \mathrm{y}_{\mathrm{x}+1}+3 \mathrm{y}_{\mathrm{x}}=3^{\mathrm{x}}+1$.
i.e. $\left(E^{2}-4 E+3\right) y_{x}=3^{x}+1$
be the given non- homogeneous linear difference equation.
When we take $y_{x}=\mathrm{m}^{\mathrm{x}}$, the A.E. is
$m^{2}-4 m+3=0$
$(m-1)(m-3)=0$
$\therefore \mathrm{m}=1,3$ are the roots of an A.E.
Thus, the G.S. of reduced homogeneous equation is
$\mathrm{y}_{\mathrm{x}}=\mathrm{C}_{1}+\mathrm{C}_{2} 3^{\mathrm{x}}$
Now particular solution of given non-homogeneous equation is

$$
\begin{aligned}
\text { P.S. } & =\frac{1}{\left(E^{2}-4 \mathrm{E}+3\right)}\left(3^{\mathrm{x}}+1\right) \\
& =\frac{1}{(\mathrm{E}-1)(\mathrm{E}-3)}\left(3^{\mathrm{x}}+1^{\mathrm{x}}\right) \\
& =\frac{1}{(\mathrm{E}-1)(\mathrm{E}-3)}\left(3^{\mathrm{x}}\right)+\frac{1}{(\mathrm{E}-1)(\mathrm{E}-3)}\left(1^{\mathrm{x}}\right) \\
& =\frac{x 3^{x-1}}{1!(3-1)}+\frac{x 1^{x-1}}{1!(1-3)} \\
& =\frac{x 3^{x-1}}{2}-\frac{x}{2}
\end{aligned}
$$

$$
=\frac{1}{2} x\left(3^{\mathrm{x}-1}-1\right)
$$

Hence G.S. of given equation is $y_{x}=$ G.S. + P.S.
i.e. $y_{x}=C_{1}+C_{2} 3^{x}+\frac{1}{2} x\left(3^{x-1}-1\right)$

Ex. Solve $y_{x+2}-4 y_{x+1}+4 y_{x}=3 x+2^{x}$
Solution: Let $y_{x+2}-4 y_{x+1}+4 y_{x}=3 x+2^{x}$
i.e. $\left(E^{2}-4 E+4\right) y_{x}=3 x+2^{x}$
be the given non- homogeneous linear difference equation.
When we take $y_{x}=m^{x}$, the A.E.is
$m^{2}-4 m+4=0$
$(\mathrm{m}-2)^{2}=0$
$\therefore \mathrm{m}=2,2$ are the roots of an A.E.
Thus, the G.S. of reduced homogeneous equation is

$$
y_{x}=\left(C_{1}+C_{2} x\right) 2^{x}
$$

Now particular solution of given non-homogeneous equation is

$$
\begin{aligned}
\text { P.S. } & =\frac{1}{\left(E^{2}-4 \mathrm{E}+4\right)}\left(3 \mathrm{x}+2^{\mathrm{x}}\right) \\
& =\frac{1}{(E-2)^{2}}\left(3 \mathrm{x}+2^{\mathrm{x}}\right) \\
& =\frac{1}{(1+\Delta-2)^{2}}(3 \mathrm{x})+\frac{1}{(E-2)^{2}}\left(2^{\mathrm{x}}\right) \\
& =\frac{3}{(\Delta-1)^{2}} x+\frac{x(x-1) 2^{x-2}}{2!} \\
& =3(1-\Delta)^{-2} \mathrm{x}+\frac{x(x-1) 2^{x-2}}{2} \\
& =3(1+2 \Delta+\cdots) \mathrm{x}+x(x-1) 2^{x-3} \\
& =3(\mathrm{x}+2(\mathrm{x}+1-\mathrm{x})+\cdots)+x(x-1) 2^{x-3} \\
& =3 \mathrm{x}+6+x(x-1) 2^{x-3}
\end{aligned}
$$

Hence G.S. of given equation is $\mathrm{y}_{\mathrm{x}}=$ G.S. + P.S.
i.e. $\mathrm{y}_{\mathrm{x}}=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) 2^{\mathrm{x}}+3 \mathrm{x}+6+x(x-1) 2^{x-3}$

Ex. Solve $u_{x+2}-5 u_{x+1}+6 u_{x}=36$
Solution: Let $u_{x+2}-5 u_{x+1}+6 u_{x}=36$
i.e. $\left(E^{2}-5 E+6\right) u_{x}=36$
be the given non- homogeneous linear difference equation.
When we take $\mathrm{y}_{\mathrm{x}}=\mathrm{m}^{\mathrm{x}}$, the A.E. is
$m^{2}-5 m+6=0$
$(m-2)(m-3)=0$
$\therefore \mathrm{m}=2,3$ are the roots of an A.E.
Thus, the G.S. of reduced homogeneous equation is
$\mathrm{y}_{\mathrm{x}}=\mathrm{C}_{1} 2^{\mathrm{x}}+\mathrm{C}_{2} 3^{\mathrm{x}}$
Now particular solution of given non-homogeneous equation is
P.S. $=\frac{1}{\left(E^{2}-5 \mathrm{E}+6\right)}(36)$

$$
\begin{aligned}
& =\frac{36}{(E-2)(E-3)}\left(1^{\mathrm{x}}\right) \\
& =\frac{36}{(1-2)(1-3)} \\
& =18
\end{aligned}
$$

Hence G.S. of given equation is $y_{x}=$ G.S. + P.S.
i.e. $y_{x}=C_{1} 2^{x}+C_{2} 3^{x}+18$

Ex. Solve $y_{x+2}-5 y_{x+1}+6 y_{x}=2$. Also find the solution satisfying the initial conditions $y_{0}=1$ and $y_{1}=-1$
Solution: Let $\mathrm{y}_{\mathrm{x}+2}-5 \mathrm{y}_{\mathrm{x}+1}+6 \mathrm{y}_{\mathrm{x}}=2$
i.e. $\left(E^{2}-5 E+6\right) y_{x}=2$
be the given non- homogeneous linear difference equation.
When we take $y_{x}=m^{x}$, the A.E. is

$$
\begin{aligned}
& m^{2}-5 m+6=0 \\
& (m-2)(m-3)=0 \\
& \therefore m=2,3 \text { are the roots of an A.E. }
\end{aligned}
$$

Thus, the G.S. of reduced homogeneous equation is

$$
y_{x}=C_{1} 2^{x}+C_{2} 3^{x}
$$

Now particular solution of given non-homogeneous equation is

$$
\begin{aligned}
\text { P.S. } & =\frac{1}{\left(E^{2}-5 E+6\right)}(2) \\
& =\frac{2}{(E-2)(E-3)}\left(1^{\mathrm{x}}\right) \\
& =\frac{2}{(1-2)(1-3)} \\
& =1
\end{aligned}
$$

Hence G.S. of given equation is $y_{x}=$ G.S. + P.S.
i.e. $y_{x}=C_{1} 2^{x}+C_{2} 3^{x}+1$

By using initial conditions $y_{0}=1$ and $y_{1}=-1$, we get
$\mathrm{C}_{1} 2^{0}+\mathrm{C}_{2} 3^{0}+1=1$ i.e. $\mathrm{C}_{1}+\mathrm{C}_{2}=0$
$\& C_{1} 2^{1}+C_{2} 3^{1}+1=-1$ i.e. $2 C_{1}+3 C_{2}=-2$
Solving we get $\mathrm{C}_{1}=2$ and $\mathrm{C}_{2}=-2$
Hence the solution is $y_{x}=2^{x+1}-2.3^{x}+1$
Ex. Solve the following non-homogeneous linear difference equations:
i) $y_{x+2}-4 y_{x}=9 x^{2}$
b) $\Delta y_{x}+\Delta^{2} y_{x}=\sin x$

Solution: i) Let $y_{x+2}-4 y_{x}=9 x^{2}$ i.e. $\left(E^{2}-4\right) y_{x}=9 x^{2}$
be the given non-homogeneous linear difference equation.
When we take $y_{x}=m^{x}$, the A.E. is
$m^{2}-4=0$
i.e. $(m-2)(m+2)=0$
$\therefore \mathrm{m}=2,-2$ are the roots of an A. E.
\therefore The G. S. of reduced homogeneous difference equation is
$y_{x}=C_{1} 2^{x}+C_{2}(-2)^{x}$
Now particular solution of given non-homogeneous equation is
P.S. $\frac{1}{\left(E^{2}-4\right)}\left(9 \mathrm{x}^{2}\right)$

$$
\begin{aligned}
& =\frac{1}{(1+\Delta)^{2}-4}\left(9 \mathrm{x}^{2}\right) \\
& =\frac{9}{-3+2 \Delta+\Delta^{2}}\left(\mathrm{x}^{2}\right)
\end{aligned}
$$

$$
=\frac{-3}{\left[1-\left(\frac{2}{3} \Delta+\frac{1}{3} \Delta^{2}\right)\right]}\left(x^{2}\right)
$$

$$
=-3\left[1+\left(\frac{2}{3} \Delta+\frac{1}{3} \Delta^{2}\right)+\left(\frac{2}{3} \Delta+\frac{1}{3} \Delta^{2}\right)^{2}+\ldots .\right]\left(x^{2}\right)
$$

$$
=-3\left[1+\frac{2}{3} \Delta+\frac{7}{9} \Delta^{2}+\frac{4}{9} \Delta^{3}+\ldots .\right]\left(\mathrm{x}^{2}\right)
$$

$$
=-3\left[x^{2}+\frac{2}{3}(2 x)+\frac{7}{9}(2)+0\right]
$$

$$
=-3 x^{2}-4 x-\frac{14}{3}
$$

Hence G.S. of given equation is $y_{x}=$ G.S. + P.S.
i.e. $y_{x}=C_{1} 2^{x}+C_{2}(-2)^{x}-3 x^{2}-4 x-\frac{14}{3}$
ii) Let $\Delta \mathrm{y}_{\mathrm{x}}+\Delta^{2} \mathrm{y}_{\mathrm{x}}=\sin \mathrm{x}$
i.e. $\left(\Delta+\Delta^{2}\right) y_{x}=\sin x$
i.e. $\left(E-1+E^{2}-2 E+1\right) y_{x}=\sin x$
i.e. $\left(E^{2}-E\right) y_{x}=\sin x$
be the given non-homogeneous linear difference equation.
When we take $\mathrm{y}_{\mathrm{x}}=\mathrm{m}^{\mathrm{x}}$, the A.E. is
$m^{2}-m=0$
i.e. $m(m-1)=0$
$\therefore \mathrm{m}=0,1$ are the roots of an A. E .
\therefore The G. S. of reduced homogeneous difference equation is

$$
y_{x}=C_{1} 0^{x}+C_{2}(1)^{x}
$$

i.e. $y_{x}=C$, where $C_{2}=C$

Now particular solution given non-homogeneous equation is
P.S. $=\frac{1}{\left(E^{2}-E\right)}(\sin x)$
$=$ Imaginary part of $\frac{1}{\left(E^{2}-E\right)}\left(\mathrm{e}^{\mathrm{ix}}\right)$
$=$ Imaginary part of $\frac{1}{\left(E^{2}-E\right)}\left(\mathrm{e}^{\mathrm{i}}\right)^{\mathrm{x}}$
$=$ Imaginary part of $\frac{e^{i x}}{\left(e^{2 i}-e^{i}\right)}$
$=$ Imaginary part of $\frac{e^{i(x-1)}}{\left(e^{i}-1\right)}$
$=$ Imaginary part of $\frac{e^{i(x-1)}}{\left(e^{i}-1\right)} \times \frac{\left(e^{-i}-1\right)}{\left(e^{-i}-1\right)}$
$=$ Imaginary part of $\frac{e^{i(x-2)}-e^{i(x-1)}}{\left(1-e^{i}-e^{-i}+1\right)}$
$=$ Imaginary part of $\left[\frac{\cos (x-2)+i \sin (x-2)-\cos (x-1)-i \sin (x-1)}{2-\cos 1-i \sin 1-\cos 1+i \sin 1}\right]$
$=\frac{\sin (x-2)-\sin (x-1)}{2-2 \cos 1}$
$=\frac{\sin (\mathrm{x}-2)-\sin (\mathrm{x}-1)}{2(1-\cos 1)}$
Hence G.S. of given equation is $y_{x}=$ G.S. + P.S.
i.e. $y_{x}=C+\frac{\sin (x-2)-\sin (x-1)}{2(1-\cos 1)}$

MULTIPLE CHOICE QUESTIONS [MCQ'S]

1) Shift operator is denoted by E and defined as $E f(x)=$ \qquad
A) $f(x-h)$
B) $f(x)$
C) $f(x+h)$
D) None of these
2) If E is a shift operator, then $E^{n} f(x)=\ldots .$.
A) $f(x+n h)$
B) $f(x)$
C) $f(x-n h)$
D) None of these
3) Forward difference operator is denoted by Δ and defined as $\Delta f(x)=$ \qquad
A) $f(x+h)-f(x)$
B) $f(x)-f(x+h)$
C) $f(x+h)+f(x)$
D) None of these
4) If Δ is a forward difference operator, then $\Delta^{2} f(x)=$ \qquad
A) $f(x+2 h)-f(x)$
B) $f(x+2 h)-2 f(x+h)+f(x)$
C) $f(x+2 h)+2 f(x+h)+f(x)$
D) None of these
5) If Δ is a forward difference operator, then $\Delta^{3} f(x)=$
A) $f(x+3 h)+3 f(x+2 h)+3 f(x+h)+f(x)$
B) $f(x+2 h)-2 f(x+h)+f(x)$
C) $f(x+3 h)-3 f(x+2 h)+3 f(x+h)-f(x)$
D) None of these
6) Relation between forward difference operator Δ and shift operator E is
A) $\Delta=E-1$
B) $\Delta=\mathrm{E}+1$
C) $\Delta=1-E$
D) None of these
7) A relation of the form $F\left[x, y, \frac{\Delta y}{\Delta x}, \frac{\Delta^{2} y}{\Delta x^{2}}, \ldots \ldots, \frac{\Delta^{n} y}{\Delta x^{n}}\right]=0$ is called a
A) differential equation
B) difference equation
C) linear equation
D) None of these
8) For $y=f(x)$ the relation of the form $\varphi[x, f(x), f(x+h), f(x+2 h), \ldots . . f(x+n h)]$ is called a
A) differential equation
B) linear equation
C) difference equation
D) None of these
9) If E and Δ are shift and forward difference operators respectively and h is interval difference, then $\frac{\Delta^{n} y}{\Delta x^{n}}=$
A) $\frac{\mathrm{E}^{n} f(x)}{\mathrm{h}^{n}}$
B) $\frac{(\mathrm{E}-1)^{n} f(x)}{\mathrm{h}^{n}}$
C) $\frac{(\mathrm{E}+1)^{n} f(x)}{\mathrm{h}^{n}}$
D) None of these
10) The difference between the largest and smallest arguments for the function involved divided by h is called of a difference equation.
A) order
B) solution
C) root
D) None of these
11) The order of the difference equation $f(x+2 h)-5 f(x+h)+6 f(x)=0$ is \ldots
A) 1
B) 2
C) 3
D) None of these
12) Order of a difference equation $\varphi[\mathrm{x}, \mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{x}+\mathrm{h}), \mathrm{f}(\mathrm{x}+2 \mathrm{~h}), \ldots \ldots \mathrm{f}(\mathrm{x}+\mathrm{nh})]=0$ is
A) 1
B) $\mathrm{n}-1$
C) n
D) None of these
13) The order of the difference equation $y_{x+2}-7 y_{x}=5$ is
A) 1
B) 2
C) 3
D) None of these
14) The order of the difference equation $y_{x+4}-5 y_{x+1}+6 y_{x}=0$. is
A) 4
B) 5
C) 6
D) None of these
15) The order of the difference equation $\Delta^{2} y_{x}+3 \Delta y_{x}=x$ is $\ldots \ldots$
A) 1
B) 2
C) 3
D) None of these
16) The order of the difference equation $\Delta^{3} y_{x}+2 \Delta y_{x}+y_{x}=x+3$ is \qquad
A) 1
B) 2
C) 3
D) None of these
17) The order of the difference equation $\Delta^{3} y_{x}+\Delta^{2} y_{x}+\Delta y_{x}+y_{x}=0$ is \qquad
A) 1
B) 2
C) 3
D) None of these
18) The difference equation $f(x+2 h)-5 f(x+h)+6 f(x)=0$ is written in subscript form as
A) $y_{x+2}-5 y_{x-1}+6 y_{x}=0$
B) $y_{x+2}-5 y_{x+1}+6 y_{x-1}=0$
C) $y_{x+2}-5 y_{x+1}+6 y_{x}=0$
D) None of these
19) The difference equation $\Delta y_{k}-2 y_{k}=3$ is written in subscript form as
A) $y_{k+1}-2 y_{k}=3$
B) $y_{k+1}-3 y_{k}=3$
C) $y_{k+1}-y_{k}=3$
D) $y_{k+1}+y_{k}=3$
20) The difference equation $\Delta^{3} y_{k}-\Delta^{2} y_{k}+\Delta y_{k}+y_{k}=0$ is written in subscript form as
A) $y_{k+3}-4 y_{k+2}+6 y_{k+1}=0$
B) $y_{k+3}-2 y_{k+2}+2 y_{k+1}=0$
C) $y_{k+3}-y_{k+2}+y_{k+1}+y_{k}=0$
D) None of these
21) $y_{x}=\frac{x(x-1)}{2}$ is the solution of the difference equation
A) $y_{x+1}+2 y_{x}=0$
B) $y_{x+1}+y_{x}=0$
C) $y_{x+1}-y_{x}=x$
D) None of these
22) $y_{x}=1-\frac{2}{x}$ is the solution of the difference equation
A) $(x+1) y_{x+1}+x y_{x}=2 x-3$
B) $(x+1) y_{x+1}+x y_{x}=2 x$
C) $(x+1) y_{x+1}+x y_{x}=0$
D) None of these
23) $y_{x}=C_{1}+C_{2} 2^{x}-x$ is the solution of the difference equation $\ldots \ldots$.
A) $y_{x+2}-3 y_{x+1}+2 y_{x}=0$
B) $y_{x+2}-3 y_{x+1}+2 y_{x}=1$
C) $y_{x+2}-3 y_{x+1}+2 y_{x}=x$
D) None of these
24) An equation of the form $a_{0}(k) E^{n} y_{k}+a_{1}(k) E^{n-1} y_{k}+a_{2}(k) E^{n-2} y_{k}+\ldots \ldots+a_{n}(k) y_{k}=R(k)$, $\mathrm{a}_{0}(\mathrm{k}) \neq 0$ and $\mathrm{a}_{\mathrm{i}}(\mathrm{k})(\mathrm{i}=0,1,2, \ldots \ldots)$ are constants, is called $\mathrm{a} \ldots .$. with constant coefficients.
A) linear differential equation
B) linear difference equation
C) non-linear difference equation
D) None of these
25) $\left(\mathrm{E}^{3}-6 \mathrm{E}^{2}+12\right) \mathrm{y}_{\mathrm{k}}=0$ is a \ldots... with constant coefficients.
A) linear difference equation
B) linear differential equation
C) non-linear difference equation
D) None of these
26) $\left(\mathrm{kE}^{2}-\mathrm{kE}+4\right) \mathrm{y}_{\mathrm{k}}=4 \mathrm{k}+1$ is a \qquad .with a variable coefficient.
A) linear difference equation
B) linear differential equation
C) non-linear difference equation
D) None of these
27) $y_{k}^{2}+y_{k} y_{k+1}=10 \mathrm{k}$ is a
A) linear difference equation
B) linear differential equation
C) non-linear difference equation
D) None of these
28) If the solution of difference equation contains n arbitrary constants, then order of difference equation is
A) $n-1$
B) n
C) $n+1$
D) $n+2$
29) The order of the difference equation formed from the solution $y_{n}=A 3^{n}+B 5^{n}$ is
A) 2
B) 1
C) 0
D) 3
30) The order of the difference equation formed from the solution $y_{n}=a x^{2}+b x-3$ is
A) 1
B) 2
C) 3
D) 4
31) If $a_{2} \neq 0$, then $y_{x+2}+a_{1} y_{x+1}+a_{2} y_{n}=0$ is called \ldots. . difference equation
A) homogenous
B) non- homogenous
C) linear
D) None of these
32) If $a_{n} \neq 0$, then $y_{x+n}+a_{1} y_{x+n-1}+a_{2} y_{x+n-2}+\ldots \ldots+a_{n-1} y_{x+1}+a_{n} y_{x}=0$ is called $n^{\text {th }}$ order $\ldots .$. difference equation
A) homogenous
B) non- homogenous
C) linear
D) None of these
33) If m_{1} and m_{2} are distinct real roots of an auxiliary equation of the difference equation, then the solution $y_{x}=\ldots \ldots$
A) $\mathrm{c}_{1} m_{1}^{x}+\mathrm{c}_{2} m_{2}^{x}$
B) $c_{1} x^{m_{1} x}+c_{2} x^{m_{2} x}$
C) $\left(m_{1}+m_{2}\right) x$
D) None of these
34) If an auxiliary equation $m^{2}+a_{1} m+a_{2}=0$ of given second order homogenous difference equation has equal real roots m_{1} and m_{2}, then the solution is $\mathrm{y}_{\mathrm{x}}=\ldots$. .
A) $\mathrm{c}_{1} m_{1}^{x}+\mathrm{c}_{2} m_{2}^{x}$
B) $c_{1} x^{m_{1} x}+c_{2} x^{m_{2} x}$
C) $\left(c_{1}+c_{2} x\right) m_{1}^{x}$
D) None of these
35) If $\mathrm{m}=\alpha \pm i \beta$ are the complex roots of an auxiliary equation $\mathrm{m}^{2}+\mathrm{a}_{1} \mathrm{~m}+\mathrm{a}_{2}=0$ with $\rho=\sqrt{\alpha^{2}+\beta^{2}}, \theta=\tan ^{-1}\left(\frac{\beta}{\alpha}\right)$ and $\mathrm{c}_{1}, \mathrm{c}_{2}$ are constants, of given second order homogenous difference equation, then the solution is $y_{x}=\ldots$
A) $\rho^{x}\left(c_{1} \cos x \theta+c_{2} \sec x \theta\right)$
B) $\rho^{x}\left(c_{1} \cos x \theta+c_{2} \sin x \theta\right)$
C) $\rho^{\mathrm{x}}\left(\mathrm{c}_{1} \operatorname{cosec} \mathrm{x} \theta+\mathrm{c}_{2} \sin \mathrm{x} \theta\right)$
D) None of these
36) If $m_{1}, m_{2}, \ldots, m_{n}$ are distinct real roots of an auxiliary equation of given $n^{\text {th }}$ order homogenous difference equation, then the solution is
A) $\mathrm{c}_{1} m_{1}^{x}+\mathrm{c}_{2} m_{2}^{x}+\ldots \ldots+\mathrm{c}_{\mathrm{k}} m_{k}^{x}$
B) $c_{1} x^{m_{1} x}+c_{2} x^{m_{2} x}$
$+\ldots+c_{k} x^{m_{k} x}$
C) $\left(c_{1}+c_{2} x+\ldots+c_{k} x^{k-1}\right) m_{1}^{x}$
D) None of these
37) If $m_{1}, m_{2}, \ldots, m_{k}$ are equal real roots of an auxiliary equation of given $n^{\text {th }}$ order homogenous difference equation repeated k times, then the solution is
A) $\mathrm{c}_{1} m_{1}^{x}+\mathrm{c}_{2} m_{2}^{x}+\ldots \ldots+\mathrm{c}_{\mathrm{k}} m_{k}^{x}$
B) $c_{1} x^{m_{1} x}+c_{2} x^{m_{2} x}+\ldots+c_{k} x^{m_{k} x}$
C) $\left(c_{1}+c_{2} x+\ldots+c_{k} x^{k-1}\right) m_{1}^{x}$
D) None of these
38) The solution of the difference equation $y_{x+2}-7 y_{x+1}+12 y_{x}=0$ is $y_{x}=$
A) $\mathrm{c}_{1} m_{1+}^{3} \mathrm{c}_{2} m_{2}^{4}$
B) $\mathrm{c}_{1} 3^{x}+\mathrm{c}_{2} 4^{x}$
C) $\left(3^{x}+4^{x}\right) x$
D) None of these
39) The solution of the difference equation $2 y_{x+2}-5 y_{x+1}+2 y_{x}=0$ is $y_{x}=\ldots$..
A) $\mathrm{c}_{1} 2^{-x}+\mathrm{c}_{2} 2^{x}$
B) $\mathrm{c}_{1} 2^{x}+\mathrm{c}_{2} 5^{x}$
C) $\mathrm{c}_{1} 2^{-x}+\mathrm{c}_{2} 5^{x}$
D) None of these
40) The solution of the difference equation $9 y_{x+2}-6 y_{x+1}+y_{x}=0$ is $y_{x}=\ldots$.
A) $c_{1} 3^{-x}+c_{2} 4^{x}$
B) $c_{1} 3^{x}+c_{2} 4^{-x}$
C) $\left(c_{1}+c_{2} x\right) 3^{-x}$
D) None of these
41) The solution of the difference equation $y_{k+2}-6 y_{k+1}+8 y_{k}=0$ is $y_{k}=\ldots \ldots$.
A) $\mathrm{c}_{1} 3^{-k}+\mathrm{c}_{2} 4^{k}$
B) $\mathrm{c}_{1} 2^{k}+\mathrm{c}_{2} 4^{k}$
C) $\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{k}\right) 3^{-\mathrm{k}}$
D) None of these
42) The solution of the difference equation $16 y_{k+2}-8 y_{k+1}+y_{k}=0$ is $y_{k}=$

॥ अंतरी पेटवू ज्ञानज्योत ॥

विद्यापीठ गीत

मंत्र असो हा एकच ह्रदयी 'जीवन म्हणजे ज्ञान' ज्ञानामधूनी मिळो मुक्ती अन मुक्तीमधूनी ज्ञान ॥धृ॥ कला, ज्ञान, विज्ञान, संस्कृती साधू पुरूषार्थ साफल्यास्तव सदा ‘अंतरी पेटवू ज्ञानज्योत' मंगल पावन चराचरातून स्रवते अक्षय ज्ञान॥१॥ उत्तम विद्या, परम शक्ति ही आमुची ध्येयासक्ती शील, एकता, चारित्र्यावर सदैव आमुची भक्ती सत्य शिवाचे मंदिर सुंदर, विद्यापीठ महान ॥२॥ समता, ममता, स्वातंत्र्याचे नांदो जगी नाते, आत्मबलाने होऊ आम्ही आमुचे भाग्यविधाते, ज्ञानप्रभुची लाभो करूणा आणि पायसदान ॥३॥ - कै.प्रा. राजा महाजन

THE NATIONAL INTERGRATION PLEDGE

"I solemnly pledge to work with dedication to preserve and strengthen the freedom and integrity of the nation.

I further affirm that I shall never resort to violence and that all differences and disputes relating to religion, language, region or other political or economic grievance should be settled by peaceful and constitutional means."

