

Unit-1: Complex numbers

1.1 Complex numbers, modulus and amplitude, polar form

1.2 Triangle inequality and Argand's diagram

1.3 DeMoivre's theorem for rational indices and applications

1.4 nth roots of a complex number

1.5 Elementary functions: Trigonometric functions, Hyperbolic functions of a complex variables (definitions only).

Unit-2: Functions of complex variables

2.1 Limits, Continuity and Derivative.

2.2 Analytic functions, A Necessary and sufficient conditions for analytic functions.

2.3 Cauchy Riemann equations.

2.4 Laplace equations and Harmonic functions

2.5 Construction of analytic functions

Unit-3: Complex integrations

3.1 Line integral and theorems on it.

3.2 Statement and verification of Cauchy-Gaursat's Theorem.

3.3 Cauchy's integral formulae for f(a), f'(a) and $f^n(a)$

3.4 Taylor's and Laurent's series.

Unit-4: Calculus of Residues

4.1 Zeros and poles of a function.

4.2 Residue of a function

4.3 Cauchy's residue theorem

4.4 Evaluation of integrals by using Cauchy's residue theorem

4.5 Contour integrations of the type $\int_{0}^{2\pi} f(\cos\theta, \sin\theta) d\theta$ and $\int_{-\infty}^{\infty} f(x) dx$

Recommended book:

1. Complex Variables and Applications; J. W. Brownand, R. V. Churchill. 7th Edition.

(McGraw-Hill) (Capter 1, chapter 2, chapter 3, chapter 4, chapter 6)

Reference Books:

1. Theory of Functions of Complex Variables: Shanti Narayan, S. Chand and Company New Delhi.

2. Complex variables: Schaum's Outline Series.

Learning Outcomes:

a) The course is aimed to introduce the theory for functions of complex variables

b) Students will understand the concept of analytic function

c) Students will understand the Cauchy Riemann Equations

d) Students will understand harmonic functions

e) Students will understand complex integrations

f) Students will understand calculus of residues.

g) Students will acquire the skill of contour integrations.

Marks-15

Marks-15

Marks-15

Marks-15

UNIT-1: COMPLEX NUMBERS

- **Complex number:** A number z = x + iy, $x, y \in R$ is called a complex number. Where $i = \sqrt{-1}$. **Equality of Complex numbers:** Two complex numbers $z_1 = x_1 + iy_1 \& z_2 = x_2 + iy_2$ are equal i.e $z_1 = z_2$ if and only if $x_1 = x_2$ and $y_1 = y_2$. **Operations with Complex numbers:** If $z_1 = x_1 + iy_1 \& z_2 = x_2 + iy_2$ be any two complex numbers then I) Addition : $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2) \in C$ II) Subtractions : $z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2) \in C$ III) Multiplication : $z_1z_2 = (x_1 + iy_1)(x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1) \in C$ IV) Division : $\frac{z_1}{z_2} = \frac{x_1 + iy_1}{x_2 + iy_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)} = (\frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2}) + i(\frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}) \in \mathbb{C}$ **Remark:** If $z_1, z_2 \& z_3 \in C$ then I) Addition and Multiplication in C are commutative i.e. $z_1 + z_2 = z_2 + z_1$ and $z_1 z_2 = z_2 z_1$ II) Addition and Multiplication in C are associative in C i.e. $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ and $(z_1 z_2) z_3 = z_1 (z_2 z_3)$ III) 0 is the identity element in C w.r.t. addition and 1 is the identity element in C w.r.t. multiplication i.e. z + 0 = 0 + z = z and $z \cdot 1 = 1 \cdot z = z \forall z \in C$. IV) For any $z = x + iy \in C$, -z = -x - iy is additive inverse of z in C and if $z \neq 0$ then $z^{-1} = \frac{1}{x + iy} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}$ is multiplicative inverse of z in C V) Multiplication is distributive over addition i.e. $z_1(z_2 + z_3) = z_1z_2 + z_1z_3$ VI) Cancellation law: If $z_1 \neq 0$, then $z_1 z_2 = z_1 z_3 \Rightarrow z_2 = z_3$ **Ex.** Prove that for any complex number z, I(iz) = R(z) & R(iz) = -I(z)**Proof:** Let z = x + iy, then $iz = ix + i^2y = -y + ix$ \therefore I(iz) = x = R(z) & R(iz) = -y = -I(z) Hence proved. **Ex.** Show that the complex number 1 = 1 + i0 is the only multiplicative identity in C. **Proof:** Suppose u + iv another multiplicative identity in C. (u+iv) = 1.....(1) $:: 1 \in \mathbb{C}$. Also 1 is multiplicative identity in C. $\therefore (u+iv)1 = u+iv \quad \dots \quad (2) \quad \because u + iv \in C.$
 - By equation (1) and (2)

u + iv = 1 = 1 + i0

Hence 1 = 1 + i0 is the only multiplicative identity in C is proved.

Ex. Show that $i^m = 1$, $m \in \mathbb{Z}$ is multiple of four and $i^m = -1$, if $m \in \mathbb{Z}$ is an even integer, but not multiple of four. **Proof:** Case (i) Suppose $m \in \mathbb{Z}$ is multiple of four. i.e. $m = 4k, k \in \mathbb{Z}$ $\therefore i^m = i^{4k} = (i^4)^k = 1^k = 1 \quad \because i^4 = 1$ Case (ii) Suppose $m \in \mathbb{Z}$ is an even integer, but not multiple of four. i.e. $m = 2k, k \in \mathbb{Z}$ is odd. $\therefore i^{m} = i^{2k} = (i^{2})^{k} = (-1)^{k} = -1$ $\therefore k \text{ is odd.}$ Hence proved. **Ex.** Express in the form x + iy where $x, y \in \mathbb{R}$. a) $(2+i)^4$ b) (1+2i)(3+4i) c) $\frac{1}{3+2i}$ d) $\frac{3+4i}{1+2i}$ **Solution:** a) Let $z = (2+i)^4$ $= [(2+i)^2]^2$ $= [4+4i-1]^2$ $=(3+4i)^{2}$ = 9 + 24i - 16= -7 + 24ib) Let z = (1+2i)(3+4i)= 3+4i+6i-8= -5 + 10ic) Let $z = \frac{1}{3+2i} x \frac{3-2i}{3-2i}$ $=\frac{3-2i}{9+4}$ $=\frac{3}{13}-\frac{2}{13}i$ b) Let $z = \frac{3+4i}{1+2i}$ त्मर्णा तमभ्यर्च्य सिध्दि विन्दति मानवः। $=\frac{3+4i}{1+2i} \times \frac{1-2i}{1-2i}$ $=\frac{3-6i+4i+8}{1+4}$ $=\frac{11}{5}-\frac{2}{5}i$ **Ex.** Show that $\frac{5}{(1-i)(2-i)(3-i)} = \frac{1}{2}i$ **Proof:** Consider

LHS =
$$\frac{5}{(1-i)(2-i)(3-i)}$$

= $\frac{5}{(1-i)(6-2i-3i-1)}$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL A COM.MERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER

5
$-\frac{1}{(1-i)(5-5i)}$
(1-i)(1-i)
=
_ (1-2i-1)
$=$ $\frac{1}{1}$ x $\frac{i}{1}$
$=$ $\frac{1}{-2i} \times \frac{1}{i}$
$=\frac{1}{-1}i$
2
= RHS.
Hence proved.

Ex. Show that $(3+i)(3-i)(\frac{1}{5}+\frac{i}{10}) = 2+i$

Proof: Consider

LHS =
$$(3+i)(3-i)(\frac{1}{5} + \frac{1}{10})$$

= $(9+1)(\frac{1}{5} + \frac{i}{10})$
= $10(\frac{1}{5} + \frac{i}{10})$
= $2 + i$
= RHS.
Hence proved.

Conjugate of Complex number: A number $\overline{z} = x - iy$, $x, y \in \mathbb{R}$ is called a conjugate of complex number z = x + iy.

Remark: 1) If z = x + iy and $\overline{z} = x - iy$ then $\overline{\overline{z}} = x + iy = z$ i.e. z and \overline{z} are complex conjugate of each other.

2) $z + \overline{z} = x + iy + x - iy = 2x = 2R(z) = 2R(\overline{z})$ i.e. $R(z) = R(\overline{z}) = x = \frac{z + \overline{z}}{2}$ 3) $z - \overline{z} = x + iy - x + iy = 2iy = 2iIm(z)$ i.e. $Im(z) = y = \frac{z - \overline{z}}{2i}$ 4) $z\overline{z} = (x + iy) (x - iy) = x^2 + y^2$ 5) If $z \neq 0$, then $\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{x - iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2}$

Proposition: Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ be any two complex numbers then

i)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$
, ii) $\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$, iii) $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$, ii) $(\frac{\overline{z_1}}{z_2}) = \frac{\overline{z_1}}{\overline{z_2}}$

Proof: Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ be any two complex numbers then $\overline{z_1} = x_1 - iy_1$ and $\overline{z_2} = x_2 - iy_2$

- i) We have $z_1 + z_2 = x_1 + iy_1 + x_2 + iy_2 = (x_1 + x_2) + i(y_1 + y_2)$
- $\therefore \ \overline{z_1 + z_2} = (x_1 + x_2) i(y_1 + y_2) = (x_1 iy_1) + (x_2 iy_2) = \overline{z_1} + \overline{z_2}$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COM.MERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 3

ii)We have
$$z_1 - z_2 = x_1 + iy_1 - x_2 - iy_2 = (x_1 - x_2) + i(y_1 - y_2)$$

 $\therefore \overline{z_1 - z_2} = (x_1 - x_2) - i((x_1 - y_2) = (x_1 - iy_1) - (x_2 - iy_2) = \overline{z_1} - \overline{z_2}$
iii) We have $z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2) = (x_1 z_2 + y_1 y_2) + i(x_1 y_2 + x_3 y_1)$
 $\therefore \overline{z_1} \overline{z_2} = (x_1 z_2 - y_1 y_2) - i(x_1 y_2 + x_3 y_1) = (x_1 - iy_1) (x_2 - iy_2) = \overline{z_1} \overline{z_2}$
iv) We have $\overline{z_1} = \frac{x_1 + iy_1}{x_2 + x_3 + iy_2} = (\frac{x_1 + y_1 + y_1 (x_2 - iy_2)}{(x_2 - iy_2)} = (\frac{x_1 + x_2 + y_1 + y_2}{x_2 + y_2 z_2}) + i(\frac{x_2 + y_1 - x_1 y_2}{x_2 + y_2 z_2})$
 $\therefore (\frac{\overline{z_2}}{\overline{z_2}}) = (\frac{z_1 x_2 + y_1 y_2}{x_2 + y_2 z_1}) - i(\frac{x_1 - x_1 + y_2}{x_2 + y_2 z_2}) = (\frac{x_1 - y_1 + y_2}{x_2 + y_2 z_2}) = \frac{\overline{z_1}}{x_2 - iy_2} = \frac{\overline{z_1}}{\overline{z_2}}$
Hence proved.
Ex. Find Re(z), Im(z) and complex conjugate of z, where z is
a) $\frac{1}{2 + 3i}$ b) $\frac{3}{1} + \frac{7}{2}$ c) $i^{15} + i^{19}$ d) $(\frac{2 + i}{3 - 2i})^2$
Solution: a) Let $z = \frac{1}{2 + 3i} = \frac{1}{2 + 3i} x \frac{2 - 3i}{2 - 3i}$
 $= \frac{z - 3i}{1 + 3i}$
 $\therefore \operatorname{Re}(z) = \frac{2}{z_1} \cdot \operatorname{Im}(z) = -3$ and $\overline{z} = \frac{7}{z_1} + 3i$
 $\therefore \operatorname{Re}(z) = \frac{2}{z_1} \cdot \operatorname{Im}(z) = -3$ and $\overline{z} = \frac{7}{z_1} + 3i$
 $\therefore \operatorname{Re}(z) = \frac{2}{z_1} \cdot \operatorname{Im}(z) = -3$ and $\overline{z} = \frac{7}{z_1} + 3i$
 $\therefore \operatorname{Re}(z) = 0$, $\operatorname{Im}(z) = -2$ and $\overline{z} = 2i$
 $(3) \operatorname{Let} z = i^{15} + i^{19} = (i^{2})^{2}i + (i^{2})^{2}i$
 $= (-1)^{2}i + (i^{2})^{2}i$
 $= (-1)^{2}i + (i^{2})^{2}i$
 $= (2 + i)^{2}i = (2 + i)^{2}i$
 $(3) \operatorname{Let} z = \frac{3i}{(2 + 2)^{2}} = \frac{(2 + i)^{2}}{(2 - 2i)^{2}}$
 $= \frac{4 + 4i - 1}{9 - 12i - 4}$
 $= \frac{3 + 4i}{9 - 12i}$
 $= \frac{15 + 36i + 20i - 48}{169}i$
 $\therefore \operatorname{Re}(z) = -\frac{33}{169} \cdot \operatorname{Im}(z) = \frac{56}{169}$ and $\overline{z} = -\frac{33}{169} - \frac{56}{169}i$

Ex. Show that z is real if and only if $\overline{z} = z$ **Proof:** Suppose that z is a real. i.e. z = x \therefore Im(z) = 0 i.e. y = 0Now $\overline{z} = x - iy = x = z$ **Conversely**, Suppose $\overline{z} = z$ $\therefore x - iy = x + iy$ $\therefore -2iy = 0$ $\therefore y = 0$ $\therefore z = x + i0 = x$ $\therefore z$ is real. Hence proved.

Modulus or Absolute Value a complex number: The positive number $r = |z| = \sqrt{x^2 + y^2}$ is called modulus or absolute value of a complex number z = x + iy.

Argument or Amplitude of a complex number: The angle $\theta = \arg z = \tan^{-1} \frac{y}{v}$ is called

an argument or amplitude of a complex number z = x + iy.

Polar form of a complex number: If r is modulus and angle θ an argument of a complex number z = x + iy, then $z = r(\cos\theta + i\sin\theta)$ is called polar form or modulus-amplitude form of a complex number.

Remark: i)
$$|z| = \sqrt{x^2 + y^2} \ge 0$$
 and $|z| = 0$ iff $z = 0$.
ii) $z\overline{z} = (x + iy)(x - iy) = x^2 + y^2 = |z|^2$

iii) $\theta = \arg z = \tan^{-1} \frac{y}{x} \in (-\pi, \pi)$ is called principal argument of a complex number z = x + iy.

iv) If $\theta = \arg z$ then $\theta + 2n\pi$, $n \in N$ is called general argument of a complex number z = x + iy.

Ex. Compute the modulus and principal argument of each of the following complex numbers. a) $i^7 + i^{10}$ b) $\frac{1}{1+i}$ c) $(-1+i)^3$ d) $\frac{(1+i)^3}{(1-i)^2}$ Solution: a) Let $z = i^7 + i^{10}$ $= (i^2)^3 i + (i^2)^5$ $= (-1)^3 i + (-1)^5$ = -i - 1= -1 - i \therefore x = -1 and y = -1 \therefore |z| = $\sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$ $\theta = \arg z = \tan^{-1} \frac{y}{x} = \tan^{-1} \frac{(-1)}{(-1)} = \tan^{-1} 1 = -\frac{3\pi}{4} \in (-\pi, \pi)$

b) Let
$$z = \frac{1}{1+i}$$

 $z = \frac{1}{1+i} x \frac{1-i}{1-i}$
 $z = \frac{1}{1+i}$
 $z = \frac{1}{2} - \frac{1}{2}i$
 $\therefore x = \frac{1}{2} \text{ and } y = -\frac{1}{2}$
 $\therefore |z| = \sqrt{(\frac{1}{2})^2 + (-\frac{1}{2})^2} = \sqrt{\frac{1}{4}} + \frac{1}{4} = \frac{1}{\sqrt{2}}$
 $\theta = \arg z = \tan^{-1}\frac{y}{x} = \tan^{-1}(\frac{1}{2}) = \tan^{-1}(-1) = -\frac{\pi}{4} \in (-\pi, \pi)$
c) Let $z = (-1+i)^3$
 $z = -1+3i+3-i$
 $z = 2 + 2i$
 $\therefore x = 2 \text{ and } y = 2$
 $\therefore |z| = \sqrt{(2)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$
 $\theta = \arg z = \tan^{-1}\frac{y}{x} = \tan^{-1}\frac{(2)}{(2)} = \tan^{-1}1 = \frac{\pi}{4} \in (-\pi, \pi)$
d) Let $z = \frac{(1+i)^3}{(1-i)^2} = \sqrt{2}$ and for d and d
 $z = -1 + \frac{1}{1}$
 $z = -1 + \frac$

=

b) Let
$$z = -i$$
 $\therefore x = 0$ and $y = -1$
 $\therefore r = |z| = \sqrt{(0)^2 + (-1)^2} = 1$
 $\theta = \arg z = \tan^{-1} \frac{y}{x} = \tan^{-1} \frac{(-1)}{(0)} = \tan^{-1} (-\infty) = -\frac{\pi}{2} \in (-\pi, \pi)$
General value of $\theta = 2n\pi - \frac{\pi}{2}$
 \therefore polar form is $z = \cos(2n\pi - \frac{\pi}{2}) + i\sin(2n\pi - \frac{\pi}{2})$, where $n \in N$
c) Let $z = 3+4i$ $\therefore x = 3$ and $y = 4$
 $\therefore r = |z| = \sqrt{(3)^2 + (4)^2} = \sqrt{25} = 5$
 $\theta = \arg z = \tan^{-1} \frac{y}{x} = \tan^{-1} \frac{4}{3} \in (-\pi, \pi)$
General value of $\theta = 2n\pi + \tan^{-1} \frac{4}{3}$
 \therefore polar form is $z = 5 [\cos(2n\pi + \tan^{-1} \frac{4}{3}) + i\sin(2n\pi + \tan^{-1} \frac{4}{3})]$, where $n \in N$
d) Let $z = \sqrt{3} - i$ $\therefore x = \sqrt{3}$ and $y = -1$
 $\therefore r = |z| = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{4} = 2$
 $\theta = \arg z = \tan^{-1} \frac{y}{x} = \tan^{-1} (\frac{-1}{\sqrt{3}}) = -\frac{\pi}{6} \in (-\pi, \pi)$
General value of $\theta = 2n\pi - \frac{\pi}{6}$
 \therefore polar form is $z = 2 [\cos(2n\pi + \frac{\pi}{6}) + i\sin(2n\pi - \frac{\pi}{6})]$, where $n \in N$
e) Let $z = 1 + i\sqrt{3} \therefore x = 1$ and $y = \sqrt{3}$
 $\therefore r = |z| = \sqrt{(1)^2 + (\sqrt{3})^2} = \sqrt{4} = 2$
 $\theta = \arg z = \tan^{-1} \frac{y}{x} = \tan^{-1} (\frac{\sqrt{3}}{(1)}) = \frac{\pi}{3} \in (-\pi, \pi)$
General value of $\theta = 2n\pi + \frac{\pi}{3}$
 \therefore polar form is $z = 2 [\cos(2n\pi + \frac{\pi}{3}) + i\sin(2n\pi - \frac{\pi}{3})]$, where $n \in N$

Ex. Prove that
$$\arg(\frac{2+i}{2-i}) = \tan^{-1}(\frac{4}{3})$$

Proof: Let $z = \frac{2+i}{2-i}$
 $= \frac{2+i}{2-i} \times \frac{2+i}{2+i}$
 $= \frac{4+4i-1}{4+1}$
 $= \frac{3+4i}{5}$
 $= \frac{3}{5} + i\frac{4}{5}$

$$\therefore x = \frac{3}{5} \text{ and } y = \frac{4}{5}$$
$$\therefore \theta = \arg z = \tan^{-1} \frac{y}{x} = \tan^{-1} \frac{\left(\frac{4}{5}\right)}{\left(\frac{3}{5}\right)}$$
$$\therefore \arg\left(\frac{2+i}{2-i}\right) = \tan^{-1}\left(\frac{4}{3}\right)$$
Hence proved.

Ex. Find the modulus and principle value of the argument of $\frac{(1+i\sqrt{3})^{13}}{(\sqrt{3}-i)^{11}}$ Solution: Let $z = \frac{(1+i\sqrt{3})^{13}}{(\sqrt{3}-i)^{11}}$ $= \frac{(-i^2+i\sqrt{3})^{13}}{(\sqrt{3}-i)^{11}}$ $= (i^2)^6 i(\sqrt{3}-i)^2$ $= i(3\cdot 2\sqrt{3}i - 1)$ $= i(-2\sqrt{3}i + 2)$ $= 2\sqrt{3} + 2i$ $\therefore x = 2\sqrt{3}$ and y = 2 $\therefore r = |z| = \sqrt{(2\sqrt{3})^2 + (2)^2} = \sqrt{12 + 4} = 4$ $\therefore \theta = \arg z = \tan^{-1}\frac{y}{x} = \tan^{-1}\frac{2}{2\sqrt{3}} = \tan^{-1}\frac{1}{\sqrt{3}} = \frac{\pi}{6} \in (-\pi, \pi)$ is the principal argument.

Argand's diagram: The representation of complex numbers by points in a plane is called an Argand's diagram.

Remark: The complex numbers z = x + iy is represented by point (x, y) in an Argand's diagram.

Triangle inequality: Theorem: For any two complex numbers z_1 and z_2 : i) $|z_1 + z_2| \le |z_1| + |z_2|$, ii) $|z_1 - z_2| \le |z_1| + |z_2|$ **Proof:** Let $|z_1| = r_1$, arg $z_1 = \theta_1$ and $|z_2| = r_2$, arg $z_2 = \theta_2$ $\therefore z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ $\therefore z_1 + z_2 = (r_1\cos\theta_1 + r_2\cos\theta_2) + i(r_1\sin\theta_1 + r_2\sin\theta_2)^2$ $= r_1^2(\cos^2\theta_1 + \sin^2\theta_1) + r_2^2(\cos^2\theta_2 + \sin^2\theta_2)$ $+2r_1r_2(\cos\theta_1\cos\theta_2 + \sin\theta_1\sin\theta_2)$ $= r_1^2 + r_2^2 + 2r_1r_2\cos(\theta_1 - \theta_2)$ $\le r_1^2 + r_2^2 + 2r_1r_2$ \therefore $r_1, r_2 \ge 0$ and $\cos(\theta_1 - \theta_2) \le 1$ $\therefore |z_1 + z_2|^2 \le (r_1 + r_2)^2$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COM.MERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 8

i) Taking positive square root, we get, $|z_1 + z_2| \le r_1 + r_2$ i.e. $|z_1 + z_2| \le |z_1| + |z_2|$ (1) ii)) Replacing $-z_2$ for z_2 in (1), we get, $|z_1 + (-z_2)| \le |z_1| + |-z_2|$ i.e. $|z_1 - z_2| \le |z_1| + |z_2|$ $\because |-z_2| = |z_2|$ Hence proved.

Theorem: For any $z_1, z_2 \in C$: $|z_1 - z_2| \ge ||z_1| - |z_2||$ Proof: Let $|z_1| = r_1$, arg $z_1 = \theta_1$ and $|z_2| = r_2$, arg $z_2 = \theta_2$ $\therefore z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ $\therefore z_1 - z_2 = (r_1 \cos\theta_1 - r_2 \cos\theta_2) + i(r_1 \sin\theta_1 - r_2 \sin\theta_2)^2$ $\Rightarrow |z_1 - z_2|^2 = (r_1 \cos\theta_1 - r_2 \cos\theta_2)^2 + (r_1 \sin\theta_1 - r_2 \sin\theta_2)^2$ $= r_1^2(\cos^2\theta_1 + \sin^2\theta_1) + r_2^2(\cos^2\theta_2 + \sin^2\theta_2)$ $-2r_1r_2(\cos\theta_1 \cos\theta_2 + \sin\theta_1 \sin\theta_2)$ $= r_1^2 + r_2^2 - 2r_1r_2 \cos(\theta_1 - \theta_2)$ $\ge r_1^2 + r_2^2 - 2r_1r_2 \cdots r_1, r_2 \ge 0$ and $\cos(\theta_1 - \theta_2) \le 1$ $\therefore |z_1 - z_2|^2 \ge (r_1 - r_2)^2$ Taking positive square root, we get, $|z_1 - z_2| \ge |r_1 - r_2|$ i.e. $|z_1 - z_2| \ge ||z_1| - |z_2||$ Hence proved.

Theorem: If $z_1, z_2 \in C$, then $|z_1z_2| = |z_1||z_2|$ and $\arg(z_1z_2) = \arg z_1 + \arg z_2$

Proof: Let $|z_1| = r_1$, arg $z_1 = \theta_1$ and $|z_2| = r_2$, arg $z_2 = \theta_2$ $\therefore z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ $\therefore z_1 z_2 = r_1 r_2[(\cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2) + i(\sin\theta_1 \cos\theta_2 + \cos\theta_1 \sin\theta_2)]$ $\therefore z_1 z_2 = r_1 r_2[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$ $\therefore |z_1 z_2| = r_1 r_2 = |z_1||z_2|$ and $\arg(z_1 z_2) = \theta_1 + \theta_2 = \arg z_1 + \arg z_2$ Hence proved.

Theorem: If $z_1, z_2 \in C$ and $z_2 \neq 0$, then $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$ and $\arg(\frac{z_1}{z_2}) = \arg z_1 - \arg z_2$ **Proof:** Let $|z_1| = r_1$, $\arg z_1 = \theta_1$ and $|z_2| = r_2$, $\arg z_2 = \theta_2$ $\therefore z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$

$$\begin{aligned} \vdots \frac{z_1}{z_2} &= \frac{r_1(\cos\theta_1 + \sin\theta_1)}{r_2(\cos\theta_2 + \sin\theta_2)(\cos\theta_2 - \sin\theta_2)} \\ &= \frac{r_1(\cos\theta_1 + \sin\theta_1)(\cos\theta_2 - \sin\theta_2)}{r_2(\cos\theta_2 + \sin\theta_2) + i(\sin\theta_1 \cos\theta_2 - \cos\theta_1 \sin\theta_2)} \\ &= \frac{r_1(\cos\theta_1 + \sin\theta_2) + i(\sin\theta_1 \cos\theta_2 - \cos\theta_1 \sin\theta_2)}{r_2(\cos\theta_2 + \sin\theta_2) + i(\sin\theta_1 - \theta_2)]} \\ &\vdots \frac{z_1}{z_2} &= \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)] \\ &\vdots \frac{|z_1|}{z_2|} &= \frac{r_2}{r_2} = \frac{|z_1|}{|z_2|} \text{ and} \\ &\arg(\frac{z_1}{z_2}) = \theta_1 - \theta_2 = \arg z_1 - \arg z_2 \\ \text{ Hence proved.} \end{aligned}$$

$$\begin{aligned} \hline Ex. \text{ If } |z_1| = |z_2| = |z_3| = 5 \text{ and } z_1 + z_2 + z_3 = 0 \text{ then prove that } \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} = 0 \\ \text{Proof: Let } |z_1| = |z_2| = |z_3| = 5 \text{ and } z_1 + z_2 + z_3 = 0 \text{ then prove that } \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} = 0 \\ \text{Proof: Let } |z_1| = |z_2| = |z_3| = 5 \text{ and } z_1 + z_2 + z_3 = 0 \text{ then prove that } \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} = 0 \\ \text{Proof: Let } |z_1| = |z_2| = |z_3| = 5 \text{ and } z_1 + z_2 + z_3 = 0 \text{ then prove that } \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} = 0 \\ \text{Proof: Let } |z_1| = |z_2| = |z_3| = 5 \text{ and } z_1 + z_2 + z_3 = 0 \text{ then prove that } \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} = 0 \\ \text{Proof: Let } |z_1| = |z_2| = |z_3| = 5 \text{ and } z_1 + z_2 + z_3 = 0 \text{ then prove that } \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} = 0 \\ \text{Proof: Let } |z_1| = |z_2| = |z_3| = 5 \text{ and } z_1 + z_2 + z_3 = 0 \text{ then prove that } \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} = 0 \\ \text{Hence proved.} \\ \text{Hence proved.} \\ \text{Hence proved.} \\ \text{Hence proved.} \\ \text{Ex. Prove that } \begin{bmatrix} \frac{z_1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \\ = \frac{1}{z_5} [\overline{0}] \text{ by (1)} \\ = 0 \\ \text{Hence proved.} \\ \text{LH.S. = \begin{bmatrix} |z_{-1}| = | \frac{|x_{+1}|y_{-1}|}{|1_{-x_{+1}y_{1}|}|} = \frac{|x_{-1}+iy_{1}|}{|1_{-x_{+1}y_{1}|}|} \\ = \frac{\sqrt{(x_{-1})^{2} + y^{2}}}{\sqrt{(x_{-1})^{2} + y^{2}}} \\ = 1 \\ & \cdots (x_{-1})^{2} = (1 - x)^{2} \end{aligned}$$

= R.H.S.

Ex. Prove that for any two complex numbers z_1 and z_2

 $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2|z_1|^2 + 2|z_2|^2$

Proof: Let us consider

L.H.S. =
$$|z_1 + z_2|^2 + |z_1 - z_2|^2$$

= $(z_1 + z_2)(\overline{z_1 + z_2}) + (z_1 - z_2)(\overline{z_1 - z_2})$
= $(z_1 + z_2)(\overline{z_1} + \overline{z_2}) + (z_1 - z_2)(\overline{z_1} - \overline{z_2})$
= $z_1\overline{z_1} + z_1\overline{z_2} + z_2\overline{z_1} + z_2\overline{z_2} + z_1\overline{z_1} - z_1\overline{z_2} - z_2\overline{z_1} + z_2\overline{z_2}$
= $2z_1\overline{z_1} + 2z_2\overline{z_2}$
= $2|z_1|^2 + 2|z_2|^2$
= R.H.S.
Hence proved.

Remark: If A, B and C are the vertices of a triangle represented by the complex

numbers
$$z_1$$
, z_2 and z_3 respectively,
then $l(AB) = |z_2 - z_1|, l(BC) = |z_3 - z_2|, l(AC) = |z_3 - z_1|$
and $m \angle A = \arg(\frac{z_3 - z_1}{z_2 - z_1}), m \angle B = \arg(\frac{z_1 - z_2}{z_3 - z_2}), m \angle C = \arg(\frac{z_2 - z_3}{z_1 - z_3})$

<u>Ex.</u> If z_1 , z_2 , z_3 represents vertices of an equilateral triangle, prove that $z_1^2 + z_2^2 + z_3^2 = z_1z_2 + z_2z_3 + z_3z_1$

Proof: Let A, B and C are the vertices of an equilateral triangle represented by the complex numbers z₁, z₂ and z₃ respectively, $\therefore 1(AB) = |z_2 - z_1|, 1(BC) = |z_3 - z_2|, 1(AC) = |z_3 - z_1|$ and $m \angle A = \arg(\frac{z_3 - z_1}{z_2 - z_1}), m \angle B = \arg(\frac{z_1 - z_2}{z_3 - z_2}), m \angle C = \arg(\frac{z_2 - z_3}{z_1 - z_3})$ As $\triangle ABC$ is an equilateral triangle $\therefore 1(AB) = 1(BC) = 1(AC)$ i.e. $|z_2 - z_1| = |z_3 - z_2| = |z_3 - z_1|$ $\therefore |\frac{z_3 - z_1}{z_2 - z_1}| = |\frac{z_1 - z_2}{z_3 - z_2}| = 1.....(1)$ and $m \angle A = m \angle B = m \angle C = \frac{\pi}{3}$ i.e. $\arg(\frac{z_3 - z_1}{z_2 - z_1}) = \arg(\frac{z_1 - z_2}{z_3 - z_2}) = \arg(\frac{z_2 - z_3}{z_1 - z_3}) = \frac{\pi}{3}.....(2)$ By (1) and (2) $\frac{z_3 - z_1}{z_2 - z_1} = \frac{z_1 - z_2}{z_3 - z_2}$ i.e. $z_3^2 - z_3 z_2 - z_1 z_3 + z_1 z_2 = z_1 z_2 - z_1^2 - z_2^2 + z_2 z_1$ $\therefore z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$

Hence proved.

Ex. If
$$\frac{y}{z+1}$$
 is purely imaginary, find the locus of z.
Solution: Let $z = x + iy$
 $\therefore \frac{z-1}{z+1} = \frac{x+iy-1}{x+iy+1} = \frac{(x-1)+iy}{x+i(y+1)} \times \frac{x-i(y+1)}{x-i(y+1)}$
 $= \frac{x(x-1)+y(y+1)+i(y+1)^2}{x^2+(y+1)^2}$
is purely imaginary
 \therefore The real part of $\frac{z-1}{z+1} = 0$
 $\therefore \frac{x(x-1)+y(y+1)}{x^2+(y+1)^2} = 0$
 $\therefore x(x-1) + y(y+1) = 0$
 $\therefore x^2 - x + y^2 + y = 0$
 $\therefore (x - \frac{1}{2})^2 - \frac{1}{4} + (y + \frac{1}{2})^2 - \frac{1}{4} = 0$
 $\therefore (x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 = \frac{1}{2}$
 $\therefore (x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 = \frac{1}{2}$
 $\therefore (x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 = \frac{1}{2}$
i.e. locus of point z is a circle with Centre $(\frac{1}{2}, -\frac{1}{2})$ and radius $\frac{1}{\sqrt{2}}$
Ex. Show that the locus of the point z, which satisfies $|z - 3| + |z + 3| - 4$ represents an hyperbola.
Proof: Let $z = x + iy$
 $\therefore |z - 3| + |z + 3| - 4$ gives
 $|x + iy - 3| + |x + iy + 3| - 4$
i.e. $|(x - 3) + iy| + |(x + 3) + iy| = 4$
 $\therefore \sqrt{(x - 3)^2 + y^2} + \sqrt{(x - 3)^2 + y^2}$
Squaring both sides, we get,
 $(x + 3)^2 + y^2 + 16 - 8\sqrt{(x - 3)^2 + y^2} + (x - 3)^2 + y^2$
 $\therefore 12x - 16 - 8\sqrt{(x - 3)^2 + y^2}$
 $\therefore 12x - 16 - 8\sqrt{(x - 3)^2 + y^2}$
Again squaring both sides, we get,
 $9x^2 - 24x + 16 - 4(x^2 - 6x + 9 + y^2)$
 $\therefore 9x^2 - 24x + 16 - 4(x^2 - 24x + 36 + 4y^2)$
 $\therefore 5x^2 - 4y^2 = 20$
 $\therefore \frac{x^2}{4} \cdot \frac{y^2}{5} = 1$

i.e. locus of point z is a hyperbola is proved.

<u>Ex.</u> Determine the region in the z-plane represented by |z - 3| + |z + 3| = 10

Proof: Let
$$z = x + iy$$

 $\therefore |z - 3| + |z + 3| = 10$ gives
 $|x + iy - 3| + |x + iy + 3| = 10$
 $i.e.[(x - 3) + iy| + |(x + 3) + iy| = 10$
 $\therefore \sqrt{(x - 3)^2 + y^2} + \sqrt{(x + 3)^2 + y^2} = 10$
 $\therefore \sqrt{(x + 3)^2 + y^2} = 10 - \sqrt{(x - 3)^2 + y^2}$
Squaring both sides, we get,
 $(x + 3)^2 + y^2 = 100 - 20\sqrt{(x - 3)^2 + y^2} + (x - 3)^2 + y^2$
 $\therefore x^2 + 6x + 9 + y^2 = 100 - 20\sqrt{(x - 3)^2 + y^2} + x^2 - 6x + 9 + y^2$
 $\therefore 12x - 100 = -20\sqrt{(x - 3)^2 + y^2}$
 $\therefore -5\sqrt{x^2 - 6x + 9 + y^2} = 3x - 25$
Again squaring both sides, we get,
 $25(x^2 - 6x + 9 + y^2) = 9x^2 - 150x + 625$
 $\therefore 25x^2 - 150x + 225 + 25y^2 = 9x^2 - 150x + 625$
 $\therefore 16x^2 + 25y^2 = 400$
 $\therefore \frac{x^2}{25} + \frac{y^2}{16} = 1$ i.e. The region in the z-plane is the ellipse.
DeMoivre's theorem for rational indices: If n is a rational number, then
 $(\cos\theta + i\sin\theta)^n = \cos\theta + i\sin\theta\theta$
Proof: To prove the theorem we consider four cases.
Case-i) Let n be the positive integer. In this case we prove the result by mathematical
induction.
Let P(n) : $(\cos\theta + i\sin\theta)^n = \cos\theta + i\sin\theta\theta$ where $n \in \mathbb{N}$.
Step 1: If $n = 1$, then we have
 $(\cos\theta + i\sin\theta)^1 = \cos\theta + i\sin\theta = \cos1\theta + i\sin\theta\theta$ for case i.e. $(\cos\theta + i\sin\theta)^1 = \cos\theta + i\sin\theta = \cos1\theta + i\sin\theta\theta$ for case i.e. $(\cos\theta + i\sin\theta)^n = \cos\theta + i\sin\theta\theta$ for case i.e. $(\cos\theta + i\sin\theta)^n = \cos\theta + i\sin\theta\theta + \cos\theta + i\sin\theta\theta$ for case i.e. $(\cos\theta + i\sin\theta)^n = \cos\theta + i\sin\theta\theta$ for case i.e. $(\cos\theta + i\sin\theta)^n = \cos\theta + i\sin\theta\theta$ for case i.e. $(\cos\theta + i\sin\theta)^n = \cos\theta + i\sin\theta\theta$ for case i.e. $(\cos\theta + i\sin\theta)^n = \cos\theta + i\sin\theta\theta$ for case i.e. $(\cos\theta + i\sin\theta)^n = \cos\theta + i\sin\theta\theta$ for case i.e. $(\cos\theta + i\sin\theta)^n = \cos\theta + i\sin\theta\theta$ for case i.e. $(\cos\theta + i\sin\theta)^n = \cos\theta + i\sin\theta\theta$ for case i.e. $(\cos\theta + i\sin\theta)^n = (\cos\theta + i\sin\theta)^n + (\cos\theta + i\sin\theta)^n = (\cos\theta$

 $= (\cos k\theta \cos \theta - \sin k\theta \sin \theta) + i(\sin k\theta \cos \theta + \cos k\theta \sin \theta)$

 $= \cos(k\theta + \theta) + i\sin(k\theta + \theta)$

$$= \cos(k+1)\theta + i\sin(k+1)\theta$$

i.e. P(k) is true $\Rightarrow P(k+1)$ is true

∴ By principle of mathematical induction P(n) is true $\forall n \in N$.

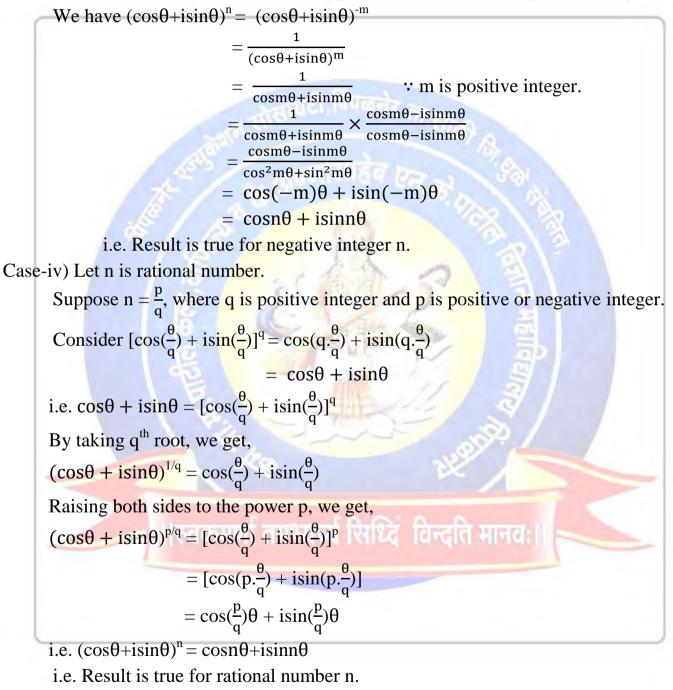
i.e. $(\cos\theta + i\sin\theta)^n = \cos\theta + i\sin\theta \forall n \in \mathbb{N}.$

Case-ii) If n = 0, then

 $(\cos\theta + i\sin\theta)^0 = 1 = \cos\theta + i\sin\theta = \cos\theta + i\sin\theta\theta$

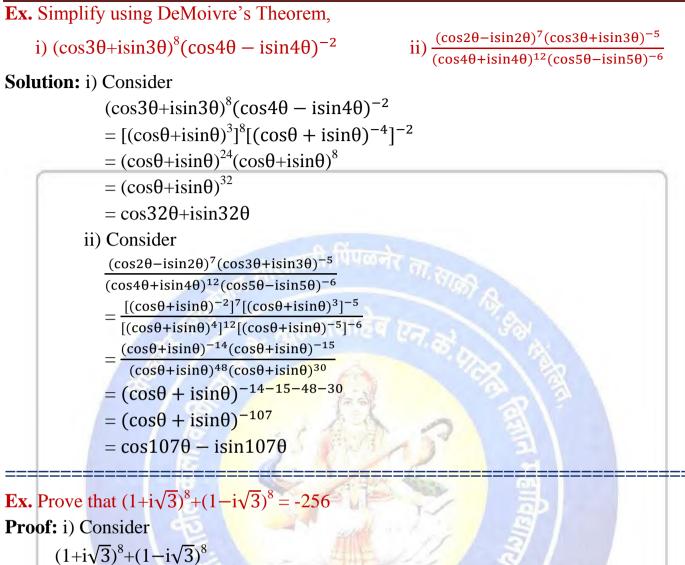
i.e. Result is true for n = 0.

Case-iii) Let n be the negative integer. Suppose n = -m, where m is positive integer.



Hence proved.

Remark: If n > 0 then $i)(\cos\theta - i\sin\theta)^n = \cos\theta - i\sin\theta$ ii) $(\cos\theta + i\sin\theta)^{-n} = \cos\theta - i\sin\theta$ and iii) $(\cos\theta - i\sin\theta)^{-n} = \cos\theta + i\sin\theta$



$$(1+i\sqrt{3})^{4} + (1-i\sqrt{3})^{8} = [2(\frac{1}{2} + i\frac{\sqrt{3}}{2})]^{8} + [2(\frac{1}{2} - i\frac{\sqrt{3}}{2})]^{8} \qquad : |1+i\sqrt{3}| = \sqrt{(1)^{2} + (\sqrt{3})^{2}} = 2$$

$$= [2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})]^{8} + [2(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3})]^{8}$$

$$= 2^{8}(\cos\frac{8\pi}{3} + i\sin\frac{8\pi}{3}) + 2^{8}(\cos\frac{8\pi}{3} - i\sin\frac{8\pi}{3})$$

$$= 2^{8}(2\cos\frac{8\pi}{3})$$

$$= 512\cos(3\pi - \frac{\pi}{3})$$

$$= 512[-\cos(\frac{\pi}{3})]$$

$$= 512(-\frac{1}{2})$$

$$= -256$$

Ex. Simplify $(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}})^{10} + (\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}})^{10}$

Solution: Consider

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COM.MERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 15

$$(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}})^{10} + (\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}})^{10}$$

= $(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})^{10} + (\cos\frac{\pi}{4} - i\sin\frac{\pi}{4})^{10}$
= $\cos\frac{10\pi}{4} + i\sin\frac{10\pi}{4} + \cos\frac{10\pi}{4} - i\sin\frac{10\pi}{4}$
= $2\cos\frac{5\pi}{2}$
= 2 (0)
= 0

nth root of complex number: A complex number ω is said be nth root of complex number z = x + iy if $\omega^n = z$.

Remark: To find nth root of complex number
$$z = x + iy$$
 first express it into polar form
 $z = r(\cos\theta + i\sin\theta) = r[\cos(\theta + 2k\pi) + i\sin(\theta + 2k\pi)]$, then
 $\omega = z^{1/n} = r^{1/n}[\cos(\theta + 2k\pi) + i\sin(\theta + 2k\pi)]^{1/n}$
i.e. $\omega = r^{1/n}[\cos(\frac{\theta + 2k\pi}{n}) + i\sin(\frac{\theta + 2k\pi}{n})]$
By putting k = 0, 1, 2,(n-1) we get n-nth roots of complex number z = x + iy.

Ex. Show that i) the n-nth roots of unity form geometrical progression, ii) the sum of n-nth roots of unity is zero.

Proof: Let ω be the nth root of unity.

$$\therefore \omega^{n} = 1 = \cos(1 + i\sin(1)) = \cos(1 + 2k\pi) + i\sin(1 + 2k\pi) = \cos(2k\pi) + i\sin(2k\pi)$$

$$\therefore \omega_{k} = [\cos(2k\pi) + i\sin(2k\pi)]^{1/n}$$

$$= \cos(\frac{2k\pi}{n}) + i\sin(\frac{2k\pi}{n}), \quad \text{where } k = 0, 1, 2, 3, \dots \dots (n-1).$$

Putting k = 0, 1, 2, 3,(n-1) we get n-nth roots of unity as
$$\omega_{0} = \cos 0 + i\sin 0 = 1,$$

$$\omega_{1} = \cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n}) = \omega$$

$$\omega_{2} = \cos(\frac{4\pi}{n}) + i\sin(\frac{4\pi}{n}) = \omega^{2}$$

$$\omega_{3} = \cos(\frac{6\pi}{n}) + i\sin(\frac{6\pi}{n}) = \omega^{3}$$

$$\omega_{n-1} = \cos \frac{2(n-1)\pi}{n} + i \sin \frac{2(n-1)\pi}{n} = \omega^{n-1}$$

i) 1, ω , ω^2 , ω^3 , ..., ω^{n-1} are the n-nth roots of unity,
where $\omega = \cos(\frac{2\pi}{n}) + i \sin(\frac{2\pi}{n})$ and $\omega^n = 1$

This shows that the n-nth roots of unity form geometrical progression.

ii) Let 1, ω , ω^2 , ω^3 ,, ω^{n-1} are the n-nth roots of unity,

where
$$\omega = \cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n})$$
 and $\omega^n = 1$
 $\therefore 1 + \omega + \omega^2 + \omega^3 + \dots + \omega^{n-1} = \frac{1 - \omega^n}{1 - \omega} \qquad \because \omega \neq 1$
 $= \frac{1 - 1}{1 - \omega}$
 $= 0$

Thus the sum of n-nth roots of unity is zero is proved.

Ex. Find the cube roots of unity.

वटी पिपळनेर ता.सत **Proof:** Let ω be the cube root of unity.

$$\therefore \omega^{3} = 1 = \cos 0 + i \sin 0 = \cos (0 + 2k\pi) + i \sin (0 + 2k\pi) = \cos (2k\pi) + i \sin (2k\pi)$$

$$\therefore \omega_{k} = [\cos (2k\pi) + i \sin (2k\pi)]^{1/3}$$

$$= \cos (\frac{2k\pi}{3}) + i \sin (\frac{2k\pi}{3}), \quad \text{where } k = 0, 1, 2.$$

Putting k = 0, 1, 2. we get cube roots of unity as

$$\omega_{0} = \cos 0 + i \sin 0 = 1,$$

$$\omega_{1} = \cos (\frac{2\pi}{3}) + i \sin (\frac{2\pi}{3}) = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$$

$$\omega_{2} = \cos (\frac{4\pi}{3}) + i \sin (\frac{4\pi}{3}) = -\frac{1}{2} - i \frac{\sqrt{3}}{2}$$

1, $\frac{-1\pm i\sqrt{3}}{2}$ are the cube roots of unity.

Ex. Find the five-fifth roots of unity.

Proof: Let ω be the fifth root of unity.

$$\therefore \omega^{5} = 1 = \cos(4\pi) + \sin(2\pi) = \cos(0 + 2\pi) + \sin(0 + 2\pi) = \cos(2\pi) + \sin(2\pi)$$

$$\therefore \omega_{k} = [\cos(2\pi) + \sin(2\pi)]^{1/5}$$

$$= \cos(\frac{2\pi}{5}) + \sin(\frac{2\pi}{5}), \text{ where } k = 0, 1, 2, 3, 4.$$

Putting k = 0, 1, 2, 3, 4. we get fifth roots of unity as

$$\omega_{0} = \cos 0 + \sin 0 = 1$$

$$\omega_{1} = \cos(\frac{2\pi}{5}) + \sin(\frac{2\pi}{5})$$

$$\omega_{2} = \cos(\frac{4\pi}{5}) + \sin(\frac{4\pi}{5})$$

$$\omega_{3} = \cos(\frac{6\pi}{5}) + \sin(\frac{6\pi}{5}) = \cos(\frac{4\pi}{5}) - \sin(\frac{4\pi}{5})$$

$$\therefore \frac{6\pi}{5} = 2\pi - \frac{4\pi}{5}$$

$$\omega_{2} = \cos(\frac{8\pi}{5}) + \sin(\frac{8\pi}{5}) = \cos(\frac{2\pi}{5}) - \sin(\frac{2\pi}{5})$$

$$\therefore \frac{8\pi}{5} = 2\pi - \frac{2\pi}{5}$$

$$1, \cos(\frac{2\pi}{5}) \pm \sin(\frac{2\pi}{5}) \& \cos(\frac{4\pi}{5}) \pm \sin(\frac{4\pi}{5})$$
 are the five-fifth roots of unity.

Ex. Find the five-fifth roots of -1. Proof: Let ω be the fifth root of -1. $\therefore \omega^5 = -1 = \cos\pi + i\sin\pi = \cos(\pi + 2k\pi) + i\sin(\pi + 2k\pi)$ $\therefore \omega_k = [\cos(\pi + 2k\pi) + i\sin(\pi + 2k\pi)]^{1/5}$ $= \cos(\frac{\pi + 2k\pi}{5}) + i\sin(\frac{\pi + 2k\pi}{5}), \quad \text{where } k = 0, 1, 2, 3, 4.$ Putting k = 0, 1, 2, 3, 4. we get fifth roots of -1 as $\omega_0 = \cos(\frac{\pi}{5}) + i\sin(\frac{\pi}{5})$ $\omega_1 = \cos(\frac{3\pi}{5}) + i\sin(\frac{3\pi}{5})$ $\omega_2 = \cos(\pi) + i\sin(\pi) = -1$ $\omega_3 = \cos(\frac{7\pi}{5}) + i\sin(\frac{7\pi}{5}) = \cos(\frac{3\pi}{5}) - i\sin(\frac{3\pi}{5}) \qquad \because \frac{7\pi}{5} = 2\pi - \frac{3\pi}{5}$ $\omega_2 = \cos(\frac{9\pi}{5}) + i\sin(\frac{9\pi}{5}) = \cos(\frac{\pi}{5}) - i\sin(\frac{\pi}{5}) \qquad \because \frac{9\pi}{5} = 2\pi - \frac{\pi}{5}$ $-1, \cos(\frac{\pi}{5}) \pm i\sin(\frac{\pi}{5}) & \cos(\frac{3\pi}{5}) \pm i\sin(\frac{3\pi}{5})$ are the five-fifth roots of -1.

Ex. Find all the values of $(1 - i\sqrt{3})^{1/4}$. Solution: Let $z = 1 - i\sqrt{3}$

$$\begin{aligned} &= 2(\frac{1}{2} - i\frac{\sqrt{3}}{2}) \\ &= 2(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}) \\ &= 2[\cos(\frac{\pi}{3} + 2k\pi) - i\sin(\frac{\pi}{3} + 2k\pi)] \\ &= 2[\cos(\frac{\pi + 6k\pi}{3}) - i\sin(\frac{\pi + 6k\pi}{3})] \\ &\stackrel{\circ}{\sim} \omega_{k} = z^{1/4} = (1 - i\sqrt{3})^{1/4} = 2^{1/4} [\cos(\frac{\pi + 6k\pi}{3}) - i\sin(\frac{\pi + 6k\pi}{3})]^{1/4} \\ &= 2^{1/4} [\cos(\frac{\pi + 6k\pi}{12}) + i\sin(\frac{\pi + 6k\pi}{12})], \text{ where } k = 0, 1, 2, 3. \end{aligned}$$
Putting k = 0, 1, 2, 3. we get all the values of $(1 - i\sqrt{3})^{1/4}$ as
 $\omega_{0} = 2^{1/4} [\cos(\frac{\pi}{12}) - i\sin(\frac{\pi}{12})], \\ \omega_{1} = 2^{1/4} [\cos(\frac{7\pi}{12}) - i\sin(\frac{7\pi}{12})], \\ \omega_{2} = 2^{1/4} [\cos(\frac{13\pi}{12}) - i\sin(\frac{13\pi}{12})] = 2^{1/4} [\cos(\frac{11\pi}{12}) + i\sin(\frac{11\pi}{12})] \qquad \because \frac{13\pi}{12} = 2\pi - \frac{11\pi}{12} \\ &\& \omega_{3} = 2^{1/4} [\cos(\frac{19\pi}{12}) - i\sin(\frac{19\pi}{12})] = 2^{1/4} [\cos(\frac{5\pi}{12}) + i\sin(\frac{5\pi}{12})] \qquad \because \frac{19\pi}{12} = 2\pi - \frac{5\pi}{12} \end{aligned}$

<u>Ex.</u> Find all the values of $(1 + i)^{1/5}$. Show that their continued product is 1 + i. **Proof:** Let z = 1 + i

$$\begin{aligned} &= \sqrt{2} \Big(\frac{1}{\sqrt{2}} \pm i\frac{1}{\sqrt{2}}\Big) \\ &= 2^{1/2}(\cos(\frac{\pi}{4} + 2k\pi)) + i\sin(\frac{\pi}{4} + 2k\pi)\Big) \\ &= 2^{1/2}[\cos(\frac{\pi}{4} + 2k\pi) + i\sin(\frac{\pi}{4} + 2k\pi)] \\ &= 2^{1/2}[\cos(\frac{\pi}{4} + 2k\pi) + i\sin(\frac{\pi}{4} + 2k\pi)] \\ &= 2^{1/2}[\cos(\frac{\pi}{4} + 2k\pi) + i\sin(\frac{\pi}{4} + 2k\pi)] \\ &= 2^{1/10}[\cos(\frac{\pi}{4} + 2k\pi) + i\sin(\frac{\pi}{4} + 2k\pi)] \\ &= 2^{1/10}[\cos(\frac{\pi}{4} + 2k\pi) + i\sin(\frac{\pi}{4} + 2k\pi)], \text{ where } k = 0, 1, 2, 3, 4. \end{aligned}$$
Putting $k = 0, 1, 2, 3, 4$. we get all the values of $(1 + i)^{1/5}$ as $\omega_0 = 2^{1/10}[\cos(\frac{\pi}{20} + i\sin(\frac{\pi}{20})], \text{ where } k = 0, 1, 2, 3, 4. \end{aligned}$
Putting $k = 0, 1, 2, 3, 4$. we get all the values of $(1 + i)^{1/5}$ as $\omega_0 = 2^{1/10}[\cos(\frac{\pi}{20} + i\sin(\frac{\pi}{20})], \omega_1 = 2^{1/10}[\cos(\frac{2\pi}{20} + i\sin(\frac{\pi}{20})], \omega_2 = 2^{1/10}[\cos(\frac{2\pi}{20} + i\sin(\frac{2\pi}{20})], \omega_3 = 2^{1/10}[\cos(\frac{2\pi}{20} + i\sin(\frac{2\pi}{20})], \omega_3 = 2^{1/10}[\cos(\frac{2\pi}{20} + i\sin(\frac{2\pi}{20})], \omega_3 = 2^{1/10}[\cos(\frac{2\pi}{20} + i\sin(\frac{2\pi}{20})], \omega_1 - 2^{1/10}[\cos(\frac{2\pi}{20} + i\sin(\frac{2\pi}{20})], \omega_1 - 2^{1/10}[\cos(\frac{2\pi}{20} + i\sin(\frac{2\pi}{20})], \omega_2 - 2^{1/10}[\cos(\frac{2\pi}{20} + i\sin(\frac{2\pi}{20})], \omega_3 = 2^{1/10}[\cos(\frac{2\pi}{20} + i\sin(\frac{2\pi}{20})], \omega_1 - 2^{1/10}[\cos(\frac{2\pi}{20} + i\sin(\frac{2\pi}{20})], \omega_2 - 2^{1/10}[\cos(\frac{2\pi}{20} + i\sin(\frac{2\pi}{20})], \omega_1 - 2^{1/10}[\cos(\frac{2\pi}{20} + i\sin(\frac{2\pi}{20})], \omega_1 - 2^{1/10}[\cos(\frac{2\pi}{20} + i\sin(\frac{2\pi}{20})], \omega_2 - 2^{1/10}[\cos(\frac{2\pi}{20} + i\sin(\frac{2\pi}{20})], \omega_1 - 2^{1/10}[\cos(\frac{2\pi}{20} + i\sin(\frac{2\pi}{20})],$

Solution: Let
$$x^9 - x^3 + x^4 - 1 = 0$$

i.e. $x^5 (x^4 - 1) + (x^4 - 1) = 0$
i.e. $(x^4 - 1) (x^5 + 1) = 0$ be the given equation with
 $x^4 - 1 = 0$ or $x^5 + 1 = 0$
Now $x^4 - 1 = 0$ gives
 $x^4 = 1 = \cos 0 + i \sin 0 = \cos (2k\pi) + i \sin (2k\pi)$
 $\therefore x = [\cos (2k\pi) + i \sin (2k\pi)]^{1/4}$
 $= \cos (\frac{2k\pi}{4}) + i \sin (\frac{2k\pi}{4})$
 $= \cos (\frac{k\pi}{2}) + i \sin (\frac{k\pi}{2})$ where $k = 0, 1, 2, 3$.
Putting $k = 0, 1, 2, 3$. we get solution of $x^4 - 1 = 0$ as
 $\cos 0 + i \sin 0 = 1$, $\cos (\frac{\pi}{2}) + i \sin (\frac{\pi}{2}) = i$, $\cos \pi + i \sin \pi = -1$ and
 $\cos (\frac{3\pi}{2}) + i \sin (\frac{3\pi}{2}) = -i$
And $x^5 + 1 = 0$ gives
 $\therefore x^5 = -1 = \cos \pi + i \sin \pi = \cos(\pi + 2k\pi) + i \sin(\pi + 2k\pi)$
 $\therefore x = [\cos(\pi + 2k\pi) + i \sin(\pi + 2k\pi)]^{1/3}$
 $= \cos (\frac{\pi + 2k\pi}{5}) + i \sin (\frac{\pi + 2k\pi}{5})$, where $k = 0, 1, 2, 3, 4$.
Putting $k = 0, 1, 2, 3, 4$. we get fifth roots of -1 as
 $\cos (\frac{\pi}{5}) + i \sin (\frac{\pi}{5}) = \cos (\frac{\pi}{5}) - i \sin (\frac{\pi}{5})$. $\frac{2\pi}{5} = 2\pi - \frac{3\pi}{5}$
and $\cos (\frac{9\pi}{5}) + i \sin (\frac{\pi}{5}) = \cos (\frac{3\pi}{5}) - i \sin (\frac{\pi}{5})$. $\frac{9\pi}{5} = 2\pi - \frac{\pi}{5}$
 $\pm 1, \pm i, \cos (\frac{\pi}{5}) \pm i \sin (\frac{\pi}{5}) & \cos (3\pi + x^3 + x^2 + x + 1) \dots$. (1)
Consider the equation $x^5 - 1 = 0$
 $\therefore x^5 = 1 = \cos 0 + i \sin 0 = \cos(0 + 2k\pi) + i \sin(0 + 2k\pi) = \cos(2k\pi) + i \sin(2k\pi)$
 $\therefore x_k = [\cos(2k\pi) + i \sin(2k\pi)]^{1/5}$
 $= \cos(\frac{2k\pi}{5}) + i \sin(\frac{2k\pi}{5})$, where $k = 0, 1, 2, 3, 4$.
Putting $k = 0, 1, 2, 3, 4$. we get fifth roots of unity as

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 20

 $\mathbf{x}_0 = \cos \mathbf{0} + \mathrm{i}\sin \mathbf{0} = \mathbf{1},$

 $x_1 = \cos(\frac{2\pi}{5}) + i\sin(\frac{2\pi}{5}),$ $x_2 = \cos(\frac{4\pi}{5}) + i\sin(\frac{4\pi}{5}),$

$$\begin{aligned} x_{3} = \cos(\frac{6\pi}{5}) + i\sin(\frac{6\pi}{5}) = \cos(\frac{4\pi}{5}) - i\sin(\frac{4\pi}{5}) \because \frac{6\pi}{5} = 2\pi - \frac{4\pi}{5} \\ \text{and } x_{4} = \cos(\frac{8\pi}{5}) + i\sin(\frac{8\pi}{5}) = \cos(\frac{2\pi}{5}) - i\sin(\frac{2\pi}{5}) \because \frac{8\pi}{5} = 2\pi - \frac{2\pi}{5} \\ 1, \cos(\frac{2\pi}{5}) \pm i\sin(\frac{2\pi}{5}) \& \cos(\frac{4\pi}{5}) \pm i\sin(\frac{4\pi}{5}) \text{ are the five-fifth roots of } z^{5} = 1. \\ \text{Out of these } x_{0} = 1 \text{ corresponds to the factor } x - 1 = 0 \text{ in equation } (1). \\ \text{Hence } \cos(\frac{2\pi}{5}) \pm i\sin(\frac{2\pi}{5}) \& \cos(\frac{4\pi}{5}) \pm i\sin(\frac{4\pi}{5}) \text{ are the roots of given equation.} \\ \hline \text{Hence } \cos(\frac{2\pi}{5}) \pm i\sin(\frac{2\pi}{5}) \& \cos(\frac{4\pi}{5}) \pm i\sin(\frac{4\pi}{5}) \text{ are the roots of given equation.} \end{aligned}$$

Put
$$x^{2} = z$$
, we get,
 $z^{2} - z + 1 = 0$ having roots $z = \frac{1 \pm \sqrt{1-4}}{2} = \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$
 $\therefore x^{4} = \frac{1}{2} \pm i \frac{\sqrt{3}}{2} = cos \frac{\pi}{3} \pm i sin \frac{\pi}{3} = cos (\frac{\pi}{3} + 2k\pi) \pm i sin (\frac{\pi}{3} + 2k\pi)$
 $\therefore x_{k} = [cos(\frac{\pi+6k\pi}{3}) \pm i sin(\frac{\pi+6k\pi}{3})]^{1/4}$
 $= cos(\frac{\pi+6k\pi}{12}) \pm i sin(\frac{\pi+6k\pi}{12}), \text{ where } k = 0, 1, 2, 3.$
Putting $k = 0, 1, 2, 3$. we get,
 $x_{0} = cos(\frac{\pi}{12}) \pm i sin(\frac{\pi}{12}),$
 $x_{1} = cos(\frac{7\pi}{12}) \pm i sin(\frac{7\pi}{12}),$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COM.MERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 21

$$x_2 = \cos(\frac{13\pi}{12}) \pm i\sin(\frac{13\pi}{12}),$$

and $x_3 = \cos(\frac{19\pi}{12}) \pm i\sin(\frac{19\pi}{12})$ are the roots of given equation.

Application of DeMoivre's Theorem to Prove Trignometric Identities:

1) To express sinn θ and cosn θ in powers of sin θ & cos θ , we use DeMoivre's Theorem as $\cos \theta + i \sin \theta = (\cos \theta + i \sin \theta)^n$

$$= \cos^{n}\theta + {}^{n}c_{1}\cos^{n-1}\theta(i\sin\theta) + {}^{n}c_{2}\cos^{n-2}\theta(i\sin\theta)^{2} + \dots + {}^{n}c_{n-1}\cos\theta(i\sin\theta)^{n-1} + (i\sin\theta)^{n}$$
 by using binomial theorem.

By simplifying and equating real and imaginary parts we get required expansions.

2) Let
$$x = \cos\theta + i\sin\theta$$
, then $\frac{1}{x} = \cos\theta - i\sin\theta$ and

$$x^{m} = \cos \theta + i \sin \theta, \frac{1}{x^{m}} = \cos \theta - i \sin \theta$$
 by DeMoivre's Theorem.
Now $x + \frac{1}{x} = 2\cos \theta, x - \frac{1}{x} = 2i \sin \theta$,

$$x^{m} + \frac{1}{x^{m}} = 2\cos\theta, x^{m} - \frac{1}{x^{m}} = 2i\sin\theta$$
 (1)

i) To express $\sin^n \theta$ in terms of multiple angle of sine, consider

$$(2isin\theta)^{n} = (x - \frac{1}{x})^{n} = x^{n} + {}^{n}c_{1}x^{n-1}(-\frac{1}{x}) + {}^{n}c_{2}x^{n-2}(-\frac{1}{x})^{2} + \dots + {}^{n}c_{n-1}x(-\frac{1}{x})^{n-1} + (-\frac{1}{x})^{n}$$

by using binomial theorem.

ii) To express $\cos^n \theta$ in terms of multiple angle of cosine, consider $(2\cos\theta)^n = (x + \frac{1}{x})^n = x^n + {}^nc_1x^{n-1}(\frac{1}{x}) + {}^nc_2x^{n-2}(\frac{1}{x})^2 + \dots + {}^nc_{n-1}x(\frac{1}{x})^{n-1} + (\frac{1}{x})^n$ by using binomial theorem.

By simplifying and using equation (1), we get required expansions.

Ex. Use DeMoivre's Theorem to prove the following

```
\cos 5\theta = \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta\sin 5\theta = 5\cos^4 \theta \sin \theta - 10\cos^2 \theta \sin^3 \theta + \sin^5 \theta
```

Proof: Consider

$$cos5\theta + isin5\theta = (cos\theta + isin\theta)^{5}$$

= $cos^{5}\theta + {}^{5}c_{1}cos^{4}\theta(isin\theta) + {}^{5}c_{2}cos^{3}\theta(isin\theta)^{2}$
+ ${}^{5}c_{3}cos^{2}\theta(isin\theta)^{3} + {}^{5}c_{4}cos\theta(isin\theta)^{4} + (isin\theta)^{5}$ by binomial theorem
= $cos^{5}\theta + 5icos^{4}\theta sin\theta - 10cos^{3}\theta sin^{2}\theta - 10icos^{2}\theta sin^{3}\theta + 5cos\theta sin^{4}\theta + isin^{5}\theta$
= $(cos^{5}\theta - 10cos^{3}\theta sin^{2}\theta + 5cos\theta sin^{4}\theta) + i(5cos^{4}\theta sin\theta - 10cos^{2}\theta sin^{3}\theta + sin^{5}\theta)$
By equating real and imaginary parts, we get,
 $cos5\theta = cos^{5}\theta - 10cos^{3}\theta sin^{2}\theta + 5cos\theta sin^{4}\theta$
 $sin5\theta = 5cos^{4}\theta sin\theta - 10cos^{2}\theta sin^{3}\theta + sin^{5}\theta$

न्दति सानवः

Hence proved.

Ex. Use DeMoivre's	Theorem to prove the following
	$\theta - 15\cos^4\theta \sin^2\theta + 15\cos^2\theta \sin^4\theta - \sin^6\theta$
$\sin 6\theta = 6\cos^5$	5θ sin θ -20cos ³ θ sin ³ θ + 6cos θ sin ⁵ θ
Proof: Consider	
$\cos 6\theta + i \sin 6\theta$	
$=(\cos\theta+i\sin\theta)$	θ) ⁶
,	$s^{5}\theta(i\sin\theta) + {}^{6}c_{2}\cos^{4}\theta(i\sin\theta)^{2} + {}^{6}c_{3}\cos^{3}\theta(i\sin\theta)^{3}$
$+^{6}c_{4}\cos^{2}\theta(1)$	$(\sin\theta)^4 + {}^6c_5\cos\theta((\sin\theta)^5 + ((\sin\theta)^6))^6)$ by binomial theorem
· · ·	$s^5\theta \sin\theta - 15\cos^4\theta \sin^2\theta - 20i\cos^3\theta \sin^3\theta$
$+15\cos^2\theta\sin^2\theta$	$n^4\theta + 6icos\theta sin^5\theta - sin^6\theta$
$=(\cos^6\theta - 15c)$	$\cos^4\theta \sin^2\theta + 15\cos^2\theta \sin^4\theta - \sin^6\theta$
$+i(6\cos^5\theta s)$	$\sin\theta - 20\cos^3\theta \sin^3\theta + 6\cos\theta \sin^5\theta$
1.5	al and imaginary parts, we get,
$\cos 6\theta = \cos^6 \theta$	$\theta - 15\cos^4\theta \sin^2\theta + 15\cos^2\theta \sin^4\theta - \sin^6\theta$
$\sin 6\theta = 6\cos^5$	$^{5}\theta$ sin θ - $\frac{20\cos^{3}\theta}{\sin^{3}\theta}$ + $6\cos\theta$ sin $^{5}\theta$
Hence proved.	
Ex. Express $\frac{\sin 7\theta}{\sin \theta}$ in p	powers of sin θ only.
Solution: Consider	
$\cos 7\theta + i \sin 7\theta$	
$=(\cos\theta+i\sin\theta)$	
	$s^{6}\theta(i\sin\theta) + c_{2}\cos^{5}\theta(i\sin\theta)^{2} + c_{3}\cos^{4}\theta(i\sin\theta)^{3} + c_{4}\cos^{3}\theta(i\sin\theta)^{4}$
5 ($(\sin\theta)^5 + {}^7c_6\cos\theta((\sin\theta)^6 + (\sin\theta)^7)$ by binomial theorem
	$s^{6}\theta \sin\theta - 21\cos^{5}\theta \sin^{2}\theta - 35i\cos^{4}\theta \sin^{3}\theta$
	$n^4\theta + 21i\cos^2\theta\sin^5\theta - 7\cos\theta\sin^6\theta - i\sin^7\theta$
,	$\cos^5\theta\sin^2\theta + 35\cos^3\theta\sin^4\theta - 7\cos\theta\sin^6\theta$)
	$\sin\theta - 35\cos^4\theta \sin^3\theta + 21\cos^2\theta \sin^5\theta - \sin^7\theta)$
• •	al imaginary parts, we get,
	$\theta \sin\theta - 35\cos^4\theta \sin^3\theta + 21\cos^2\theta \sin^5\theta - \sin^7\theta$
$\therefore \frac{\sin 7\theta}{\sin \theta} = 7\cos \theta$	$s^{6}\theta - 35\cos^{4}\theta \sin^{2}\theta + 21\cos^{2}\theta \sin^{4}\theta - \sin^{6}\theta$
	$(\sin^2\theta)^3 - 35(1 - \sin^2\theta)^2 \sin^2\theta + 21(1 - \sin^2\theta) \sin^4\theta - \sin^6\theta$
= 7(1-	$3\sin^2\theta + 3\sin^4\theta - \sin^6\theta$) - $35\sin^2\theta(1 - 2\sin^2\theta + \sin^4\theta)$
+ 2	$1\sin^4\theta - 21\sin^6\theta - \sin^6\theta$
= 7 - 22	$1\sin^2\theta + 21\sin^4\theta - 7\sin^6\theta - 35\sin^2\theta + 70\sin^4\theta - 35\sin^6\theta$

```
+ 21\sin^4\theta - 21\sin^6\theta - \sin^6\theta
          \therefore \frac{\sin 7\theta}{\sin \theta} = 7 - 56\sin^2 \theta + 112\sin^4 \theta - 64\sin^6 \theta
Ex. If \cos\alpha + \cos\beta + \cos\gamma = 0 and \sin\alpha + \sin\beta + \sin\gamma = 0, then show that
      i) \cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma) and
         \sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)
      ii) \cos 2\alpha + \cos 2\beta + \cos 2\gamma = 0 and
          \sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0
Proof: Given \cos\alpha + \cos\beta + \cos\gamma = 0 and \sin\alpha + \sin\beta + \sin\gamma = 0 ... (1)
          Let a = \cos \alpha + i \sin \alpha, b = \cos \beta + i \sin \beta and c = \cos \gamma + i \sin \gamma
          \therefore a + b + c = cos\alpha + isin\alpha + cos\beta + isin\beta + cos\gamma + isin\gamma
                              = (\cos\alpha + \cos\beta + \cos\gamma) + i(\sin\alpha + \sin\beta + \sin\gamma)
                                                  by (1)
                              = 0 + i0
          \therefore a+b+c = 0 \dots \dots (2)
         and \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \cos \alpha - i \sin \alpha + \cos \beta - i \sin \beta + \cos \gamma - i \sin \gamma
                              = (\cos\alpha + \cos\beta + \cos\gamma) - i(\sin\alpha + \sin\beta + \sin\gamma)
         \therefore \frac{bc + ac + ab}{abc} = 0 - i0 \qquad by (1)
          \therefore ab + bc + ac = 0 ... (3)
         i) As a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)
          \therefore a^{3} + b^{3} + c^{3} - 3abc = 0 by (2)
          \therefore a^3 + b^3 + c^3 = 3abc
          \therefore \cos 3\alpha + i \sin 3\alpha + \cos 3\beta + i \sin 3\beta + \cos 3\gamma + i \sin 3\gamma
         = 3 [\cos(\alpha + \beta + \gamma) + i\sin(\alpha + \beta + \gamma)]
          \therefore (cos3\alpha + cos3\beta + cos3\gamma) + i(sin3\alpha + sin3\beta + sin3\gamma
         = 3\cos(\alpha + \beta + \gamma) + i3\sin(\alpha + \beta + \gamma)
         Equating real and imaginary parts, we get,
         \cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma) and
         \sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)
         ii) As a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ca)
                                                by (2) and (3)
                                        = 0
          \therefore \cos 2\alpha + i \sin 2\alpha + \cos 2\beta + i \sin 2\beta + \cos 2\gamma + i \sin 2\gamma = 0
          \therefore (\cos 2\alpha + \cos 2\beta + \cos 2\gamma) + i(\sin 2\alpha + \sin 2\beta + \sin 2\gamma) = 0
          Equating real and imaginary parts, we get,
          \cos 2\alpha + \cos 2\beta + \cos 2\gamma = 0 and
```

 $\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0$

Ex. Prove that $\sin^5\theta = \frac{1}{16} (\sin 5\theta - 5\sin 3\theta + 10\sin \theta)$. Solution: Let $x = \cos\theta + i\sin\theta$, then $\frac{1}{x} = \cos\theta - i\sin\theta$. $\therefore x - \frac{1}{x} = 2i\sin\theta$ and $x^m - \frac{1}{x^m} = 2i\sin m\theta$ $\therefore (2i\sin\theta)^5 = (x - \frac{1}{x})^5$ $\therefore 32i\sin^5\theta = x^5 - 5x^4(\frac{1}{x}) + 10x^3(\frac{1}{x})^2 - 10x^2(\frac{1}{x})^3 + 5x(\frac{1}{x})^4 - (\frac{1}{x})^5$ $= x^5 - 5x^3 + 10x - 10\frac{1}{x} + 5\frac{1}{x^3} - \frac{1}{x^5}$ $= (x^5 - \frac{1}{x^5}) - 5(x^3 - \frac{1}{x^3}) + 10(x - \frac{1}{x})$ $\therefore 32i\sin^5\theta = (2i\sin 5\theta) - 5(2i\sin 3\theta) + 10(2i\sin \theta)$ $\therefore \sin^5\theta = \frac{1}{16}(\sin 5\theta - 5\sin 3\theta + 10\sin \theta)$ Hence proved.

Ex. Express $\cos^6\theta$ in terms of cosines of multiples of θ . **Solution:** Let $x = \cos\theta + i\sin\theta$, then $\frac{1}{x} = \cos\theta - i\sin\theta$.

$$\therefore x + \frac{1}{x} = 2\cos\theta \text{ and } x^{m} + \frac{1}{x^{m}} = 2\cos\theta$$

$$\therefore (2\cos\theta)^{6} = (x + \frac{1}{x})^{6}$$

$$\therefore 64\cos^{6}\theta = x^{6} + 6x^{5}(\frac{1}{x}) + 15x^{4}(\frac{1}{x})^{2} + 20x^{3}(\frac{1}{x})^{3} + 15x^{2}(\frac{1}{x})^{4} + 6x(\frac{1}{x})^{5} + (\frac{1}{x})^{6}$$

$$= x^{6} + 6x^{4} + 15x^{2} + 20 + 15\frac{1}{x^{2}} + 6\frac{1}{x^{4}} + \frac{1}{x^{6}}$$

$$= (x^{6} + \frac{1}{x^{6}}) + 6(x^{4} + \frac{1}{x^{4}}) + 15(x^{2} + \frac{1}{x^{2}}) + 20$$

$$\therefore 64\cos^{6}\theta = (2\cos6\theta) + 6(2\cos4\theta) + 15(2\cos2\theta) + 20$$

$$\therefore \cos^{6}\theta = \frac{1}{32}(\cos6\theta + 6\cos4\theta + 15\cos2\theta + 10)$$

Ex. Express $\sin^7 \theta$ in terms of sines of multiples of θ . Solution: Let $x = \cos\theta + i\sin\theta$, then $\frac{1}{x} = \cos\theta - i\sin\theta$. $\therefore x - \frac{1}{x} = 2i\sin\theta$ and $x^m - \frac{1}{x^m} = 2i\sin\theta$ $\therefore (2i\sin\theta)^7 = (x - \frac{1}{x})^7$ $\therefore -128i\sin^7\theta = x^7 - 7x^6(\frac{1}{x}) + 21x^5(\frac{1}{x})^2 - 35x^4(\frac{1}{x})^3 + 35x^3(\frac{1}{x})^4 - 21x^2(\frac{1}{x})^5 + 7x(\frac{1}{x})^6 - (\frac{1}{x})^7$ $= x^7 - 7x^5 + 21x^3 - 35x + 35\frac{1}{x} - 21\frac{1}{x^3} + 7\frac{1}{x^5} - \frac{1}{x^7}$ $= (x^7 - \frac{1}{x^7}) - 7(x^5 - \frac{1}{x^5}) + 21(x^3 - \frac{1}{x^3}) - 35(x - \frac{1}{x})$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COM.MERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 25

Remark : Using above definitaions, we get i) $tanhz = \frac{e^z - e^{-z}}{e^z + e^{-z}}$, ii) $cothz = \frac{e^z + e^{-z}}{e^z - e^{-z}}$,

iv) cosechz =
$$\frac{2}{e^z - e^{-z}}$$
 and iv) sechz = $\frac{2}{e^z + e^{-z}}$

Remark: i) sinhz and coshz are periodic functions of period $2\pi i$,

ii) cosechz and sechz are periodic functions of period
$$2\pi i$$
,
iii) tanhz and cothz are periodic functions of period $2\pi i$,
iii) tanhz and cothz are periodic functions of period πi .
Ex. Show that i) siniz = isinhz ii) cosiz = coshz iii) taniz = itanhz
iv) sinhiz = isinz v) coshiz = cosz vi) tanhiz = itanz
Proof: i) sinz = $\frac{e^{iz} - e^{-iz}}{2}$
 $\therefore siniz = (\frac{e^{i(iz)} - e^{-i(iz)}}{2}) = i(\frac{e^{-z} - e^{z}}{-2}) = i(\frac{e^{z} - e^{-z}}{2}) = isinhz$
ii) cosz = $\frac{e^{iz} - e^{-iz}}{2}$
 $\therefore cosiz = (\frac{e^{i(iz)} + e^{-i(iz)}}{2}) = (\frac{e^{-z} + e^{z}}{2}) = (\frac{e^{z} + e^{-z}}{2}) = coshz$
iii) tanz = $\frac{e^{iz} - e^{-iz}}{i(e^{iz} + e^{-iz})}$
 $\therefore taniz = \frac{e^{i(iz)} - e^{-i(iz)}}{i(e^{iz} + e^{-iz})} = i(\frac{e^{iz} - e^{-iz}}{-(e^{-z} + e^{z})}] = itanhz$
iv) sinhz = $\frac{e^{iz} - e^{-iz}}{2}$
 $\therefore coshiz = (\frac{e^{iz} - e^{-iz}}{2}) = i(\frac{e^{iz} - e^{-iz}}{2}) = isinz$
v) coshz = $\frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}}$
 $\therefore coshiz = (\frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}}) = cosz$
vi) tanhz = $\frac{e^{iz} - e^{-iz}}{(e^{iz} + e^{-iz})} = i(\frac{e^{iz} - e^{-iz}}{1}) = itanz$
Hence proved.
Remark: i) siniz = isinhz \therefore coshz = cosiz
iii) taniz = itanhz \therefore tanhz = -isiniz
Fx. Using the definition of coshz and sinhz, prove that cosh^2z - sinh^2z = 1

Proof: We have
$$\cosh z = \frac{e^{z} + e^{-z}}{2}$$
 and $\sinh z = \frac{e^{z} - e^{-z}}{2}$
 $\therefore \cosh^{2} z - \sinh^{2} z = (\frac{e^{z} + e^{-z}}{2})^{2} - (\frac{e^{z} - e^{-z}}{2})^{2}$
 $= (\frac{e^{2z} + 2 + e^{-2z}}{4}) - (\frac{e^{2z} - 2 + e^{-2z}}{4})$
 $= (\frac{e^{2z} + 2 + e^{-2z} - e^{2z} + 2 - e^{-2z}}{4})$

$=\frac{4}{4}$ $\therefore \cosh^2 z - \sinh^2 z = 1$ Hence proved.				
MULTIPLE CHOICE QUESTIONS (MCQ'S)				
====================================				
a) 2	b) 3	c) 4	d) 5	
2) $i^m = -1$, if $m \in \mathbb{Z}$ is a		-		
a) 2	b) 3	c) 4	d) 5	
3) If z is real then \dots		14400नर ती. साम्य	0 - (1	
a) $\overline{z} = z$ (1) If z is purely imagin		c) z = -z	d) $z = 0$	
4) If z is purely imagin	b) $\overline{z} = -z$	a	d) $z = 0$	
a) z = z 5) Re(z) = & Im(C) Z = -Z	d = 0	
	b) $\frac{z+\overline{z}}{2i}$ & $\frac{z-\overline{z}}{2i}$	$(z) \frac{z+\overline{z}}{z} g_{z} \frac{z-\overline{z}}{z}$	d) None of these.	
21 2	21 21	$C) \frac{1}{2} \propto \frac{1}{2i}$	d) None of these.	
6) $R(iz) = \dots \& I(iz)$	e / 9	(z) $I(z)$ (z) $D(z)$	d) None of these	
7) Real and imaginary	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c) $-I(z)$ & $-R(z)$	d) None of these.	
a) 1 and 1	b) 1 and 0		d) None of these.	
8) Real and imaginary			d) I tone of these.	
	T IOI	A 2 I A INT	3	
10 10	10 10	c) $-\frac{2}{13}$ and $-\frac{3}{13}$		
9) Real and imaginary	parts of $i + i^2 + i^3$.	+ i ⁴ areand resp	ectively.	
a) 1 and 1	b) 1 and 0		d) None of these.	
			& respectively.	
a) x & tan ⁻¹ $\frac{x}{y}$	b) y & $\sin^{-1}\frac{y}{x}$	c) $\sqrt{x^2 + y^2}$ & ta	$\ln^{-1} \frac{y}{x}$ d) None of these.	
11) Modulus and argum	nent of 1+ i are	& respectiv	vely.	
a) $\sqrt{2} \& -\frac{3\pi}{4}$	b) $\sqrt{2} \& \frac{\pi}{2}$	c) $\sqrt{2} \& -\frac{\pi}{4}$	d) None of these	
⁴ 12) Modulus and argun		=		
		c) $\sqrt{2} \& -\frac{\pi}{4}$		
-		c) v 2 cc 4	d) None of these	
13) Modulus $z = (-1, \sqrt{-1})^{-1}$	2	-) 1		
a) -1	,	c) 1	d) 2	
14) Modulus $z = 1 + i\sqrt{3}$		a) 1	4) 0	
a) -1	b) 2	c) 1	d) 0	
$15) \frac{5}{(1-i)(2-i)(3-i)} = \dots$				

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCHNCE SR. COLLEGE, PIMPALNER 28

MTH-401: COMPLEX VARIABLES

a) $-\frac{1}{2}i$	b) $\frac{1}{2}$ i	c) i	d) None of these
16) $(3+i)(3-i)(\frac{1}{5}+\frac{i}{10}) =$			
a) $2 + i$		c) i	d) None of these
17) Complex conjugate	of $\frac{1}{2+3i}$ is		
a) 2-3i	b) $\frac{2}{13} + \frac{3}{13}i$	c) $\frac{2}{13} + \frac{3}{13}i$	d) 2+3i
18) Complex conjugate	of $\frac{3}{i} + \frac{7}{2}$ is		
a) $\frac{7}{2} + 3i$	b) $\frac{7}{2}$ -3i	c) $-\frac{3}{1}-\frac{7}{2}$	d) 3+7i
19) Complex conjugate	of $i^{15} + i^{19}$ is	र्षेपलनेर क	
a) -2i	b) <mark>2i</mark>	c) 2	d) -2
20) For any two comple	ex numbers z_1 and z_2	$ z_1 + z_2 ^2 + z_1 - z_2 ^2$	$ z_2 ^2 = \dots$
a) $2 z_1 ^2 + 2 z_2 ^2$	b) $ z_1 ^2 + z_2 ^2$	c) $2 z_1 ^2 - 2 z_2 ^2$	d) None of these
21) Multiplicative ident	tity in a set of comp	lex number is	a Ba
a) 1	b) 0	c) -i	d) i
22) For any two comple	ex num <mark>bers</mark> z ₁ and z	$_{2}: \mathbf{z}_{1} + \mathbf{z}_{2} \dots \mathbf{z}_{1} $	$+ z_2 $
a) <	b) ≤	c) >	d) =
23) For any two comple	ex numbers z ₁ and z	$_{2}: \mathbf{z}_{1} - \mathbf{z}_{2} \dots \mathbf{z}_{1} $	$ - z_2 $
a) <	b) ≤	c) >	d) ≥
24) For $z_1, z_2 \in C$, $ z_1 z_2 $	2 =	all Jan	<u>a</u>
a) $ z_1 z_2 $	b) $ z_1 + z_2 $	c) $ z_1 - z_2 $	d) None of these
25) For $z_1, z_2 \in C$, arg(z			
	b) argz ₁ - argz ₂	c) argz ₁ .argz ₂	d) None of these
26) For $z_1, z_2 \in C$, $\left \frac{z_1}{z_2} \right =$		X	
a) $ z_1 z_2 $	b) $\frac{ \mathbf{z}_2 }{ \mathbf{z}_1 }$	c) $\frac{ z_1 }{ z_1 }$	d) None of these
27) For $z_1, z_2 \in C$, $\arg(\frac{z_2}{z_1})$	$\left(\frac{1}{2}\right) = \dots$	ालान्ध् विन्दात म	ानवः॥
	b) argz_1 - argz_2	c) $argz_1.argz_2$	d) None of these
28) ω is said to be n th ro	oot of complex num	ber z if	
a) $\omega^n = z$	b) $\omega = z^n$	c) $\omega = z$	d) None of these
29) ω is said to be n th ro	oot of unity if		
a) $\omega^n = 1$	b) ω = 0	c) ω = -1	d) None of these
30) n - n^{th} roots of unity	are in progre	ession.	
	b) geometric		d) None of these
31) Sum of all $n - n^{th}$ ro	-		
a) 1	b) 0	c) -1	d) None of these

32) One of n th root of unity is			
a) -1 b) 0	c) 1	d) None of these	
33) $i + i^2 + i^3 + i^4 = \dots$			
a) 1 b) 0	c) -1	d) i	
34) $\cos z = \dots \& \sin z = \dots$			
a) $\frac{e^{iz} + e^{-iz}}{2} \& \frac{e^{iz} - e^{-iz}}{2} b = \frac{e^{iz}}{2} b$	$\frac{+e^{-iz}}{2}$ & $\frac{e^{iz}-e^{-iz}}{2}$ c) $\frac{e^{iz}-e^{-iz}}{2}$ &	$x^{e^{iz}+e^{-iz}} d) \xrightarrow{e^{iz}+e^{-iz}} \& \xrightarrow{e^{iz}+e^{-iz}}$	
a) $\frac{e^{iz}+e^{-iz}}{2}$ & $\frac{e^{iz}-e^{-iz}}{2i}$ b) $\frac{e^{iz}}{2}$ 35) If $z = e^{i\theta}$, then $\cos\theta = \dots$			
a) $\frac{1}{2}(z+\frac{1}{z}) \& \frac{1}{2i}(z+\frac{1}{z})$	b) $\frac{1}{2}(z+\frac{1}{z}) \& \frac{1}{z}$	$\frac{1}{2i}\left(\mathbf{Z}-\frac{1}{z}\right)$	
c) $\frac{1}{2}(z-\frac{1}{2}) & \frac{1}{2}(z-\frac{1}{2})$	d) $\frac{1}{2}(z+1)$ &	$\frac{1}{2}(z+\frac{1}{2})$	
a) $\frac{1}{2}(z+z) & \frac{1}{2i}(z+z)$ c) $\frac{1}{2}(z-\frac{1}{z}) & \frac{1}{2}(z-\frac{1}{z})$ 36) $\cosh z = \dots & \sinh z = \dots$	TERECI UN 2 Z	2 2 2	
a) $\frac{e^{z}+e^{-z}}{2}$ & $\frac{e^{z}-e^{-z}}{2}$ b) $\frac{e^{z}-e^{-z}}{2}$	$\frac{e^{-z}}{2}$ & $\frac{e^{z} + e^{-z}}{2}$ c) $\frac{e^{-z} - e^{z}}{2}$ & $\frac{e^{z}}{2}$	$\frac{+e^{-z}}{2}$ d) None of these.	
37) If n is a rational number, the			
	θ + isinn θ c) cosn θ – is	$\sin \theta$ d) None of these.	
38) If n is a natural number, the		3 3	
	θ + isinn θ c) cosn θ – is	$\sin \theta$ d) None of these.	
39) If n is a natural number, the			
	θ + isinn θ c) cosn θ – is	$\sin \theta$ d) None of these.	
40) If n is a natural number, the			
a) $\cos\theta - 1\sin\theta$ b) $\cos\theta$ 41) $(\cos 3\theta + i\sin 3\theta)^8 (\cos 4\theta - 1)$	θ + isinn θ c) cosn θ – is	inno d) None of these.	
	1 T Am	$\frac{1}{10000000000000000000000000000000000$	
	570 + isin70 c) cos320 + i	isiniszo u) None of mese.	
42) If $x = \cos\theta + i\sin\theta$, then $x + i\sin\theta$	X		
a) $2\cos\theta$ b) $\cos\theta$	· · · · · · · · · · · · · · · · · · ·	d) None of these.	
43) If $x = \cos\theta + i\sin\theta$, then $x - \frac{1}{2}$			
	θ and c) $2i\sin\theta$	d) None of these.	
44) If $x = \cos\theta + i\sin\theta$, then $x^m + i\sin\theta$	$-\frac{1}{x^m} = \dots$		
a) $2\cos\theta$ b) $\cos\theta$		d) None of these.	
45) If $x = \cos\theta + i\sin\theta$, then x^m -	$\frac{1}{x^m} = \dots$		
a) $2\cos\theta$ b) $\cos\theta$	mθ c) 2isinmθ	d) None of these.	
46) $\cos z = \dots \& \sin z = \dots$			
a) coshz & isinhz b) cos	z & sinz c) icoshz & s	inhz d) None of these.	
47) $taniz = \& cotiz =$			
a) tanhz & icothz b) tanhz & cothz c) itanhz & -icothz d) None of these.			
48) $\csc z = \dots \& \sec z = \dots$			
a) coshz & isinhz b) -icosechz & sechz c) icoshz & sinhz d) None of these.			

$49) \cosh z = \dots \& \sin z$	hiz =		
a) cosz & isinz	b) cosz & sinz	c) icosz & sinz	d) None of these.
50) tanhiz = & cot	hiz =		
a) tanz & icotz	b) tanz & cotz	c) itanz & -icotz	d) None of these.

UNIT-2: FUNCTIONS OF COMPLEX VARIABLES

- **Distance between two complex numbers:** Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ be any two complex numbers in the complex plane, then the distance between z_1 and z_2 is given by $|z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ Equation of a circle in a complex plane: If $\delta > 0$ be any real number, then $|z - z_0| = \delta$ is represents a circle with centre at z_0 and radius δ where z_0 is the fixed complex number and z any point on the circle. Neighbourhood of a point: Let z_0 be a fixed point in the complex plane C and $\delta > 0$ be a real number, then the set $\{z \mid |z - z_0| < \delta\}$ is called the δ –neighborhood of z_0 and is denoted by $N_{\delta}(z_0)$. **Deleted neighbourhood of a point:** Let z_0 be a fixed point in the complex plane C and $\delta > 0$ be a real number, then the set $\{z \mid 0 < |z - z_0| < \delta\}$ is called the δ – deleted neighborhood of z_0 and is denoted by N' $_{\delta}(z_0)$. **Interior point:** Let $S \subset C$, A point $z_0 \in S$ is called and interior point of S if there exist $\delta > 0$ such that $N_{\delta}(z_0) \subset S$. **Open set:** A set $S \subset C$ is said to be open set if every point of S is an interior point of S. **Boundary point:** A point z₀ is called a boundary point of the set S if every neighborhood of z_0 contains at least one point belonging to S and one point not belonging to S. Exterior Point: A point which is neither an interior point nor a boundary point of the set S is called an exterior point of S. Boundary of a set: The set of all boundary points of S is called a boundary of the set S Bounded set: A set S in the z-plane is called a bounded set if there exist the positive constant M such that $|z| \leq M$, for every $z \in S$. **Limit point:** A point $z_0 \in C$ is called a limit point of the set S if every deleted neighbourhood of z_0 contains at least one point of S. Closed set: A set S is called a closed set if it contains all its limit points. **Connected set:** A set S is called a connected set if any two points of S can be joined by a continuous curve all of whose points belongs to S. **Domain or Region:** An open connected set in C is called an open domain or
 - open region.
- **Closed Domain:** If boundary points of S are also included in an open domain, it is called closed domain.

2

- **Function of a complex variable:** A rule f which associates with each z in S, a unique complex number w, is called a complex valued function of a complex variable z defined on S. w is called an image of z under f and we write w = f(z).
- **Limit of a Function:** If for small $\varepsilon > 0$, there exist $\delta > 0$ depends on ε such that $|f(z) l| < \varepsilon$ whenever $0 < |z z_0| < \delta$. Then 1 is said to be limit of a complex function f(z) as $z \to z_0$. Denoted by $\lim_{z \to \infty} f(z) = 1$.

Algebra of Limits:
If
$$\lim_{z \to z_0} f(z) = 1$$
 and $\lim_{z \to z_0} g(z) = m$ then
i) $\lim_{z \to z_0} [f(z) \pm g(z)] = 1 \pm m$
ii) $\lim_{z \to z_0} [f(z)g(z)] = 1m$
iii) $\lim_{z \to z_0} [\frac{f(z)}{g(z)}] = \frac{1}{m}$ provided $m \neq 0$
Ex.: Evaluate $\lim_{z \to 1-1} [x + i(2x + y)]$
Sol. Consider $\lim_{z \to 1-1} [x + i(2x + y)]$
 $= \lim_{z \to 1-1} [x + i(2x + y)]$
 $= \lim_{z \to 1-1} [x + i(2x + y)]$
Sol. Consider $\lim_{z \to (2+3i)} [3x + i(2x - 4y)]$
Sol. Consider $\lim_{z \to (2+3i)} [3x + i(2x - 4y)]$
 $= 6 + i(4 - 12)]$
 $= 6 + i(4 - 12)]$
 $= 6 - 8i$
Ex.: Prove that $\lim_{z \to 0} \frac{z}{z}$ does not exists.
Sol. Consider $\lim_{z \to 0} \frac{z}{z} = \lim_{x \to i \neq 0} \frac{x - iy}{x + iy}$
Path along x-axis i.e. $y = 0$, we have,
 $\lim_{z \to 0} \frac{z}{z} = \lim_{x \to 0} \frac{x}{z} = 1 \because x \neq 0$
and path along y-axis i.e. $x = 0$, we have
 $\lim_{z \to 0} \frac{z}{z} = \lim_{x \to 0} \frac{-iy}{z} = -1 \because y \neq 0$
For two different paths, we get two different limits
 $\therefore \lim_{z \to 0} \frac{z}{z}$ does not exists is proved.

Ex.: Evaluate
$$\lim_{z \to 1} \frac{z^{k+1}}{z+1}$$

Sol. Consider $\lim_{z \to 1} \frac{z^{k+1}}{z+1} = \frac{i^k - i}{i+1} = \frac{i - i}{i+1} = 0$
Ex.: Evaluate $\lim_{z \to 1} \frac{z^{k+1}}{z-1} = \lim_{z \to 1} \frac{z^{2} - i^{2}}{z-1}$
 $= \lim_{z \to 1} \frac{(z^{k+1})}{z-1}$
 $= \lim_{z \to 1} \frac{(z^{k+1})}{z-1}$
 $= 2i$
Ex.: Evaluate $\lim_{z \to 1+1} \frac{z^{k+4}}{z^{2}-2i}$
Sol. Consider $\lim_{z \to 1+1} \frac{z^{k+4}}{z^{2}-2i}$
 $= \lim_{z \to 1+1} \frac{(z^{2} - 2i)(2^{2} + 2i)}{z^{2}-2i}$
 $= \lim_{z \to 1+1} \frac{(z^{2} - 2i)(2^{2} + 2i)}{z^{2}-2i}$
 $= \lim_{z \to 1+1} \frac{(z^{2} - 2i)(2^{2} + 2i)}{z^{2}-2i}$
 $= \lim_{z \to 1+1} \frac{(z^{2} - 2i)(2^{2} + 2i)}{z^{2}-2i}$
 $= \lim_{z \to 1+1} \frac{(z^{2} - 2i)(2^{2} + 2i)}{z^{2}-2i}$
 $= \lim_{z \to 1+1} \frac{(z^{2} - 2i)(2^{2} + 2i)}{z^{2}-2i}$
 $= \lim_{z \to 1+1} \frac{(z^{2} - 2i)(2^{2} + 2i)}{z^{2}-2i}$
 $= \lim_{z \to 1+1} \frac{(z^{2} - 2i)(2^{2} + 2i)}{z^{2}-2i}$
 $= \lim_{z \to 1+1} \frac{(z^{2} - 2i)(2^{2} + 2i)}{z^{2}-2i}$
 $= \lim_{z \to 1+1} \frac{(z^{2} - 2i)(2^{2} + 2i)}{z^{2}-2i}$
 $= \lim_{z \to 1+1} \frac{(z^{2} - 2i)(2^{2} + 2i)}{z^{2}-1i}$
 $= \lim_{z \to 1+i} \frac{(z^{2} - 2i)(2^{2} + 2i)}{z^{2}-1i}$
 $= \lim_{z \to 1+i} \frac{(z^{2} - 1i)(z^{2} + 2i)}{z^{2}-1i}$
 $= \lim_{z \to 1+i} \frac{(z^{2} - 1i)(z^{2} + 2i)}{z^{2}-1i}$
 $= \lim_{z \to 1+i} \frac{(z^{2} - 1i)(z^{2} + 2i)}{z^{2}-1i}$
 $= \lim_{z \to 1+i} \frac{(z^{2} - 1i)(z^{2} + 2i)}{z^{2}-1i}$
 $= \lim_{z \to 1+i} (z^{2} + 1 + i)(z^{2} + 2i)$
 $= 2(1 + i)[1 + 2i - 1 + 2i]$
 $= 8 + 8i$
 $= -8(1 - i)$

4

Ex.: Evaluate
$$\lim_{z \to \pm 1} \frac{(z^4 + 4)(1 \pm -z)}{z^2 - 2(z + 2) - 2z}$$

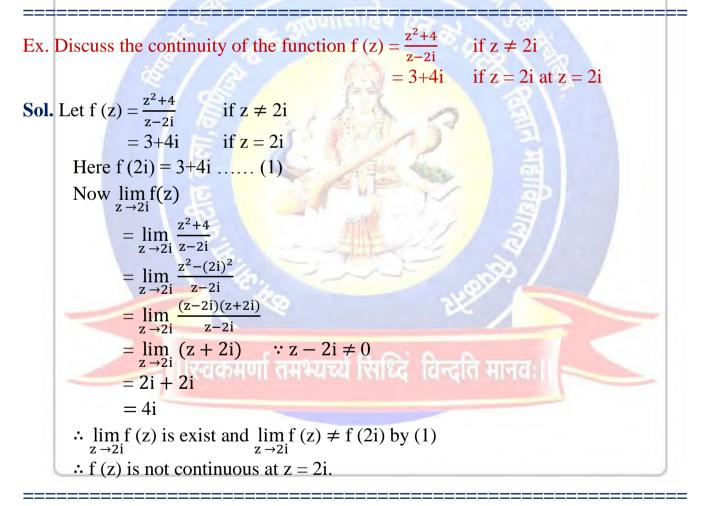
Sol. Consider
$$\lim_{z \to \pm 1} \frac{(-z^2)^2 - 2(z + 2) - 2z}{(z - 1)^2}$$
$$= \lim_{z \to \pm 1} \frac{-((z^2)^2 - 2(z)^2)((z - 1 - 1))}{(z - 1)^2}$$
$$= \lim_{z \to \pm 1} \frac{-(z^2 - 2i)(z^2 + 2i)}{(z - 1)^2} \Rightarrow z - 1 - i \neq 0$$
$$= \lim_{z \to \pm \pm 1} \frac{-(z^2 - 2i)(z^2 + 2i)}{z - 1 - i}$$
$$= \lim_{z \to \pm \pm 1} \frac{-(z - 1 - i)(z \pm 1 \pm i)(z^2 + 2i)}{z - 1 - i}$$
$$= \lim_{z \to \pm \pm 1} \frac{-(z + 1 + i)(z^2 + 2i)}{z - 1 - i}$$
$$= -(z + 1 + i)(z^2 + 2i) \Rightarrow z - 1 - i \neq 0$$
$$= -(1 + i + 1 + i)((1 + i)^2 + 2i)]$$
$$= -2(1 + i)[1 + 2i - 1 + 2i)$$
$$= -8i(1 + i)$$
$$= 8 - 8i$$
$$= 8(1 - i)$$

Ex.: Evaluate
$$\lim_{z \to \pm i i / 3} \frac{(z - \frac{5i}{2})z}{z^2 + 1}$$
$$= \lim_{z \to \pm i / 3} \frac{(z - \frac{5i}{2})z}{z^2 + 1}$$
$$= \lim_{z \to \pm i / 3} \frac{(z - \frac{5i}{2})z}{z^2 + 2i^2/2}$$
$$= \lim_{z \to \pm i / 3} \frac{(z - \frac{5i}{2})z}{z^2 + 2i^2/2}$$
$$= \lim_{z \to \pm i / 3} \frac{(z - \frac{5i}{2})z}{z^2 + 2i^2/2}$$
$$= \lim_{z \to \pm i / 3} \frac{(z - \frac{5i}{2})z}{z^2 + 2i^2/2}$$
$$= \lim_{z \to \pm i / 3} \frac{(z - \frac{5i}{2})z}{z^2 + 2i^2/2}$$
$$= \lim_{z \to \pm i / 3} \frac{z}{z^2 - (2i^2/2)} \Rightarrow \frac{z}{z^2 + 2i^2/2}$$
$$= \lim_{z \to \pm i / 3} \frac{z}{z^2 + 2i^{11/2} + 2i^{11/2}} \Rightarrow 0$$

Continuity of a function at a point: A complex function f (z) is said to be continuous at a point z = z₀ if f (z₀) is defined, lim f (z) is exist and lim f (z) = f (z₀).
Continuity of a function at a point: A complex function f (z) is said to be continuous at a point z = z₀ if for small ε > 0, there exist δ > 0 depends on ε such that |f(z) - f (z₀)| < ε whenever 0 < |z - z₀| < δ.
Removable discontinuity:

A complex function f (z) is said to have removable discontinuity at $z = z_0$ if $\lim_{z \to z_0} f(z) \neq f(z_0)$ and the discontinuity can be removed by giving the value to f (z_0) as $\lim_{z \to z_0} f(z)$.

Continuity of a function on a set: A complex function f (z) is said to be continuous on a set S if it is continuous at each point of S.



Ex. If $(z) = \frac{3z^4 - 2z^3 + 8z^2 - 2z + 5}{z - i}$, $z \neq i$ is continuous at z = i, then find the value of f(i). **Sol.** Let $f(z) = \frac{3z^4 - 2z^3 + 8z^2 - 2z + 5}{z - i}$, $z \neq i$ is continuous at z = i $\therefore \lim_{z \to i} f(z) = f(i)$ $\therefore f(i) = \lim_{z \to i} \frac{3z^4 - 2z^3 + 8z^2 - 2z + 5}{z - i}$

$$= \lim_{z \to i} \frac{3z^4 + 3z^2 - 2z^3 - 2z + 5z^2 + 5}{z - i}$$

$$= \lim_{z \to i} \frac{3z^2(z^2 + 1) - 2z(z^2 + 1) + 5(z^2 + 1)}{z - i}$$

$$= \lim_{z \to i} \frac{(z^2 + 1)(3z^2 - 2z + 5)}{z - i}$$

$$= \lim_{z \to i} \frac{(z - i)(z + i)(3z^2 - 2z + 5)}{z - i} \quad \because z - i \neq 0$$

$$= 2i(-3 - 2i + 5)$$

$$= 2i(-2i + 2)$$

$$= 4i(-i + 1)$$

$$\therefore f(i) = 4(1 + i)$$

Ex. If
$$(z) = \frac{3z^4 - 2z^3 + 8z^2 - 2z + 5}{z - i}$$
, if $z \neq i$ and $f(i) = 2 + 3i$. Examine $f(z)$ for continuity
at $z = i$,
Sol. Let $f(z) = \frac{3z^4 - 2z^3 + 8z^2 - 2z + 5}{z - i}$, if $z \neq i$ and $f(i) = 2 + 3i$ (1)
Consider $\lim_{z \to i} f(z)$
 $= \lim_{z \to i} \frac{3z^4 - 3z^3 + 8z^2 - 2z + 5}{z - i}$
 $= \lim_{z \to i} \frac{3z^2 (z^2 + 1) - 2z (z^2 + 1) + 5 (z^2 + 1)}{z - i}$
 $= \lim_{z \to i} \frac{(z^2 + 1)((3z^2 - 2z + 5))}{z - i}$
 $= \lim_{z \to i} \frac{(z^{-1})(z + i)(3z^2 - 2z + 5)}{z - i}$
 $= \lim_{z \to i} (z + i)(3z^2 - 2z + 5)$ $f(z) = z - i \neq 0$ if $H = 0$
 $= 2i(-3 - 2i + 5)$
 $= 2i(-2i + 2)$
 $= 4i(-i + 1)$
 $\therefore \lim_{z \to i} f(z) = 4(1 + i) \neq f(i)$ by (1).

 \therefore f(z) is not continuous at z = i.

Derivative at a point:

A complex function f (z) is said to be derivable at point $z = z_0$ if $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \text{ or } \lim_{\delta z \to 0} \frac{f(z_0 + \delta z) - f(z_0)}{\delta z} \text{ exists and is denoted by f }'(z_0).$ Algebra of Derivatives: If f(z) and g(z) are differentiable at z, then

i)
$$\frac{d}{dz} [f(z)\pm g(z)] = \frac{d}{dz} f(z)\pm \frac{d}{dz} g(z)$$

ii) $\frac{d}{dz} [f(z)g(z)] = f(z) \frac{d}{dz} g(z) + g(z) \frac{d}{dz} f(z)$
iii) $\frac{d}{dz} [kf(z)] = k \frac{d}{dz} f(z)$ where k is any constant.
iv) $\frac{d}{dz} [\frac{f(z)}{g(z)}] = \frac{g(z) \frac{d}{dz} f(z) - f(z) \frac{d}{dz} g(z)}{[g(z)]^2}$ if $g(z) \neq 0$
v) Chain Rule: If $t = f(w)$ and $w = g(z)$ then $\frac{dt}{dz} = \frac{dt}{dw} \frac{dw}{dz}$

Theorem: Every differentiable complex function is continuous.

Proof. Let f (z) is any complex function differentiable at point $z = z_0$.

$$\therefore f'(z_0) = \lim_{z \to z_0} \frac{(y - y)}{z - z_0} \dots \dots (1) \text{ is exists.}$$
Consider
$$\lim_{z \to z_0} [f(z) - f(z_0)] = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \times (z - z_0)$$

$$= \lim_{z \to z_0} \frac{f(x) - f(z_0)}{z - a} \times \lim_{z \to z_0} (z - z_0)$$

$$= f'(z_0) \times 0$$

$$\therefore \lim_{z \to z_0} f(z) - f(z_0) = 0$$

$$\therefore \lim_{z \to z_0} f(z) = f(z_0)$$
i.e. $f(z)$ is continuous at point $z = z_0$.

Hence every differentiable function is continuous is proved.

327.62

Remark: Every continuous function may not be differentiable.

Ex.: Show that the function $f(z) = \overline{z}$ is continuous at every point in the z-plane, but not differentiable.

Proof. Let $f(z) = \overline{z}$

$$\therefore f(z_0) = \overline{z_0}$$

and
$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} \overline{z} = \overline{z_0} = f(z_0)$$

 \therefore f (z) is continuous at every point in z-plane

Now consider

$$f'(z_0) = \lim_{\delta z \to 0} \frac{f(z_0 + \delta z) - f(z_0)}{\delta z}$$
$$= \lim_{\delta z \to 0} \frac{\overline{z_0 + \delta z} - \overline{z_0}}{\delta z}$$

$$= \lim_{\delta z \to 0} \frac{\overline{z_0} + \overline{\delta z} - \overline{z_0}}{\delta z}$$

$$\therefore f'(z_0) = \lim_{\delta z \to 0} \frac{\overline{\delta z}}{\delta z}$$

Let $\delta z \to 0$ along x-axis, then $\overline{\delta z} = \delta z$

$$\therefore f'(z_0) = \lim_{\delta z \to 0} \frac{\overline{\delta z}}{\delta z} = \lim_{\delta z \to 0} \frac{\delta z}{\delta z} = 1$$

Let $\delta z \to 0$ along y-axis, then $\overline{\delta z} = -\delta z$

$$\therefore f'(z_0) = \lim_{\delta z \to 0} \frac{\overline{\delta z}}{\delta z} = \lim_{\delta z \to 0} \frac{-\delta z}{\delta z} = -1$$

Along two different paths, we get two different limits.

$$\therefore f'(z_0) = \lim_{\delta z \to 0} \frac{f(z_0 + \delta z) - f(z_0)}{\delta z} \text{ does not exists.}$$

Hence f (z) is continuous at every point in z-plane but is not differentiable is proved.

Ex.: Let $f(z) = z^2 + 5z + c$, where c is any arbitrary constant (real or complex). Find $f'(z_0)$ by the definition of the derivative.

Solution. Let
$$f(z) = z^2 + 5z + c$$

 $\therefore f'(z_0) = \lim_{\delta z \to 0} \frac{f(z_0 + \delta z) - f(z_0)}{\delta z}$
 $= \lim_{\delta z \to 0} \frac{(z_0 + \delta z)^2 + 5(z_0 + \delta z) + c - z_0^2 - 5z_0 - c}{\delta z}$
 $= \lim_{\delta z \to 0} \frac{2z_0 \delta z + \delta z^2 + 5\delta z}{\delta z}$
 $= \lim_{\delta z \to 0} (2z_0 + \delta z + 5) \quad \because \quad \delta z \neq 0$
 $= 2z_0 + 0 + 5$
 $\therefore f'(z_0) = 2z_0 + 5$

Analytic function: A function f(z) of complex variable z is said to be analytic function at a point z_0 if f '(z) exists at each point z in some neighbourhood of z_0 .

- **Remark:**1) A function f(z) is said to be analytic in a domain D if it is analytic at each point of D.
 - 2) An analytic function is also called regular or holomorphic function.
 - 3) If f(z) = u + iv analytic function, then u and v are harmonic conjugates of each other.
 - 4) If f(z) = u + iv analytic function, then $u_x = v_y$ and $u_y = -v_x$ are called Cauhy Riemann Equations or C. R. Equations
 - 5) If f(z) is an analytic function, then f(z) is independent of z.

Ex.: Show that $f(z) = |z|^2$ is not analytic at any point $z \neq 0$ **Proof.** Let $f(z) = |z|^2$ $\therefore f'(z) = \lim_{\delta z \to 0} \frac{f(z+\delta z) - f(z)}{\delta z}$ $= \lim_{\delta z \to 0} \frac{|z + \delta z|^2 - |z|^2}{\delta z}$ $= \lim_{\delta z \to 0} \frac{(z + \delta z)(\overline{z + \delta z}) - z\overline{z}}{\delta z}$ $= \lim_{\delta z \to 0} \frac{(z + \delta z)(\bar{z} + \overline{\delta z}) - z\bar{z}}{\delta z}$ $= \lim_{\delta z \to 0} \frac{z \overline{z} + z \overline{\delta z} + \delta z \overline{z} + \delta z \overline{\delta z} - z \overline{z}}{\delta z}$ $= \lim_{\delta z \to 0} \frac{z\overline{\delta z} + \delta z\overline{z} + \delta z\overline{\delta z}}{\delta z}$ $= \lim_{\delta z \to 0} \left[z \frac{\overline{\delta z}}{\delta z} + \overline{z} + \overline{\delta z} \right]$ $= \lim_{\delta z \to 0} [z \frac{\overline{\delta z}}{\delta z} + \overline{z}] + \overline{0}$ $=\begin{cases} z + \overline{z} & \text{along real axis } \overline{\delta z} = \delta z. \\ -z + \overline{z} & \text{along imaginary axis } \overline{\delta z} = -\delta z. \end{cases}$ We observe that f'(z) exist at z = 0 only. Hence f(z) is not analytic anywhere in the complex plane. **Cauchy-Riemann Equations:** For f(z) = u + iv, $u_x = v_y$ and $u_y = -v_x$ i.e. $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ are called C. R. equations. **Necessary condition for analytic function:** A complex function f(z) = u+iv is analytic at a point z = x+iy of its domain D is that at (x, y) the first order partial derivatives of u and v w.r.t. x and y exists and satisfies the C. R. equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$. **Proof:** Let a complex function f(z) = u(x, y)+iv(x, y) is analytic at a point z = x+iy of its domain D. Then f'(z) is exists and f'(z) = $\lim_{\delta z \to 0} \frac{f(z+\delta z)-f(z)}{\delta z}$ (1) i.e. limit is same along any path as $\delta z \rightarrow 0$. i) Let $\delta z \rightarrow 0$ along real axis i.e. along $\delta y = 0$, we have $f'(z) = \lim_{\delta x \to 0} \frac{f(x+iy+\delta x) - f(x+iy)}{\delta x}$ $= \lim_{\delta x \to 0} \frac{u(x+\delta x,y)+iv(x+\delta x,y)-u(x,y)-iv(x,y)}{\delta x}$

$$= \lim_{\delta x \to 0} \frac{u(x+\delta x,y)-u(x,y) + iv(x+\delta x,y) - iv(x,y)}{\delta x}$$

$$= \lim_{\delta x \to 0} \frac{u(x+\delta x,y)-u(x,y)}{\delta x} + i \lim_{\delta x \to 0} \frac{v(x+\delta x,y) - v(x,y)}{\delta x}$$

$$\therefore f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \dots (2) \text{ by definition of partial derivatives.}$$

ii) Let $\delta z \to 0$ along imaginary axis i.e. along $\delta x = 0$, we have

$$f'(z) = \lim_{\delta y \to 0} \frac{f(x+iy+i\delta y) - f(x+iy)}{i\delta y}$$

$$= \lim_{\delta y \to 0} \frac{u(x,y+\delta y) + iv(x,y+\delta y) - u(x,y) - iv(x,y)}{i\delta y}$$

$$= \lim_{\delta y \to 0} \frac{u(x,y+\delta y) - u(x,y) + iv(x,y+\delta y) - iv(x,y)}{i\delta y}$$

$$= \lim_{\delta y \to 0} \frac{u(x+\delta x,y) - u(x,y)}{i\delta y} + \lim_{\delta x \to 0} \frac{v(x+\delta x,y) - v(x,y)}{\delta y}$$

$$= -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \text{ by definition of partial derivatives.}$$

$$\therefore f'(z) = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} \dots (3)$$

From (2) and (3), we get,

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial x}.$$

Hence proved.

Sufficient condition for analytic function: Let f(z) = u+iv = u(x, y)+iv(x, y). If the four partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$ exists and are continuous at a point (x, y) in the domain D and they satisfy the C. R. equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ at (x, y) then f(z) is analytic at a point z = x+iy**Proof:** Let f(z) = u+iv = u(x, y)+iv(x, y). As the four partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$ exists and are continuous at a point (x, y) in the domain D. \therefore u(x,y) and v(x, y) are differentiable at point (x, y). \therefore $\delta u = u(x+\delta x, y+\delta y)-u(x, y) = \frac{\partial u}{\partial x} \delta x + \frac{\partial u}{\partial y} \delta y + \alpha_1 \delta x + \beta_1 \delta y$ \therefore $\delta v = v(x+\delta x, y+\delta y)-v(x, y) = \frac{\partial v}{\partial x} \delta x + \frac{\partial v}{\partial y} \delta y + \alpha_2 \delta x + \beta_2 \delta y$ Where $\alpha_1, \beta_1, \alpha_2, \beta_2 \rightarrow 0$ as $\delta x, \delta y \rightarrow 0$ Now $\delta f(z) = f(z+\delta z)-f(z) = \delta u + i\delta y$

====

$$= \left(\frac{\partial u}{\partial x} \, \delta x + \frac{\partial u}{\partial y} \, \delta y + \alpha_1 \delta x + \beta_1 \delta y\right) + i\left(\frac{\partial v}{\partial x} \, \delta x + \frac{\partial v}{\partial y} \, \delta y + \alpha_2 \delta x + \beta_2 \delta y\right)$$

$$= \left(\frac{\partial u}{\partial x} \, \delta x - \frac{\partial v}{\partial x} \, \delta y + \alpha_1 \delta x + \beta_1 \delta y\right) + i\left(\frac{\partial v}{\partial x} \, \delta x + \frac{\partial u}{\partial x} \, \delta y + \alpha_2 \delta x + \beta_2 \delta y\right)$$
by C-R equations.
$$= \frac{\partial u}{\partial x} \left(\delta x + i\delta y\right) + i\frac{\partial v}{\partial x} \left(\delta x + i\delta y\right) + (\alpha_{1+}i\alpha_2)\delta x + (\beta_1 + i\beta_2)\delta y$$

$$= \frac{\partial u}{\partial x} \, \delta z + i\frac{\partial v}{\partial x} \, \delta z + \alpha \delta x + \beta \delta y \text{ where } \delta z = \delta x + i\delta y, \, \alpha = \alpha_{1+}i\alpha_2, \beta = \beta_1 + i\beta_2$$

$$\frac{\delta f(z)}{\delta z} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} + \alpha \frac{\delta x}{\delta z} + \beta \frac{\delta y}{\delta z}$$
As $|\delta x| \leq |\delta z|$ and $|\delta y| \leq |\delta z| \Rightarrow \left|\frac{\delta x}{\delta z}\right| \leq 1$ and $\left|\frac{\delta y}{\delta z}\right| \leq 1$
Now $\delta x, \, \delta y \to 0$ i.e. $\delta z \to 0 \Rightarrow \alpha = \alpha_{1+}i\alpha_2, \beta = \beta_1 + i\beta_2 \to 0$

$$\Rightarrow \lim_{\delta z \to 0} \frac{\delta x}{\delta z} = 0 \text{ and } \lim_{\delta z \to 0} \beta \frac{\delta y}{\delta z} = 0$$

$$\therefore \lim_{\delta z \to 0} \frac{\delta x}{\delta z} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}$$

$$\therefore f'(z) = u_{x+} iv_{x}$$

$$\therefore f'(z) \text{ is differentiable at } z = x + iy.$$
Hence proved.

Ex.: Show that the function defined by $f(z) = \sqrt{|xy|}$ where $z \neq 0$ and f(0) = 0, is not analytic at z = 0 even though the C-R equations are satisfied at z = 0 i.e. at origin.

Proof. Let
$$f(z) = \sqrt{|xy|} = u + iv$$
 where $z \neq 0$ and $f(0) = 0$
 $\therefore u(x, y) = \sqrt{|xy|}$, $v(x, y) = o$ and $u(0, 0) = 0$, $v(0, 0) = 0$
 $\therefore u_x(0, 0) = \lim_{h \to 0} \frac{u(0+h,0)-u(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0$
 $u_y(0, 0) = \lim_{k \to 0} \frac{u(0,0+k)-u(0,0)}{k} = \lim_{k \to 0} \frac{0-0}{k} = 0$
As $v(x, y) = o$ for all x, y
 $\therefore v_x(0, 0) = 0$, $v_y(0, 0) = 0$
 $\therefore u_x(0, 0) = 0 = v_y(0, 0)$ and $u_y(0, 0) = 0 = -v_x(0, 0)$
Thus four partial derivatives u_x , u_y , v_x , v_y exists and satisfies C-R equations.
Now consider

$$f'(0) = \lim_{z \to 0} \frac{f(z) - f(0)}{z - 0}$$

=
$$\lim_{(x,y) \to (0,0)} \frac{\sqrt{|xy|} - 0}{x + iy}$$

Along real axis i.e. $y = 0$, we have
$$f'(0) = \lim_{x \to 0} \frac{\sqrt{|0|} - 0}{x + i0} = 0$$

Along the st. line $y = x$, we have,

$$f'(0) = \lim_{x \to 0} \frac{\sqrt{|x^2|} - 0}{x + ix}$$
$$= \lim_{x \to 0} \frac{x}{x(1+i)}$$
$$= \lim_{x \to 0} \frac{1}{(1+i)} \qquad \because x \neq 0$$
$$= \frac{1}{(1+i)}$$

For two different paths, we get two different limits.

: $f'(0) = \lim_{z \to 0} \frac{f(z) - f(0)}{z - 0}$ does not exists i.e. f(z) not differentiable at z = 0. Hence f(z) is not analytic at z = 0 even though the C-R equations are satisfied at z = 0 is proved.

Ex.: If f(z) is analytic function with real part u is constant, then show that f(z) is a constant function.

Proof. Let f(z) = u + iv is analytic function with real part u is constant.

∴ u and v are satisfies C – R equations

 $u_x = v_y$ and $u_y = -v_x$ (1)

and u = c, where c is constant.

 \therefore u_x = 0 and u_y = 0

$$\therefore$$
 f'(z) = u_x + iv_x = u_x - iu_y = 0 - i0 = 0. by (1) v_x = -u_y

 \therefore f(z) is a constant function is proved.

Ex.: If f(z) is analytic function with imaginary part v is constant, then show that f(z) is a constant function.

Proof. Let f(z) = u + iv is analytic function with imaginary part v is constant.

 \therefore u and v are satisfies C-R equations

 $u_x = v_y$ and $u_y = -v_x$ (1)

and v = c, where c is constant.

$$\mathbf{v}_{x} = 0$$
 and $\mathbf{v}_{y} = 0$ तमणी तमभ्यत्त्यं सिधिदं विन्दति मानवः

:
$$f'(z) = u_x + iv_x = v_y + iv_x = 0 + i0 = 0.$$
 by (1) $u_x = v_y$

 \therefore f(z) is a constant function is proved.

Ex.: If f(z) and $\overline{f(z)}$ are analytic functions of z, then show that f(z) is a constant function. **Proof.** Let f(z) = u + iv and $\overline{f(z)} = u$ - iv are analytic functions of z.

 \therefore $\mathbf{u}_{\mathbf{x}} = \mathbf{v}_{\mathbf{y}}$ and $\mathbf{u}_{\mathbf{y}} = -\mathbf{v}_{\mathbf{x}} \dots \dots (1)$

Also $u_x = -v_y$ and $u_y = -(-v)_x = v_x$ (2) $\therefore \overline{f(z)} = u - iv$ is analytic

Adding the corresponding equations (1) and (2), we get,

 $2u_x = 0$ and $2u_y = 0$

 \therefore u_x = 0 and u_y = 0

 \therefore f'(z) = u_x + iv_x = u_x - iu_y = 0 - i0 = 0.

 \therefore f(z) is a constant function is proved.

Ex.: If f(z) is analytic function with constant modulus, then show that f(z) is a constant function.

Proof. Let f(z) = u + iv is analytic function with constant modulus.

 \therefore u and v are satisfies C-R equations $u_x = v_y$ and $u_y = -v_x \dots (1)$ and $|f(z)| = \sqrt{u^2 + v^2}$ is constant say k. i.e. $\sqrt{u^2 + v^2} = k$ $\therefore u^2 + v^2 = k^2 \dots (2)$ Differentiating equation (2) partially w.r.t. x and y, we get, $2uu_x + 2vv_x = 0$ i.e. $uu_x - vu_y = 0$ (3) by (1) $v_x = -u_y$ and $2uu_v + 2vv_v = 0$ i.e. $uu_v + vu_x = 0$ (4) by (1) $v_v = u_x$ Consider u(3) + v(4), we get, $\mathbf{u}^2 \mathbf{u}_{\mathbf{x}} - \mathbf{u} \mathbf{v} \mathbf{u}_{\mathbf{y}} + \mathbf{v} \mathbf{u} \mathbf{u}_{\mathbf{y}} + \mathbf{v}^2 \mathbf{u}_{\mathbf{x}} = \mathbf{0}$ i.e. $(u^2 + v^2)u_x = 0$ Similarly u(4)-v(3) gives $(u^2 + v^2)u_v = 0$. If $u^2 + v^2 = 0$, then u = v = 0 and hence f(z) = 0 is constant function. But if $u^2 + v^2 \neq 0$, then $u_x = 0$ and $u_y = 0$ \therefore f '(z) = u_x + iv_x = u_x - iu_y = 0 - i0 = 0. \therefore f(z) is a constant function is proved. **Ex.:** Show that $\frac{\partial^2}{\partial^2}$ ∂^2 ∂^2

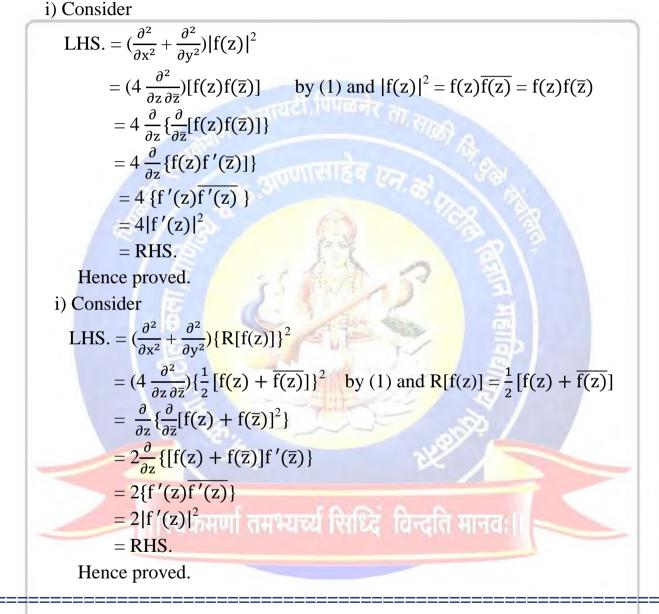
Proof. Let
$$z = x + iy$$
, then $\overline{z} = x - iy$.
 $\therefore z + \overline{z} = 2x$ and $z - \overline{z} = 2iy$
 $\therefore x = \frac{1}{2}(z + \overline{z}) = 2x - iy$ and $y = \frac{1}{2i}(z - \overline{z})$
 $\therefore \frac{\partial x}{\partial z} = \frac{1}{2}, \frac{\partial x}{\partial \overline{z}} = \frac{1}{2}$ and $\frac{\partial y}{\partial z} = \frac{1}{2i}, \frac{\partial y}{\partial \overline{z}} = -\frac{1}{2i}$
Now by chain rule $\frac{\partial}{\partial z} = \frac{\partial}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial}{\partial y} \frac{\partial y}{\partial z}$ and $\frac{\partial}{\partial \overline{z}} = \frac{\partial}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial}{\partial y} \frac{\partial y}{\partial \overline{z}}$
 $\therefore \frac{\partial}{\partial z} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{1}{2i} \frac{\partial}{\partial y}$ and $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{1}{2i} \frac{\partial}{\partial y}$
 $\therefore 2 \frac{\partial}{\partial z} = \frac{\partial}{\partial x} - i \frac{\partial}{\partial y}$ and $2 \frac{\partial}{\partial \overline{z}} = \frac{\partial}{\partial x} + i \frac{\partial}{\partial y}$
Taking product, we get,
 $4 \frac{\partial^2}{\partial z \partial \overline{z}} = (\frac{\partial}{\partial x} - i \frac{\partial}{\partial y}) (\frac{\partial}{\partial x} + i \frac{\partial}{\partial y})$

Hence proved.

Ex.: If f(z) is an analytic function of z, then show that

i)
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$$
 ii) $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \{R[f(z)]\}^2 = 2 |f'(z)|^2$

Proof. Let f(z) is an analytic function of z, then $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \overline{z}} \dots (1)$



Laplace Differential Equation: Let $\Phi(x, y)$ be a real valued function of real

variables x and y, then the differential equation $\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$ i.e. $\nabla^2 \Phi = 0$ is called Laplace differential equation.

Harmonic function: A real valued function $\Phi(x, y)$ of real variables x and y is called a harmonic function if it satisfies Laplace differential equation $\nabla^2 \Phi = 0$.

Laplace Operator: $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ is called Laplace del operator.

Theorem: The real and imaginary parts of an analytic function satisfy Laplace differential equations.

or

Show that the real and imaginary part of an analytic function are harmonic. **Proof.** Let f(z) = u + iv is an analytic function.

 $\therefore \text{ u and v satifies C-R equations } \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{ and } \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \dots (1)$ $\therefore \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y} \text{ and } \frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial y \partial x}$ Adding we get, $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial^2 v}{\partial y \partial x} = 0 \qquad \because \frac{\partial^2 v}{\partial x \partial y} = \frac{\partial^2 v}{\partial y \partial x}$ i.e. $\nabla^2 u = 0$. Thus u satisfies Laplace differential equation.
Again from (1), we get $\therefore \frac{\partial^2 v}{\partial x^2} = -\frac{\partial^2 u}{\partial x \partial y} \text{ and } \frac{\partial^2 v}{\partial y^2} = \frac{\partial^2 u}{\partial y \partial x}$ Adding we get, $\frac{\partial^2 v}{\partial x^2} = -\frac{\partial^2 u}{\partial x \partial y} \text{ and } \frac{\partial^2 v}{\partial y^2} = \frac{\partial^2 u}{\partial y \partial x}$ Adding we get, $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = -\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y \partial x} = 0 \qquad \because \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ i.e. $\nabla^2 v = 0$. Thus v satisfies Laplace differential equation. $\therefore \text{ The real and imaginary part of an analytic function are harmonic.}$

Ex.: Show that the real and imaginary part of the function e^z satisfy C-R equations and they are harmonic.

Proof. Let $f(z) = e^{z} = e^{x+iy} = e^{x}(\cos y + i \sin y) = e^{x}\cos y + i e^{x}\sin y = u + i v$ be a given function with real and imaginary parts are

 $u = e^x \cos y$ and $v = e^x \sin y$ and $v = e^x \sin y$

Differentiating partially w.r.t. x and y, we get

 \therefore u_x = e^xcosy, u_y = -e^xsiny, v_x = e^xsiny and v_y = e^xcosy

We observe that $u_x = v_y$ and $u_y = -v_x$

Thus, u and v satisfies C-R equations.

Now $u_{xx} = e^x \cos y$, $u_{yy} = -e^x \cos y$, $v_{xx} = e^x \sin y$ and $v_{yy} = -e^x \sin y$

 $\therefore u_{xx} + u_{yy} = e^x \cos y - e^x \cos y = 0 \text{ and } v_{xx} + v_{yy} = e^x \sin y - e^x \sin y = 0$ i.e. $\nabla^2 u = 0$ and $\nabla^2 v = 0$

i.e. u and v satisfies Laplace differential equation

 \div u and v are satisfies C-R equations and they are harmonic.

Hence proved.

Construction of Analytic function:

Method-I: Case-i) Suppose u i.e. real part of analytic function is given: We have to find v such that f(z) = u + iv is analytic function. As f(z) = u + iv is analytic function \therefore u and v are satisfies C-R equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$(1) By total differentiation $dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$ $\therefore dv = -\frac{\partial u}{\partial v} dx + \frac{\partial u}{\partial x} dy \qquad by (1) \because \frac{\partial u}{\partial x}, \ \frac{\partial u}{\partial v} \text{ are obtained from given u.}$ \therefore dv = Mdx + Ndy (2) where M = $-\frac{\partial u}{\partial y}$ and N = $\frac{\partial u}{\partial x}$ Now $\frac{\partial M}{\partial v} = -\frac{\partial^2 u}{\partial v^2}$ and $\frac{\partial N}{\partial x} = \frac{\partial^2 u}{\partial x^2}$ $\therefore \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = -\frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial x^2} = -(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2}) = -\nabla^2 u = 0 :: u \text{ is harmonic.}$ $\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ and hence equation (2) is exact and it's G. S. is given by $v = \int_{v-const.}^{\cdot} Mdx + \int (terms of N not containing x)dy + c,$ where c is constant of integration. Using this v and given u, we get an analytic function f(z) = u + iv. **Case-ii**) Suppose v i.e. imaginary part of analytic function is given: We have to find u such that f(z) = u + iv is analytic function. As f(z) = u + iv is analytic function \therefore u and v are satisfies C-R equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$(1) By total differentiation मभ्यच्य सिध्दि विन्दात मानवः। $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$ $\therefore du = \frac{\partial v}{\partial v} dx - \frac{\partial v}{\partial x} dy \qquad by (1) \because \frac{\partial v}{\partial x}, \ \frac{\partial v}{\partial v} are obtained from given v.$ \therefore du = Mdx + Ndy (2) where M = $\frac{\partial v}{\partial y}$ and N = $-\frac{\partial v}{\partial x}$ Now $\frac{\partial M}{\partial v} = \frac{\partial^2 v}{\partial v^2}$ and $\frac{\partial N}{\partial x} = -\frac{\partial^2 v}{\partial x^2}$ $\therefore \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial x^2} = \nabla^2 v = 0 :: v \text{ is harmonic.}$ $\therefore \frac{\partial M}{\partial v} = \frac{\partial N}{\partial v}$ and hence equation (2) is exact and it's G. S. is given by $u = \int_{v-const.}^{\cdot} Mdx + \int (terms of N not containing x)dy + c,$

where c is constant of integration.

Using this u and given v, we get an analytic function f(z) = u + iv.

Ex.: Show that the function $u = x^3 - 3xy^2$ is harmonic and find the corresponding analytic function.

Proof. Let
$$u = x^3 - 3xy^2$$
 be a given function.

$$\therefore \frac{\partial u}{\partial x} = 3x^2 - 3y^2 \text{ and } \frac{\partial u}{\partial y} = -6xy \dots (1)$$

$$\therefore \frac{\partial^2 u}{\partial x^2} = 6x \text{ and } \frac{\partial^2 u}{\partial y^2} = -6x$$

$$\therefore \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 6x - 6x = 0 \text{ i.e. } \nabla^2 u = 0$$
Hence u is harmonic function is proved.
Now to find an analytic function $f(z) = u + iv$, we to find v,
As $f(z) = u + iv$ is an analytic function

$$\therefore u \text{ and } v \text{ are satisfies C-R equations } \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{ and } \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \dots (1)$$
To find v consider

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$\therefore dv = -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy \quad by (1)$$

$$\therefore dv = 6xy dx + (3x^2 - 3y^2) dy \text{ which is an exact equation.}$$

$$\therefore It's G. S. \text{ is}$$

$$v = \int_{y-\text{const.}}^{y} (6xy) dx + \int (-3y^2) dy + c'$$
i.e. $v = 3x^2y - y^3 + c'$.

$$\therefore By using this v and given u, an analytic function is$$

$$f(z) = u + iv = (x^3 - 3xy^2) + i(2x^2y - y^3 + c')$$

$$\therefore f(z) = z^3 + ic' \qquad \text{obtained by putting } x = z \text{ and } y = 0.$$

$$\therefore f(z) = z^3 + c \text{ we where } c = ic' \text{ for find u analytic function in z.}$$

Ex.: Show that $\frac{1}{2} \log (x^2 + y^2)$ satisfies Laplace equation. Finds its harmonic conjugates. **Proof.** Let $u = \frac{1}{2} \log (x^2 + y^2)$ is an analytic function of z, then $\therefore \frac{\partial u}{\partial x} = \frac{1}{2} \left(\frac{2x}{x^2 + y^2} \right) = \frac{x}{x^2 + y^2}$ and $\frac{\partial u}{\partial y} = \frac{1}{2} \left(\frac{2y}{x^2 + y^2} \right) = \frac{y}{x^2 + y^2}$ (1) $\therefore \frac{\partial^2 u}{\partial x^2} = \frac{x^2 + y^2 - x(2x)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$ and $\frac{\partial^2 u}{\partial y^2} = \frac{x^2 + y^2 - y(2y)}{(x^2 + y^2)^2} = \frac{x^2 - y^2}{(x^2 + y^2)^2}$ $\therefore \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} + \frac{x^2 - y^2}{(x^2 + y^2)^2} = 0$ i.e. $\nabla^2 u = 0$

Hence u satisfies Laplace equation is proved.

Now to find harmonic conjugate of u, Consider $dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$ $\therefore dv = -\frac{\partial u}{\partial v} dx + \frac{\partial u}{\partial x} dy \qquad \text{by using C-R equations } \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial x} + \frac{\partial u}{\partial x}$ $\therefore dv = -\frac{y}{x^2 + v^2} dx + \frac{x}{x^2 + v^2} dy$ which is an exact equation. \therefore It's G. S. is $v = \int_{y-const.}^{b} \left(-\frac{y}{x^2 + y^2}\right) dx + \int 0 dy + c$ i.e. $v = -\tan^{-1}(\frac{x}{v}) + c$ is the harmonic conjugate of u. **Ex.:** Determine the analytic function f(z) = u + iv if $u = x^2 - y^2$ and f(0) = 1**Solution.** Let f(z) = u + iv is an analytic function. ∴ u and v are satisfies C-R equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ (1) As $u = x^2 - y^2$ is given $\therefore \frac{\partial u}{\partial x} = 2x$ and $\frac{\partial u}{\partial x} = -2y....(2)$ Now to find an analytic function f(z) = u + iv, we have to find v. Consider $dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$ $\therefore dv = -\frac{\partial u}{\partial v} dx + \frac{\partial u}{\partial x} dy \qquad \text{by using C-R equations } \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} + \frac{\partial u}{\partial x} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} \& \ \frac{\partial v}{\partial v} = -\frac{\partial u}{\partial v} & -\frac{\partial u}{\partial -\frac$ \therefore dv = (2y) dx + (2x)dy which is an exact equation. : It's G. S. is $v = \int_{v-const.}^{\cdot} (2y) dx + \int (0) dy + c$ i.e. v = 2xy + c. \therefore By using this v and given u, an analytic function is $f(z) = u + iv = (x^2 - y^2) + i(2xy + c)$ \therefore f(z) = z² +ic obtained by putting x = z and y = 0. Now f(0) = 1 gives 0 + ic = 1 i.e. ic = 1 \therefore f(z) = z²+1

Which is the required analytic function in z.

Ex.: Find an analytic function f(z) = u + iv and express it in terms of z, if $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$ **Solution.** Let f(z) = u + iv is an analytic function.

TIL SCIENCE SR. COLLEGE, PIMPALNER

 \therefore u and v are satisfies C-R equations $\frac{\partial u}{\partial v} = \frac{\partial v}{\partial v}$ and $\frac{\partial u}{\partial v} = -\frac{\partial v}{\partial x}$ (1) As $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$ is given $\therefore \frac{\partial u}{\partial x} = 3x^2 - 3y^2 + 6x \text{ and } \frac{\partial u}{\partial x} = -6xy - 6y....(2)$ Now to find an analytic function f(z) = u + iv, we have to find v. Consider $dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$ $\therefore dv = -\frac{\partial u}{\partial v} dx + \frac{\partial u}{\partial x} dy \qquad by (1)$ $\therefore dv = (6xy + 6y) dx + (3x^2 - 3y^2 + 6x) dy \qquad by (2)$ which is an exact equation. \therefore It's G. S. is $v = \int_{v-const}^{\cdot} (6xy + 6y)dx + \int (-3y^2)dy + c'$ i.e. $v = 3x^2y + 6xy - y^3 + c'$. \therefore By using this v and given u, an analytic function is $f(z) = u + iv = (x^3 - 3xy^2 + 3x^2 - 3y^2 + 1) + i(3x^2y + 6xy - y^3 + c')$ \therefore f(z) = z³ + 3z² + c obtained by putting x = z and y = 0 and taking 1+ic' = c Which is the required analytic function in z. **Ex.:** Find an analytic function f(z) = u + iv whose real part is given by $u = e^{x}(x \cos y - y \sin y)$ **Solution.** Let f(z) = u + iv is an analytic function. ... u and v are satisfies C-R equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ (1) As $u = e^{x}(x\cos y - y\sin y)$ is given य सिध्द विन्दात मानवः। $\therefore \frac{\partial u}{\partial x} = e^{x}(x\cos y - y\sin y) + e^{x}\cos y = e^{x}(x\cos y - y\sin y + \cos y)$ and $\frac{\partial u}{\partial y} = e^{x}(-x\sin y - \sin y - y\cos y) = -e^{x}(x\sin y + \sin y + y\cos y)....(2)$ Now to find an analytic function f(z) = u + iv, we have to find v. Consider $dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$ $\therefore dv = -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy \qquad by (1)$

 $\therefore dv = e^{x}(xsiny + siny + ycosy) dx + e^{x}(xcosy - ysiny + cosy)dy$ by (2) which is an exact equation.

 \therefore It's G. S. is

 $v = \int_{y-const.}^{\cdot} e^{x}(xsiny + siny + ycosy)dx + \int (0)dy + c'$ i.e. $v = e^{x}(xsiny + ycosy) + c$ using $\int e^{x}[f(x) + f'(x)] dx = e^{x}f(x) + c'$ \therefore By using this v and given u, an analytic function is $f(z) = u + iv = e^{x}(xcosy - ysiny) + i[e^{x}(xsiny + ycosy) + c']$ \therefore $f(z) = e^{z}(z+c)$ obtained by putting x = z and y = 0 and taking ic' = c Which is the required analytic function in z.

Ex.: Find an analytic function f(z) = u + iv, if v = e^{-y}sinx and f(0) = 1
Solution. Let f(z) = u + iv is an analytic function.
∴ u and v are satisfies C-R equations

∴ u and v are satisfies C-R equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{ and } \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \dots (1)$$
As $v = e^{-y} \text{sinx}$ is given

$$\therefore \frac{\partial v}{\partial x} = e^{-y} \text{cosx and } \frac{\partial u}{\partial y} = -e^{-y} \text{sinx} \dots (2)$$
Now to find an analytic function $f(z) = u + iv$, we have to find u.
Consider

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$$

$$\therefore du = \frac{\partial v}{\partial y} dx - \frac{\partial v}{\partial x} dy \qquad by (1)$$

$$\therefore dv = -e^{-y} \text{sinx} dx - e^{-y} \text{cosx} dy \qquad by (2)$$
which is an exact equation.

$$\therefore \text{ It's G. S. is}$$

$$u = \int_{y-\text{const.}}^{i} (-e^{-y} \text{sinx}) dx + \int (0) dy + c$$
i.e. $u = e^{-y} \text{cosx} + c$.

$$\therefore \text{ By using this v and given u, an analytic function is}$$

$$f(z) = u + iv = (e^{-y} \text{cosx} + c) + i(e^{-y} \text{sinx})$$

$$\therefore f(z) = \cos z + c + i \sin z = e^{iz} + c \qquad \text{obtained by putting } x = z \text{ and } y = 0$$
Now $f(0) = 1$ gives $1 = 1 + c$ i.e. $c = 0$

$$\therefore f(z) = e^{iz}$$
Which is the required analytic function in z.

Milne Thomson Method:

Case-i) Suppose u i.e. real part of analytic function f(z) = u + iv is given: As f(z) = u + iv is analytic function \therefore u and v are satisfies C-R equations $u_x = v_y$ and $u_y = -v_x \dots (1)$ Since u is given, u_x and u_y are calculated. Now $f'(z) = u_x + iv_x = u_x(x, y) - iu_y(x, y)$ by (1) $v_x = -u_y$ Say f '(z) = u₁(x, y) - iu₂(x, y) where u₁(x, y) = u_x(x, y) and u₂(x, y) = u_y(x, y) \therefore f '(z) = u₁(z, 0) - iu₂(z, 0) by putting x = z and y = 0. Integrating both sides w. r. t. z, we get f(z) = $\int [u_1(z, 0) - iu_2(z, 0)] dz + c$ be the required an analytic function. **Case-ii**) Suppose v i.e. real part of an analytic function f(z) = u + iv is given: As f(z) = u + iv is analytic function \therefore u and v are satisfies C-R equations u_x = v_y and u_y = -v_x (1) Since v is given, v_x and v_y are calculated. Now f '(z) = u_x + iv_x = v_y(x, y) + iv_x(x, y) by (1) u_x = v_y Say f '(z) = v₂(x, y) + iv₁(x, y) where v₁(x, y) = v_x(x, y) and v₂(x, y) = v_y(x, y) \therefore f '(z) = v₂(z, 0) + iv₁(z, 0) by putting x = z and y = 0. Integrating both sides w. r. t. z, we get f(z) = $\int [v_2(z, 0) + iv_1(z, 0)] dz + c$ be the required an analytic function.

Ex.: Find an analytic function f(z) = u + iv whose real part is $u = e^{-2xy} sin(x^2 - y^2)$ Solution. Let $u = e^{-2xy} sin(x^2 - y^2)$

 $\begin{array}{l} \therefore u_{x} = -2ye^{-2xy} \sin(x^{2} - y^{2}) + 2xe^{-2xy} \cos(x^{2} - y^{2}) \\ \text{and } u_{y} = -2xe^{-2xy} \sin(x^{2} - y^{2}) - 2ye^{-2xy} \cos(x^{2} - y^{2}) \\ \therefore u_{1}(z, 0) = u_{x}(z, 0) = 0 + 2z\cos(z^{2} - 0) = 2z\cos z^{2} \\ \text{and } u_{2}(z, 0) = u_{y}(z, 0) = -2z\sin(z^{2} - 0) - 0 = -2z\sin z^{2} \\ \text{By Milne Thomson Method, we get,} \\ f(z) = \int [u_{1}(z, 0) - iu_{2}(z, 0)]dz + c \\ = \int [2z\cos z^{2} + i2z\sin z^{2}]dz + c \\ = \int [\cos z^{2} + i\sin z^{2}](2zdz) + c \\ = \frac{1}{i} \int e^{iz^{2}}(2izdz) + c \\ = -ie^{iz^{2}} + c \\ \text{Which is the required analytic function.} \end{array}$

Ex.: Find an analytic function f(z) = u + iv whose imaginary part is $v = e^x (xsiny + ycosy)$ using Milne Thomson Method. **Solution.** Let $v = e^x (xsiny + ycosy)$ $\therefore v_x = e^x (xsiny + ycosy) + e^x siny = e^x (xsiny + ycosy + siny)$ and $v_y = e^x (xcosy + cosy-ysiny)$ $\therefore v_1(z, 0) = v_x(z, 0) = 0$ and $v_2(z, 0) = v_y(z, 0) = e^z (z + 1)$ By Milne Thomson Method, we get, $f(z) = \int [v_2(z,0) + iv_1(z,0)]dz + c$ $= \int [e^z (z + 1) + 0]dz + c$ $= \int e^z (z + 1)dz + c$ $= ze^z + c$

Which is the required analytic function.

MULTIPLE CHOICE QUESTIONS (MCQ'S)

1) If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ be any two complex numbers in the complex plane,				
then the distance between z_1 and z_2 is				
a) $ z_1 + z_2 $ b) $ z_1 - z_2 $ c) $ z_1 z_2 $ d) None of these				
2) If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ be any two complex numbers, then $ z_1 - z_2 = \dots$				
a) $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ b) $\sqrt{(x_1 - x_2)^2 - (y_1 - y_2)^2}$				
c) $\sqrt{(x_1 + x_2)^2 + (y_1 + y_2)^2}$ d) None of these				
3) If $\delta > 0$ be any real number, then the equation of a circle with centre at z_0 and				
radius δ is				
a) $ z_0 = \delta$ b) $ z + z_0 = \delta$ c) $ z - z_0 = \delta$ d) None of these				
4) Let z_0 be a fixed point in the complex plane C and $\delta > 0$ be a real number, then				
the set is called the δ –neighborhood N _{δ} (z ₀) of z ₀ .				
a) $\{z / z + z_0 < \delta\}$ b) $\{z / z - z_0 < \delta\}$				
c) $\{z z - z_0 > \delta\}$ d) None of these				
5) Let z_0 be a fixed point in the complex plane C and $\delta > 0$ be a real number, then				
the set is called a deleted neighborhood N' $_{\delta}(z_0)$ of z_0 .				
a) $\{z / 0 < z - z_0 < \delta\}$ b) $\{z / 0 < z + z_0 < \delta\}$				
c) $\{z z - z_0 > \delta\}$ d) None of these				
6) Let $S \subset C$, if there exist $\delta > 0$ such that $N_{\delta}(z_0) \subset S$, then $z_0 \in S$ is called				
point of S.				
a) an interior b) an exterior c) a boundary d) None of these				
7) A set $S \subset C$ is said to be open set if every point of S is point of S.				
a) an interior b) an exterior c) a boundary d) None of these				
8) If every neighborhood of z_0 contains at least one point belonging to S and one				
point not belonging to S, then point z_0 is called point of the set S.				
a) an interior b) an exterior c) a boundary d) None of these				
9) If there exist a positive constant M such that $ z \le M$, for every $z \in S$, then the set				
S in the z-plane is called a set				
a) open b) bounded c) closed d) None of these				

10) A point $z_0 \in C$ is called a limit point of the set S if every deleted neighbourhood					
of z_0 contains	point of S.				
a) at least on	b) all	c) no	d) None of these		
11) A set S is calle	d a closed set if it con		points.		
a) interior	b) boundary	c) limit	d) None of these		
12) If the limit, $\lim_{z \to z}$	f(z) exists, then it is	5			
a) 0	b) unique	c) ∞	d) None of these		
13) For $f(z) = u(x, $	$y) + iv(x, y)$, if $\lim_{z \to z_0} f$	f(z) = a + ib, then (2)	$\lim_{\mathbf{x},\mathbf{y})\to(x_0,y_0)}\mathbf{u}(\mathbf{x},\mathbf{y})=\ldots$		
a) a	b) b	c) a + ib	d) None of these		
14) For $f(z) = u(x, $	y) + iv(x, y), if $\lim_{z \to z_0} f$	f(z) = a + ib, then	$\lim_{(\mathbf{x},\mathbf{y})\to(x_0,y_0)}\mathbf{v}(\mathbf{x},\mathbf{y}) = \dots$		
a) a	b) b		d) None of these		
15) If $\lim_{z \to z_0} f(z) = l$	and $\lim_{z \to z_0} g(z) = m$, the	$\ln \lim_{z \to z_0} [f(z) \pm g(z)]$)] =		
a) $l \pm m$	b) <i>l</i>	c) m	d) <i>l</i> .m		
16) If $\lim_{z \to z_0} f(z) = l$ and $\lim_{z \to z_0} g(z) = m$, then $\lim_{z \to z_0} [f(z), g(z)] = \dots$					
a) <i>l</i> ±m	b) <i>l</i>	c) m	d) <i>l</i> .m		
17) If $\lim_{z \to z_0} f(z) = l$ and $\lim_{z \to z_0} g(z) = m$, then $\lim_{z \to z_0} \left[\frac{f(z)}{g(z)} \right] = \frac{l}{m}$ if					
a) <i>l</i> ≠0	b) m≠0	c) $\frac{l}{m} \neq 0$	d) None of these		
18) $\lim_{z \to (1-i)} [x + i(2x + y)] = \dots$					
a) 1-i	b) -1+i	c) 1+i	d) -1-i		
19) $\lim_{z \to (2+3i)} [3x + i(2x - 4y)] = \dots$					
a) 6-8i	b) -6-8i	c) 6+8i	d) -6+8i		
20) $\lim_{z \to i} \frac{z^5 - i}{z + i} = \dots$		100:00			
a) 1	b) 0	व्यासाध्द विन्दात c) 5	d) None of these		
21) If $\lim_{z \to i} \frac{z^8 - 1}{z + i} = \alpha$, then the value of α is					
$\begin{array}{c}z_{i}z_{i}z_{i}z_{i}z_{i}z_{i}z_{i}z_{i$	b) 0	c) -i	d) 1		
22) $\lim_{z \to i} z^5 - i = \dots$		C) -1	u) 1		
$\frac{z \rightarrow i}{z \rightarrow i} = \frac{z \rightarrow i}{z \rightarrow i}$	b) 5	c) 0	d) 4		
$23) \lim_{z \to i} \frac{z+i}{z^3}$	0,0	c) c	u) 1		
$\begin{array}{c}z \rightarrow i & z^{3} \\ z \rightarrow i & z^{3} \\ a \end{array}$	b) 2	c) -2i	d) -4i		
$7^{4}+4$	0,2	<i>c)</i> 21	<i>a</i> / 11		
$z \rightarrow 1+i$ z^2-2i	h) 1:		d) 4:		
a) 2i	b) 4i	c) -2i	d) -4i		

25) If $\lim_{z \to 1+i} \frac{z^4+4}{z^2-2i} = A$, then the value of A is					
a) 4i	b) 0	c) -4i	d) 1		
26) $\lim_{z \to 1+i} \frac{z^4+4}{z-1-i}$					
a) 8-8i	b) -8+8i	c) -8-8i	d) 8+8i		
27) Lim $\frac{\overline{z}}{\overline{z}}$ is					
a) 1	b)-1	c) 0	d) does not exist		
28) A complex function	f(z) is continuous a	,	,		
a) $\lim_{z \to z_0} f(z) = f(z)$	z ₀)	b) $\lim_{z \to z_0} f(z) \neq f(z)$	z ₀)		
c) only $\lim_{z \to z} f(z)$	is exists	d) None of these			
29) If $\lim_{z \to 4i} \frac{z^2 + 16}{z - 4i}$, $z = 4$	i is continuous at z	= 4i, then f(4i) is			
a) 4i	b) 0	c) 8i	d) 1		
30) If $f(z)$ is differential	at z_0 , then it is cont	inuous at z ₀ is	120		
a) true statement	E / la	b) false statement			
c) both true and fa	alse	d) None of these			
31) If $f(z)$ is continuous	at z <mark>o, then it is diffe</mark>	erential at z ₀ is	3		
a) true statement		b) false statement	3		
c) both true and fa	alse	d) None of these	あ		
32) If $f(z)$ is continuous	at z ₀ , then it may no	o <mark>t differential at</mark> z ₀ i	s		
a) true statement	a	b) false statement	¥ /		
c) both true and fa	alse	d) None of these			
33) The real part of e^z is	0.000	34991			
a) e ^x cosy	b) e ^x siny	c) e ^x cosx	d) None of these		
34) The imaginary part of e ^z is a) e ^x cosy (b) e ^x siny (c) e ^x cosx (c) (d) None of these					
		c) e ^c cosx and the	d) None of these		
35) If $f(z) = u + iv$ then t					
	b) $u - iv$		d) None of these		
36) If $\lim_{z \to z_0} f(z) = a + ib$					
	,	c) -a - ib	,		
37) A complex function f (z) is said to be derivable at point $z = z_0$ if exists and					
is denoted by f '(z_0).		$f(z)-f(z_{o})$			
0	0	c) $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$			
38) If f (z) and g(z) are differentiable at z, then $\frac{d}{dz} [f(z)\pm g(z)] = \dots$					
a) $\frac{d}{dz} f(z) \cdot \frac{d}{dz} g(z)$	b) $\frac{\mathrm{d}}{\mathrm{d}z} \mathbf{f}(z) \pm \frac{\mathrm{d}}{\mathrm{d}z} \mathbf{g}(z)$	c) $\frac{d}{dz} f(z) \mp \frac{d}{dz} g(z)$	d) None of these		

39) If f (z) and g(z) are differentiable at z, then $\frac{d}{dz} [f(z).g(z)] = \dots$ a) $\frac{d}{dz} f(z) \cdot \frac{d}{dz} g(z)$ b) $f(z) \frac{d}{dz} g(z) - g(z) \frac{d}{dz} f(z)$ c) $f(z) \frac{d}{dz}g(z) + g(z) \frac{d}{dz}f(z)$ d) None of these 40) If f (z) and g(z) are differentiable at z, then $\frac{d}{dz} \left[\frac{f(z)}{g(z)} \right] = \dots$ if $g(z) \neq 0$ a) $\frac{g(z)\frac{d}{dz}f(z) - f(z)\frac{d}{dz}g(z)}{[g(z)]^2}$ b) $\frac{df(z)}{dg(z)}$ c) $f(z)\frac{d}{dz}g(z) + g(z)\frac{d}{dz}f(z)$ d) None of these 41) The function $f(z) = \overline{z}$ is at every point in the z-plane. a) continuous but not differentiable b) differentiable c) not continuous d) None of these 42) If f (z) = $z^2 + 5z + c$, then f '(z₀) = a) $2z_0 + 5 + c$ b) $2z_0 + 5$ c) $2z_0 - 5$ d) None of these 43) If a function f(z) is differential at every point of neighbourhood of z_0 , then f(z) is \ldots at point z_0 a) analytic b) not analytic (c) harmonic d) None of these 44) A function which is differential at every point of region is said to bein that region. c) harmonic a) not analytic b) analytic d) None of these 45) If f(z) is analytic at z_0 , then it is not differential at z_0 is a) false statement b) true statement c) both true and false d) None of these 46) $f(z) = |z|^2$ is at any point $z \neq 0$. a) differentiable b) analytic c) not analytic d) None of these 47) If a complex function f(z) = u+iv is analytic at a point z = x+iy of its domain D, then at (x, y) the first order partial derivatives of u and y w.r.t. x and y exists and the C. R. equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$. a) satisfies b) not satisfies c) may or may not satisfies d) None of these 48) Let f(z) = u + iv = u(x, y) + iv(x, y). If the four partial derivatives $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial v}$, $\frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial v}$ exists and are continuous at a point (x, y) in the domain D and they satisfy the C. R. equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ at (x, y), then f(z) is at a point z = x + iya) differentiable b) analytic c) not analytic d) None of these 49) If f (z) = $\sqrt{|xy|}$ where $z \neq 0$ and f(0) = 0, then f(z) is at z = 0 even though the C-R equations are satisfied at z = 0. a) differentiable c) not analytic d) None of these b) analytic

50) If real part u of an analytic function $f(z) = u + iv$ is constant, then $f(z)$ is a					
function.					
a) non constant	b) constant	c) harmonic	d) None of these		
51) If imaginary part v o	of an analytic function	ion $f(z) = u + iv$ is c	constant, then f(z) is a		
function.					
a) zero	b) constant	c) harmonic	d) None of these		
52) If $f(z)$ is analytic fun	nction with constant	t modulus, then f(z)) is a function.		
a) non constant	b) constant	c) harmonic	d) None of these		
53) If $f(z)$ and $\overline{f(z)}$ are as	nalytic function of	z then f(z) is a	function.		
a) non constant	b) constant	c) harmonic	d) None of these		
54) An analytic function	is also called	function.			
a) regular or holor	morphic b) cons	tant c) harmoni	c d) None of these		
55) The function $f(z) =$	\overline{z} is not analytic fur	nction	9.51		
a) may or may not	t true	b) true statement	A.		
c) false statement		d) Neither contin	uous nor differentiable		
56) The function $f(z) =$	e ^z is				
a) analytic for all	The state	b) not analytic	a l		
c) not continuous	5-10	d) Neither contin	uous nor differentiable		
57) For an analytic function $f(z) = u + iv$, Cauchy Riemann equations are					
a) $u_x = -v_y \& u_y = v_x b$) $u_x = -v_y \& u_y = -v_x c$) $u_x = v_y \& u_y = -v_x d$) None of these					
58) If a real part u of an analytic function $f(z) = u+iv$ is given, then $f'(z) = \dots$					
a) $u_x(x, y) + iu_y(x, y)$, y)	b) $u_x(x, y) - iu_y(x)$, y)		
c) $u_x(x, y) - u_y(x, y)$	y)	d) None of these			
59) If an imaginary part v of an analytic function $f(z) = u+iv$ is given,					
then $f'(z) =$					
a) $v_y(x, y) + iv_x(x, y)$, y)	b) $v_y(x, y) - iv_x(x d)$ None of these	, y)		
60) If $f(z) = u + iv$ is analytic function with $u = x^2 + y$, then $v_y = \dots$					
a) 2y	b) 2x	c) x	d) y		
61) If $f(z) = u + iv$ is analytic function with $v = 2x^3 + y^2$, then $u_y = \dots$					
а) бу	b) бх	c) -6x	d) -6y		
62) If $u = x$, then an anal	lytic function f(z) =	= u + iv is			
a) x+iy+c	b) x+iy	c) x-iy	d) None of these		
63) Let $\emptyset = \emptyset(x, y)$ be a function of two real variables x and y, then Laplace					
differential equation	• •				
a) $\frac{\partial^2 \phi}{\partial z^2} - \frac{\partial^2 \phi}{\partial z^2} = 0$	b) $\frac{\partial^2 \phi}{\partial x^2} + 3 \frac{\partial^2 \phi}{\partial x^2} = 0$	c) $\frac{\partial^2 \phi}{\partial x^2} - 2 \frac{\partial^2 \phi}{\partial y^2} =$	0 d) $\frac{\partial^2 \phi}{\partial u^2} + \frac{\partial^2 \phi}{\partial u^2} = 0$		
$\partial X^2 = \partial Y^2$	$\partial x^2 = \partial y^2$	$\partial X^2 = \partial y^2$	$\partial X^2 = \partial y^2$		

64) If $\emptyset = \emptyset(x, y)$, then $\frac{\partial^2 \emptyset}{\partial x^2} + \frac{\partial^2 \emptyset}{\partial y^2} = 0$ is called				
a) Laplace differential equation b) C. R. equation c) linear d) None of these				
65) If $\phi(x, y) = x + y$, then $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$				
a) true statement b) false statement c) neither true nor false of	d) None of these			
66) Laplace differential equation of real valued function \emptyset (x, y) is				
a) $\nabla^2 \emptyset = 0$ b) $\nabla^2 \emptyset = 1$ c) $\nabla^2 \emptyset = -1$ d) No	one of these			
67) If $u = u(x, y)$ satisfy Laplace differential equation $u_{xx} + u_{yy} = 0$, the	en u is called			
function.				
a) analytic b) not analytic c) harmonic d) No	one of these			
68) The real and imaginary parts of an analytic function Laplace	e differential			
equation.				
a) satisfy b) does not satisfy c) may or may not satisfy d) No	one of these			
69) An analytic function $f(z) = u + iv$, such that u and v must satisfy 2	Laplace			
differential equation, then u and v are				
a) analytic b) non-analytic c) harmonic d) No				
70) If a real part u of an analytic function $f(z) = u + iv$ is given, then 1	by			
Milne-Thomson Method $f(z) = \dots$				
a) $\int u_1(z, o) dz + i \int u_2(z, o) dz + c$ b) $\int u_1(z, o) dz - i \int u_2(z, o) dz + c$ b) $\int u_1(z, o) dz - i \int u_2(z, o) dz + c$	(z, o)dz + c			
c) $\int u_2(z, o) dz - i \int u_1(z, o) dz + c d$ None of these				
71) If $u = x^2 - y^2$ is a real part of an analytic function $f(z) = u + iv$, then by				
Milne-Thomson Method $f(z) = \dots$				
a) $z^2 + c$ b) $iz^2 + c$ c) $-z^2 + c$ d) No				
72) If an imaginary part v of an analytic function $f(z) = u + iv$ is give	n, then by			
Milne-Thomson Method $f(z) = \dots$				
a) $\int v_1(z, o) dz + i \int v_2(z, o) dz + c$ b) $\int v_1(z, o) dz - i \int v_2(z, o) dz + c$ b) $\int v_1(z, o) dz + c$ b) $v_1(z, o) dz + c$ b) $v_$	z, 0)dz + c,			
c) $\int v_2(z, o)dz + i \int v_1(z, o)dz + d$ None of these				
$73)\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \dots$				
	one of these			
	one of these			
74) $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = \dots$				
a) $ f'(z) ^2$ b) $2 f'(z) ^2$ c) $4 f'(z) ^2$ d) No	one of these			
75) $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \{R[f(z)]\}^2 = \dots$				
	one of these			

UNIT-3: COMPLEX INTEGRATION

- **Closed Curve:** A curve z = f(t), $a \le t \le b$, is said to be closed curve if its initial and final point coincides.
- **Simple Curve:** A curve z = f(t), $a \le t \le b$, is said to be simple curve if it does not intersect itself anywhere.

Jordan Arc: A simple curve is called Jordan arc.

Simple Closed Curve: A curve z = f(t), $a \le t \le b$, is said to be simple closed curve if it does not intersect itself anywhere except initial and final point.

Closed Jordan Curve: A simple closed curve is called closed Jordan curve.

Smooth or Regular Curve: A curve $z = f(t) = \phi(t) + i\psi(t)$, $a \le t \le b$, is said to be smooth or regular curve if ϕ and ψ have continuous derivatives which does not vanish simultaneously for any value of t in [a, b].

Contour: A continuous chain of a finite number of smooth curve is called a contour. **Length of Contour:** Length of contour $f(t) = \phi(t) + i\psi(t)$, $a \le t \le b$ is given by

 $L = \int_{a}^{b} \sqrt{[\phi'(t)]^{2} + [\psi'(t)]^{2}} dt$

- **Remark:** Geometrically, a simple closed curve C is a circle or square or rectangle, and it divides the plane into two regions.
- Jordan Curve Theorem: Any closed Jordan curve C separate the plane into two regions having C as common boundary.
- **Remark:** Out of two regions interior of C is bounded and the other outer region is unbounded.
- Simply Connected Region: A region R in the complex plane is called simply connected if any simple closed curve which lies inside R can be shrunk to a point without leaving R.
- Multiply Connected Region: A region which is not simply connected is called multiply connected.
- **Line Integral:** If f(z) is continuous inside a region R, then line integral of f(z) along a curve C which lies in R is $\int_C f(z) dz$.

Properties of Line Integral:

i) If – C is the curve traversed opposite that of C, then $\int_{-C}^{\cdot} f(z)dz = -\int_{C}^{\cdot} f(z)dz$

ii) If $C = C_1 + C_2 + C_3 + \dots + C_n$, then $\int_C^{\cdot} f(z) dz = \sum_{k=1}^n \int_{C_k}^{\cdot} f(z) dz$

1

Ex. Evaluate $\int_{C}^{C} (x^2 + y^2 - xyi) dz$, where C is the line segment: z = 0 to z = 1 + i

Solution: Parametric equation of the line segment C: z = 0 to z = 1 + i is x = t, y = t,

so that
$$z = x + iy = t + it = (1+i)t$$
, $0 \le t \le 1$.
 $\therefore f(z) = x^2 + y^2 - xyi = t^2 + t^2 - t^2i = (2 - i)t^2$ and $dz = (1+i)dt$
 $\therefore \int_C f(z)dz = \int_{t=0}^1 (2 - i)t^2(1 + i)dt$
 $= (2 + 2i - i + 1)\left[\frac{t^3}{3}\right]_0^1$
 $= (3 + i)\left[\frac{1}{3} - 0\right]$
 $= 1 + \frac{1}{3}i$

<u>Ex.</u> If $f(z) = y - x - 3x^2i$, then evaluate $\int_C^{\cdot} f(z)dz$, where C is the straight line segment from z = 0 to z = 1 + i

Solution: Parametric equation of the line segment C: z = 0 to z = 1 + i is x = t, y = t,

so that
$$z = x + iy = t + it = (1+i)t$$
, $0 \le t \le 1$.
 $\therefore f(z) = y - x - 3x^2i = t - t - 3t^2i = -3t^2i$ and $dz = (1+i)dt$
 $\therefore \int_C^{\cdot} f(z)dz = \int_{t=0}^{1} (-3t^2i) (1+i)dt$
 $= -i(1+i) [t^3]_0^1$
 $= (-i+1)[1-0]$
 $= 1 - i$

<u>Ex.</u> If $f(z) = y - x - 3x^2i$, then evaluate $\int_C^{\cdot} f(z)dz$, where C consist of two straight line segments one from z = 0 to z = i and then from z = i to z = 1 + i**Solution:** Let $C = C_1 + C_2$, where C_1 is the straight line segments from z = 0 to z = i

and C_2 is the straight line segments from z = i to z = 1 + i

$$\therefore \int_{C}^{\cdot} f(z)dz = \int_{C_1}^{\cdot} f(z)dz + \int_{C_2}^{\cdot} f(z)dz \dots (1)$$

Parametric equation of the line segment C_1 : z = 0 to z = i is x = 0, y = t, so that $z = x + iy = 0 + it = ti, 0 \le t \le 1$. $\therefore f(z) = y - x - 3x^2i = t - 0 - 0i = t \text{ and } dz = idt$ $\therefore \int_{C}^{\cdot} f(z) dz = \int_{t=0}^{1} t dt$ $= i \left[\frac{t^2}{2} \right]_0^1$

$$= i\left[\frac{1}{2} - 0\right]$$
$$= \frac{1}{2}i$$

Again parametric equation of the line segment C₂: z = i to z = 1 + i is x = t, y = 1so that z = x + iy = t + i, $0 \le t \le 1$. $\therefore f(z) = y - x - 3x^2i = 1 - t - 3t^2i$ and dz = dt $\therefore \int_C f(z)dz = \int_{t=0}^1 (1 - t - 3t^2i)dt$ $= [t - \frac{t^2}{2} - t^3i]_0^1$ $= [1 - \frac{1}{2} - i - 0]$ $= \frac{1}{2} - i$ Putting in (1), we get, $\int_C f(z)dz = \frac{1}{2}i + \frac{1}{2} - i = \frac{1}{2}(1 - i)$

Ex. Evaluate $\int_C^1 z dz$, where C is the arc of the parabola $y^2 = 4ax$ from (0, 0) to (a, 2a) **Solution:** Let C is the arc of the parabola $y^2 = 4ax$ from (0, 0) to (a, 2a)

∴ Parametric equation of C is x = at², y = 2at,
so that z = x + iy = at² + 2ati = a(t² + 2ti), 0 ≤ t ≤ 1.
∴ f(z) = z = a(t² + 2ti) and dz = a(2t + 2i)dt = 2a(t + i)dt
∴ f_c f(z)dz =
$$\int_{t=0}^{1} a(t^{2} + 2ti) 2a(t + i)dt$$

= $2a^{2}\int_{t=0}^{1} (t^{2} + 2ti) (t + i)dt$
= $2a^{2}\int_{t=0}^{1} (t^{3} + t^{2}i + 2t^{2}i - 2t) dt$
= $2a^{2}\int_{t=0}^{1} (t^{3} - 2t + 3t^{2}i) dt$
= $2a^{2} [\frac{t^{4}}{4} - t^{2} + t^{3}i]_{0}^{1}$
= $2a^{2} [\frac{t^{4}}{4} - t^{2} + t^{3}i]_{0}^{1}$
= $2a^{2} [-\frac{3}{4} + i]$
= $-\frac{1}{2}a^{2}(3 - 4i)$

Ex. Evaluate $\int_{C}^{C} (z - a)^{n} dz$, where C is the circle: |z - a| = r and n is positive or

negative integer.

(Oct.2019)

Solution: Let C is the circle: |z - a| = r and n is positive or negative integer.

∴ Parametric equation of C is
$$z = a + re^{i\theta}$$
, where $0 \le \theta \le 2\pi$
∴ $f(z) = (z - a)^n = (re^{i\theta})^n = r^n e^{ni\theta}$ and $dz = re^{i\theta}id\theta$
∴ $\int_C^c f(z)dz = \int_{t=0}^{2\pi} (r^n e^{ni\theta}) re^{i\theta}id\theta$
 $= ir^{n+1}\int_{t=0}^1 (e^{(n+1)i\theta}) d\theta$
 $= ir^{n+1} \left[\frac{e^{(n+1)i\theta}}{(n+1)i} \right]_0^{2\pi}$ if $n \ne -1$
 $= \frac{r^{(n+1)}}{(n+1)} \left[e^{(n+1)i\theta} \right]_0^{2\pi} \right]$
 $= \frac{ir^{(n+1)}}{(n+1)} \left[e^{2(n+1)i\pi} - 1 \right]$
 $= 0$ if $n \ne -1$
If $n = -1$, then $f(z) = (z - a)^{-1} = \frac{1}{z-a} = \frac{1}{re^{i\theta}}$
∴ $\int_C^c f(z)dz = \int_{t=0}^{2\pi} (\frac{1}{re^{i\theta}}) re^{i\theta}id\theta$
 $= i[\theta]_0^{2\pi}$
 $= i[2\pi - 0]$
 $= 2\pi i$
i.e. $\int_C^c (z - a)^n dz = 0$ for any integer $n = xcept n \ne -1$.
and $\int_C^c \frac{1}{z-a} dz = 2\pi i$

Ex. Show that the integral of $\frac{1}{z}$ along a semicircular arc from -1 to 1, has the value - πi or πi according as the arc lies above or below the real axis.

Proof: i) If C_1 is a semicircular arc from -1 to 1 lies above the real axis.

: Parametric equation of C_1 is $z = e^{i\theta}$, where θ varies from π to 0.

$$\therefore f(z) = \frac{1}{z} = \frac{1}{e^{i\theta}} \text{ and } dz = e^{i\theta} id\theta$$
$$\therefore \int_{C}^{\cdot} f(z) dz = \int_{t=\pi}^{0} \left(\frac{1}{e^{i\theta}}\right) e^{i\theta} id\theta$$
$$= i[\theta]_{\pi}^{0}$$
$$= i[0 - \pi]$$

Parametric equation of C_2 is $z = e^{i\theta}$, where θ varies from π to 2π .

$$\therefore f(z) = \frac{1}{z} = \frac{1}{e^{i\theta}} \text{ and } dz = e^{i\theta} id\theta$$

$$\therefore \int_{C}^{\cdot} f(z) dz = \int_{t=\pi}^{2\pi} (\frac{1}{e^{i\theta}}) e^{i\theta} id\theta$$

$$= i[\theta]_{\pi}^{2\pi}$$

$$= i[2\pi - \pi]$$

$$= \pi i$$
Hence proved.

Cauchy's Integral Theorem: If f(z) is analytic on and within a simple closed contour C, then $\int_{C}^{\cdot} f(z)dz = 0$.

Remark: Cauchy's Integral Theorem is also called Cauchy-Gaursat's Theorem or Cauchy-Theorem.

Corollary-1: If f(z) is analytic in a simply connected region R, then $\int_a^b f(z) dz$ is independent of path of the integration in R joining the points a and b.

Proof: Let f(z) is analytic in a simply connected region R. Let A(a) and B(b) be two points representing the complex numbers a and b respectively within R.

Let C_1 and C_2 be two arcs in R joining A(a) and B(b). Now C = APBQA is a simple closed curve in R.

∴ f(z) is analytic on and within a simple closed contour C, then by Cauchy's Integral Theorem $\int_{C = APBQA}^{\cdot} f(z)dz = 0.$

i.e.
$$\int_{APB}^{\cdot} f(z)dz + \int_{BQA}^{\cdot} f(z)dz = 0$$

i.e. $\int_{C_1}^{\cdot} f(z)dz + \int_{-C_2}^{\cdot} f(z)dz = 0$
 $\therefore \int_{C_1}^{\cdot} f(z)dz - \int_{C_2}^{\cdot} f(z)dz = 0$
 $\therefore \int_{C_1}^{\cdot} f(z)dz = \int_{C_2}^{\cdot} f(z)dz$

This shows that $\int_{a}^{b} f(z) dz$ is independent of path joining A(a) and B(b) within R.

Ex. Verify Cauchy's Integral Theorem for f(z) = z + 1 around the contour |z| = 1.

Proof: Here the contour C is the circle |z| = 1, which is simple closed curve.

As f(z) = z + 1 is analytic everywhere in the complex plane, hence it is analytic inside and on C.

: By Cauchy's Integral Theorem, $\int_C^{\cdot} f(z) dz = 0$.

i.e.
$$\int_{C}^{C} (z+1) dz = 0 \dots (1)$$

Now parametric equation of C is $z = e^{i\theta}$, $0 \le \theta \le 2\pi$.

$$\therefore dz = e^{i\theta} id\theta$$

$$\therefore \int_{C} f(z) dz = \int_{|z|=1}^{\cdot} (z+1) dz$$

$$= \int_{0}^{2\pi} (e^{i\theta} + 1) e^{i\theta} id\theta$$

$$= \int_{0}^{2\pi} (e^{2i\theta} + e^{i\theta}) id\theta$$

$$= i \left[\frac{e^{2i\theta}}{2i} + \frac{e^{i\theta}}{i}\right]_{0}^{2\pi}$$

$$= \left[\frac{e^{4\pi i}}{2} + e^{2\pi i}\right] - \left[\frac{e^{0}}{2} + e^{0}\right]$$

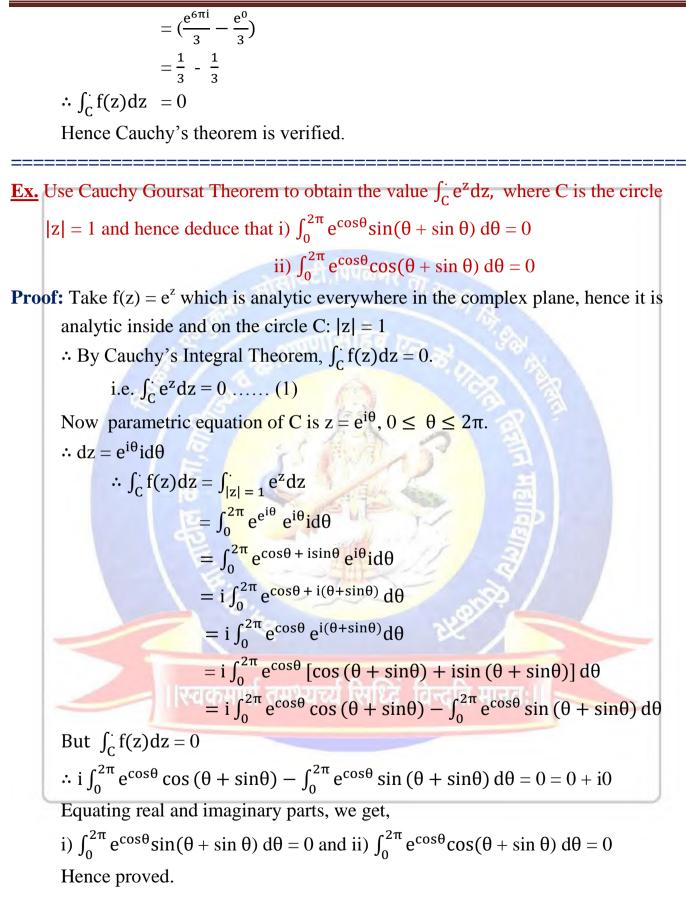
$$= \frac{1}{2} + 1 - \frac{1}{2} - 1$$

$$\therefore \int_{C} f(z) dz = 0$$

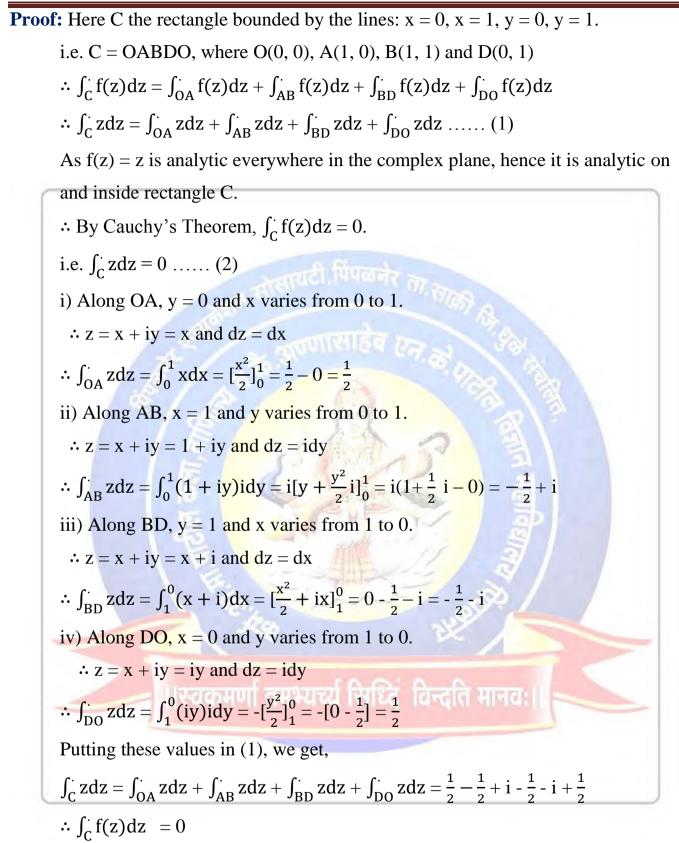
Hence Cauchy's theorem is verified.

Ex. Verify Cauchy's Integral Theorem for $f(z) = z^2$ around the circle |z| = 1. **Proof:** Here the closed contour C is the circle |z| = 1, which is simple closed curve.

As $f(z) = z^2$ is analytic everywhere in the complex plane, hence it is analytic inside and on C. Cauchy's Integral Theorem, $\int_C f(z)dz = 0$. i.e. $\int_C z^2 dz = 0$ (1) Now parametric equation of C is $z = e^{i\theta}$, $0 \le \theta \le 2\pi$. $\therefore dz = e^{i\theta}id\theta$ $\therefore \int_C f(z)dz = \int_{|z|=1}^{\cdot} z^2 dz$ $= \int_0^{2\pi} (e^{i\theta})^2 e^{i\theta}id\theta$ $= \int_0^{2\pi} (e^{3i\theta}) id\theta$ $= i[\frac{e^{3i\theta}}{3i}]_0^{2\pi}$



<u>Ex.</u> Verify Cauchy's Theorem for f(z) = z around a closed curve C, where C is the rectangle bounded by the lines: x = 0, x = 1, y = 0, y = 1.



Hence Cauchy's theorem is verified.

Remark: If f(z) is analytic in a region bounded by two simple closed curves C_1 and C_2 and also on C_1 and C_2 , then $\int_{C_1}^{\cdot} f(z)dz = \int_{C_2}^{\cdot} f(z)dz$

Cauchy's theorem for a system of contours: Let $C_1, C_2, C_3, \ldots, C_n$ be a system of closed Jordon contours such that $C_1, C_2, C_3, \ldots, C_n$ are all lie inside C and outside to each other. Let R be a region from C obtained by excluding interiors of each of the curves C_k of C. If f(z) is analytic in R and on each of the contours C, C_1, C_2, \ldots, C_n , then $\int_C^{\cdot} f(z)dz = \sum_{k=1}^n \int_{C_k}^{\cdot} f(z)dz$

where each contour is traversed in the positive (anticlockwise) sense.

Cauchy's Integral Formula for f(a): If f(z) is analytic inside and on a simple closed

contour C of a simply connected region R and point z = a lies inside C,

then
$$f(a) = \frac{1}{2\pi i} \int_{C}^{C} \frac{f(z)}{z-a} dz$$
 i.e. $\int_{C}^{C} \frac{f(z)}{z-a} dz = 2\pi i f(a)$

Proof: Let f(z) is analytic inside and on a simple closed contour C and point z = a lies inside C.

 $\therefore \frac{f(z)}{z-a}$ is analytic inside C except at the point z = a.

We draw a circle C_1 with centre at z = a and radius δ such that it lies completely inside C.

Now $\frac{f(z)}{z-a}$ is analytic in the region between C and C₁ as well as on C and C₁. Hence by corollary of Cauchy's Integral Theorem, we have

$$\begin{split} \int_{C} \frac{f(z)}{z-a} dz &= \int_{C_{1}} \frac{f(z)}{z-a} dz \\ &= \int_{C_{1}} \frac{f(z)-f(a)+f(a)}{z-a} dz \\ \int_{C} \frac{f(z)}{z-a} dz &= \int_{C_{1}} \frac{f(z)-f(a)}{z-a} dz + f(a) \int_{C_{1}} \frac{1}{z-a} dz \dots (1) \\ \text{Parametric equation of circle } C_{1} : |z-a| = \delta \text{ is } z-a = \delta e^{i\theta}, 0 \le \theta \le 2\pi. \\ \therefore dz &= \delta e^{i\theta} i d\theta \\ \therefore \int_{C_{1}} \frac{1}{z-a} dz = \int_{t=0}^{2\pi} (\frac{1}{\delta e^{i\theta}}) \delta e^{i\theta} i d\theta \\ &= i [\theta]_{0}^{2\pi} \\ &= i [2\pi - 0] \\ &= 2\pi i \end{split}$$

Substituting in (1), we get,

$$\int_{C}^{\cdot} \frac{f(z)}{z-a} dz = \int_{C_{1}}^{\cdot} \frac{f(z)-f(a)}{z-a} dz + 2\pi i f(a)$$

$$\therefore \frac{1}{2\pi i} \int_{C}^{\cdot} \frac{f(z)}{z-a} dz = \frac{1}{2\pi i} \int_{C_{1}}^{\cdot} \frac{f(z)-f(a)}{z-a} dz + f(a) \dots (2)$$
Now consider $\left| \frac{1}{2\pi i} \int_{C_{1}}^{\cdot} \frac{f(z)-f(a)}{z-a} dz \right| \le \frac{1}{2\pi} \int_{C_{1}}^{\cdot} \frac{|f(z)-f(a)|}{|z-a|} |dz| \because |i| = 1$

As every analytic function is differentiable and hence continuous.

$$\begin{array}{l} \stackrel{\cdot}{\cdot} f(z) \text{ is continuous at } z = a \text{ and hence for } \epsilon > 0, \exists \delta > 0 \text{ depend on } \epsilon, \text{ such that } \\ |f(z) - f(a)| < \epsilon \text{ whenever } |z - a| < \delta. \\ \stackrel{\cdot}{\cdot} \left| \frac{1}{2\pi i} \int_{C_1}^{\cdot} \frac{f(z) - f(a)}{z - a} dz \right| < \frac{1}{2\pi} \int_{C_1}^{\cdot} \frac{\epsilon}{\delta} |dz| = \frac{\epsilon}{2\pi\delta} \int_{C_1}^{\cdot} |dz| \\ \stackrel{\cdot}{\cdot} \left| \frac{1}{2\pi i} \int_{C_1}^{\cdot} \frac{f(z) - f(a)}{z - a} dz \right| < \frac{\epsilon}{2\pi\delta} (2\pi\delta) \quad \because \int_{C_1}^{\cdot} |dz| = \text{Length of } C_1 = 2\pi\delta \\ \stackrel{\cdot}{\cdot} \left| \frac{1}{2\pi i} \int_{C_1}^{\cdot} \frac{f(z) - f(a)}{z - a} dz \right| < \epsilon \\ \text{For } \epsilon \to 0, \text{ we have,} \\ \left| \frac{1}{2\pi i} \int_{C_1}^{\cdot} \frac{f(z) - f(a)}{z - a} dz \right| = 0 \\ \text{i.e. } \frac{1}{2\pi i} \int_{C_1}^{\cdot} \frac{f(z) - f(a)}{z - a} dz = 0 \\ \stackrel{\cdot}{\cdot} \text{ equation (2) reduces to } \\ \frac{1}{2\pi i} \int_{C}^{\cdot} \frac{f(z)}{z - a} dz = f(a) \end{array}$$

Cauchy's Integral Formula for f '(a): If f(z) is analytic inside and on a simple

closed contour C and a is any point inside C, then $f'(a) = \frac{1}{2\pi i} \int_{C}^{C} \frac{f(z)}{(z-a)^2} dz$

Proof: Choose h such that a + h is also lies inside C.

∴ By Cauchy's integral theorem, we have

$$f(a) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z-a} dz \text{ and } f(a+h) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z-a-h} dz$$
∴ $f(a+h) - f(a) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z-a-h} dz - \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z-a} dz$

$$= \frac{1}{2\pi i} \int_{C} [\frac{1}{z-a-h} - \frac{1}{z-a}] f(z) dz$$

$$\lim_{t \to 0} \frac{1}{2\pi i} \int_{C} [\frac{1}{(z-a-h)(z-a)}] f(z) dz$$
Taking limit as $h \to 0$, we get,
 $f'(a) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{(z-a)^2} dz$

Cauchy's Integral Formula for fⁿ(a): If f(z) is analytic inside and on a simple closed contour C and a is any point inside C, then

$$f^{n}(a) = \frac{n!}{2\pi i} \int_{C}^{C} \frac{f(z)}{(z-a)^{n+1}} dz, n \in \mathbb{N}$$

Ex. Evaluate by Cauchy integral formula $\int_C^{\cdot} \frac{e^z}{z-2} dz$, where C is the circle |z-2| = 1

Solution: Take $f(z) = e^z$ which is analytic everywhere in the complex plane, hence it is analytic inside and on the circle C: |z - 2| = 1 & the point z = 2 lies inside C.

 \therefore By Cauchy's integral formula f(a), we have,

$$f(2) = \frac{1}{2\pi i} \int_{C}^{\cdot} \frac{f(z)}{z-2} dz$$
$$\therefore \int_{C}^{\cdot} \frac{f(z)}{z-2} dz = 2\pi i f(2)$$
$$\therefore \int_{C}^{\cdot} \frac{e^{z}}{z-2} dz = 2\pi i e^{2}$$

Ex. Evaluate by Cauchy integral formula $\int_{C}^{C} \frac{3z-1}{z^2-2z-3} dz$, where C is the circle |z| = 4**Solution:** First resolve the integrand into partial fractions as

$$\frac{3z-1}{z^2-2z-3} = \frac{3z-1}{(z-3)(z+1)} = \frac{1}{z+1} + \frac{2}{z-3}$$

$$\therefore \int_{C} \frac{3z-1}{z^2-2z-3} dz = \int_{C} \frac{1}{z+1} dz + 2 \int_{C} \frac{1}{z-3} dz$$

$$\therefore \int_{C} \frac{3z-1}{z^2-2z-3} dz = \int_{C} \frac{f(z)}{z+1} dz + 2 \int_{C} \frac{f(z)}{z-3} dz$$

$$(1)$$
Where $f(z) = 1$ is analytic everywhere in the complex plane, hence it is analytic inside and on the circle C: $|z| = 4$ and the points $z = 3$ and $z = -1$ both lies inside C.

$$\therefore$$
 By Cauchy's integral formula,
 $f(3) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z-3} dz$

$$\therefore \int_{C} \frac{f(z)}{z-3} dz = 2\pi i \qquad \because f(3) = 1$$

$$\& f(-1) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z+1} dz$$

$$\therefore \int_{C} \frac{f(z)}{z+1} dz = 2\pi i \qquad \because f(-1) = 1$$
Putting these values in (1), we get,

$$\therefore \int_{C} \frac{3z-1}{z^2-2z-3} dz = 2\pi i + 2(2\pi i) = 6\pi i$$

<u>Ex.</u> Using Cauchy's Integral formula, evaluate $\int_C^1 \frac{dz}{z^3(z+4)} dz$, where C is the

circle $|\mathbf{z}| = 2$

Solution: We observe that $\frac{1}{z^3(z+4)}$ is not analytic at z = 0 and z = -4, out of these only the point z = 0 lies inside circle C: |z| = 2.

11

: We take $f(z) = \frac{1}{(z+4)}$ which is analytic inside and on the circle C: |z| = 2 and the point z = 0 lies inside C.

 \therefore By Cauchy's integral formula for f "(a),

$$f''(0) = \frac{2!}{2\pi i} \int_{C}^{\cdot} \frac{f(z)}{(z-0)^{3}} dz$$

$$\therefore \int_{C}^{\cdot} \frac{f(z)}{z^{3}} dz = \pi i f''(0)$$

As $f(z) = \frac{1}{(z+4)} \therefore f'(z) = \frac{-1}{(z+4)^{2}} & \text{\& } f''(z) = \frac{2}{(z+4)^{3}} & \therefore f''(0) = \frac{2}{64} = \frac{1}{32}$
$$\therefore \int_{C}^{\cdot} \frac{1}{z^{3}(z+4)} dz = \frac{\pi i}{32}$$

<u>Ex.</u> Evaluate $\int_{|z|=2}^{\cdot} \frac{e^{2z}}{(z-1)^4} dz$, Using Cauchy's Integral formula.

Solution: We take $f(z) = e^{2z}$ which is analytic inside and on the circle C: |z| = 2 and the point z = 1 lies inside C.

 \therefore By Cauchy's integral formula for f'''(a),

$$f'''(1) = \frac{3!}{2\pi i} \int_{C}^{\cdot} \frac{f(z)}{(z-1)^4} dz$$

$$\therefore \int_{C}^{\cdot} \frac{f(z)}{(z-1)^4} dz = \frac{1}{3}\pi i f'''(0)$$

As $f(z) = e^{2z} \therefore f'(z) = 2e^{2z}$, $f''(z) = 4e^{2z}$ & $f'''(z) = 8e^{2z} \therefore f'''(1) = 8e^{2z}$

$$\therefore \int_{|z|=2}^{\cdot} \frac{e^{2z}}{(z-1)^4} dz = \frac{8}{3}\pi e^{2i}$$

Ex. Evaluate $\int_{|z|=1}^{1} \frac{e^z}{z} dz$ and deduce that

$$\int_{0}^{2\pi} e^{\cos\theta} \cos(\sin\theta) \, d\theta = 2\pi \text{ and ii} \int_{0}^{2\pi} e^{\cos\theta} \sin(\sin\theta) \, d\theta = 0$$

Solution: Take $f(z) = e^z$ which is analytic everywhere in the complex plane, hence it is analytic inside and on the circle C: |z| = 1 & the point z = 0 lies inside C.

is analytic inside and on the circle C. |z| = 1 & the point z = 0 lies in

 \therefore By Cauchy's integral formula f(a), we have,

$$f(0) = \frac{1}{2\pi i} \int_{C}^{\cdot} \frac{f(z)}{z} dz$$

$$\therefore \int_{C}^{\cdot} \frac{f(z)}{z} dz = 2\pi i f(0)$$

$$\therefore \int_{C}^{\cdot} \frac{e^{z}}{z} dz = 2\pi i e^{0} = 2\pi i \dots (1)$$

Now parametric equation of C is $z = e^{i\theta}, 0 \le \theta \le 2\pi$.
$$\therefore dz = e^{i\theta} i d\theta$$

 $\therefore \int_{C} \frac{f(z)}{z} dz = \int_{|z|=1}^{\cdot} \frac{e^{z}}{z} dz$ $= \int_{0}^{2\pi} \frac{e^{e^{i\theta}}}{e^{i\theta}} e^{i\theta} id\theta$ $= \int_{0}^{2\pi} e^{\cos\theta} + i\sin\theta id\theta$ $= i \int_{0}^{2\pi} e^{\cos\theta} e^{i\sin\theta} d\theta$ $= i \int_{0}^{2\pi} e^{\cos\theta} \cos(\sin\theta) + i\sin(\sin\theta) d\theta$ $= i \int_{0}^{2\pi} e^{\cos\theta} \cos(\sin\theta) - \int_{0}^{2\pi} e^{\cos\theta} \sin(\sin\theta) d\theta$ But $\int_{C} \frac{f(z)}{z} dz = 2\pi i$ $\therefore i \int_{0}^{2\pi} e^{\cos\theta} \cos(\theta + \sin\theta) - \int_{0}^{2\pi} e^{\cos\theta} \sin(\theta + \sin\theta) d\theta = 2\pi i = 0 + 2\pi i$ Equating imaginary and real parts, we get, $i) \int_{0}^{2\pi} e^{\cos\theta} \cos(\sin\theta) d\theta = 0 \text{ and } ii) \int_{0}^{2\pi} e^{\cos\theta} \sin(\sin\theta) d\theta = 0$ Hence proved.

Complex Sequence: An infinite sequence $\{z_n\}$ in which each term z_n is a complex number is called complex sequence.

Convergence of Sequence: A sequence $\{z_n\}$ is called convergent sequence if it has a limit otherwise it is called divergent sequence.

e.g. For |z| < 1, the geometric sequence $z, z^2, \ldots, z^n, \ldots$ is convergent to 0.

Complex Series: A series $\sum_{n=1}^{\infty} z_n$ in which each term z_n is a complex number is called complex series.

Partial Sum of Series: $S_n = \sum_{k=1}^n z_k$ is called partial sum of series $\sum_{n=1}^{\infty} z_n$. Convergence of Series: If sequence of partial sums $\{S_n\}$ is convergent then series is convergent and if sequence of partial sums $\{S_n\}$ is divergent then series is divergent. Absolutely Convergent Series: A series $\sum_{n=1}^{\infty} z_n$ is said to be absolutely convergent if the series of absolute values $\sum_{n=1}^{\infty} |z_n|$ is convergent.

Power Series: A series of the form $a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + ... = \sum_{n=0}^{\infty} a_n(z - z_0)^n$ where $a_0, a_1, a_2, ..., a_n, ...$ and z_0 are complex numbers is called a power series.

Remark: i) Every absolutely convergent series is convergent.

ii) Geometric series $\sum_{n=0}^{\infty} z^n$ or $\sum_{n=1}^{\infty} z^{n-1} = 1 + z + z^2 + ... + z^n + ...$ is convergent if |z| < 1 and divergent if $|z| \ge 1$

- iii) If a power series $\sum_{n=0}^{\infty} a_n z^n$ converges for $z = z_1 (\neq 0)$, then it is absolutely convergent for any value of z such that $|z| < |z_1|$
- iv) If a power series $\sum_{n=0}^{\infty} a_n z^n$ diverges for $z = z_1$, then it is diverges for any value of z such that $|z| > |z_1|$

Taylor's Series: If f(z) is analytic in a region R and z_0 lies in R, then

$$f(z) = f(z_0) + f'(z_0) (z - z_0) + \frac{f''(z_0)}{2!} (z - z_0)^2 + \dots + \frac{f^n(z_0)}{n!} (z - z_0)^n + \dots$$
$$= \sum_{n=0}^{\infty} \frac{f^n(z_0)}{n!} (z - z_0)^n$$

is called Taylor's series.

Maclaurin's Series: If f(z) is analytic in a region R and 0 lies in R, then

$$f(z) = f(0) + f'(0)z + \frac{f''(0)}{2!}z^2 + \dots + \frac{f^n(0)}{n!}z^n + \dots = \sum_{n=0}^{\infty} \frac{f^n(0)}{n!}z^n$$

is called Maclaurin's series.

Laurent's Series: If f(z) is analytic on two concentric circles C_1 and C_2 with centre at

z = a and also the ring shaped region bounded by these two circles, then for any

point z in this region $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-a)^n}$

is called Laurent's series.

Where
$$a_n = \frac{1}{2\pi i} \int_{C_1}^{\cdot} \frac{f(z)}{(z-a)^{n+1}} dz$$
, for $n = 0, 1, 2, \dots$ and
 $b_n = \frac{1}{2\pi i} \int_{C_2}^{\cdot} (z-a)^{n-1} f(z) dz$ for $n = 1, 2, 3, \dots$

Remark: i) In Laurent's series $\sum_{n=0}^{\infty} a_n (z-a)^n$ is called analytic part

and $\sum_{n=1}^{\infty} \frac{b_n}{(z-a)^n}$ is called principal part of series.

ii) The ring shaped region bounded by two circles C_1 and C_2 is called annulus. **Results:** Taylor's /Maclaurin's series expansions of some standard functions are as:

i)
$$\frac{1}{1+z} = (1+z)^{-1} = 1 - z + z^2 - z^3 + \dots + (-1)^n z^n + \dots = \sum_{n=0}^{\infty} (-1)^n z^n$$
 for $|z| < 1$
ii) $\frac{1}{1-z} = (1-z)^{-1} = 1 + z + z^2 + z^3 + \dots + z^n + \dots = \sum_{n=0}^{\infty} z^n$ for $|z| < 1$
iii) $e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!} + \dots$
iv) $\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots + \frac{(-1)^n z^{2n+1}}{(2n+1)!} + \dots$

v)
$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots + \frac{(-1)^n z^{2n}}{(2n)!} + \dots$$

vi) $\sinh z = z + \frac{z^3}{3!} + \frac{z^5}{5!} + \dots + \frac{z^{2n+1}}{(2n+1)!} + \dots$
vii) $\cosh z = 1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \dots + \frac{z^{2n}}{(2n)!} + \dots$
Ex. Expand in Taylor's series: a) $\frac{1}{(z-2)}$ for $|z| < 2$ b) $\frac{1}{(z-1)(z-2)}$ for $|z| < 1$
Solution: a) $|z| < 2 \Rightarrow |\frac{z}{2}| < 1$
 $\therefore \frac{1}{(z-2)} = -\frac{1}{2} [\frac{1}{(1-\frac{z}{2})}]$
 $= -\frac{1}{2} \sum_{n=0}^{\infty} (\frac{z^n}{2})^n$ by Taylor's series expansion
 $\therefore \frac{1}{(z-2)} = -\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}$ for $|z| < 2$
b) First we resolve $\frac{1}{(z-1)(z-2)}$ into partial fractions as
 $\frac{1}{(z-1)(z-2)} = \frac{1}{(z-2)} - \frac{1}{(z-1)}$
 $= \frac{1}{(1-z)} - \frac{1}{2(1-\frac{z}{2})}$
 $= \sum_{n=0}^{\infty} z^n - \frac{1}{2} \sum_{n=0}^{\infty} (\frac{z^n}{2})^n$ for $|z| < 1$
Fx. Prove that $\frac{1}{4z-z^2} = \sum_{m=0}^{\infty} \frac{z^{n-1}}{(z+1)}$, where $0 < |z| < 4$.
Proof: $0 < |z| < 4 \Rightarrow |\frac{z}{4}| < 1$
Consider L.H.S. $= \frac{1}{4z - z^2}$
 $= \frac{1}{4z} \sum_{n=0}^{\infty} (\frac{z}{4})^n$ by Taylor's series expansion

$$= \sum_{n=0}^{\infty} \frac{z^{n-1}}{4^{n+1}}$$
$$= \text{R.H.S.}$$

Hence proved.

Ex. Find the expansion of $(z) = \frac{1}{(z^2+1)(z^2+2)}$ in powers of z, when |z| < 1**Solution:** $|z| < 1 \implies |z^2| < 1 \implies |z^2| < 2 \implies |\frac{z^2}{2}| < 1$ Now $(z) = \frac{1}{(z^2+1)(z^2+2)} = \frac{1}{(z^2+1)} - \frac{1}{(z^2+2)}$ $=\frac{1}{(1+z^2)}-\frac{1}{2(1+\frac{z^2}{2})}$ $= \sum_{n=0}^{\infty} (-1)^n (z^2)^n - \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n (\frac{z^2}{2})^n$ by Taylor's series expansion $= \sum_{n=0}^{\infty} (-1)^n z^{2n} \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{2^n}$ $\therefore f(z) = \sum_{n=0}^{\infty} (-1)^n \left(1 - \frac{1}{2^{n+1}}\right) z^{2n}$ be the required expansion, when |z| < 1**Ex.** Expand $f(z) = \frac{1}{(z-2)}$ in Laurent's series valid for |z| > 2Solution: $|z| > 2 \implies 2 < |z| \implies \frac{2}{r} |< 1$ $\therefore f(z) = \frac{1}{(z-2)}$ $=\frac{1}{z}\left[\frac{1}{(1-z)}\right]$ $=\frac{1}{z}\sum_{n=0}^{\infty}(\frac{2}{z})^n$ by Laurent's series expansion $\therefore \frac{1}{(z-2)} = \sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}}$ for |z| > 2**Ex.** Obtain the expansion of $(z) = \frac{z^2 - 1}{(z+2)(z+3)}$, in the powers of z in the region (i) |z| < 2 (ii) 2 < |z| < 3 (iii) |z| > 3. **Solution:** First we express $(z) = \frac{z^2 - 1}{(z+2)(z+3)}$ into partial fractions as follows $\frac{z^2 - 1}{(z+2)(z+3)} = 1 + \frac{A}{(z+2)} + \frac{B}{(z+3)} \dots \dots (1)$ i.e. $z^2 - 1 = (z + 2)(z + 3) + A(z + 3) + B(z + 2) \dots (2)$ Putting z = -2 in (2), we get,

$$4 - 1 = 0 + A + 0 \quad \therefore A = 3$$
Again putting $z = -3$ in (2), we get,
 $9 - 1 = 0 + 0 - B \quad \therefore B = -8$
From (1), we have,
 $(z) = 1 + \frac{3}{(z+2)} - \frac{8}{(z+3)}$
(i) $|z| < 2 \Rightarrow |z| < 3 \Rightarrow |\frac{z}{2}| < 1 \& |\frac{z}{3}| < 1$

$$\therefore (z) = 1 + \frac{3}{(z+2)} - \frac{8}{(z+3)} = 1 + \frac{3}{2} \frac{1}{(1+\frac{z}{2})} - \frac{8}{3} \frac{1}{(1+\frac{z}{2})} - \frac{8}{3} \frac{1}{(1+\frac{z}{2})}$$
 $= 1 + \frac{3}{2} \sum_{n=0}^{\infty} (-1)^n (\frac{z}{2})^n - \frac{8}{3} \sum_{n=0}^{\infty} (-1)^n (\frac{z}{3})^n$
by Taylor's series expansion
 $= 1 + 3 \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{2^{n+1}} - 8 \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{3^{n+1}}$
(ii) $2 < |z| < 3 \Rightarrow 2 < |z| \& |z| < 3 \Rightarrow |\frac{2}{z}| < 1 \& |\frac{z}{3}| < 1$
 $\therefore (z) = 1 + \frac{3}{2} \sum_{n=0}^{\infty} (-1)^n (\frac{z}{2})^n - \frac{8}{3} \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{3^{n+1}}$
 $(iii) 2 < |z| < 3 \Rightarrow 2 < |z| \& |z| < 3 \Rightarrow |\frac{2}{z}| < 1 \& |\frac{z}{3}| < 1$
 $\therefore (z) = 1 + \frac{3}{2} \sum_{n=0}^{\infty} (-1)^n (\frac{2}{2})^n - \frac{8}{3} \sum_{n=0}^{\infty} (-1)^n (\frac{z}{3})^n$
by Taylor's series expansion
 $= 1 + 3 \sum_{n=0}^{\infty} (-1)^n (\frac{2}{2})^n - \frac{8}{3} \sum_{n=0}^{\infty} (-1)^n (\frac{z}{3})^n$
by Taylor's series expansion
 $= 1 + 3 \sum_{n=0}^{\infty} (-1)^n \frac{2^n}{z^{n+1}} - 8 \sum_{n=0}^{\infty} (-1)^n \frac{2^n}{3^{n+1}}$
(iii) $|z| > 3 \Rightarrow |z| > 2 \Rightarrow |\frac{3}{2}| < 1 \& |\frac{1}{2}| < 1$
 $\therefore (z) = 1 + \frac{3}{(z+2)} - \frac{8}{(z+3)} = 1 + \frac{3}{2} \frac{1}{(1+\frac{2}{2})} - \frac{8}{2} \sum_{n=0}^{\infty} (-1)^n (\frac{2}{2})^n$
by Taylor's series expansion
 $= 1 + 3 \sum_{n=0}^{\infty} (-1)^n (\frac{2}{2})^n - \frac{8}{2} \sum_{n=0}^{\infty} (-1)^n (\frac{2}{2})^n$
by Taylor's series expansion
 $= 1 + 3 \sum_{n=0}^{\infty} (-1)^n (\frac{2}{2})^n - \frac{8}{2} \sum_{n=0}^{\infty} (-1)^n (\frac{2}{2})^n$

Ex. Obtain Laurents expansion of $(z) = \frac{z^2-6}{z^2-5z+6}$ valid in the region 2 < |z| < 3Solution: First we express $(z) = \frac{z^2-6}{z^2-5z+6} = \frac{z^2-6}{(z-2)(z-3)}$ into partial fractions as follows $\frac{z^2-6}{(z-2)(z-3)} = 1 + \frac{A}{(z-2)} + \frac{B}{(z-3)} \dots (1)$ i.e. $z^2 - 6 = (z-2)(z-3) + A(z-3) + B(z-2) \dots (2)$

Putting
$$z = 2$$
 in (2), we get,
 $4 - 6 = 0 + A(-1) + 0$ $\therefore -A = -2$ $\therefore A = 2$

Again putting
$$z = 3$$
 in (2), we get,
 $9 - 6 = 0 + 0 + B(1)$ $\therefore B = 3$
From (1), we have,
 $(z) = 1 + \frac{2}{(z-2)} + \frac{3}{(z-3)}$
Now $2 < |z| < 3 \Rightarrow 2 < |z| \& |z| < 3 \Rightarrow |\frac{2}{z}| < 1 \& |\frac{z}{3}| < 1$
 $\therefore (z) = 1 + \frac{2}{(z-2)} + \frac{3}{(z-3)}$
 $= 1 + \frac{2}{z(1-\frac{2}{z})} - \frac{1}{(1-\frac{2}{3})}$
 $= 1 + \frac{2}{z} \sum_{n=0}^{\infty} (\frac{2}{z})^n - \sum_{n=0}^{\infty} (\frac{z}{3})^n$ by Taylor's series expansion
 $= 1 + \sum_{n=0}^{\infty} \frac{2^{n+1}}{z^{n+1}} - \sum_{n=0}^{\infty} \frac{z^n}{3^n}$ for $2 < |z| < 3$
Ex. Obtain the expansion of $(z) = \frac{z^2 - 4}{z^2 + 5z + 4}$ in the powers of z for
(i) $|z| < 1$ (ii) $1 < |z| < 4$ (iii) $|z| > 4$.
Solution: First we express $(z) = \frac{z^2 - 4}{z^2 + 5z + 4} = \frac{z^2 - 4}{(z+1)(z+4)}$ into partial fractions as follows
 $\frac{z^2 - 4}{(z+1)(z+4)} = 1 + \frac{A}{(z+1)} + \frac{B}{(z+4)} \dots (1)$
(a) $z = x^2$ $A = (z + 1)(z + 4) > A(z + 4) = B(z + 1)$ (2)

$$\frac{z^{2}-4}{(z+1)(z+4)} = 1 + \frac{A}{(z+1)} + \frac{B}{(z+4)} \dots (1)$$

i.e. $z^{2} - 4 = (z+1)(z+4) + A(z+4) + B(z+1) \dots (2)$
Putting $z = -1$ in (2), we get,
 $1 - 4 = 0 + A(3) + 0 \qquad \therefore A = -1$
Again putting $z = -4$ in (2), we get,
 $16 - 4 = 0 + 0 + B(-3) \qquad \therefore -3B = 12 \ \therefore B = -4$
From (1), we have,
 $(z) = 1 - \frac{1}{(z+1)} - \frac{4}{(z+4)}$
(i) $|z| < 1 \implies |z| < 4 \implies |\frac{z}{4}| < 1$
 $\therefore (z) = 1 - \frac{1}{(z+1)} - \frac{4}{(z+4)}$
 $= 1 - \frac{1}{(1+z)} - \frac{1}{(1+\frac{z}{4})}$
 $= 1 - \sum_{n=0}^{\infty} (-1)^{n} z^{n} - \sum_{n=0}^{\infty} (-1)^{n} (\frac{z}{4})^{n}$

by Taylor's series expansion

d) None of these

19

$$= 1 - \sum_{n=0}^{\infty} (-1)^{n} z^{n} - \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{n}}{4^{n}}$$

$$= 1 - \sum_{n=0}^{\infty} (-1)^{n} (1 + \frac{1}{4^{n}}) z^{n} \quad \text{for } |z| < 1$$

(ii) $1 < |z| < 4 \implies 1 < |z| \& |z| < 4 \implies |\frac{1}{2}| < 1 \& |\frac{2}{4}| < 1$

$$\therefore (z) = 1 - \frac{1}{(z+1)} - \frac{4}{(z+4)}$$

$$= 1 - \frac{1}{z(1+\frac{1}{2})} - \frac{1}{(1+\frac{1}{2})}$$

$$= 1 - \frac{1}{z(1+\frac{1}{2})} - \frac{1}{(1+\frac{1}{2})}$$

$$= 1 - \frac{1}{z} \sum_{n=0}^{\infty} (-1)^{n} (\frac{1}{2})^{n} - \sum_{n=0}^{\infty} (-1)^{n} (\frac{2}{4})^{n}$$

by Taylor's series expansion

$$= 1 - \sum_{n=0}^{\infty} (-1)^{n} (\frac{1}{z^{n+1}} - \sum_{n=0}^{\infty} (-1)^{n} \frac{4^{n}}{4^{n}}$$

$$= 1 - \sum_{n=0}^{\infty} (-1)^{n} (\frac{1}{z^{n+1}} + \frac{x^{n}}{4^{n}}) \quad \text{for } 1 < |z| < 4$$

(iii) $|z| > 4 \implies |z| > 1 \implies \frac{4}{2}| < 1 \& |\frac{1}{2}| < 1$

$$\therefore (z) = 1 - \frac{1}{z(1+\frac{1}{2})} - \frac{4}{z(1+\frac{1}{2})}$$

$$= 1 - \frac{1}{z} \sum_{n=0}^{\infty} (-1)^{n} (\frac{1}{2})^{n} = \frac{4}{z} \sum_{n=0}^{\infty} (-1)^{n} (\frac{4}{z})^{n}$$

by Taylor's series expansion

$$= 1 - \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{x^{n+1}} - \frac{4}{z} \sum_{n=0}^{\infty} (-1)^{n} \frac{4^{n}}{z^{n+1}}$$

$$= 1 - \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{z^{n+1}} - \frac{4}{z} \sum_{n=0}^{\infty} (-1)^{n} \frac{4^{n}}{z^{n+1}}$$

$$= 1 - \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{z^{n+1}} - \sum_{n=0}^{\infty} (-1)^{n} \frac{4^{n}}{z^{n+1}}$$

$$= 1 - \sum_{n=0}^{\infty} (-1)^{n} (1 + 4^{n+1}) \frac{1}{z^{n+1}} \text{ for } |z| > 4$$

MULTIPLE CHOICE QUESTIONS (MCQ'S)
1) A curve $z = f(t), a \le t \le b$, is said to be curve if its initial and final point coincides.
a) open b) closed c) continuous d) None of these
2) A curve $z = f(t), a \le t \le b$, is said to be curve if it does not intersect itself anywhere
a) simple b) continuous c) multiple d) None of these

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COM.MERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER

3) A simple curve is a	lso called arc			
a) Euler's	b) Lagrange's	c) Jordan	d) None of these	
4) A curve $z = f(t)$, a :	$\leq t \leq b$, is said to be	if it does not	intersect itself anywhere	
except initial and f	inal point.			
a) simple closed curve		b) simple curve		
c) multiple curve		d) None of these		
5) A simple closed cu	rve is also called clos	sed curve		
a) Euler's	b) Lagrange's	c) Jordan	d) None of these	
6) If ϕ and ψ have co	ntinuous derivatives	which does not var	nish simultaneously for	
any value of t in [a	, b], then a curve $z =$	$\mathbf{f}(t) = \boldsymbol{\varphi}(t) + \mathbf{i}\boldsymbol{\psi}(t),$	$a \le t \le b$, is said to be	
or regular curve	e		8	
a) simple	b) smooth	c) multiple	d) None of these	
7) Smooth curve is al	so called curve.	. 173	2 2	
a) regular	b) simple	c) multiple	d) None of these	
8) A continuous chair	of a finite number o	f smooth curves is	called a	
a) arc	b) circle	1.1	d) None of these	
9) Length of contour		$\leq t \leq b$ is given by	L =	
a) $\int_a^b \sqrt{[\phi(t)]^2}$	+ $[\psi(t)]^2$ dt	b) $\int_a^b \sqrt{[\phi'(t)]^2}$	$+ [\psi'(t)]^2 dt$	
c) $\int_{a}^{b} \sqrt{\left[\left[\varphi'(t)\right]\right]}$	$(2^{2} + [\psi(t)]^{2})^{2}$ dt	d) $\int_a^b \sqrt{[\phi(t)]^2}$	$+ [\psi'(t)]^2 dt$	
10) A simple closed c	urve C divides the pl	ane into regio	ons.	
a) two	b) three	c) four	d) five	
11) Any closed Jordan	n curve C separate the	e plane into two re	gions having C as	
common boundar	y. Is the statement of	theorem.	गनवः।	
a) Lagrange's	b) Jordan Curve	c) Cauchy's	d) Euler's	
12) If any simple clos	ed curve which lies in	nside R can be shru	unk to a point without	
leaving R, then a	region R in the comp	lex plane is called		
a) simply connected		b) simple		
c) multiply connected		d) None of these		
13) If a region R is no	ot simply connected, t	hen it said to be		
a) simply conne	a) simply connected		b) simple	
c) multiply con	nected	d) None of these		
14) If f(z) is continuo	us inside a region R a	and curve C lies in	R, then $\int_C f(z) dz$ is	
			3	

called

called			
a) line integral	b) surface integra	l c) volume integra	l d) None of these
15) If $-C$ is the curve tr	aversed opposite th	at of C, then $\int_{-C}^{\cdot} f(z)$	z)dz =
a) $\int_{C}^{\cdot} f(z) dz$	b) $-\int_{C}^{\cdot} f(z)dz$	c) $-\int_{-C}^{\cdot} f(z)dz$	d) None of these
16) If $C = C_1 + C_2 + C_3$	+ + C_n , then \int	$\int_{C} f(z) dz = \dots$	
a) $\sum_{k=1}^{n} \int_{C_k}^{\cdot} f(z) dz$	$(z b) \int_{C_k}^{\cdot} f(z) dz$	c) $\int_{C_1}^{\cdot} f(z) dz$	d) None of these
17) Parametric equation	of the line segment	t joining the points z	z = 0 to $z = 1 + i$ is
a) $\mathbf{x} = \mathbf{t}, \mathbf{y} = \mathbf{t}$	b) $x = 0, y = t$	c) $x = t, y = 0$	d) None of these
18) Parametric equation	of the line segment	t joining the points a	z = 0 to $z = i$ is
a) $x = t$, $y = t$	b) $x = 0, y = t$	c) $x = t, y = 0$	d) None of these
19) Parametric equation	of the line segment	t joining the points a	$z = i \text{ to } z = 1 + i \text{ is } \dots$
a) $x = t$, $y = t$	b) $x = 0, y = t$	c) $x = t, y = 1$	d) None of these
20) Parametric equation	of the parabola y ² =	= 4ax is	2 3
a) $x = at^2$, $y = at$,	b) $\mathbf{x} = \mathbf{at}^2$, $\mathbf{y} = 2\mathbf{at}$	c) $x = 2at, y = at^2$,	d) None of these
21) Parametric equation	of t <mark>he p</mark> arabola x ² =	= 4ay is	3
a) $x = at^2$, $y = at$,	b) $x = at^2$, $y = 2at$	c) $x = 2at, y = at^2$	d) None of these
22) If n is any integer except $n \neq -1$ and C is the circle $ z - a = r$, then			
$\int_{C}^{\cdot} (z-a)^{n} dz = \dots$		E ST. F.	3
a) <mark>0</mark>	b) 2πi	c) 4πi	d) πi
23) If C is the circle z -	$ -a = r$, then $\int_C^1 \frac{1}{z-a}$	dz =	
a) 0	b) 2πi	c) 4πi	d) πi
24) If C is the semicircular arc from -1 to 1 lies above the real axis, then $\int_{C}^{1} \frac{1}{z-a} dz = \dots$			
a) 0	b) 2πi	c) 4πi	d) $-\pi i$
25) If C is the semicircu	llar arc from -1 to 1	lies below the real a	uxis, then $\int_C^{\cdot} \frac{1}{z-a} dz = \dots$
a) 0	b) 2πi	c) πi	d) —πi
26) By Cauchy's Integral theorem, if $f(z)$ is analytic on and inside a simple closed			
contour C, then $\int_C^{\cdot} f(z) dz = \dots$			
a) 0	b) 2πi	c) -2πi	d) πi
27) Cauchy's Integral theorem or Cauchy's theorem is also called			
a) Cauchy's Integral formula b) Cauchy's Goursat theorem			
c) Cauchy's Residue theorem d) None of these			

			MITH TOTI COMIT MERT FITTEMENDE
28) If C is the circle	$ \mathbf{z} = 1$, then $\int_{\mathbf{C}}^{\mathbf{c}} e^{\mathbf{z}} e^{\mathbf{z}}$	dz =	
a) 0	b) 2πi	c) πi	d) –πi
29) If C is the circle	$ \mathbf{z} = 1$, then $\int_{\mathbf{C}}^{\mathbf{L}} \mathbf{z} d$	z =	
a) 0	b) 2πi	c) πi	d) -πi
30) If C is the circle	$ \mathbf{z} = 1$, then $\int_{\mathbf{C}}^{\cdot} \mathbf{z}^2$	dz =	
a) 0	b) 2πi	c) πi	d) –πi
31) If C is the circle	$ \mathbf{z} = 1$, then $\int_{\mathbf{C}} (\mathbf{z} \cdot \mathbf{z})$	+ 1)dz =	
a) 0	b) 2πi	c) πi	d) –πi
32) If C is the recta	ngle bounded by th	e lines: $x = 0, x = 1$	y = 0, y = 1,
then $\int_{C}^{\cdot} z dz = .$	Sale Eller	11. 410	20
a) 0	b) 2πi	c) πi	d) —πi
33) If f(z) is analyti	ic in a region bound	led by two simple cl	osed curves C ₁ and
C_2 and also c	on C_1 and C_2 , then \int	$\frac{1}{C_1}$ f(z)dz =	82 8
a) 0			z d) None of these
34) Let C_1, C_2, C_3 ,	, C _n be a system	m of closed Jordon of	contours traversed in the
positive (anticlockwise) sense such that $C_1, C_2, C_3, \ldots, C_n$ are all lie inside C and			
outside to each	other. Let R be a re	egion obtained by ex	xcluding from the interiors of
C, each of the curves C_k together with their interiors. If $f(z)$ is analytic in R and on			
each of the con	ntours C, C_1, C_2, \ldots	$\dots, \frac{C_n}{C}$, then $\int_C^1 f(z) dz$	z =
a) $\int_{C_1}^{\cdot} f(z) dz$	b) $\int_{C_2}^{\cdot} f(z) dz$	c) $\int_{C_k}^{\cdot} f(z) dz$	d) $\sum_{k=1}^{n} \int_{C_k}^{\cdot} f(z) dz$
35) By Cauchy's In	itegral Formula for	f(a), if f(z) is analyt	ic on and inside a simple
closed contour C and a is any point inside C, then $f(a) = \dots$			
a) $\frac{1}{2\pi i} \int_C^{\cdot} \frac{f(z)}{(z-a)}$	dz b) $\frac{1}{2\pi i} \int_C^{\cdot} \frac{f(z)}{(z-a)}$	$\frac{1}{2\pi i} dz$ c) $\frac{n!}{2\pi i} \int_{C}^{\cdot} \frac{f(z)}{(z-a)^2} dz$	$\frac{dz}{dz}$ dz d) None of these
36) If f(z) is analytic on and inside a simple closed contour C and a is any point inside			
C, then $\int_C^{\cdot} \frac{f(z)}{(z-a)}$	dz =		
a) f(a)	b) 2πif '(a)	c) 2πif(a)	d) None of these
37) By Cauchy's In	itegral Formula for	f '(a), if f(z) is analy	tic on and inside a simple
		t inside C, then f '(a)	
a) $\frac{1}{2\pi i} \int_{C}^{\cdot} \frac{f(z)}{(z-a)}$	$(dz b) \frac{1}{2\pi i} \int_{C}^{\cdot} \frac{f(z)}{(z-a)}$	$\frac{1}{\sqrt{2}}$ dz c) $\frac{n!}{2\pi i} \int_C^{\cdot} \frac{f(z)}{(z-a)^2}$	$\frac{d}{dz}$ dz d) None of these

38) If f(z) is analytic on and inside a simple closed contour C and a is any point inside

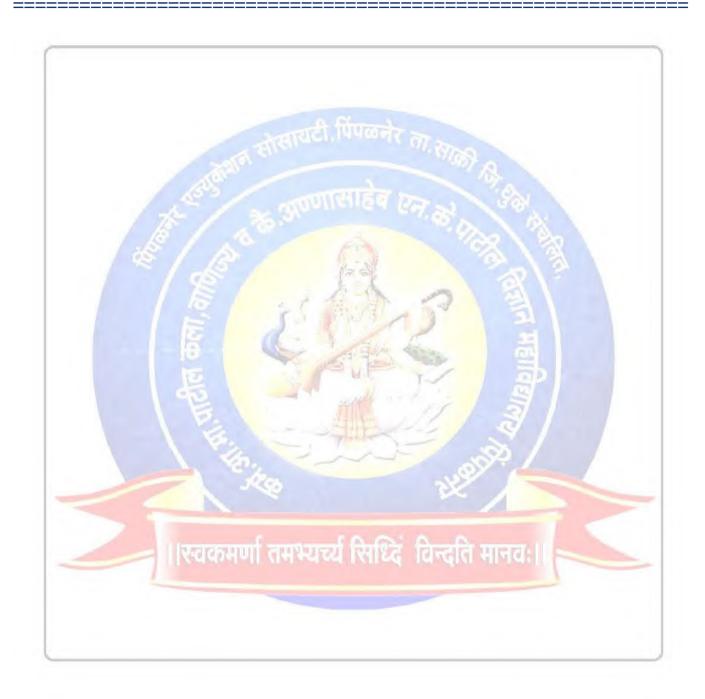
	MIH-401: COMPLEX VARIABLES		
C, then $\int_C^{\cdot} \frac{f(z)}{(z-a)^2} dz = \dots$			
a) $f(a)$ b) $2\pi i f'(a)$	c) $2\pi i f(a)$ d) None of these		
39) By Cauchy's Integral Formula for $f^{(n)}$	a), if f(z) is analytic inside and on a simple		
closed contour C and a is any point in	side C, then $f^{(n)}(a) = \dots, n \in \mathbb{N}$		
a) $\frac{n!}{2\pi i} \int_{C} \frac{f(z)}{(z-a)^{n+1}} dz$ b) $\frac{1}{2\pi i} \int_{C} \frac{f(z)}{(z-a)^{n}} dz$	z c) $\frac{n!}{2\pi i} \int_C \frac{f(z)}{(z-a)^{n-1}} dz d$ None of these		
40) By Cauchy's Integral Formula, if f(z)	is analytic inside and on a simple		
closed contour C and a is any point in	side C, then $f^{(5)}(a) = \dots, n \in \mathbb{N}$		
a) $\frac{1}{2\pi i} \int_{C}^{\cdot} \frac{f(z)}{(z-a)^6} dz$ b) $\frac{1}{2\pi i} \int_{C}^{\cdot} \frac{f(z)}{(z-a)^5} dz$	$z = c) \frac{60}{\pi i} \int_{C}^{\cdot} \frac{f(z)}{(z-a)^6} dz \qquad d) \text{ None of these}$		
41) If $f(z)$ is analytic inside and on a simple	le closed contour C and a is any point inside		
C, then $\int_{C}^{\cdot} \frac{f(z)}{(z-a)^{n+1}} dz = \dots, n \in \mathbb{N}$	A B		
a) $\frac{2\pi i}{n!} f^{(n)}(a)$ b) $\frac{n!}{2\pi i} f^{(n)}(a)$	c) $2\pi i f^{(n)}(a)$ d) None of these		
11: 21(1	e closed contour C and a is any point inside		
C, then $\int_{C}^{\cdot} \frac{f(z)}{(z-a)^n} dz = \dots, n \in \mathbb{N}$			
a) $\frac{2\pi i}{(n-1)!} f^{(n-1)}(a)$ b) $\frac{n!}{2\pi i} f^{(n)}(a)$	c) $2\pi i f^{(n)}(a)$ d) None of these		
43) If C is the circle $ z - 2 = 1$, then by C	Cauchy integral formula $\int_{C}^{C} \frac{e^{z}}{z} dz = \dots$		
	c) $2\pi i$ d) None of these		
44) If C is the circle $ z = 1$, then by Cauch	ny integral formula $\int_{C}^{\frac{z+2}{z}} dz = \dots$		
a) $(h) 4\pi i$	c) $2\pi i$ d) None of these		
45) By Cauchy integral formula $\int_{ z =1}^{\cdot} \frac{e^{z}}{z}$	dz =		
a) 0 b) $2\pi i e^{2}$	c) $2\pi i$ d) None of these		
46) An infinite sequence $\{z_n\}$ in which each	ch term z _n is a complex number is called		
a) complex sequence	b) complex series		
c) absolute sequence	d) None of these		
47) If a sequence $\{z_n\}$ has a limit as $n \to \infty$, then is calledsequence.			
a) convergent	b) divergent		
c) may be convergent or divergent	d) None of these		
48) If a sequence $\{z_n\}$ has no limit as $n \to \infty$, then is calledsequence.			
a) convergent	b) divergent		
c) may be convergent or divergent	d) None of these		
49) For $ z < 1$, the geometric sequence z, z^2 ,, z^n , is convergent to			
a) 1 b) -1 c) 0	d) None of these		

50) A series $\sum_{n=1}^{\infty} z_n$ in which each term z_n	is a complex number is called			
a) complex sequence	b) complex series			
c) absolute sequence	d) None of these			
51) For a series $\sum_{n=1}^{\infty} z_n$, $S_n = \sum_{k=1}^{n} z_k$ is called				
a) partial sum b) finite series	c) finite sequence d) None of these			
52) If sequence of partial sums $\{S_n\}$ is convergent then series is				
a) convergent	b) divergent			
c) may be convergent or divergent	d) None of these			
53) If sequence of partial sums $\{S_n\}$ is dive	ergent then series is			
a) convergent	b) divergent			
c) may be convergent or divergent	d) None of these			
54) A series of the form $a_0 + a_1(z - z_0) + a_2(z - z_0) + a_2$	$(z - z_0)^2 + \ldots = \sum_{n=0}^{\infty} a_n (z - z_0)^n$			
where $a_0, a_1, a_2, \ldots, a_n, \ldots$ and z_0 are contained as $a_1, a_2, \ldots, a_n, \ldots$ and z_0 are contained as a_1, a_2, \ldots, a_n .	mplex numbers is called a			
a) power series b) Taylors series	c) Maclaurin's series d) None of these			
55) Statement "Every absolutely converger	nt series is convergent" is			
	rue or false d) None of these			
56) Geometric series $\sum_{n=0}^{\infty} z^n$ or $\sum_{n=1}^{\infty} z^{n-1}$	56) Geometric series $\sum_{n=0}^{\infty} z^n$ or $\sum_{n=1}^{\infty} z^{n-1} = 1 + z + z^2 + + z^n +$ is convergent			
if	ar ar			
a) $ z > 1$ b) $ z = 1$ c) $ z < 1$ d) None of these				
57) Geometric series $\sum_{n=0}^{\infty} z^n$ or $\sum_{n=1}^{\infty} z^{n-1}$	$= 1 + z + z^2 + \dots + z^n + \dots$ is divergent			
if	2499			
	c) $ z < 1$ d) None of these			
58) If a power series $\sum_{n=0}^{\infty} a_n z^n$ converges				
convergent for any value of z such that				
	c) $ z > z_1 $ d) None of these			
59) If a power series $\sum_{n=0}^{\infty} a_n z^n$ diverges for $z = z_1 \neq 0$, then it is absolutely				
divergent for any value of z such that	c) $ z > z_1 $ d) None of these			
60) If $f(z)$ is analytic in a region R and z_0 li				
$f(z) = f(z_0) + f'(z_0) (z - z_0) + \frac{f''(z_0)}{2!} (z - z_0)^2 + \dots + \frac{f^n(z_0)}{n!} (z - z_0)^n + \dots$				
i.e. $f(z) = \sum_{n=0}^{\infty} \frac{f^n(z_0)}{n!} (z - z_0)^n$ is called				
a) Taylor's series	b) Maclaurin's series			
c) Laurent's series	d) None of these			

61) If f(z) is analytic in a region R and z_0 lies in R, then $f(z) = f(0) + f'(0) z + \frac{f''(0)}{2!} z^2 + \dots + \frac{f^n(0)}{n!} z^n + \dots = \sum_{n=0}^{\infty} \frac{f^n(0)}{n!} z^n$ is called a) Taylor's series b) Maclaurin's series c) Laurent's series d) None of these 62) If f(z) is analytic on two concentric circles C_1 and C_2 with centre at z = a and also the ring shaped region bounded by these two circles, then for any point z in this region $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-a)^n}$ is called Where $a_n = \frac{1}{2\pi i} \int_{C_1}^{\cdot} \frac{f(z)}{(z-a)^{n+1}} dz$, for $n = 0, 1, 2, \dots$ and $b_n = \frac{1}{2\pi i} \int_{C_2}^{\cdot} (z-a)^{n-1} f(z) dz$ for $n = 1, 2, 3, \dots$ a) Taylor's series b) Maclaurin's series d) None of these c) Laurent's series 63) For |z| < 1, $1 - z + z^2 - z^3 + ... + (-1)^n z^n + ... = \sum_{n=0}^{\infty} (-1)^n z^n$ is an expansion of a) $\frac{1}{1-7}$ b) $\frac{1}{1-7}$ c) e^z d) None of these 64) For |z| < 1, $1 + z + z^2 + z^3 + ... + z^n + ... = \sum_{n=0}^{\infty} z^n$ is an expansion of a) $\frac{1}{1+z}$ b) $\frac{1}{1-z}$ c) e^{z} d) None of these 65) $1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!} + \dots$ is an expansion of b) $\frac{1}{1}$ c) e^z a) $\frac{1}{1+\pi}$ d) None of these 66) $z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots + \frac{(-1)^n z^{2n+1}}{(2n+1)!} + \dots$ is an expansion of c) coshz d) sinhz a) cosz b) sinz 67) $1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots + \frac{(-1)^n z^{2n}}{(2n)!} + \dots$ is an expansion of a) $\cos z$ b) $\sin z$ c) $\cosh z$ d) $\sinh z$ 68) $z + \frac{z^3}{3!} + \frac{z^5}{5!} + \dots + \frac{z^{2n+1}}{(2n+1)!} + \dots$ is an expansion of \dots b) sinz d) sinhz a) cosz c) coshz 69) $1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \dots + \frac{z^{2n}}{(2n)!} + \dots$ is an expansion of a) cosz b) sinz c) coshz d) sinhz 70) For |z| < 2, Taylor's series expansion of $\frac{1}{(z-2)}$ is a) $-\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}$ b) $-\sum_{n=0}^{\infty} \frac{z^n}{2^n}$ c) $\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}$ d) None of these 71) For $0 < |z| < 4, \frac{1}{4z-z^2} = \dots$

MTH-401: COMPLEX VARIABLES

a)
$$\sum_{n=0}^{\infty} \frac{z^{n+1}}{4^{n+1}}$$
 b) $\sum_{n=0}^{\infty} \frac{z^{n-1}}{4^{n+1}}$ c) $\sum_{n=0}^{\infty} \frac{z^{n-1}}{4^{n-1}}$ d) None of these
72) For $|z| > 2$, Laurent's series expansion of $\frac{1}{(z-2)}$ is
a) $\sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}}$ b) $-\sum_{n=0}^{\infty} \frac{2^n}{z^n}$ c) $-\sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}}$ d) None of these



UNIT-4: CALCULUS OF RESIDUES

Zero: A value of z which satisfies f(z) = 0 is called zero of an analytic function f(z). **Remark:** i) If $f(z) = (z-a)^m \Phi(z)$ with $\Phi(a) \neq 0$, then z = a is called zero of order m. ii) A zero of order one is called simple zero. iii) A zero of order two is called double zero. e.g. i) $f(z) = (z - 2)^3 (z + 1)^2 (z^2 + 1)^4$ has zero of order 3 at z = 2, double zero at z = -1 and zeros of orders 4 at $z = \pm i$. ii) $f(z) = \frac{z^2+4}{z^3+2z^2+z}$ has simple zeros at points at z = 2i and z = -2i. iii) $f(z) = (\frac{z+1}{z^2+1})^2$ has double zero at z = -1. **Singular Point:** A point z = a is called singular point or singularity of a function f(z)if f(z) is not analytic z = a. e.g. i) $f(z) = \frac{1}{z}$ has singular point at z = 0. ii) $f(z) = \frac{1}{z(z-i)}$ has singular points at z = 0 and z = i. iii) $f(z) = \frac{z+1}{z^2(z^2+1)}$ has singular points at z = 0 and $z = \pm i$ **Isolated Singularity:** Singularity z = a is called isolated singularity of a function f(z)if f(z) is analytic in a deleted neighborhood of z = a but not analytic at z = a. **Removable Singularity:** Singularity z = a is called removable singularity of a function f(z) if principal part of f(z) contain no terms. Note: A function f(z) has removable singularity at z = a if $\lim f(z)$ is exists e.g. $f(z) = \frac{\sin z}{z}$ has removable singularity at z = 0 : $\lim_{z \to 0} \frac{\sin z}{z} = 1$ is exists. **Essential Singularity:** Singularity z = a is called essential singularity of a function f(z) if principal part of f(z) contains an infinite number of terms. e.g. $f(z) = e^{\frac{1}{z}}$ has essential singularity at z = 0 :: $e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2|z^2} + \frac{1}{3|z^3} + \dots$ contain infinite number of terms of negative powers of z. **Pole:** A singular point of a function f(z) is called a pole of function f(z). **Remark:** i) If $f(z) = \frac{\Phi(z)}{(z-a)^m}$ and $\Phi(z)$ is analytic at z = a, then singular point z = a is called pole of order m. ii) A pole of order one is called simple pole. iii) A pole of order two is called double pole. iv) A pole of order three is called triple pole. **Residue:** The coefficient b_1 of $\frac{1}{z-a}$ in the Laurent's series expansion of f(z) is called

residue of a function f(z). Denoted by Res $f(z) = b_1$

Remark: i) If z = a is a simple pole, then Res $f(z) = \lim_{z \to a} [(z - a)f(z)]$ ii) If z = a is a double pole, then Res $f(z) = \lim_{z \to a} \frac{d}{dz} [(z - a)^2 f(z)]$ iii) If z = a is a pole of order m, then Res $f(z) = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} [(z - a)^m f(z)]$

Ex. Find the sum of residue of $f(z) = \frac{e^z}{z^2 + a^2}$ at its poles. Solution: Given function $f(z) = \frac{e^z}{z^2 + a^2} = \frac{e^z}{(z - ai)(z + ai)}$ has simple poles at z = ai and z = -ai. \therefore Res $f(z) = \lim_{z \to ai} (z - ai) f(z)$ $= \lim_{z \to ai} \left[\frac{e^z}{(z + ai)}\right]$ $= \frac{e^{ai}}{2ai}$ Similarly Res $f(z) = \frac{e^{-ai}}{-2ai}$ \therefore The sum of residues = Res f(z) + Res f(z) $= \frac{e^{ai}}{2ai} - \frac{e^{-ai}}{2ai}$ $= \frac{1}{a} \left(\frac{e^{ai} - e^{-ai}}{2i}\right)$ $= \frac{e^{ai}}{a}$

Ex. Find poles and residues at poles of $f(z) = \frac{1}{z(z-1)^2}$. Also find the sum of these residues.

Solution: Given function $f(z) = \frac{1}{z(z-1)^2}$ has simple pole at z = 0 and

Ex. Find the residues of $(z) = \frac{z^2}{(z-1)(z-2)(z-3)}$ at its poles. **Solution:** Given function $f(z) = \frac{z^2}{(z-1)(z-2)(z-3)}$ has simple poles at z = 1, 2 and 3. \therefore Residues of f(z) at these poles are as follows: $\operatorname{Res}_{z=1} f(z) = \lim_{z \to 1} [(z - 1)f(z)]$ $= \lim_{z \to 1} \left[\frac{z^2}{(z-2)(z-3)} \right]$ $= \frac{(1)^2}{(-1)(-2)}$ Res $f(z) = \lim_{z \to 2} [(z - 2)f(z)]$ $= \lim_{z \to 2} \left[\frac{z^2}{(z-1)(z-3)} \right]$ $=\frac{(2)^2}{(1)(-1)}$ = -4 & Res $f(z) = \lim_{z \to 3} [(z - 3)f(z)]$ $= \lim_{z \to 3} \left[\frac{z^2}{(z-1)(z-2)} \right]$ $= \frac{(3)^2}{(2)(1)}$ $=\frac{9}{-}$

Ex. Find the residues of $f(z) = \frac{1}{(z^2+1)^3}$ at z = i. Solution: Given function $f(z) = \frac{1}{(z^2+1)^3} = \frac{1}{(z+i)^3(z-i)^3}$ has poles of order 3 at z = iand -i. \therefore Residue of f(z) at the pole z = i is **MRC for an Herdell** Res $f(z) = \frac{1}{(3-1)!} \lim_{z \to i} \frac{d^2}{dz^2} [(z-i)^3 f(z)]$ $= \frac{1}{2} \lim_{z \to i} \frac{d}{dz} \{ \frac{d}{dz} [\frac{1}{(z+i)^3}] \}$ $= \frac{1}{2} \lim_{z \to i} \frac{d}{dz} [\frac{-3}{(z+i)^4}]$ $= \frac{1}{2} \lim_{z \to i} [\frac{12}{(z+i)^5}]$ $= \frac{6}{(2i)^5}$ $= \frac{-3i}{16}$ Ex. Compute residues at double pole of $(z) = \frac{z^2+2z+3}{(z-i)^2(z+4)}$. Solution: Given function $f(z) = \frac{z^2+2z+3}{(z-i)^2(z+4)}$ has double pole at z = iand simple pole at z = -4. \therefore Residues of f(z) at the double pole is $\operatorname{Res}_{z=i} f(z) = \frac{1}{(2-1)!} \lim_{z \to i} \frac{d}{dz} [(z-i)^2 f(z)]$ $= \frac{1}{1!} \lim_{z \to i} \frac{d}{dz} [\frac{z^2+2z+3}{(z+4)}]$ $= \lim_{z \to i} [\frac{(z+4)(2z+2)-(z^2+2z+3)(1)}{(z+4)^2}]$ $= \lim_{z \to i} [\frac{z^2+8z+5}{(z+4)^2}]$ $= \frac{4+8i}{15+8i} \times \frac{15-8i}{15-8i}$ $= \frac{60-32i+120i+64}{225+64}$ $= \frac{124+88i}{289}$

Ex. Find the residue of $f(z) = \frac{ze^z}{(z-1)^3}$ at its pole.

Solution: Given function $f(z) = \frac{ze^z}{(z-1)^3}$ has pole of order 3 at z = 1

A Residue of f(z) at this pole is

$$\operatorname{Res}_{z=1}^{n} f(z) = \frac{1}{(3-1)!} \lim_{z \to 1} \frac{d^2}{dz^2} [(z-1)^3 f(z)]$$

$$= \frac{1}{2!} \lim_{z \to 1} \frac{d}{dz} \{ \frac{d}{dz} [ze^z] \}$$

$$= \frac{1}{2!} \lim_{z \to 1} \frac{d}{dz} (ze^z + e^z)$$

$$= \frac{1}{2!} \lim_{z \to 1} (ze^z + e^z + e^z)$$

$$= \frac{3e}{2!}$$

Ex. Find the residue of $f(z) = \frac{z^2 + 2z}{(z+1)^2(z+4)}$ at its poles. **Solution:** Given function $f(z) = \frac{z^2 + 2z}{(z+1)^2(z+4)}$ has double pole at z = -1 and simple pole at z = -4. \therefore Res $f(z) = \lim_{z \to -1} \frac{d}{dz} [(z+1)^2 f(z)]$ $= \lim_{z \to -1} \frac{d}{dz} [\frac{z^2 + 2z}{(z+4)}]$

$$= \lim_{z \to -1} \left[\frac{(z+4)(2z+2) - (z^2+2z)(1)}{(z+4)^2} \right]$$

$$= \lim_{z \to -1} \left[\frac{z^2 + 8z + 8}{(z+4)^2} \right]$$

$$= \frac{1 - 8 + 8}{(3)^2}$$

$$= \frac{1}{9}$$

& Res f(z) = lim [(z + 4)f(z)]

$$= \lim_{z \to -4} \left[\frac{z^2 + 2z}{(z+1)^2} \right]$$

$$= \frac{16 - 8}{(-3)^2}$$

$$= \frac{8}{9}$$

Cauchy's Residue theorem: If f(z) is analytic on and inside a closed contour C except at a finite number of singular points, say n, then $\int_C f(z) dz = 2\pi i \sum R$, where $\sum R$ denote the sum of the residues at its poles inside C. **Proof:** Let $a_1, a_2, a_3, \ldots, a_n$ be the n singular points (poles) of f(z) inside C. Let $C_1, C_2, C_3, \ldots, C_n$ be the circles with centres at $a_1, a_2, a_3, \ldots, a_n$ respectively such that they lie completely inside C and outside each other. Then by Cauchy's theorem for a system of contours, we have, $\int_{C}^{\cdot} f(z) dz = \sum_{k=1}^{n} \int_{C_{k}}^{\cdot} f(z) dz \dots (1)$ Now, Res $f(z) = b_1 = \text{Coefficient of } \frac{1}{z-a_k} = \frac{1}{2\pi i} \int_{C_k}^{C_k} f(z) dz$ $\therefore \int_{C_k}^{\cdot} f(z) dz = 2\pi i \operatorname{Res}_{z=a_k} f(z)$ Putting in equation (1), we get, $\int_{C}^{\cdot} f(z) dz = \sum_{k=1}^{n} 2\pi i \operatorname{Res}_{z=a_{k}} f(z)$ i.e. $\int_{C}^{\cdot} f(z) dz = 2\pi i \sum R$, where $\sum R$ denote the sum of the residues at its poles inside C. **Ex.** Evaluate by Cauchy's residue theorem: $\int_C^1 \frac{5z-2}{z(z-1)} dz$, where C is the circle |z| = 2**Solution:** Given integrant $f(z) = \frac{5z-2}{z(z-1)}$ has simple poles at z = 0 and z = 1.

Both these poles lies inside circle C: |z| = 2 and f(z) is analytic on and inside C except these poles.

∴ By Cauchy's Residue Theorem,

 $\int_{C}^{\cdot} f(z) dz = 2\pi i \left[\operatorname{Res}_{z=0} f(z) + \operatorname{Res}_{z=1} f(z) \right] \dots \dots (1)$

Now Res f(z) =
$$\lim_{z\to 0} [(z-0)f(z)]$$

$$= \lim_{z\to 0} [\frac{5x-2}{(z-1)}]$$

$$= \frac{-2}{-1}$$

$$= 2$$
& Res f(z) = $\lim_{z\to 1} [(z-1)f(z)]$

$$= \lim_{z\to 1} [\frac{5x-2}{2}]$$

$$= \frac{5-2}{1}$$

$$= 3$$
Putting in (1), we get,
 $\int_C f(z)dz = 2\pi i [2 + 3]$
 $\therefore \int_C \frac{5x-2}{z(z-1)} dz = 10\pi i$
Ex. Evaluate $\int_{|z|=3} \frac{e^z}{z(z-1)^2} dz$ by Cauchy's residue
Solution: Given integrant $f(z) = \frac{e^z}{z(z-1)^2}$ has simple pole at $z = 0$ and
double pole at $z = 1$. Both these poles lies inside circle C: $|z| = 3$
and f(z) is analytic on and inside C except these poles.
 \therefore By Cauchy's Residue Theorem,
 $\int_C f(z)dz = 2\pi i [Res f(z) + Res f(z)], ..., (1)$
Now Res f(z) = $\lim_{z\to 0} [\frac{e^z}{(z-1)^2}]$

$$= \lim_{z\to 0} [\frac{e^z}{(z-1)^2}]$$

$$= \lim_{z\to 0} [\frac{e^z}{z(z-1)^2}]$$

$$= \lim_{z\to 0} [\frac{e^{z^2}}{z(z-1)^2}]$$

$$= \lim_{z\to 0} [\frac{e^{z^2}}{z^2}]$$

$$= 0$$
Putting in (1), we get,
 $\int_C f(z)dz = 2\pi i [1 + 0]$
 $\therefore \int_{|z|=3} \frac{e^z}{z(z-1)^2} dz = 2\pi i$

<u>Ex.</u> Evaluate $\int_{C}^{\cdot} \frac{3z^2+2}{(z-1)(z^2+9)} dz$ by Cauchy's residue theorem, where C is (i) The circle |z - 2| = 2 (ii) The circle |z| = 4Solution: Given integrant $f(z) = \frac{3z^2+2}{(z-1)(z^2+9)} = \frac{3z^2+2}{(z-1)(z-3i)(z+3i)}$ has simple poles at z = 1, z = 3i and z = -3i. Now Res $f(z) = \lim_{z \to 1} [(z - 1)f(z)]$ $= \lim_{z \to 1} \left[\frac{3z^2 + 2}{z^2 + 9} \right]$ $= \frac{5}{10}$ $= \frac{1}{1}$ & Res $f(z) = \lim_{z \to 3i} [(z - 3i)f(z)]$ $= \lim_{z \to 3i} \left[\frac{3z^2 + 2}{(z-1)(z+3i)} \right]$ $= \frac{-27+2}{(3i-1)(6i)}$ = $\frac{-25}{6(-3-i)}$ = $\frac{25}{6(3+i)} \times \frac{(3-i)}{(3-i)}$ = $\frac{25(3-i)}{6(9+1)}$ = $\frac{5}{12} (3-i)$ $=\frac{5}{4}-\frac{5}{12}i$ Similarly, $\text{Res}_{z=-3i} f(z) = \frac{5}{4} + \frac{5}{12}i$ i) Let C is the circle |z - 2| = 2, then only the pole z = 1 lies inside circle C and f(z) is analytic on and inside C except this pole. .: By Cauchy's Residue Theorem, $\int_{C}^{\cdot} f(z) dz = 2\pi i \left[\operatorname{Res}_{z=1}^{-1} f(z) \right]$ य सिध्द विन्दात मानवः $\int_{C}^{\cdot} \frac{3z^2 + 2}{(z-1)(z^2+9)} dz = 2\pi i \left[\frac{1}{2}\right] = \pi i$ ii) Let C is the circle |z| = 4, then all the poles z = 1, z = 3i and z = -3ilies inside circle C and f(z) is analytic on and inside C except these poles. : By Cauchy's Residue Theorem, $\int_{C}^{\cdot} f(z)dz = 2\pi i \left[\operatorname{Res}_{z=1}^{} f(z) + \operatorname{Res}_{z=3i}^{} f(z) + \operatorname{Res}_{z=-3i}^{} f(z) \right]$ $= 2\pi i \left[\frac{1}{2} + \frac{5}{4} - \frac{5}{12}i + \frac{5}{4} + \frac{5}{12}i\right]$ $= 2\pi i(3)$ $\therefore \int_{C}^{\cdot} \frac{3z^2 + 2}{(z-1)(z^2 + 9)} dz = 6\pi i$

7) Evaluate $\int_{|z|=2}^{.} \frac{dz}{z^3(z+4)}$ by Cauchy's residue theorem.

Solution: Given function $f(z) = \frac{1}{z^3(z+4)}$ has pole of order 3 at z = 0 and simple pole at z = -4. Out of these only the pole z = 0 lies inside the circle C: |z| = 2 and f(z) is analytic on and inside C except this pole. \therefore By Cauchy's residue theorem, $\int_{C} f(z) dz = 2\pi i [\operatorname{Res}_{z=0} f(z)]$

$$\therefore \int_{|z|=2}^{\cdot} \frac{dz}{z^{3}(z+4)} = 2\pi i \{ \frac{1}{2} \lim_{z \to 0} \frac{d^{2}}{dz^{2}} [(z-0)^{3}f(z)] \}$$

$$= \pi i \lim_{z \to 0} \frac{d}{dz} \{ \frac{d}{dz} [\frac{1}{(z+4)}] \}$$

$$= \pi i \lim_{z \to 0} \frac{d}{dz} [\frac{-1}{(z+4)^{2}}]$$

$$= \pi i \lim_{z \to 0} [\frac{2}{(z+4)^{3}}]$$

$$= \pi i [\frac{2}{(4)^{3}}]$$

$$= \frac{\pi i}{32}$$

Contour integrations of the type $\int_0^{2\pi} f(\cos\theta, \sin\theta) d\theta$:

Let
$$I = \int_0^{2\pi} f(\cos\theta, \sin\theta) d\theta$$

In this case we substitute
 $z = e^{i\theta}$, then we have $\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{1}{2}(z + \frac{1}{z})$, $\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{1}{2i}(z - \frac{1}{z})$
and $dz = ie^{i\theta}d\theta = izd\theta$ i.e. $d\theta = \frac{dz}{iz}$ where $0 \le \theta \le 2\pi$.
By Cauchy's residue theorem, we have
 $\therefore I = \int_C^{\cdot} f(\frac{1}{2}(z + \frac{1}{z}), \frac{1}{2i}(z - \frac{1}{z})) \frac{dz}{iz}$
 $= \int_C^{\cdot} f(z) dz$, where C is the unit circle: $|z|=1$.
 $= 2\pi i [\text{sum of the residues of } f(z) \text{ at the poles which lies inside C: } |z|=1]$

<u>Ex.</u> Use the contour integration to evaluate $\int_0^{2\pi} \frac{d\theta}{5+3\cos\theta}$.

Solution: Let
$$I = \int_0^{2\pi} \frac{d\theta}{5+3\cos\theta}$$

Put $z = e^{i\theta} \therefore d\theta = \frac{dz}{iz}$ and $\cos\theta = \frac{1}{2}(z + \frac{1}{z})$, where $0 \le \theta \le 2\pi$
 $\therefore I = \int_C^{\cdot} \frac{1}{5+\frac{3}{2}(z + \frac{1}{z})} \frac{dz}{iz}$ where C is the unit circle $|z| = 1$
 $= \int_C^{\cdot} \frac{-2i}{5+\frac{3}{2}(z + \frac{1}{z})} \frac{dz}{2z}$

$$= \int_{C} \frac{-2i}{10z+3z^{2}+3} dz$$

$$\therefore I = \int_{C} f(z) dz$$

where $f(z) = \frac{-2i}{3z^{2}+10z+3} = \frac{-2i}{(3z+1)(z+3)}$ has simple poles at $z = \frac{-1}{3}$ and $z = -3$.
Out of these only the pole $z = \frac{-1}{3}$ lies inside the unit circle C: $|z| = 1$ and $f(z)$ is
analytic on and inside C except this pole.

$$\therefore$$
 By Cauchy's residue theorem,

$$\int_{C} f(z) dz = 2\pi i [\operatorname{Res}_{z=\frac{-1}{3}} f(z)]$$

$$= 2\pi i \lim_{z \to \frac{-1}{3}} [(z + \frac{1}{3})f(z)]$$

$$= \frac{2}{3}\pi i \lim_{z \to \frac{-1}{3}} [-\frac{2i}{(z+3)}]$$

$$= \frac{2}{3}\pi i [\frac{-2i}{(\frac{-2i}{3}+3)}]$$

$$= \frac{4\pi}{(-1+9)}$$

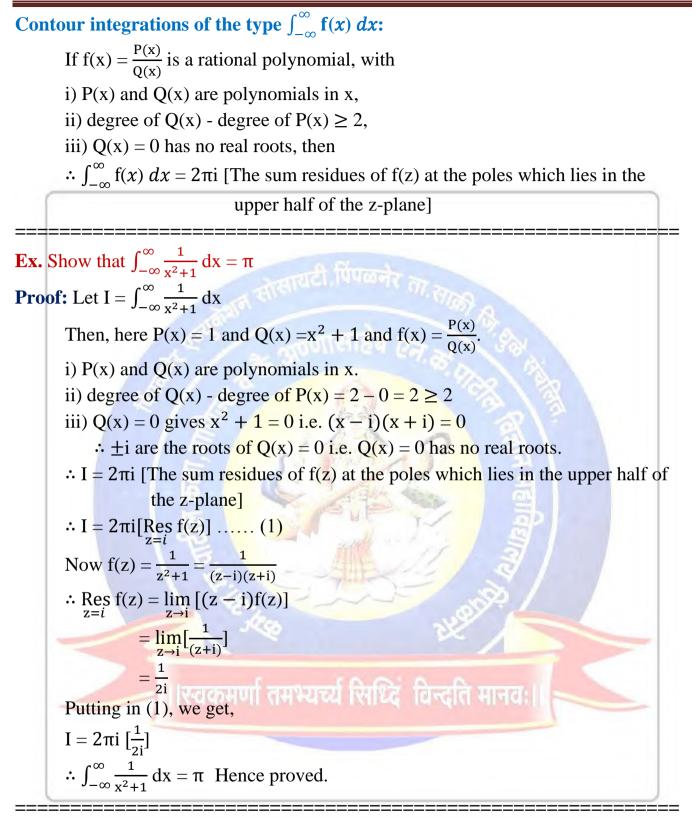
$$\therefore \int_{0}^{2\pi} \frac{d\theta}{5+3\cos\theta} = \frac{\pi}{2}$$

Ex. Use the contour integration to evaluate $\int_0^{2\pi} \frac{d\theta}{5+4\sin\theta}$.

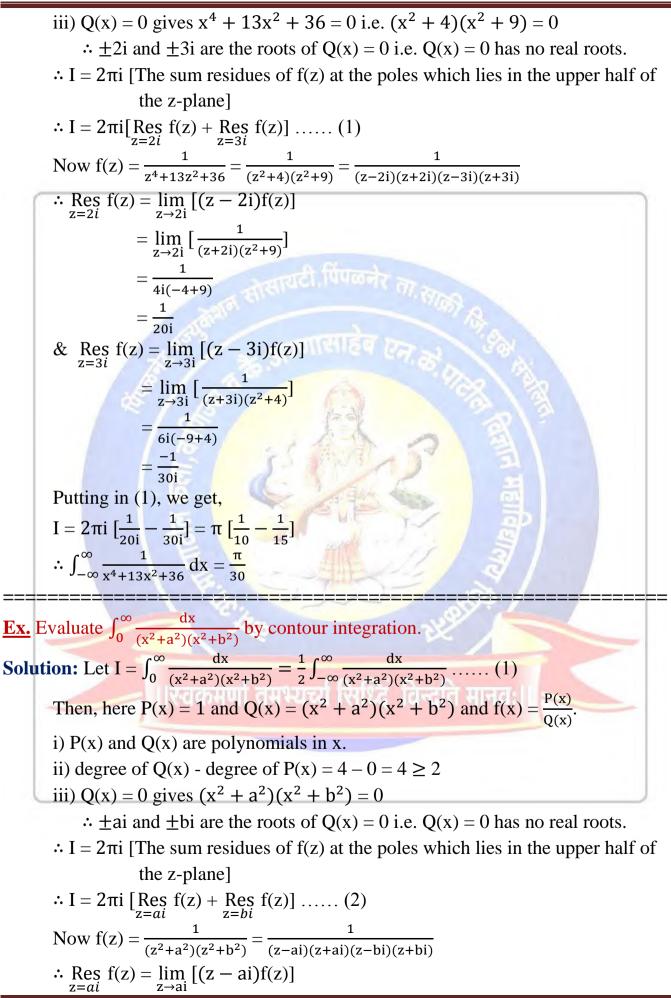
Solution: Let
$$I = \int_{0}^{2\pi} \frac{d\theta}{5+4\sin\theta}$$

Put $z = e^{i\theta}$ $\therefore d\theta = \frac{dz}{iz}$ and $\sin\theta = \frac{1}{2i}(z - \frac{1}{z})$, where $0 \le \theta \le 2\pi$
 $\therefore I = \int_{C} \frac{1}{5+\frac{4}{2i}(z+\frac{1}{2})} \frac{dz}{iz}$ where C is the unit circle $|z| = 1$
 $= \int_{C} \frac{1}{5iz+2z(z-\frac{1}{z})} dz$
 $= \int_{C} \frac{1}{5iz+2z^{2}-2} dz$
 $\therefore I = \int_{C} f(z)dz$
where $f(z) = \frac{1}{2z^{2}+5iz-2} = \frac{1}{(2z+i)(z+2i)}$ has simple poles at $z = \frac{-i}{2}$ and $z = -2i$.
Out of these only the pole $z = \frac{-i}{2}$ lies inside the unit circle C: $|z| = 1$ and $f(z)$ is
analytic on and inside C except this pole.
 \therefore By Cauchy's residue theorem,
 $\int_{C} f(z)dz = 2\pi i [\operatorname{Res}_{T} f(z)]$

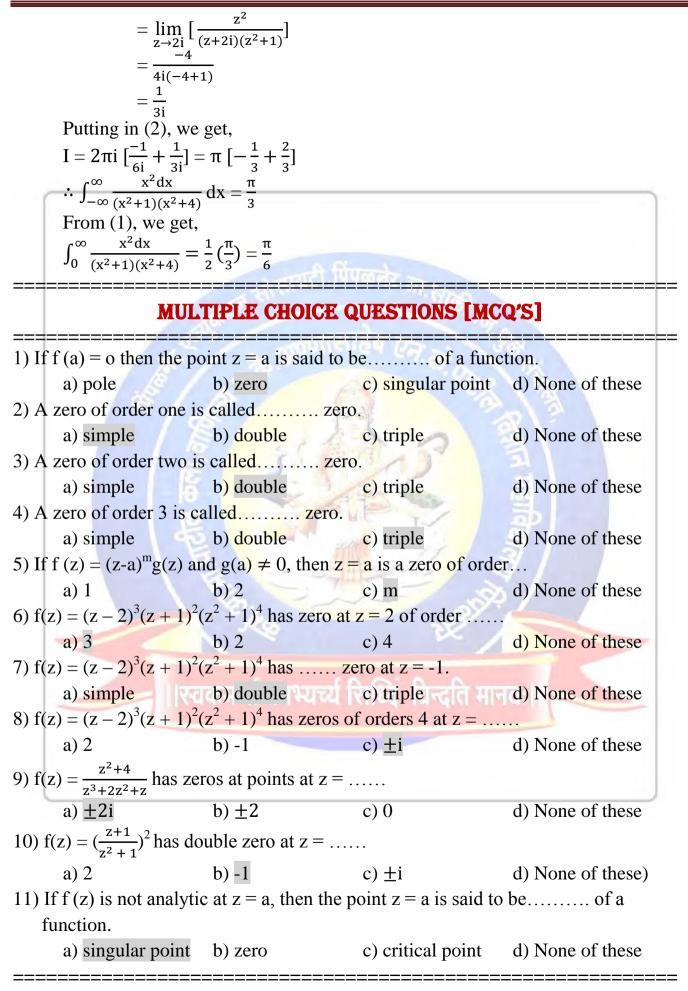
$$\begin{array}{l} \therefore \mathbf{I} = 2\pi \mathbf{i} \lim_{\mathbf{Z} \to \frac{1}{2}} \left[(\mathbf{Z} + \frac{1}{2}) \mathbf{f}(\mathbf{Z}) \right] \\ = \pi \mathbf{i} \lim_{\mathbf{Z} \to \frac{1}{2}} \left[(2\mathbf{Z} + \mathbf{i}) \mathbf{f}(\mathbf{Z}) \right] \\ = \pi \mathbf{i} \lim_{\mathbf{Z} \to \frac{1}{2}} \left[\frac{1}{(\mathbf{Z} + \mathbf{Z})} \right] \\ = \pi \mathbf{i} \left[\frac{1}{(\frac{1}{2} + 2\mathbf{I})} \right] \\ = \pi \mathbf{i} \left[\frac{1}{(\frac{1}{2} + 2\mathbf{I})} \right] \\ = \pi \mathbf{i} \left[\frac{1}{(\frac{1}{2} + 2\mathbf{I})} \right] \\ = \pi \mathbf{i} \left[\frac{1}{(\frac{1}{2} + 2\mathbf{I})} \right] \\ = \pi \mathbf{i} \left[\frac{1}{(\frac{1}{2} + 2\mathbf{I})} \right] \\ = \pi \mathbf{i} \left[\frac{1}{(\frac{1}{2} + 2\mathbf{I})} \right] \\ = \pi \mathbf{i} \left[\frac{1}{(\frac{1}{2} + 2\mathbf{I})} \right] \\ = \pi \mathbf{i} \left[\frac{1}{(\frac{1}{2} + 2\mathbf{I})} \right] \\ = \pi \mathbf{i} \left[\frac{1}{(\frac{1}{2} + 2\mathbf{I})} \right] \\ = \pi \mathbf{i} \left[\frac{1}{(\frac{1}{2} + 2\mathbf{I})} \right] \\ = \pi \mathbf{i} \left[\frac{1}{(\frac{1}{2} + 2\mathbf{I})} \right] \\ = \frac{1}{(\frac{1}{2} + 4\mathbf{I})} \\ = \frac{1}{(\frac{1}{2} + 4\mathbf{I})}$$



Ex. Evaluate by contour integration $\int_{-\infty}^{\infty} \frac{1}{x^4 + 13x^2 + 36} dx$. **Solution:** Let $I = \int_{-\infty}^{\infty} \frac{1}{x^4 + 13x^2 + 36} dx$ Then, here P(x) = 1 and $Q(x) = x^4 + 13x^2 + 36$ and $f(x) = \frac{P(x)}{Q(x)}$ i) P(x) and Q(x) are polynomials in x. ii) degree of Q(x) - degree of $P(x) = 4 - 0 = 4 \ge 2$



$$\begin{aligned} &= \lim_{x \to ai} \left[\frac{1}{(x+a)(x^2+b^2)} \right] \\ &= \frac{1}{2ai(x^2+b^2)} \\ &= \frac{1}{2ai(x^2-b^2)} \\ \\$$



12) $f(z) = \frac{1}{z}$ has singular point a	t z =		
a) 1 ² b) 0	c) i	d) None of these)	
13) f (z) = $\frac{1}{z(z-i)}$ has singular po	ints at $z = \& z =$		
a) o & i b) 1 &	c) 0 & -i	d) None of these	
14) f (z) = $\frac{z+1}{z^2(z^2+1)}$ has singular	points at $z = \dots \& z = \dots$		
	$c \pm i$ c) 0 & -1	d) None of these	
15) A singular point of a function	on f (z) is also called	of a function.	
a) zero b) pol	e c) critical poi	nt d) None of these	
16) If f (z) = $\frac{g(z)}{(z-a)^m}$ and g(z) is a	analytic at $z = a$, then $z = a$	is a pole of order	
a) 1 b) 2	c) m	d) None of these	
17) A pole of order one is called	d pole.	8	
a) simple b) dou	ible c) triple	d) None of these	
18) A pole of order two is called	d pole.	201 3.	
a) simple b) dou	ıble c) triple	d) None of these	
19) A pole of order 3 is called .	pole.	a l	
a) simple b) dou	ible c) triple	d) None of these	
20) f (z) = $\frac{1}{(z-5)^3(z-4)^2}$ has pole	s at $z = 5 \& 4$ of orders	.& respectively.	
a) 5 & 4 b) 3 &	c) 2 & 3	d) None of these	
21) $f(z) = \frac{1}{z(z-1)^2}$ has simple pole at $z = \dots &$ double pole at $z = \dots$ respectively.			
a) $0 \& 1$ b) $0 \& 3$	c -1 c) 1 & 0	d) None of these	
22) Singularity $z = a$ is called re-	emovable singularity of a fu	unction f(z),	
if principal part of f(z) contain	ain terms.		
a) a finite number of b) an infinite number of			
c) no	d) None of th	ese	
23) If $\lim_{z \to a} f(z)$ is exists, then fun	ction f(z) has singula	rity at $z = a$.	
a) removable b) ess	ential c) no c	d) None of these	
24) Function $f(z) = \frac{\sin z}{z}$ has singularity at $z = 0$.			
a) removable b) ess	ential c) no c	d) None of these	
25) Singularity $z = a$ is called essential singularity of a function $f(z)$,			
if principal part of f(z) contain terms.			
a) a finite number of b) an infinite number of		number of	
c) no d) None of these			
26) Function $f(z) = e^{\frac{1}{z}}$ has singularity at $z = 0$.			
a) a removable b) an		d) None of these	

27) The coefficient b₁ of
$$\frac{1}{z-a}$$
 in the Laurent's series expansion of f(z) is called
..... of a function f(z) at its pole z = a.
a) zero b) pole c) residue d) None of these
28) If z = a is a simple pole of a function f(z), then Res_{z=a} f(z) =
a) $\lim_{z\to a} [(z - a)f(z)]$ b) $\lim_{z\to a} \frac{d}{dz}[(z - a)^2f(z)]$
c) $\frac{1}{(m-1)!} \lim_{z\to a} \frac{d^{m-1}}{dz^{m-1}}[(z - a)^mf(z)]$ d) None of these
29) If z = a is a double pole of a function f(z), then Res_{z=a} f(z) =
a) $\lim_{z\to a} [(z - a)f(z)]$ b) $\lim_{z\to a} \frac{d}{dz}[(z - a)^2f(z)]$
c) $\frac{1}{(m-1)!} \lim_{z\to a} \frac{d^{m-1}}{dz^{m-1}}[(z - a)^mf(z)]$ d) None of these
30) If z = a is a triple pole of a function f(z), then Res_{z=a} f(z) =
a) $\lim_{z\to a} ([z - a)f(z)]$ b) $\lim_{z\to a} \frac{d}{dz}[(z - a)^2f(z)]$
c) $\frac{1}{(m-1)!} \lim_{z\to a} \frac{d^{m-1}}{dz^{m-1}}[(z - a)^mf(z)]$ d) None of these
31) If z = a is a pole of order m of a function f(z), then Res_{z=a} f(z) =
a) $\lim_{z\to a} \frac{d}{dz^2}[(z - a)^3f(z)]$ d) None of these
31) If z = a is a pole of order m of a function f(z), then Res_{z=a} f(z) =
a) $\lim_{z\to a} \frac{d^{m-1}}{dz^2}[(z - a)^3f(z)]$ b) $\lim_{z\to a} \frac{d}{dz}[(z - a)^2f(z)]$
c) $\frac{1}{(m-1)!} \lim_{z\to a} \frac{d^{m-1}}{dz^{m-1}}[(z - a)^mf(z)]$ d) None of these
32) If z = a is pole of order 6 of a function f(z), then Res_{z=a} f(z) =
a) $\lim_{z\to a} \frac{d^3}{dz}[(z - a)^6f(z)]$ d) None of these
33) If f(z) = $\frac{z^2}{(z-1)(z-2)(z-3)}$, then residue of f(z) at its pole z = 1 is.....
a) 1 b) 2 c) $\frac{1}{2}$ d) $\frac{9}{2}$
34) If f(z) = $\frac{z^2}{(z-1)(z-2)(z-3)}$, then residue of f(z) at its pole z = 3 is.....
a) 1 b) 2 c) $\frac{1}{2}$ d) $\frac{9}{2}$
35) If f(z) = $\frac{z^2}{(z-1)(z-2)(z-3)}$, then residue of f(z) at its pole z = 3 is.....
a) 1 b) 0 c) -1 d) 2
37) If f(z) = $\frac{1}{z(z-1)^2}$, then residue of f(z) at its pole z = 1 is.....
a) 1 b) 0 c) -1 d) 2
37) If f(z) = $\frac{1}{z(z-1)^2}$, then residue of f(z) at its pole z = 1 is.....
a) 1 b) 0 c) -1 d) 2
37) If f(z) = $\frac{1}{z(z-1)^2}$, then residue of f(z) at its pole z = 1 is.....
a) 1 b) 0 c

38) If f (z) = $\frac{ze^z}{(z-1)^3}$, then residue of f(z) at its pole z = 1 is				
a) 0	b) $\frac{3e}{2}$	c) 1	d) -1	
39) The sum of residu	thes of f (z) = $\frac{e^z}{z^2 + a^2}$	at its poles is		
a) sina	b) cosa	c) $\frac{\sin a}{a}$	d) tana	
40) f (z) = $\frac{z^2 + 4}{z^3 + 2z^2 + 2z}$	has pole at z =	= 0.		
a) double	b) simple	c) triple	d) None of these	
41) By Cauchy's Resi	due theorem, if f(z) is analytic on and	inside a closed contour C	
except at a finite r	number of singular	points, say n, then	$\int_{C}^{\cdot} f(z) dz = \dots$	
a) 0	b) 2πi	— c) -2πi	d) 2πi ∑ R	
42) If f(z) is analytic	on and inside a clos	ed contour C except	ot at a finite number of	
singular points, sa	y n, then $\int_{C}^{\cdot} f(z) dz$	$=2\pi i \sum R,$	a de	
/5	the sum of the resid		side C.	
Is a statement of.	.ale /	12.0	ap a	
a) Cauchy's the	eorem	b) Cauchy's In	tegral Formula	
c) Cauchy's Re	sidue theorem	d) None of the	se	
-()	43) $f(z) = \frac{5z-2}{z(z-1)}$ has simple poles at $z = 0$ and $z = 1$, out of these pole lies			
inside circle C: z		HIN. I CO		
a) $z = 0$	b) z = 1	c) both $z = 0 &$	z = 1 d) z = 5/2	
44) $f(z) = \frac{e^z}{z(z-1)^2}$ has a	simple pole at $z = 0$	and double pole a	t z=1, out of these	
which of the poles lies inside circle C: $ z = 3$?				
a) $z = 0$		c) both $z = 0 \&$		
45) If C is the circle $ z-2 = 2$, then which of the poles of $f(z) = \frac{3z^2+2}{(z-1)(z^2+9)}$				
lies inside C?				
	b) z = 3i	c) z = -3i	d) z = 0	
46) If C is the circle $ z = 4$, then which of the poles of $f(z) = \frac{3z^2+2}{(z-1)(z^2+9)}$				
lies inside C?				
a) z = 1	b) z = 3i	c) z = -3i	d) all of these	
47) Parametric equation of a circle $ z = r$ is				
a) $z = re^{i\theta}, 0 \le$	$\theta \leq 2\pi$	b) $z = re^{i\theta}, 0 \le$	$\leq \theta \leq \pi$	
c) $z = e^{i\theta}, 0 \le 0$	$\theta \le 2\pi$	d) $z = e^{i\theta}, 0 \le$	$\theta \leq \pi$	
	=======================================		===================	

48) Parametric equation of a circle |z - a| = r is a) $z = a - re^{i\theta}, 0 \le \theta \le 2\pi$ b) $z = a + re^{i\theta}$, $0 < \theta < 2\pi$ d) $z = a - e^{i\theta}, 0 \le \theta \le \pi$ c) $z = a + e^{i\theta}$, $0 \le \theta \le 2\pi$ 49) If $z = e^{i\theta}$, then $d\theta = \dots$ b) $\frac{dz}{dz}$ a) ie^{iθ} c) dz d) idz 50) If $z = e^{i\theta}$, then $\cos\theta = \ldots$. a) $\frac{1}{2i}(z + \frac{1}{z})$ b) $\frac{1}{2}(z - \frac{1}{z})$ c) $\frac{1}{2}(z + \frac{1}{z})$ d) $\frac{1}{2i}(z - \frac{1}{z})$ 51) If $z = e^{i\theta}$, then $\sin\theta = \dots$ $z = e^{z}$, then $\sin\theta =$ a) $\frac{1}{2}(z + \frac{1}{z})$ b) $\frac{1}{2}(z - \frac{1}{z})$ c) $\frac{1}{2i}(z + \frac{1}{z})$ d) $\frac{1}{2i}(z - \frac{1}{z})$ 52) By contour integration, $\therefore \int_{-\infty}^{\infty} f(x) dx = 2\pi i$ [The sum residues of f(z) at the poles, those lies in the upper half of the z-plane] If $f(x) = \frac{P(x)}{O(x)}$ is a rational polynomial, with a) P(x) and Q(x) are polynomials in x b) degree of Q(x) - degree of P(x) ≥ 2 c) Q(x) = 0 has no real roots d) all of these 53) If f(x) is an even function i.e. f(-x) = f(x), then $\int_0^\infty f(x) dx = \dots$ a) $2 \int_{-\infty}^{\infty} f(x) dx$ b) $\frac{1}{2} \int_{-\infty}^{\infty} f(x) dx$ c) 0 d) None of these 54) If $f(x) = \frac{x^2}{(x^2+1)(x^2+4)}$, then the poles of f(z), those lies in the upper half of the z-plane are b) -i and -2ic) i and -2i d) -i and 2ia) i and 2i 55) If a > 0, b > 0 and $f(x) = \frac{1}{(x^2 + a^2)(x^2 + b^2)}$, then the poles of f(z), those lies in the upper half of the z-plane are a) -ai and -bi b) ai and bi c) ai and -bi d) -ai and bi

॥ अंतरी पेटवू ज्ञानज्योत ॥

विद्यापीठ गीत

मंत्र असो हा एकच हृदयी 'जीवन म्हणजे ज्ञान' ज्ञानामधूनी मिळो मुक्ती अन मुक्तीमधूनी ज्ञान ॥धृ ॥ कला, ज्ञान, विज्ञान, संस्कृती साधू पुरूषार्थ साफल्यास्तव सदा 'अंतरी पेटवू ज्ञानज्योत' मंगल पावन चराचरातून स्त्रवते अक्षय ज्ञान ॥१ ॥ उत्तम विद्या, परम शक्ति ही आमुची ध्येयासकी शील, एकता, चारित्र्यावर सदैव आमुची भक्ती सत्य शिवाचे मंदिर सुंदर, विद्यापीठ महान ॥२ ॥ समता, ममता, स्वातंत्र्याचे नांदो जगी नाते, आत्मबलाने होऊ आम्ही आमुचे भाग्यविधाते, ज्ञानप्रभुची लाभो करूणा आणि पायसदान ॥३ ॥ – कै.प्रा. राजा महाजन

THE NATIONAL INTERGRATION PLEDGE

"I solemnly pledge to work with dedication to preserve and strengthen the freedom and integrity of the nation.

I further affirm that I shall never resort to violence and that all differences and disputes relating to religion, language, region or other political or economic grievance should be settled by peaceful and constitutional means."