

Karm. A. M. Patil Arts, Commerce and Kai. Annasaheb N. K. Patil Science Senior College Pimpalner, Tal.- Sakri,

Dist.- Dhule.

CLASS NOTES CLASS: S.Y.B.SC SEM.-III SUBJECT: MTH-302(A): GROUP THEORY PREPARED BY: PROF. K. D. KADAM

MTH -302(A): GROUP THEORY

Unit-1: Groups	Marks-15
1.1 Definition and Examples of a group.	
1.2 Simple Properties of Group.	
1.3 Abelian Group.	
1.4 Finite and Infinite Groups.	
1.5 Order of a Group.	
1.6 Order of an Element and Its Properties.	
Unit-2: Subgroups	Marks-15
2.1 Definition and Examples of Subgroups.	
2.2 Simple Properties of Subgroup.	2
2.3 Criteria for a Subset to be a Subgroup.	
2.4 Cyclic Groups	
2.5 Normal subgroups and Coset Decomposition.	
2.6 Lagrange's Theorem for Finite Group.	
2.7 Euler's Theorem and Fermat's Theorem.	
Unit-3: Homomorphism and Isomorphism of Groups	Marks-15
3.1 Definition and Examples of Group Homomorphism.	
3.2 Properties of Group Homomorphism.	
3.3 Kernel of a Group Homomorphism and it's Properties.	
3.4 Definition and Examples of Isomorphism.	
3.5 Definition and Examples of Automorphism of Groups.	1
3.6 Properties of Isomorphism of Groups.	
Unit -4: Rings	Marks-15
4.1 Definition and Simple Properties of a Ring.	
4.2 Commutative Ring, Ring with unity, Boolean Ring.	

- 4.3 Ring with zero divisors and without zero Divisors.
- 4.4 Integral Domain, Division Ring and Field. Simple Properties.

Recommended Book: -

- 1. University Algebra: N. S. Gopalakrishnan, New age international
 - publishers, 2018. (Chapter 1: 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9) Page 6 of 26

Reference Books: -

- 1. Topics in Algebra: I. N. Herstein (John Wiley and Sons).
- 2. A first Course in Abstract Algebra: J. B. Fraleigh (Pearson).
- 3. A course in Abstract Algebra: Vijay K. Khanna and S. K. Bhambri, Vikas Publishing House Pvt. Ltd., Noida.

Learning Outcomes:

- Upon successful completion of this course the student will be able to:
- a) understand group and their types which is one of the building blocks of pure and applied mathematics.
- b) understand Lagarnge, Euler and Fermat theorem
- c) understand concept of automorphism of groups
- d) understand concepts of homomorphism and isomorphism
- e) understand basic properties of rings and their types such as integral

domain and field.

।स्वकमर्णा तमभ्यर्च्य सिध्दिं विन्दति मानवः।

UNIT-1: GROUPS

```
Binary Operation: Let G be a non-empty set. A function * : G \times G \rightarrow G given by * (a, b) = a * b, is called a binary operation on (or in) G.
```

Notation:

- 1) We use the notation a * b to denote * (a, b). If G is a non-empty set with a binary
 - operations * then we denote this algebraic structure by (G, *)
- 2) Throughout this course we use the following notations:
 - i) N: The set of all natural numbers.
 - ii) \mathbb{Z} : The set of all integers.
 - iii) Q: The set of all rational numbers.
 - iv) \mathbb{R} : The set of all real numbers.
 - v) C: The set of all complex numbers.

Note: A non-empty set G is said to be closed for * if whenever a, $b \in G$ implies $a*b \in G$.

- e.g. 1) Usual addition and multiplication are binary operations in \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} .
 - 2) Usual subtraction of natural numbers is not a binary operation in \mathbb{N} ,
 - $\therefore 2, 3 \in \mathbb{N} \text{ but } 2 3 = -1 \notin \mathbb{N}.$

3) Division of two integers is not a binary operation in \mathbb{Z} , \therefore 22, $5 \in \mathbb{Z}$ but $\frac{22}{5} \notin \mathbb{Z}$.

- Group: A non-empty set G with a binary operation * is said to be a group if
 - i) * is associative in G i.e. $(a * b) * c = a * (b * c), \forall a, b, c \in G$.
 - ii) G has an identity element $e \in G$ with $a^* e = a = e^* a$, $\forall a \in G$.
 - iii) Every element of G has an inverse in G w.r.t. *.
 - i.e. for each $a \in G$, there exists $b \in G$ such that a * b = e = b * a.

Note: A group G with a binary operation * is denoted by (G, *) or < G, * > or simply G. **Examples:**

1) $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +)$ are groups w.r.t. usual addition with identity element

0 and inverse of any a is -a.

2) $(\mathbb{Q}' = \mathbb{Q} - \{0\}, \times), (\mathbb{R}' = \mathbb{R} - \{0\}, \times). (\mathbb{C}' = \mathbb{C} - \{0\}, \times)$ are groups w.r.t. usual

multiplication with identity element 1 and inverse of any element a is $\frac{1}{2}$.

Ex. Show that $G = \{1, -1\}$ is a group w.r.t. usual multiplication.

Sol. Consider a table for the binary operation multiplication.

×	1	-1
1	1	-1
-1	-1	1

We observe that all entries in the table are elements of G. Therefore multiplication is a binary operation in G. We know that multiplication operation of numbers is associative. Also 1 is an identity of G and from the table 1.1 = (-1).(-1) = 1 i.e. every element has multiplicative inverse in G. Hence (G, .) is a group. **Ex.** Show that $G = \{1, -1, i, -i\}$, where $i = \sqrt{-1}$, is a group w.r.t. usual multiplication of complex numbers.

Sol. Consider a multiplication table for the binary operation multiplication

×	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
Ι	i	-i	-1	1
-i	-i	i	1	-1

We observe that all entries in the table are elements of G. Therefore multiplication is a binary operation in G. We know that multiplication operation of numbers is associative. Also 1 is an identity of G and from the table elements 1, -1, i and -i has inverses 1, -1, -i and i

in G i.e. every element has multiplicative inverse in G. Hence (G, .) is a group.

Ex. Let G be the set of all 2X 2 matrices over real numbers. Then G is a group w.r.t. addition of matrices but it is not a group w.r.t. multiplication of matrices.

Sol. 1) i) Clearly addition of matrices is a binary operation and is associative in G.

ii)
$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 is the identity element of G.
iii) For any $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in G, \exists \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix} \in G$ such that
 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
 $\therefore \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix}$
Hence (G,+) is a group.
(G, .) is not group because $\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$ has no multiplicative inverse in G as $\begin{vmatrix} 2 & 3 \\ 4 & 6 \end{vmatrix} = 0$

Ex. Let $G = \{A: A \text{ is non-singular matrix of order n over } \mathbb{R}\}$. Show that G is a group w.r.t. usual multiplication of matrices.

Proof:

2

i) Let A, B \in G.

- \therefore A, B are non-singular matrices of order n.
- $\therefore |\mathbf{A}| \neq 0, |\mathbf{B}| \neq 0.$

 $\therefore |AB| = |A||B| \neq 0.$

∴ AB ∈ G.

Thus multiplication of matrices is a binary operation on G.

ii) We know that matrix multiplication is associative

i.e. (AB) C= A (BC), \forall A, B, C \in G

i ii) For any $A \in G$, AI = A = IA, where I is the identity matrix of order n in G.

I is the identity element of G. iv) Let $A \in G$. $|A| \neq 0$ Then $\exists A^{-1} = B = \frac{1}{|A|} adj(A)$ such that AB = BA = IThus every element of G has inverse in G. \therefore (G, .) is a group is proved. **Ex.** Let \mathbb{Q}^+ denote the set of all positive rationals. For a, b $\in \mathbb{Q}^+$, define a * b = $\frac{ab}{2}$ Show that $(\mathbb{Q}^+, *)$ is a group. **Proof:** i) Clearly a, b $\in \mathbb{Q}^+ \implies a * b = \frac{ab}{2} \in \mathbb{Q}^+$ i. e. * is closed in \mathbb{Q}^+ . ii) Let a, b, c $\in \mathbb{Q}^+$. Consider (a * b) * c = $\frac{ab}{2}$ * c = $\frac{\left(\frac{ab}{2}\right)c}{2}$ = $\frac{abc}{4}$ and $a * (b * c) = a * \frac{bc}{2} = \frac{a(\frac{bc}{2})}{2} = \frac{abc}{4}$ (a * b) * c = a * (b * c).i.e. * is associative in \mathbb{Q}^+ . iii) For a $\in \mathbb{Q}^+$, we have $a * 2 = \frac{a^2}{2} = a \text{ and } 2 * a = \frac{2a}{2} = a.$ \therefore 2 is the identity element in \mathbb{Q}^+ . iv) For a $\in \mathbb{Q}^+ \exists \frac{4}{2} \in \mathbb{Q}^+$ with $a * \frac{4}{a} = \frac{a(\frac{4}{a})}{2} = 2$ and $(\frac{4}{a}) * a = \frac{(\frac{4}{a})a}{2} = 2$ $\therefore a^{-1} = \frac{4}{2}$ i.e. every element has inverse in \mathbb{Q}^+ . Hence $(\mathbb{Q}^+, *)$ is a group. **<u>Ex.</u>** Prove that $G = \{ \begin{bmatrix} x & x \\ x & y \end{bmatrix} : x \text{ is a non-zero real number} \}$ is a group under matrix multiplication. **<u>Proof:</u>** Let $G = \{ \begin{bmatrix} x & x \\ x & x \end{bmatrix} : x \text{ is a non-zero real number} \}$ with operation multiplication i) For $A = \begin{bmatrix} x & x \\ x & x \end{bmatrix} \& B = \begin{bmatrix} y & y \\ y & y \end{bmatrix} \in G \Longrightarrow AB = \begin{bmatrix} 2xy & 2xy \\ 2xy & 2xy \end{bmatrix} \in G \dots (1)$

 \therefore x & y are non zero real numbers \Rightarrow 2xy is non zero real number.

 \therefore Multiplication is closed in G.

ii) For A =
$$\begin{bmatrix} x & x \\ x & x \end{bmatrix}$$
, B = $\begin{bmatrix} y & y \\ y & y \end{bmatrix}$ & C = $\begin{bmatrix} z & z \\ z & z \end{bmatrix}$ \in G we have,

MTH -302(A): GROUP THEORY

$$(AB)C = \begin{bmatrix} 2xy & 2xy \\ 2xy & 2xy \end{bmatrix} \begin{bmatrix} z & z \\ z & z \end{bmatrix} = \begin{bmatrix} 4xyz & 4xyz \\ 4xyz & 4xyz \end{bmatrix}$$
 by equation (1)
& A(BC) = \begin{bmatrix} x & x \\ x & x \end{bmatrix} \begin{bmatrix} 2yz & 2yz \\ 2yz & 2yz \end{bmatrix} = \begin{bmatrix} 4xyz & 4xyz \\ 4xyz & 4xyz \end{bmatrix} by equation (1)
 \therefore (AB)C = A(BC)
 \therefore Multiplication is associative in G.
iii) As $\frac{1}{2}$ is a non zero real number $\Rightarrow E = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \in G$ is an identity element
 $\therefore AE = \begin{bmatrix} x & x \\ x & x \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} x & x \\ x & x \end{bmatrix} = A$
 $\& EA = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x & x \\ x & x \end{bmatrix} = A \forall A = \begin{bmatrix} x & x \\ x & x \end{bmatrix} \in G.$
i. e. identity element is exist in G.
iv) For $A = \begin{bmatrix} x & x \\ x & x \end{bmatrix} \in G$, suppose $B = \begin{bmatrix} y & y \\ y & y \end{bmatrix}$ is inverse of A.
 $\therefore AB = E = BA$ i. e. $\begin{bmatrix} x & x \\ x & x \end{bmatrix} \begin{bmatrix} y & y \\ y & y \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \Rightarrow \begin{bmatrix} 2xy & 2xy \\ 2xy & 2xy \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$
 $\therefore 2xy = \frac{1}{2} \Rightarrow y = \frac{1}{4x}$ which is a non zero real number $\Rightarrow B = \begin{bmatrix} \frac{1}{4x} & \frac{1}{4x} \\ \frac{1}{4x} & \frac{1}{4x} \end{bmatrix} \in G.$
i. e. every element has inverse in G.
Hence G is a group under matrix multiplication is proved.
Properties of Groups:
Theorem: If G is a group, then i) Identity element of G is unique, [10]
ii) [$a^{-1}^{-1}^{-1} = a \forall a \in G$
iv) ($ab^{-1} = b^{-1}a^{-1} \forall a, b \in G$ (Reversal law for the inverse of a product)

Proof: Let G be a group.

i)Let e and e' be identity elements of G.

 \therefore ee' = e \therefore e' is an identity element of G.

and ee' = e' \therefore e is an identity element of G.

 \therefore e = e'. Hence identity element of G is unique

ii) For $a \in G$. Suppose b and c are inverses of a in G.

 \therefore ab = e = ba and ac = e = ca

Now b = eb= (ca) b = c(ab) by associative law = ce= cHence a has unique inverse in G iii) Let $a \in G$ \therefore aa⁻¹ = e = a⁻¹a By definition of inverse of an element, a is the inverse of a^{-1} $\therefore (a^{-1})^{-1} = a$ v) Let $a, b \in G$ Consider $(ab)(b^{-1} a^{-1}) = a(bb^{-1}) a^{-1}$ by associative law. = aea⁻¹ by associative law $= aa^{-1}$ $= e \dots (1)$ From (1) and (2), $\therefore (ab)^{-1} = b^{-1} a^{-1} \forall a, b \in G$ **Theorem:** Let G be a group and a, b, $c \in G$. Then i) Left cancellation law : $ab = ac \implies b = c$, ii) Right cancellation law: $ba = ca \implies b = c$ **Proof:** Let G be a group and a, b, $c \in G$. i) ab = acPre-multiplying both the sides by a^{-1} , we get $a^{-1}(ab) = a^{-1}(ac)$ \therefore (a⁻¹ a) b = (a⁻¹ a))c by associative law $\therefore eb = ec$ स्वकमणी तमभ्यच्ये सिध्दि विन्दति मानवः। $\therefore \mathbf{b} = \mathbf{c}$ i) ba = caPost-multiplying both the sides by a^{-1} , we get $(ba)a^{-1} = (ca)a^{-1}$ $\therefore b(aa^{-1}) = c(aa^{-1})$ by associative law \therefore be = ce \therefore b = c. Hence proved. **Theorem:** Let G be a group and a, $b \in G$. Then the equations i) ax = b and i) ya = b have unique solutions in G. **Proof:** Let G be a group and a, $b \in G$.

i) Consider the equation ax = b. Pre-multiplying both the sides by a⁻¹, we get a⁻¹ (ax) = a⁻¹b ∴ (a⁻¹a) x = a⁻¹b by associative law ∴ ex = a⁻¹b ∴ x = a⁻¹b Hence, x = a⁻¹b is a solution of the equation ax = b. Uniqueness: Suppose x₁ and x₂ are solutions of ax = b. ax₁ = b and ax₂ = b ∴ ax₁ = ax₂ ∴ x₁ = x₂ by left cancellation law. Hence ax = b has unique solution in G. ii) Similarly, we have y = ba⁻¹ is the unique solution of ya = b in G.

Abelian groups: A group G is said to be abelian group if ab = ba, $\forall a, b \in G$. e.g. 1) (\mathbb{Z} , +), (\mathbb{Q} , +), (\mathbb{R} , +), (\mathbb{C} , +) are abelian groups.

2) Let $G = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : ad-bc \neq 0, a, b, c, d \in \mathbb{R} \}$. Then G is a group w.r.t. matrix multiplication. But it is not an abelian group. \because For $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \& B = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$ we have $AB = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1+2 & 4+6 \\ 0+3 & 0+9 \end{bmatrix} = \begin{bmatrix} 3 & 10 \\ 3 & 9 \end{bmatrix}$ $BA = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1+0 & 2+12 \\ 1+0 & 2+9 \end{bmatrix} = \begin{bmatrix} 1 & 14 \\ 1 & 11 \end{bmatrix}$ $\therefore AB \neq BA$

Finite and Infinite Group: A group G is said to be finite if the number of elements in G is finite otherwise it is called an infinite group.

Order of Group: If G is a finite group then the number of elements in G is called order of G and it is denoted by o(G).

Note: $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +)$ are infinite abelian groups.

Ex.: Let $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$ the set of all residue classes of integers modulo n. Define a binary operation $+_n$ in \mathbb{Z}_n , as $\overline{a} +_n \overline{b} = \overline{a+b} = \overline{r}$ where r is the remainder obtained when a + b is divided by n. Show that $(\mathbb{Z}_n, +_n)$ is a finite abelian group.

Sol. i) Let a, b $\in \mathbb{Z}_n$, and r is the remainder obtained when a + b is divided by n.

 $\therefore 0 \le r < n$

Hence $\overline{a} +_n \overline{b} = \overline{a + b} = \overline{r} \in \mathbb{Z}_n$

 $\therefore \mathbb{Z}_n$ is closed w.r.t. $+_n$

ii) Let
$$\overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}_{n}$$

```
(\overline{a} +_n \overline{b}) +_n \overline{c} = (\overline{a + b}) +_n \overline{c}
                                =(\overline{a+b})+c
                                =\overline{a+(b+c)}
                                =\overline{a} +_n (\overline{b+c})
                                =\overline{a} +_n (\overline{b} +_n \overline{c})
           \therefore +<sub>n</sub> is associative in \mathbb{Z}_n
     iii) For any \overline{a} \in \mathbb{Z}_n
          \overline{a} + \overline{0} = \overline{a + 0} = \overline{a} and \overline{0} + \overline{a} = \overline{0 + a} = \overline{a}
           \therefore \overline{0} is the identity of \mathbb{Z}_n
     iv) For \overline{a} \in \mathbb{Z}_n, \exists \overline{n-a} \in \mathbb{Z}_n, such that
          \overline{a} +_{n} \overline{n - a} = \overline{a + n - a} = \overline{n} = \overline{0} and \overline{n - a} +_{n} \overline{a} = \overline{n - a + a} = \overline{n} = \overline{0}
           Hence every element of \mathbb{Z}_n has inverse in \mathbb{Z}_n
      v) For \overline{a}, \overline{b} \in \mathbb{Z}_n,
          \overline{a} +_{n} \overline{b} = \overline{a + b} = \overline{b + a} = \overline{b} +_{n} \overline{a}
           \therefore +<sub>n</sub> is commutative in \mathbb{Z}_n
     vi) \mathbb{Z}_n contains n elements and n is finite.
           \mathbb{Z}_n is a finite set.
          Thus (\mathbb{Z}_n, +_n) is a finite abelian group.
Ex. Show that G = \mathbb{Q} - \{-1\} is an abelian group under the binary operation
      a * b = a + b + ab, \forall a, b \in G.
Proof: Let * be a binary operation defined on \mathbf{G} = \mathbb{Q} - \{-1\} by
            a * b = a + b + ab, \forall a, b \in G.
          i) Let a, b, c \in G
               Consider (a * b) * c = (a + b + ab)* c
                                                 = (a + b + ab) + c + (a + b + ab) c
                                                 = a + b + ab + c + ac + bc + abc
                                              = a + b + c + ab + ac + bc + abc
                                                 = a + b + c + bc + ab + ac + abc
                                                 = a + (b + c + bc) + a (b + c + bc)
                                                 = a * (b + c + bc)
                                                 = a * (b * c)
                           (a * b) * c = a * (b * c).
               i.e. * is associative in G
```

ii) For $a \in G$, we have

a * 0 = a + 0 + a0 = a and 0 * a = 0 + a + 0a = a.

 \therefore 0 is the identity element of G.

iii) Let $a \in G$, suppose b is an inverse of a

a * b = b * a = 0 $\therefore a + b + ab = 0$ \therefore b(1+a) = -a $\therefore b = \frac{-a}{1+a} \in G := \frac{-a}{1+a} \neq -1$ i.e. every element has inverse in G. Hence (G, *) is a group. iv) As $a * b = a + b + ab = b + a + ba = b * a \forall a, b \in G$. \therefore * is commutative in G. Hence (G, *) is an abelian group is proved. **Ex.** Show that $G = \mathbb{R} - \{1\}$ is an abelian group under the binary operation $a * b = a + b - ab, \forall a, b \in G.$ **Proof:** Let * be a binary operation defined on $G = \mathbb{R} - \{1\}$ by $a * b = a + b - ab, \forall a, b \in G.$ i) Let a, b, $c \in G$ Consider (a * b) * c = (a + b - ab) * c= (a + b - ab) + c - (a + b - ab) c= a + b - ab + c - ac - bc + abc = a + b + c - ab - ac - bc + abc = a + b + c - bc - ab - ac + abc = a + (b + c - bc) - a (b + c - bc)= a * (b + c - bc)= a * (b * c)(a * b) * c = a * (b * c).i.e. * is associative in G ii) For $a \in G$, we have a * 0 = a + 0 - a0 = a and 0 * a = 0 + a - 0a = a. \therefore 0 is the identity element of G. iii) Let $a \in G$, suppose b is an inverse of a a * b = b * a = 0 $\therefore a + b - ab = 0$:: b(1-a) = -a $\therefore b = \frac{-a}{1-a} \in G :: \frac{-a}{1-a} \neq 1$ i.e. every element has inverse in G. Hence (G, *) is a group. iv) As $a * b = a + b - ab = b + a - ba = b * a \forall a, b \in G$. \therefore * is commutative in G. Hence (G, *) is an abelian group is proved.

```
Ex. Let \mathbb{Q}^+ denote the set of all positive rational numbers and for any a, b \in \mathbb{Q}^+, define
     a * b = \frac{ab}{2}. Show that (\mathbb{Q}^+, *) is an abelian group.
<u>Proof</u>: i) Clearly a, b \in \mathbb{Q}^+ \Longrightarrow a * b = \frac{ab}{2} \in \mathbb{Q}^+.
             i. e. * is closed in \mathbb{Q}^+.
         ii) For a, b, c \in \mathbb{Q}^+.
             Consider (a * b) *c = \left(\frac{ab}{a}\right) * c = \frac{\left(\frac{ab}{a}\right)c}{c} = \frac{abc}{c}
             and a * (b * c) = a * (\frac{bc}{3}) = \frac{a(\frac{bc}{3})}{3} = \frac{abc}{9}
              :(a * b) * c = a * (b * c).
             i.e. * is associative in \mathbb{Q}^+.
         iii) For a \in \mathbb{Q}^+, we have
             a * 3 = \frac{a3}{2} = a and 3 * a = \frac{3a}{2} = a.
            \therefore 3 is the identity element of \mathbb{Q}^+.
         iv) For a \in \mathbb{Q}^+. \exists \frac{9}{2} \in \mathbb{Q}^+ with
              a * \frac{9}{2} = \frac{a(\frac{9}{a})}{2} = 3 \text{ and } (\frac{9}{2}) * a = \frac{(\frac{9}{a})a}{2} = 3
              \therefore a^{-1} = \frac{9}{a} i.e. every element has inverse in \mathbb{Q}^+.
              Hence (\mathbb{Q}^+, *) is a group.
         v) As a * b = \frac{ab}{3} = \frac{ba}{3} = b * a \forall a, b \in \mathbb{Q}^+.
             \therefore * is commutative in \mathbb{Q}^+.
             Hence (\mathbb{Q}^+, *) is an abelian group is proved.
Ex. Let G = \{(a, b): a, b \in \mathbb{R}, a \neq 0\}. Show that (G, \Theta) is a non-abelian group,
      where (a, b) \Theta (c, d) = (ac, ad + b).
Sol. Let G = \{(a, b): a, b \in \mathbb{R}, a \neq 0\} and operation \Theta is defined by
      (a, b) \odot (c, d) = (ac, ad + b) \forall (a, b), (c, d) \in G
   i) Let (a, b), (c, d) \in G
      \therefore a \neq 0, c \neq 0
      \therefore ac \neq 0
     \therefore (a, b) \Theta (c, d) = (ac, ad + b) \in G
     \therefore \odot is closed in G.
    ii) Associativity: Let (a, b), (c, d), (e, f \in G.
        [(a, b) \odot (c, d)] \odot (e, f) = (ac, ad +b) \odot (e, f)
                                              = (ace, acf +ad+b) ....(1)
         (a, b) \odot [(c, d) \odot (e, f)] = (a, b) \odot (ce, cf+d)
```

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR COLLEGE, PIMPALNER.

= (ace, acf+ad+b)(2) From (1) and (2) $[(a, b) \odot (e, d)] \odot (e, f) = (a, b) \odot [(c, d) \odot (e, f)]$ \therefore O is associative. iii) Existence of identity element: As 1 & $0 \in \mathbb{R} \implies (1, 0) \in \mathbb{G}$ with $(a, b) \odot (1, 0) = (a, b) = (1, 0) \odot (a, b) = (a, b) \forall (a, b) \in G$ Thus (1, 0) is the identity of G. iv) Existence of inverse: For $(a, b) \in G$. Suppose (c, d) is inverse of (a, b). \therefore (a, b) Θ (c, d) = (1, 0) i.e. (ac, ad+b) = (1, 0)i.e. ac = 1, ad+b = 0 $\therefore c = \frac{1}{a} \& d = \frac{-b}{a}$ Hence $(a, b)^{-1} = (\frac{1}{2}, \frac{-b}{2}) \in G \quad \because \frac{1}{2} \neq 0$ \therefore G is a group. v) For $(1, 2), (3, 4) \in G$. $(1, 2) \odot (3, 4) = (3, 4+2) = (3, 6)$ and $(3, 4) \odot (1, 2) = (3, 6+4) = (3, 10)$ $(1, 2) \odot (3, 4) \neq (3, 4) \odot (1, 2)$ \therefore \odot is not commutative in G. Hence G is a non-abelian group is proved. **Ex.** Let G be a group and for all a, $b \in G$, $(ab)^n = a^n b^n$, for three consecutive integers n.

```
Show that G is an abelian group.
Proof: Let (ab)^n = a^n b^n \dots (1)
                                        (ab)^{n+1} = a^{n+1} b^{n+1} \dots (2)
                           & (ab)^{n+2} = a^{n+2} b^{n+2} \dots (3)
                                   From (2), a^{n+1}b^{n+1} = (ab)^{n+1} difference in the interval of the interval the int
                                    (a^{n}a) (b^{n}b) = (ab)^{n} (ab) = (a^{n}b^{n}) (ab) by (1)
                       \therefore a^n (ab^n) b = a^n (b^n a) b
                     \therefore ab<sup>n</sup> = b<sup>n</sup>a by cancellation laws. .....(4)
                    Similarly from (2) and (3), we have ab^{n+1} = b^{n+1}a
                   Now ab^{n+1} = b^{n+1}a
                    \therefore a(b^n b) = (b^n b) a
                    \therefore (ab<sup>n</sup>)b = b<sup>n</sup>(ba)
                 \therefore (b<sup>n</sup>a)b = (b<sup>n</sup>b) a
                                                                                                                                           by (4)
                 \therefore b^n(ab) = b^n(ba)
                 \therefore ab = ba by lett cancellation law.
```

Thus ab = ba, $\forall a, b \in G$.

Hence G is abelian group is proved.

<u>Ex.</u> Show that a group G is abelian if and only if $(ab)^2 = a^2b^2$, $\forall a, b \in G$. **Proof:** Let G be an abelian group and a, $b \in G$.

 \therefore ab = ba(1) Now $(ab)^2 = (ab)(ab)$ = a(ba)b)by (1) = a(ab)b= (aa)(bb) = (aa)(bb) $=a^{2}b^{2}$ Conversely, suppose that $(ab)^2 = a^2b^2$, $\forall a, b \in G$. For a, $b \in G$, we have $(ab)^2 = a^2b^2$ \therefore (ab)(ab) = (aa)(bb) \therefore a(ba)b) = a(ab)b) by cancellation laws \therefore (ba) = (ab) \therefore ab = ba \forall a, b \in G. Hence G is an abelian group is poved.

Ex. If in a group G, every element is its own inverse then prove that G is abelian. **Proof:** Let G be a group in which every element is its own inverse.

 \therefore For a, b \in G \implies a⁻¹ = a and b⁻¹ = b.....(1) Now a, $b \in G \implies ab \in G$ \Rightarrow (ab)⁻¹ = ab \implies b⁻¹a⁻¹ = ab \implies ba= ab by (1) Hence G is an abelian group is poved. **Ex.** If G is a group such that $a^2 = e$, $\forall a \in G$, then show that G is abelian. **Proof:** Let G be a group such that $a^2 = e, \forall a \in G$. : For a, b \in G \implies a² = e and b² = e.....(1) Now a, $b \in G \Longrightarrow ab \in G$ \Rightarrow (ab)² = e \Rightarrow (ab)² = ee ∵ e is identity in G \Rightarrow (ab)² = a² b² by (1) \Rightarrow (ab)(ab) = (aa)(bb) \Rightarrow a(ba)b = a(ab)b \Rightarrow (ba) = (ab) by cancellation laws \Rightarrow ab = ba

Hence G is an abelian group is proved.

Euler's Totient Function: The function $\emptyset \colon \mathbb{N} \to \mathbb{N}$ defined by

 $\emptyset(n)$ = The number of positive integers less than or equal to n and relatively prime to n, is called Euler's totient function.

e.g. 1) \emptyset (8) = 4 \therefore 1, 3, 5, 7 are positive integers ≤ 8 and relatively prime to 8.

2) Ø (1) =1

3) Ø(5) = 4

Note: If p is prime, then $\emptyset(p) = P - 1$

Ex. Let \mathbb{Z}_n denotes the set of all prime residue classes modulo n i.e. $\mathbb{Z}_n = \{\overline{a} \in Z_n: (a, n) = 1\}$. Show that \mathbb{Z}_n is an abelian group of order $\emptyset(n)$ w.r.t. \times_n .

Proof: i) Let $\bar{a}, \bar{b} \in \mathbb{Z}_n$ and r is the remainder obtained when ab is divided by n.

Now $\bar{a}, \bar{b} \in \mathbb{Z}_n \implies (a, n) = 1$ and (b, n) = 1 \Rightarrow (ab, n) = 1 \Rightarrow (r, n) = 1 \therefore ab \equiv r (modn) $\Rightarrow \bar{r} \in \mathbb{Z}_{n}$ Hence $\overline{a} \times_n \overline{b} = \overline{ab} = \overline{r} \in \mathbb{Z}_n$ \therefore x_n is closed in Z_n. ii) Clearly $(\bar{a} \times_n \bar{b}) \times_n \bar{c} = \bar{a} \times_n (\bar{b} \times_n c) \forall \bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_n$ iii) $(1, n) = l \Longrightarrow \overline{1} \in \mathbb{Z}_n$, Also $\overline{a} \times_n \overline{1} = \overline{a} = \overline{1} \times_n \overline{a}, \forall \overline{a} \in \mathbb{Z}_n$ \therefore 1 is the identity of \mathbb{Z}_n w.r.t. \times_n iv) Let $\bar{a} \in \mathbb{Z}_n$, \therefore (a, n) = 1 \therefore There exist p, q \in Z such that ap + nq = 1. : ap - 1 = (-q) n \therefore ap - 1 \equiv 0 (modn) : ap = 1 (modn) नेमाने तमाध्याच्य सिषिद्ध विन्दति यानवः $\therefore \overline{ap} = \overline{1}$ $\therefore \bar{a} \times_n \bar{p} = \bar{1}$ \therefore $(\bar{a})^{-1} = \bar{p} \in \mathbb{Z}_n$ Hence every element of \mathbb{Z}_n^{\perp} has inverse w.r.t. \times_n in \mathbb{Z}_n^{\perp} v) As $\overline{a} \times_{n} \overline{b} = \overline{ab} = \overline{ba} = \overline{b} \times_{n} \overline{a} \forall \overline{a}, \overline{b} \in \mathbb{Z}_{n}$ vi) \mathbb{Z}_n contains exactly $\emptyset(n)$ elements.

From (i) to (vi), \mathbb{Z}_n^{+} is an abelian group of order $\emptyset(n)$.

Remark: In $\mathbb{Z}_8 = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ i) $\overline{1}$ is the identity of \mathbb{Z}_8 . ii) $(\overline{1})^{-1} = \overline{1}, (\overline{3})^{-1} = \overline{3}, (\overline{5})^{-1} = \overline{5}, (\overline{7})^{-1} = \overline{7}$ and iii) $o(\mathbb{Z}_8) = \emptyset(8) = 4$.

Hence proved.

Ex.: Let G be a group and a, $b \in G$ be such that ab = ba. Prove that $(ab)^n = a^n b^n$, for all $n \in \mathbb{Z}$. **Proof:** Let $n \in \mathbb{Z}$ and $a, b \in G$ be such that ab = ba.

Case (i) $n \in \mathbb{N}$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR COLLEGE, PIMPALNER.

```
We first prove the result ab^n = b^n a by induction on n.
                    For n=1, ab^1 = ab = ba = b^1a.
                    Suppose that ab^k = b^k a, for k \in \mathbb{N}
                    Now ab^{k+1} = a(b^k b)
                                                        = (ab^k)b
                                                        = (b^{k}a)b
                                                        = b^{k}(ab)
                                                        = b^{k}(ba)
                                                        = (b^k b)a
                                                        = b^{k+1}a
                    i. e. result is true for n = k \implies result is true for n = k+1
                    Hence by induction, ab^n = b^n a, \forall n \in \mathbb{N} \dots (i)
                    Now we claim (ab)^n = a^n b^n, \forall n \in \mathbb{N}.
                    For n = 1, (ab)^1 = ab = a^1b^1
                    Suppose that (ab)^k = a^k b^k.
                    Now (ab)^{k+1} = (ab)^{k}(ab)
                                                             = (a^k b^k)(ab)
                                                              =a^{k}(b^{k}a)b
                                                               = a^{k} (ab^{k})b by(i)
                                                              = (a^{k}a)(b^{k}b)
                                                              = a^{k+1}b^{k+1}
                    Hence by induction (ab)^n = a^n b^n, \forall n \in \mathbb{N}.
case (ii) n = 0. Then (ab)^0 = e = ee = a^0b^0.
case (iii) n < 0
                    Let n = -m, where m \in \mathbb{N}.
                    (ab)^{n} = (ab)^{-m}
                                    = ((ab)^{-1})^{m}
                                    = ((ba)^{-1})^{m} = ba_{n} 
                                    = (a^{-1} b^{-1})^{m}
                                     = (a^{-1})^m (b^{-1})^m by case (i) as m \in \mathbb{N}
                                     = a^{-m} b^{-m}
                                     = a^n b^n.
                     Hence from case (i), (ii) and (iii), (ab)^n = a^n b^n, \forall n \in \mathbb{Z} is proved.
```

Order of an Element in a Group: Let G be a group and $a \in G$. The smallest positive integer n (if it exists) such that $a^n = e$, is called order of a and it is denoted by o(a). If no such integer exists then a is said to be of infinite order.

Note: 1) The order of the identity element in any group is 1.

2) Let G be a group and $a \in G$. If $m \in \mathbb{N}$ is such that $a^m = e$ then $o(a) \le m$

Examples:

Consider the group G = {1, -1, i, -i} under multiplication. Then

 i) o(1) = 1 ∵ 1¹ = 1.
 ii) o(-1) = 2 ∵ (-1)¹ = -1≠ 1, (-1)² = 1.
 iii) o(i) = 4 ∵ (i)¹ = i ≠ 1, (i)² = -1 ≠ 1, (i)³ = -i ≠ 1, (i)⁴ = 1.
 iv) o(-i) = 4 ∵ (-i)¹ = -i ≠ 1, (-i)² = -1 ≠ 1, (-i)³ = i ≠ 1, (-i)⁴ = 1.

 Consider the group (Z₆, +₆) with identity 0. Then

 o (0) = 1, o (1) = 6, o (2) = 3, o (3) = 2, o (4) = 3, o (5) = 6.
 In (Z, +), the order of 2 is infinite because there is no n ∈ N such that 2ⁿ = 0.

Theorem: The order of every element in a finite group is finite.

Proof: Let G be a finite group of order n and $a \in G$.

Consider a set $S = \{a^m : m \in \mathbb{N}\}$. Then $S \subseteq G$.

Since G is finite, all the elements of S can not be distinct.

 \therefore $a^r = a^t$ for some r, t $\in \mathbb{N}$, r > t

$$\therefore$$
 a^{r-t} = e \bigcirc by cancellation law.

 \therefore o(a) \leq r-t

 \therefore o (a) is finite

Hence order of every element of a finite group is finite is proved.

Ex.: Let G be a group and a, $b \in G$. Prove that 1) $o(a^{-1}) = o(a)$ and 2) $o(a) = o(b^{-1}ab)$. **Proof:**

1) Case (i) o(a) is finite say m.

Case (ii) o (a) is infinite.

Let if possible o (a^{-1}) is finite say r.

$$\therefore (a^{-1})^{r} = e$$

$$\therefore (a^{r})^{-1} = e$$

$$\therefore a^{r} = e^{-1} = e$$

$$\therefore o(a) \le r$$

Impossible : o(a) is infinite

```
Hence o(a^{-1}) is infinite.
         \therefore o(a<sup>-1</sup>) = o(a).
2) Claim: (b^{-1} ab)^n = b^{-1}a^n b, \forall n \in \mathbb{N}.
         We prove it by induction on n.
         For n = 1, (b^{-1} ab)^1 = b^{-1}ab = b^{-1}a^1b
         Assume that (b^{-1}ab)^k = b^{-1}a^kb, where k \in \mathbb{N}
         Now (b^{-1}ab)^{k+1} = (b^{-1}ab)^k(b^{-1}ab)
                               = (b^{-1}a^{k}b)(b^{-1}ab)
                               = b^{-1}a^{k}(bb^{-1})ab
                              = b^{-1}a^{k}eab
                              = b^{-1}a^{k}ab
                              = \mathbf{h}^{-1} \mathbf{a}^{k+1} \mathbf{h}
         Result is true for k + 1 also.
         Hence by principle of finite induction
         (b^{-1} ab)^n = b^{-1}a^n b, \forall n \in \mathbb{N}.
Case (i) o (a) is finite say m.
         \therefore a^m = e
         Now (b^{-1} ab)^m = b^{-1}a^m b
                             = b^{-1}eb
                             = b^{-1}b
                             = e^{1}
         \therefore o(b<sup>-1</sup> ab) < m
         : o(b^{-1} ab) \le o(a) \dots (1)
         Using (1), we have
         o((b^{-1})^{-1} (b^{-1} ab) (b^{-1})) \le o(b^{-1} ab)
        : o((b b^{-1})a(bb^{-1})) \le o(b^{-1} ab)
         \therefore o(eae) \leq o(b<sup>-1</sup> ab)
         ∴ o(a) \le o(b^{-1} ab) .....(2) तमधार्च सिंहि विन्दति मानतः।
         from (1) and (2), o(a) = o(b^{-1} ab).
Case (ii) o(a) is infinite.
        Let if possible o(b^{-1}ab) is finite say m.
         \therefore (b^{-1}ab)^m = e
         \therefore b^{-1}a^{m}b = e
         \therefore a^m = beb^{-1}
         \therefore a^m = bb^{-1}
         \therefore a^m = e
         \therefore o(a) \leq m
         Impossible : o(a) is infinite.
         Hence o(b^{-1}ab) is infinite.
```

 \therefore o(a) = o(b⁻¹ab).

 \therefore o($\overline{3}$) = 6

```
Ex.: Let G be a group and a, b \in G. Prove that o(ab) = o(ba)
Proof: We have ab = e(ab) = (b^{-1}b)(ab) = b^{-1}(ba) b
                     \therefore o(ab) = o(b<sup>-1</sup>(ba)b)
                     \therefore o(ab) = o(ba) \therefore o(b<sup>-1</sup>ab) = o(a)
                     Hence proved.
Ex. Let G be a group and a \in G, n \in \mathbb{N}. Show that a^n = e if and only if o(a)|n.
Sol.: Let a^n = e and o(a) = m.
                     By applying division algorithm on m and n, we get
                     n = mq + r, where 0 \le r < m...(1)
                     Suppose that r \neq 0
                     \therefore r = n - mq
                     \therefore a<sup>r</sup> = a<sup>n-mq</sup>
                     \therefore a^r = a^n a^{-mq}
                     \therefore a^r = a^n (a^m)^{-q}
                     \therefore a^{r} = e(e)^{-q} \qquad \therefore a^{n} = e \& o(a) = m
                     \therefore a^r = e
                     Thus a^r = e and r > 0
                     \therefore o (a) \leq r
                     \therefore m \leq r
                     Impossible. : \circ(a) = m
                     \therefore r = 0
                     Hence by equation (1), n = mq. \therefore m | n i.e. o(a) | n
Conversely, Suppose that o(a)|n
                     \therefore n = o (a)k, for some k \in \mathbb{N}
                     : a^{n} = a^{o(a)k} = (a^{o(a)})^{k} = e^{k} = e. (2) The left defined of the left of t
                     Hence proved.
Ex. In the group (\mathbb{Z}'_7, \times_7), find (i) (\overline{3})^2 ii) (\overline{4})^{-3} iii) o(\overline{3}) iv) o(\overline{4})
Sol. Let \mathbb{Z}'_7 = \{\overline{1}, \overline{2}, \overline{3}, 4, \overline{5}, \overline{6}\} be a group under \times_{7}.
                  i) (\bar{3})^2 = \bar{3} \times_7 \bar{3} = \bar{2}.
                ii) (\bar{4})^{-3} = [(\bar{4})^{-1}]^3 = (\bar{2})^3 = \bar{2} \times_7 \bar{2} \times_7 \bar{2} = \bar{1}. :: (\bar{4})^{-1} = \bar{2}
              iii) Here \overline{1} \in \mathbb{Z}'_7 is an identity element.
                         Now (\bar{3})^1 = \bar{3} \neq \bar{1}, (\bar{3})^2 = \bar{2} \neq \bar{1}, (\bar{3})^3 = \bar{6} \neq \bar{1}, (\bar{3})^4 = \bar{4} \neq \bar{1},
                                          (\bar{3})^5 = \bar{5} \neq \bar{1}, (\bar{3})^6 = \bar{1}
```

iv) As
$$(\overline{4})^1 = \overline{4} \neq \overline{1}, (\overline{4})^2 = \overline{2} \neq \overline{1}, (\overline{4})^3 = \overline{1}$$

 $\therefore \quad o(\overline{4}) = 3$

Ex. In the group $(\mathbb{Z}'_{11}, \times_{11})$, find (i) $(\bar{4})^3$ ii) $(\bar{5})^2$ iii) $o(\bar{9})$ iv) $o(\bar{7})$ Sol. Let $\mathbb{Z}'_{11} = \{\bar{1}, \bar{2}, \bar{3}, 4, \bar{5}, \bar{6}, \bar{7}, \bar{8}, \bar{9}, \bar{10}\}$ be a group under \times_{11} i) $(\bar{4})^3 = \bar{4} \times_{11} \bar{4} \times_{11} \bar{4} = \bar{9}$. ii) $(\bar{5})^2 = \bar{5} \times_{11} \bar{5} = \bar{3}$. iii) Here $\bar{1} \in \mathbb{Z}_{11}$ is an identity element. Now $(\bar{9})^1 = \bar{9} \neq \bar{1}, (\bar{9})^2 = \bar{4} \neq \bar{1}, (\bar{9})^3 = \bar{3} \neq \bar{1},$ $(\bar{9})^4 = \bar{5} \neq \bar{1}, (\bar{9})^5 = \bar{1}.$ $\therefore o(\bar{9}) = 5$ iv) As $(\bar{7})^1 = \bar{7} \neq \bar{1}, (\bar{7})^2 = \bar{5} \neq \bar{1}, (\bar{7})^3 = \bar{2} \neq \bar{1}, (\bar{7})^4 = \bar{3} \neq \bar{1}, (\bar{7})^5 = \bar{10} \neq \bar{1},$ $(\bar{7})^6 = \bar{4} \neq \bar{1}, (\bar{7})^7 = \bar{6} \neq \bar{1}, (\bar{7})^8 = \bar{9} \neq \bar{1}, (\bar{7})^9 = \bar{8} \neq \bar{1}, (\bar{7})^{10} = \bar{1},$ $\therefore o(\bar{7}) = 10$

Ex.: If in a group G, $a^5 = e$ and $aba^{-1} = b^2$, $\forall a, b \in G$, then find order of an element b. **Sol.:** Let in a group G, $a^5 = e$ and $aba^{-1} = b^2$, $\forall a, b \in G$

As
$$b^2 = aba^{-1}$$

 $\therefore (b^2)^2 = (aba^{-1}) (aba^{-1}) = ab(a^{-1}a)ba^{-1} = abeba^{-1} = ab^2a^{-1}$
 $\therefore b^4 = a(aba^{-1})a^{-1} = a^2ba^{-2}$
 $\therefore (b^4)^2 = (a^2ba^{-2}) (a^2ba^{-2}) = a^2b^2a^{-2} = a^2(aba^{-1})a^{-2}$
 $\therefore b^8 = a^3ba^{-3}$
 $\therefore (b^8)^2 = (a^3ba^{-3}) (a^3ba^{-3}) = a^3b^2a^{-3} = a^3(aba^{-1})a^{-3}$
 $\therefore b^{16} = a^4ba^{-4}$
 $\therefore (b^{16})^2 = (a^4ba^{-4}) (a^4ba^{-4}) = a^4b^2a^{-4} = a^4(aba^{-1})a^{-4}$
 $\therefore b^{32} = a^5ba^{-5} = ebe^{-1} = b$
 $\therefore b^{31} = e$ by cancellation law.
 $\therefore o(b) = 31$

UNIT-I-GROUP [MCQ'S]

1) Which of the following operations is not binary in \mathbb{Z} ?

(A) addition (B) multiplication (C) subtraction (D) division

2) Let G be a non-empty set. If a*(b*c) = (a*b)*c for all a, b, c ∈ G, then a binary operation * on G is said to be

(A) associative (B) closure (C) commutative (D) abelian.

3) What is the identity element in the group (Z, +)?

			MTH -302(A): GROUP THEORY
(A) 0	(B) 1	(C) -1	(D) 2
4) Consider the gro	$\operatorname{Sup}\left(\mathbb{Q}^{+},* ight)$ where a	$a * b = \frac{ab}{3}$ for all a, b	$\in \mathbb{Q}^+$. What is the
identity elemen	t in \mathbb{Q}^+ ?	5	
(A) 0	(B) 1	(C) 2	(D) 3
5) Consider the gro	$oup(Q^+, *)$ where a	$a * b = \frac{ab}{a}$ for all a, b	$\in Q^+$. What is the
inverse of an el	ement a in Q ⁺ ?	Δ	
(A) 2	(B) a	(C) 4/a	(D) a/2
6) Which of the fo	llowing is not a gro	oup?	
(A) $(\mathbb{Z}, +)$	$(\mathrm{B})\ (\mathbb{N},\ +)$	(C) $G = \{1, -1\}$	1, i, -i} under multiplication
(D) $G = \mathbb{R} -$	{1} under operation	bn a*b = a + b - ab fo	or all $a, b \in G$
7) Which of the fo	llowing is incorrect	? MILET P	- A
(A) Identity	element in a group	is unique.	(B) Every group is abelian.
(C) Inverse	of every element in	a group is unique. ((D) None of the above.
8) In group $G = \{1, 2\}$, -1, i, -i} unde <mark>r us</mark> t	ual multiplication i ⁻¹ =	= (a) (*)
(A) 1	(B) -1	(C) i	(D) -i
9) In the group (Z_8	$(, \times_8), (\bar{3})^{-1} = \dots$		
(A) 1	(B) 3	(C) 5	(D) 7
10) In a group G, f	for $a \in G$, $(a^{-1})^{-1} =$	The Party of the P	<u>ि</u> क्षे
(A) a	(B) a ⁻¹	(C) e, identity	y in <mark>G</mark> (D) 1
11) Which of the f	ollowing is an abel	ian group?	
$(A) G = \mathbb{R} -$	{1} under operati	on $a*b = a + b$ - ab for	or all $a, b \in G$
(B) $G = \{1,$	<mark>-1, i, -</mark> i, j, -j, k, -k}	the group of quatern	ions under multiplication
$(C) G = \{A$: A is a nonsingular	r matrix of order n ov	ver \mathbb{R} } under matrix mutl.
(D) $G = \{(a, b) \in (a, b) \}$	b) : a, b $\in \mathbb{R}$, a \neq	0 under operation (a	(b)0(c, d) = (ac, bc+d)
for all (a	$(c, d) \in G$		
12) Which of the f	ollowing is a non-a	belian group?	
$(A) (_2\mathbb{Z}, +)$	(B) $G = \{1, -1, i, -1\}$	i} under usual multip	olication
$(\mathbf{C}) \mathbf{G} = \mathbb{Q} -$	{-1} under operat	ion $a^*b = a + b + ab$	for all $a, b \in G$
(D) $G = \{(a, b) \in A \}$	b) : a, b $\in \mathbb{R}$, a \neq	0 under operation (a	(b)0(c, d) = (ac, bc+d)
for all (a	$(a, b), (c, d) \in G$		
13) Which of the f	ollowing is a non-a	belian group?	
$(A) (\mathbb{R}, +)$	(B) $(\mathbb{Z}_6, +_6),$	(C) $(\mathbb{Z}_8, +_8')$	
(D) $G = \{ A \}$: A is a nonsingula	ar matrix of order n o	ver \mathbb{R} } under matrix mult.

14) Which of the foll	owing groups is fi	nite?			
$(A) (\mathbb{Z}, +)$	(B) $G = \{1, -1\}$	l, i, -i} under usual mul	tiplication		
$(C) G = \mathbb{Q} - \{-\}$	1} under operatio	on $a^*b = a + b + ab$ for a	all a, $b \in G$		
(D) $(\mathbb{Q}^+, *)$ und	der the operation a	* $b = \frac{ab}{2}$ for all $a, b \in \mathbb{Q}$	2 ⁺ .		
15) Which of the foll	owing groups is in	ifinite?			
(A) $G = \{1, -1\}$, i, -i} under usual	multiplication (B) ($(\mathbb{Z}_6, +_6)$ (C) $(\mathbb{Z}_8', +_8')$		
(D) $(\mathbb{Q}^+, *)$ und	der the operation a	* b = $\frac{ab}{2}$ for all a, b $\in \mathbb{C}$	$\mathbb{Q}^+.$		
16) The number of el	ements present in	a finite group G is			
(A) order of gr	oup (B) order of e	lement(C) index of gro	up(D) None of above		
17) The order of the	group $(\mathbb{Z}_6, +_6)$ is		R R		
(A) 2	(B) 3	(C) 5	(D) 6		
18) In the group $(\mathbb{Z}, -$	+), $(2)^4 = \dots$	6	A A		
(A) 0	(B) 2	(C) 8	(D) 16		
19) In the group $(\mathbb{Z}_6, +_6), (\bar{3})^{-4} = \dots$					
(A) 0	(B) 2	(C) 3	(D) 1		
20) In the group $(\mathbb{Z}_8', +_8'), (\overline{5})^4 = \dots$					
(A) 1	(B) <u>3</u>	(C) 5	(D) 7		
21) In the group $G = \{1, -1, i, -i\}$ under usual multiplication, order of $i =$					
(A) 1	(B) 2	(C) 3	(D) 4		
22) Let G be a group	and a, b, $c \in G$ Th	nen (ab <mark>c)⁻¹ =</mark>			
(A) $a^{-1}b^{-1}c^{-1}$	(B) $c^{-1}a^{-1}b^{-1}$	(C) $c^{-1}b^{-1}a^{-1}$	(D) $a^{-1}c^{-1}b^{-1}$		
23) Let G be a group and a, $b \in G$ such that $ab = ba$. Which of the following is incorrect?					
(A) $a^k b = b a^k$	for all $k \in \mathbb{N}$.	$(B) (ab)^n = a^n b^n$	for all $n \in \mathbb{N}$.		
(C) $(ab)^{-1} = a^{-1}$	<mark>पो</mark> स्वकसर्णा तम	(D) None of the a	bovera		
24) A group G is called as if the number of element in G is finite.					
(A) abelian	(B) finite	(C) infinite	(D) non-abelian		
25) An abelian group	is also known as	group.			
(A) finite	(B) infinite	(C) commutative	(D) ordered		
26) In any group G, o	$p(a^{-1}) = \dots$				
(A) o(a)	(B) o(G)	(C) 1/o(a)	(D) 1/o(G)		
27) In the group (\mathbb{Z} , -	+), o(2) =				
(A) 0	(B) 1	(C) 2	(D) infinite		
28) How many elements in the group $(\mathbb{Z}, +)$ has finite order?					

MTH -302(A): GROUP THEORY

UNIT-2: SUBGROUPS

Subgroup: Let (G, *) be a group. A non-empty subset H of G is said to be a subgroup of G if (H, *) itself forms a group. Denoted by $H \le G$.

Note:

1) {e} is a subgroup of group G and is called a trivial subgroup G.

2) G is a subgroup of group G and is called an improper subgroup of G.

3) A subgroup H of group G is called a proper subgroup of G if $H \neq G$.

4) If H is a subgroup of group G and K is a subgroup of H then K is a subgroup of group G.

5) If a is an element of G, then $\langle a \rangle = \{a^n : n \in \mathbb{Z}\}$ is a subgroup of

e.g.1) $_{3}\mathbb{Z} = \{3n : n \in \mathbb{N}\}$ is a subgroup of $(\mathbb{Z}, +)$.

2) (\mathbb{Q}^+ , ×) is a subgroup of (\mathbb{R} -{0}, ×)

Theorem: A non-empty subset H of a group G is subgroup of G if and only if $a, b \in H \implies ab^{-1} \in H$.

Proof: Suppose H is a subgroup of group G.

Theorem: A non-empty subset H of a group G is subgroup of G if and only if

i) $a, b \in H \Longrightarrow ab \in H, ii) a \in H \Longrightarrow a^{-1} \in H$

Proof: Suppose H is a subgroup of group G.

 \therefore H itself forms group.

:: i) For a, b \in H \Longrightarrow ab \in H by closure property

ii) $a \in H \Longrightarrow a^{-1} \in H$ by existence of inverse

Conversely, Suppose i) $a, b \in H \Longrightarrow ab \in H$.

```
ii) a \in H \Longrightarrow a^{-1} \in H
       Now for a \in H \implies a^{-1} \in H by (ii)
                \therefore a, a^{-1} \in H \Longrightarrow aa^{-1} \in H by (i)
                                 \Rightarrow e \in H
        i.e. identity element exist in H.
        Again for a, b, c \in H \Longrightarrow a, b, c \in G :: H \subseteq G.
                \therefore (ab)c = a(bc)
         i.e. associative law hold in H.
         \therefore H itself forms group.
          \therefore H is a subgroup of group G.
Theorem: A non-empty subset H of G is subgroup of a finite group (G, *) if and only if
            a, b \in H \Rightarrow a*b \in H
Proof: Suppose H is a subgroup of a finite group (G, *)
         \therefore (H, *) itself forms group.
        \therefore For a, b \in H \implies a*b \in H by closure property
         Conversely, Suppose a, b \in H \implies a^*b \in H \dots(i)
         Let G be a finite group say with n elements and a \in H
       : There exists a positive integer m such that a^m = e, where 1 \le m \le n
       Now a \in H \implies a^2 = a^* a \in H by (i)
       Again a, a^2 \in H \implies a^3 = a^* a^2 \in H
       In general a^m \in H \implies e \in H
       i.e. identity element exist in H.
       Now e = a^m = a^* a^{m-1} = a^{m-1} * a.
                \therefore a^{-1} = a^{m-1} \in H
       i. e. every element has inverse in H.
         Again for a, b, c \in H \implies a, b, c \in G : H \subseteq G
          (a * b) * c = a * (b * c)
                                                 भ्यच्ये सिध्दि विन्दति मानवः
       i.e. associative law hold in H.
          \therefore (H, *) itself forms group.
          \therefore (H, *) is a subgroup of a finite group (G, *).
Theorem: Intersection of two subgroups of a group is a subgroup.
Proof: Suppose H and K be any two subgroups of a group G.
        As e \in H and e \in K \implies e \in H \cap K
        \therefore H\capK \neq \emptyset i.e. H\capK is a non empty subset of G.
         Now a, b \in H \cap K \Longrightarrow a, b \in H \& a, b \in K
                                \Rightarrow ab<sup>-1</sup> \in H & ab<sup>-1</sup> \in K :: H & K are subgroups of G
                                \Rightarrow ab<sup>-1</sup> \in H\capK
         Hence H \cap K is a subgroup of a group G.
```

Remark: 1) Intersection of finite number of subgroups of a group is a subgroup.

2) Union of two subgroups may not be a subgroup.

e.g. Let $_2\mathbb{Z} \& _3\mathbb{Z}$ are subgroups of a group $(\mathbb{Z}, +)$ but $(_2\mathbb{Z} \cup _3\mathbb{Z}, +)$ is not a subgroup of a group $(\mathbb{Z}, +) \because 2, 3 \in _2\mathbb{Z} \cup _3\mathbb{Z}$ but $2 + 3 = 5 \notin _2\mathbb{Z} \cup _3\mathbb{Z}$.

Theorem: Let H & K be any two subgroups of a group G. Then H \cup K is a subgroup of group G if and only if either H \subseteq K or K \subseteq H.

Proof: Suppose $H \cup K$ is a subgroup of group G. To prove either $H \subseteq K$ or $K \subseteq H$.

Let if possible $H \not\subseteq K$ and $K \not\subseteq H$.

 \therefore there exist some $b \in H$ but $b \notin K$ and $a \in K$ but $a \notin H$.

Now $b \in H \subseteq H \cup K$ and $a \in K \subseteq H \cup K$

 \Rightarrow a, b \in H \cup K

 $\Rightarrow ab^{-1} \in H \cup K : H \cup K$ is a subgroup.

 \Rightarrow ab⁻¹ \in H and/or ab⁻¹ \in K

If $ab^{-1} \in H$ then $(ab^{-1})b \in H :: b \in H$ and H is a subgroup.

 $\therefore a(b^{-1}b) \in H \implies a \in H \implies a \in H$ which contradicts to $a \notin H$.

Similarly if $ab^{-1} \in K \Longrightarrow b \in K$ which contradicts to $b \notin K$.

∴ Our supposition is wrong.

Hence either $H \subseteq K$ or $K \subseteq H$.

Conversely : Suppose either $H \subseteq K$ or $K \subseteq H$.

 $\therefore \mathbf{H} \cup \mathbf{K} = \mathbf{K} \text{ or } \mathbf{H} \cup \mathbf{K} = \mathbf{H}$

 \therefore H \cup K is a subgroup of group G. \therefore H and K are subgroups of a group G.

Ex. Determine whether $H_1 = \{\overline{0}, \overline{4}, \overline{8}\}$ and $H_2 = \{\overline{0}, \overline{5}, \overline{10}\}$ are subgroups is a group $(\mathbb{Z}_{12}, +_{12})$ Sol. We prepare composition table for $H_1 = \{\overline{0}, \overline{4}, \overline{8}\}$ and $H_2 = \{\overline{0}, \overline{5}, \overline{10}\}$ with operation $+_{12}$

		and the second second		•	
	+12	ō	4	8	
	ō	0	4	8	छितं विज्ञति सानवः।।
	4	4	8	ō	req to spin a territ
	8	8	ō	4	
					_
	+12	ō	5	10	
	$\overline{0}$	ō	5	$\overline{10}$	
	5	5	10	3	
	$\overline{10}$	$\overline{10}$	3	8	

As H_1 and H_2 are non-empty subsets of a finite group (\mathbb{Z}_{12} , $+_{12}$). We observe that $+_{12}$ is closed in H_1 but not in H_2 .

 \therefore H₁ is a subgroup of a group (Z₁₂, +₁₂) but H₂ is not a subgroup of a group (Z₁₂, +₁₂).

Normalizer: Let G be a group and $a \in G$. Then $N(a) = \{x \in G : xa = ax\}$ is called a normalize of an element a of G.

Center of a Group: Let G be a group. Then $Z(G) = \{x \in G : xa = ax \forall a \in G \}$ is called a center of a group G.

Ex: Let G be a group and $a \in G$. Then show that $N(a) = \{x \in G : xa = ax\}$ is a subgroup of G. **Proof:** Let $N(a) = \{x \in G : xa = ax\}$

For $e \in G$, $ea = ae \implies e \in N(a)$ $\therefore N(a)$ is a non empty subset of G. For x, $y \in N(a) \implies xa = ax$ and ya = ay where x, $y \in G$. As G is a group. $\therefore x, y \in G \implies x, y^{-1} \in G \implies xy^{-1} \in G$ Consider $(xy^{-1})a = x(y^{-1}a)$ $= x (ay^{-1}) \qquad \because ya = ay \implies y^{-1}a = ay^{-1}$ $= (xa) y^{-1}$ $= a(xy^{-1})$ $\therefore xy^{-1} \in N(a)$ Hence N(a) is a subgroup of group G is proved

Ex: Let G be a group. Then show that $Z(G) = \{x \in G : xa = ax \forall a \in G \}$ is a subgroup of G. **Proof:** Let $Z(G) = \{x \in G : xa = ax \forall a \in G \}$

For $e \in G$, $ea = ae \ \forall \ a \in G \Rightarrow e \in Z(G)$ $\therefore Z(G) \text{ is a non empty subset of G.}$ For $x, y \in Z(G) \Rightarrow xa = ax \text{ and } ya = ay \ \forall \ a \in G \text{ where } x, y \in G.$ As G is a group. $\therefore x, y \in G \Rightarrow x, y^{-1} \in G \Rightarrow xy^{-1} \in G$ Consider $(xy^{-1})a = x(y^{-1}a)$ $= x (ay^{-1}) \qquad \because ya = ay \Rightarrow y^{-1}a = ay^{-1} \ \forall \ a \in G$ $= (xa) y^{-1}$ $= a(xy^{-1}) \qquad \forall \ a \in G$ $\therefore xy^{-1} \in Z(G) \qquad \forall \ a \in G$ Hence Z(G) is a subgroup of group G is proved

Ex: Let H be a subgroup of a group G and $a \in G$. Then show that $H_a = \{x \in G : xa^{-1} \in H \}$. **Proof:** Let us denote $A = \{x \in G : xa^{-1} \in H \}$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCHNCE SR COLLEGE, PIMPALNER. 4

Now $x \in A \Leftrightarrow xa^{-1} \in H$ \Leftrightarrow xa⁻¹ = h, for some h \in H $\Leftrightarrow x = ha$ $\Leftrightarrow x \in H_a$ \therefore H_a = A i.e. H_a = {x \in G : xa⁻¹ \in H } Hence proved. Ex: Let G be a group of all non-zero complex numbers under multiplication. Show that $H = \{ a + ib : a^2 + b^2 = 1 \}$ is a subgroup of G. **Proof:** Let G be a group of all non-zero complex numbers under multiplication and $H = \{ a + ib : a^2 + b^2 = 1 \}$ As 1 = 1 + i0 is non-zero complex number with $1^2 + 0^2 = 1$ \therefore 1 \in H i.e. H is a non empty subset of G. For a + ib and c + id \in H \Longrightarrow a² + b² = 1 and c² + d² = 1(1) Consider (a + ib) (c + id)⁻¹ = $\frac{a+ib}{c+id} \times \frac{c-id}{c-id}$ $=\frac{(ac+bd)+i(bc-ad)}{c^2+d^2}$ = (ac + bd) + i(bc - ad) by (1) Where $(ac+bd)^{2} + (bc-ad)^{2} = a^{2}c^{2} + 2acbd + b^{2}d^{2} + b^{2}c^{2} - 2bcad + a^{2}d^{2}$ $=a^{2}(c^{2}+d^{2})+b^{2}(c^{2}+d^{2})$ $= (c^{2} + d^{2}) (a^{2} + b^{2})$ by (1). = 1 \therefore (a + ib) (c + id)⁻¹ \in H.

Hence H is a subgroup of group G is proved.

<u>Cyclic Group</u>: A group G is said to be cyclic group if there exists an element $a \in G$ such that every element of G is expressed in some integral powers of a.

Note: Here an element a is called generator of G and cyclic group G is denoted by

 $G = \langle a \rangle \text{ or } (a) = \{a^n : n \in \mathbb{Z} \}.$

e. g. 1) $(\mathbb{Z}, +)$ is a cyclic group generated by 1.

2) $(n\mathbb{Z}, +)$ is a cyclic group generated by n.

3) $(\mathbb{Z}_n, +_n)$ is a cyclic group generated by $\overline{1}$.

4) A group $G = \{1, -1, i, -i\}$ under multiplication is a cyclic group generated by i.

Theorem: Every cyclic group is abelian.

Proof: Let G be any cyclic group G generated by 'a'.

 \therefore For x, y \in G \implies x= a^r and y = a^t for some r, t \in Z.

 $\therefore xy = a^r a^t = a^{r+t} = a^{t+s} = a^t a^r = yx$

 \therefore G is an abelian group. Hence Proved.

Note : i) If (m, n) =1 then \overline{m} is generator of group (\mathbb{Z}_n , +_n).

ii) If $G = \langle a \rangle$ with o(G) = n and (m, n) = 1 then $G = \langle a^m \rangle$ for 0 < m < n.

iii) Every abelian group may not be cyclic.

e.g. $(\mathbb{Z}'_8 = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}, \times_8)$ is an abelian group but not cyclic because $(\overline{1})^n = \overline{1} \forall n \in \mathbb{Z}$,

 $(\overline{3})^{n}$ = either $\overline{3}$ or $\overline{1} \forall n \in \mathbb{Z}$, $(\overline{5})^{n}$ = either $\overline{5}$ or $\overline{1} \forall n \in \mathbb{Z}$ & $(\overline{7})^{n}$ = either $\overline{7}$ or $\overline{1} \forall n \in \mathbb{Z}$

 $\div~\overline{1},\,\overline{3},\overline{5}$ & $\overline{7}$ are not generators of \mathbb{Z}'_8

Theorem: If G is a cyclic group generated by a then a^{-1} is also generates G.

Proof: Let G be any cyclic group generated by 'a'.

Hence $G = \langle a \rangle = \{a^n : n \in \mathbb{Z}\}.$ As $a^{-1} \in \langle a^{-1} \rangle \Longrightarrow a^{-1} \in G \Longrightarrow \langle a^{-1} \rangle \subseteq G \dots (1)$ For $y \in G = \langle a \rangle \Longrightarrow y = a^r$ for some $r \in \mathbb{Z}$. $\therefore y = ((a^{-1})^{-1})^r = (a^{-1})^{-r} \in \langle a^{-1} \rangle$ $\therefore G \subseteq \langle a^{-1} \rangle \dots (2)$ From (1) and (2), $G = \langle a^{-1} \rangle$ $\therefore a^{-1}$ is also generates G is proved.

<u>Ex</u>: If G is be a group and $a \in G$. Then prove that $H = \{a^n : n \in \mathbb{Z}\}$ is the smallest subgroup of G containing a.

Proof: i) As
$$a = a^1 \in H : H \neq \emptyset$$
.

 \therefore For x, y \in H \implies x= a^r and y = a^t for some r, t \in Z.

 $\therefore xy^{-1} = a^{r} (a^{t})^{-1} = a^{r} a^{-t} = a^{r-t} \in H$

 \therefore H is a subgroup of group G.

ii) Let K be any subgroup of group G containing a.

We have to prove $H \subseteq K$.

Let $x \in H \implies x = a^r$ for some $r \in \mathbb{Z}$.

 \Rightarrow x = a^r \in K \therefore a \in K and K is a subgroup.

 \therefore H \subseteq K. Hence H is the smallest subgroup of G containing a is proved.

Ex: Show that every subgroup of a cyclic group is cyclic. **Proof:** Let G be any cyclic group generated by a.

 $\therefore G = \langle a \rangle = \{ a^n : n \in \mathbb{Z} \}$

Let H be a subgroup of G.

If $H = \{e\}$ then $H = \langle e \rangle$ and hence H is cyclic.

Suppose $H \neq \{e\}$.

Let $x \in H$ be such that $x \neq e$.

Now $x \in G \implies x = a^p$ for some $p \in \mathbb{Z}$, $p \neq 0$.

 $\therefore x^{-1} = (a^p)^{-1} = a^{-p}$

Since either p or -p is positive \Longrightarrow H contain at least one element a^n such that $n \in N$. Let t be the least positive integer such that $a^t \in H$. Claim H = $\langle a^t \rangle$

As $a^t \in \langle a^t \rangle \Longrightarrow a^t \in H \Longrightarrow \langle a^t \rangle \subseteq H....(1)$.

Let $y \in H \implies y \in G = \langle a \rangle$ \therefore y = a^m for some m $\in \mathbb{Z}$. By division algorithm, there exist integers q, r such that m = qt + r, where $0 \le r < t$ (2) If $r \neq 0$ then $a^r = a^{m-qt} = a^m a^{-qt} = a^m (a^t)^{-q} \in H : y = a^m \in H$ and $a^t \in H$ \therefore t \leq r by choice of t. Which contradicts to r < t. Hence r = 0. \therefore by (2) m = qt \therefore v = a^m = a^{qt} = (a^t)^q $\in \langle a^t \rangle$ Hence $H \subseteq \langle a^t \rangle_{\dots}(3)$ From (1) and (3) $H = \langle a^t \rangle$. Hence H is a cyclic is proved. **Dihedral Group:** Let $G = \{x^i y^j : i = 0, 1; j = 0, 1, 2, ..., n-1, x^2 = e = y^n, xy = y^{-1}x\}$, then group G is called dihedral group for $n \ge 3$. Note:i) Dihedral group G is also written as G = {y, y², y³, ..., yⁿ⁻¹, yⁿ = e = x², x, xy, xy², ..., xyⁿ⁻¹, xy = y⁻¹x} ii) We write $G = D_{2n} \operatorname{since} o(G) = 2n$. **Ex.** Find composition table for n = 3 i.e. $G = D_6 = \{e = x^2 = y^3, x, y, y^2, xy, xy^2\}$. Sol.: Let for n = 3, $G = \{e = x^2 = y^n, x, y, y^2, xy, xy^2\} = D_6$ As in dihedral group $xy = y^{-1}x$. : i) $y(xy) = y(y^{-1}x) = (yy^{-1})x = x$. ii) $yx = (yx)e = (yx)y^3 = (yxy)y^2 = xy^2$ iii) $y(xy^2) = (yx)y^2 = (xy^2)y^2 = (xy)y^3 = xy$ iv) $y^2x = y(yx) = y(xy^2) = (yxy)y = xy$, etc. Using this we get, composition table for the elements of G is Y e X XY XУ E Y e X xy XV Х Xy v^2 XV^{2} V X e xy^2 Xy Y Х e v^2 xy^2 E Х У ху Y XV Х ху e E XV XV

We observe that G is finite non-abelian group with $o(G)=o(D_6)=6$.

Right coset: Let H be a subgroup of a group G and $a \in G$. Then the set $H_a = \{ha: h \in H\}$ is called right coset of H by a in G.

Left coset: Let H be a subgroup of a group G and $a \in G$. Then the set $_{a}H = \{ah: h \in H\}$ is called left coset of H by a in G.

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR COLLEGE, PIMPALNER. 7

Note: Let H be a subgroup of a group G and a, $b \in G$. Then $(H_a)_b = \{(ha)b: h \in H\}$, & $_a(_bH) = \{a(bh): h \in H\}$.

- **Ex.** Let $G = \{1, -1, i, -i\}$ be a group under multiplication and $H = \{1, -1\}$ be its subgroup. Then find all right and left cosets of H in G.
- Sol.: Let $G = \{1, -1, i, -i\}$ be a group under multiplication and $H = \{1, -1\}$ be its subgroup.

i) All right cosets of H in G are as follows $H_1 = \{h1: h \in H\} = \{1.1, (-1).1\} = \{1, -1\} = H$ $H_1 = \{h(-1): h \in H\} = \{1.(-1), (-1).(-1)\} = \{-1, 1\} = H$ $H_i = \{h(-i): h \in H\} = \{1.(-i), (-1).(-i)\} = \{-i, i\}$ $i.e. \{1, -1\} \& \{i, -i\} are the right cosets of H in G.$ ii) All left cosets of H in G are as follows $_1H = \{1h: h \in H\} = \{1.1, 1.(-1)\} = \{1, -1\} = H$ $_1H = \{(-1)h: h \in H\} = \{(-1).1, (-1).(-1)\} = \{-1, 1\} = H$ $_iH = \{ih: h \in H\} = \{i.1, i.(-1)\} = \{i, -i\}$ $_iH = \{(-i)h: h \in H\} = \{(-i).1, (-i).(-1)\} = \{-i, i\}$ $_i = \{1, -1\} \& \{i, -i\} are the left cosets of H in G.$

Ex. Let $G = \{1, -1, i, -i, j, -j, k, -k\}$ be a group under multiplication and $H = \{1, -1, i, -i\}$ be its subgroup. Find all the left and right cosets of H in G.

Sol.: Let G = {1, -1, i, -i, j, -j, k, -k} be a group under multiplication and H = {1, -1, i, -i} be its subgroup. Here we use i.j = k, j.k = i and k.i = j i) All the left cosets of H in G are as follows $_1H= \{1h: h \in H\}= \{1.1, 1.(-1), 1.i, 1.(-i)\} = \{1, -1, i, -i\} = H$ $_1H= \{(-1)h: h \in H\}= \{(-1).1, (-1).(-1), (-1).i, (-1).(-i)\} = \{-1, 1, -i, i\} = H$ $_iH= \{ih: h \in H\}= \{i.1, i.(-1), i.i, i.(-i)\} = \{i, -i, -1, 1\} = H$ $_iH= \{(-i)h: h \in H\}= \{(-i).1, (-i).(-1), (-i).i, (-i).(-i)\} = \{-i, i, 1, -1\} = H$ $_iH= \{jh: h \in H\}= \{(-j).1, (-j).(-1), (-j).i, (-j).(-i)\} = \{-j, j, k, -k\}$ $_iH= \{(-i)h: h \in H\}= \{(-i).1, (-i).(-1), (-j).i, (-j).(-i)\} = \{-i, j, j, k, -k\}$ $_kH= \{(-k)h: h \in H\}= \{(-k).1, (-k).(-1), (-k).i, (-k).(-i)\} = \{-k, k, -j, j\}$ i.e. {1, -1, i, -i} & {j, -j, k, -k} are the leftt cosets of H in G. Similarly all the right cosets of H in G are {1, -1, i, -i} & {j, -j, k, -k}.

Theorem: Let G be a group and H a subgroup of G. Then

i) $H_e = H = {}_eH$ ii) $(H_a)_b = H_{(ab)}$ and ${}_a({}_bH) = {}_{(ab)}H$

iii) If G is abelian then $H_a = {}_aH$, $\forall a \in G$

```
Proof : i) H_e = \{he: h \in H\} = \{h: h \in H\} = H
                          and _{e}H = \{eh: h \in H\} = \{h: h \in H\} = H
                          \therefore H<sub>e</sub> = H = <sub>e</sub>H
                         ii) (H_a)_b = \{(ha)b: h \in H\}
                                                               = \{h(ab): h \in H\} by associative law.
                                                              = H_{(ab)}
                          Similarly _{a}(_{b}H) = _{(ab)}H
                          iii) Let G be an abelian group and a \in G
                          \therefore H<sub>a</sub> = {ha: h \in H}
                                               = \{ah: h \in H\} : G is abelian.
                                               H_{\rm e} =
                          Hence proved.
 Theorem: Let H be a subgroup of a group G. Then
                         i) a \in H \Leftrightarrow H_a = H
                         ii) H_a = H_b \Leftrightarrow and ab^{-1} \in H
 Proof: i) Suppose a \in H. Let x \in H_a
                          \therefore x = ha, for some h \in H
                          As h, a \in H \Longrightarrow ha \in H \Longrightarrow x \in H
                          \therefore H<sub>a</sub> \subseteq H .....(1)
                         Let y \in H
                         \therefore \mathbf{y} = \mathbf{y}\mathbf{e} = \mathbf{y}(\mathbf{a}^{-1}\mathbf{a}) = (\mathbf{y}\mathbf{a}^{-1})\mathbf{a} \in \mathbf{H}_{\mathbf{a}}
                                                                                                                                                                                \therefore y, a \in H and H is a subgroup.
                          \therefore H \subseteq H<sub>a</sub> .....(2)
                         From (1) and (2) H = H_a
                          Conversely, suppose H = H_a
                        Now a = ea \in H_a = H i.e. a \in H.
                         Hence proved.
                         ii) H_a = H_b \Leftrightarrow (H_a)_b^{-1} = (H_b)_b^{-1} a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H h b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b a H b 
                                                                      \Leftrightarrow H_{(ab}^{-1}) = H_{(bb}^{-1})
                                                                      \Leftrightarrow H<sub>(ab</sub><sup>-1</sup>) = H<sub>e</sub>
                                                                      \Leftrightarrow H<sub>(ab</sub><sup>-1</sup>)= H
                                                                      \Leftrightarrow ab^{-1} \in H by (i)
                          Hence proved.
```

Theorem: Let H be a subgroup of a group G. Then

i) $a \in H \Leftrightarrow {}_{a}H = H$ ii) ${}_{a}H = {}_{b}H \Leftrightarrow and b^{-1}a \in H$ **Proof :** i) Suppose $a \in H$. Let $x \in {}_{a}H$ $\therefore x = ah$, for some $h \in H$

As
$$a, h \in H \Rightarrow ah \in H \Rightarrow x \in H$$

 $\therefore, H \subseteq H \dots, (1)$
Let $y \in H$
 $\therefore y = ey = (aa^{-1}y) = a(a^{-1}y) \in {}_{a}H$ $\therefore a, y \in H$ and H is a subgroup.
 $\therefore H \subseteq {}_{a}H \dots, (2)$
From (1) and (2) H = {}_{a}H
Conversely, suppose H = {}_{a}H
Now $a = ae \in {}_{a}H = H$ i.e. $a \in H$.
Hence proved.
i) {}_{a}H = {}_{a}H \Leftrightarrow {}_{a}^{-1}({}_{a}H) = {}_{a}^{-1}({}_{b}H)
 $\Leftrightarrow {}_{a}^{-1}{}_{a}H = {}_{a}H$
 $\Rightarrow {}_{b}^{-1}a \in H$ by (i)
Hence proved.
Theorem: Let H be a subgroup of a group G. Then
i) Any two left cosets of H are either disjoint or identical.
ii) Any two left cosets of H are either disjoint or identical.
Proof : i) Let H_a and H_b be any two right cosets of H in G.
We have to prove either H_a $\cap H_{b} = \emptyset$ or H_a = H_b.
If H_a $\cap H_{b} = \emptyset$ then we are trough.
But if H_a $\cap H_{b} \neq \emptyset$ then there exist some $x \in H_{a} \cap H_{b}$
 $\therefore x \in H_{a}$ and $x \in H_{b}$
 $\therefore x = ha$ and $x = kb$ for some h, $k \in H$
 $\therefore ha = kb$ for some h, $k \in H$
 $\therefore ha = H_{b}$ $\therefore h \in H$ and H is a subgroup $\Rightarrow h^{-1}k \in H \Rightarrow H_{0}{}^{-1}y_{0} = H$
Hence any two right cosets of H are either disjoint or identical is proved.
i) Let H and ${}_{b}H = \emptyset$ then there exist some $x \in {}_{a}H \cap {}_{b}H$
 $\therefore Ha = H_{b}$ $\therefore h \in H$ and H is a subgroup $\Rightarrow h^{-1}k \in H \Rightarrow H_{0}{}^{-1}y_{0} = H$
Hence any two right cosets of H are either disjoint or identical is proved.
i) Let H and ${}_{b}H = any$ two left cosets of H in G.
We have to prove either {}_{a}H \cap {}_{b}H = \emptyset or ${}_{a}H = {}_{b}H$.
If ${}_{a}H \cap {}_{b}H = \emptyset$ then we are trough.
But if ${}_{a}H \cap {}_{b}H = \emptyset$ then there exist some $x \in {}_{a}H \cap {}_{b}H$
 $\therefore x \in {}_{a}$ and $x \in {}_{b}H$
 $\therefore x \in {}_{a}$ and $x \in {}_{b}H$
 $\therefore x \in {}_{a}$ and $x \in {}_{b}H$
 $\therefore x = ah$ and $x = bh$ for some h, $k \in H$
 $\therefore a = bh'h$ for some h, $k \in H$
 $\therefore a = bh'h$ for some h, $k \in H$
 $\therefore a = bh'h$ for some h, $k \in H$
 $\therefore a = bh'h$ for some h, $k \in H$

$$\therefore_{a} H = {}_{(bkh^{-1})} H \text{ by } (1) \therefore_{a} H = {}_{b} ({}_{(kh^{-1})} H) \therefore_{a} H = {}_{b} H \qquad \because h, k \in H \text{ and } H \text{ is a subgroup} \Longrightarrow kh^{-1} \in H \implies {}_{(kh^{-1})} H = H Hence any two left cosets of H are either disjoint or identical is proved.$$

Lagranges Theorem: If H is a subgroup of a finite group G then $o(H) \mid o(G)$.

Proof: Let H be a subgroup of a finite group G. If $H = \{e\}$ or H = G then $o(H) \mid o(G)$. So suppose $\{e\} \subset H \subset G$ i.e. 1 < o(H) < o(G). Let $a_1 \in G$ be such that $a_1 \notin H$. $\therefore a_1 \neq e \because e \in H.$ Let o(H) = m and $H = \{e, h_2, h_3, \dots, h_m\}$ Consider the right coset $Ha_1 = \{a_1, h_2a_1, h_3a_1, \dots, h_ma_1\}$ \therefore a₁ \in Ha₁ but a₁ \notin H = He \therefore Ha₁ \neq H \therefore H \cap Ha₁= Ø We observe that Ha₁ contain m distinct elements :: $h_i \neq h_i \implies h_i a_1 \neq h_i a_1$ for all i, j. \therefore H \cup Ha₁ contain exactly 2m elements. If $H \cup Ha_1 = G$ then o(G) = 2m = 2.o(H). \therefore o(H) | o(G) If $H \cup Ha_1 \neq G$ then there exists $a_2 \in G$ be such that $a_2 \notin H \cup Ha_1$. $\therefore a_2 \neq e :: e \in H \cup Ha_1$ Consider the right coset Ha₂ = $\{a_2, h_2a_2, h_3a_2, \dots, h_ma_2\}$ \therefore $a_2 \in Ha_2$ but $a_2 \notin H \cup Ha_1$ i.e. $a_2 \notin H = He$ and $a_2 \notin Ha_1$ \therefore He, Ha₁ and Ha₂ are pair wise disjoint. Also Ha₂ contain m distinct elements. \therefore H U Ha₁ U Ha₂ contain exactly 3m elements. If $H \cup Ha_1 \cup Ha_2 = G$ then o(G) = 3m = 3.o(H). $\therefore o(H) \mid o(G)$ Otherwise we continue the above process. As G is finite, process must stop after a finite number of steps. Suppose that we have k pair-wise disjoint right cosets say H, Ha₁, Ha₂, ..., \cup Ha_{k-1} such that H \cup Ha₁ \cup Ha₂ \cup ..., \cup Ha_{k-1} = G \therefore o(G) = km = k.o(H) \therefore o(H) | o(G)

Ex. Show that every group of prime order is cyclic and hence abelian.

Proof: Let G be a group of prime order p.

 \therefore There exist $a \in G$ such that $a \neq e$ \therefore p is prime.

Consider a cyclic subgroup $H = \langle a \rangle$.

 $\therefore o(H) > 1 \qquad \qquad \because a \in H \text{ and } a \neq e.$

By Lagrange's theorem, $o(H) \mid o(G)$.

 \therefore o(H) = 1 or p \therefore p is prime

 $\therefore o(H) = p \qquad \because o(H) > 1.$ $\therefore o(H) = o(G)$ $\therefore G = H = \langle a \rangle$ Hence G is a cyclic group. As every cyclic group is abelian. $\therefore G \text{ is an abelian group is proved.}$

Ex. Show that order of every element of a finite group is a divisor of order of a group. **Proof:** Let G be a finite group and $a \in G$.

Ex. If a is an element of a finite group G, then show that $a^{o(G)} = e$ **Proof:** Let G be a finite group and $a \in G$.

 $\therefore o(a) \mid o(G)$ $\therefore o(G) = o(a).r, \text{ for some } r \in N.$ $\therefore a^{o(G)} = a^{o(a).r} = (a^{o(a)})^r = e^r = e$ Hence proved.

Euler's Theorem: If an integer a is relatively prime to a natural number n then $a^{\emptyset^{(n)}} \equiv 1 \pmod{n}$, where $\emptyset(n)$ being the Euler's totient function.

Proof: Consider $\mathbb{Z}_n = \{\bar{a} : (a, n) = 1\}$, the group of prime residue classes modulo n.

Let (a, n) = 1 $\therefore \overline{a} \in \mathbb{Z}_n$ $\therefore \overline{a}^{\phi(n)} = \overline{I}$ $\therefore a^{\phi(n)} = \overline{I}$ $\therefore a^{\phi(n)} = \overline{I}$ $\therefore a^{\phi(n)} = 1 \pmod{n}$ Hence proved.

Fermat's Theorem: If p is prime number and a is an integer such that $p \nmid a$ then

 $a^{p-1} \equiv 1 \pmod{n}.$

Proof: Let p is a prime number and $a \in \mathbb{Z}$ such that $p \nmid a$.

Let (a, p) = 1 \therefore By Euler's theorem
$\therefore a^{\emptyset^{(p)}} \equiv 1 \pmod{p}$ $\therefore a^{p-1} \equiv 1 \pmod{p} \qquad \because \emptyset \ (p) = p - 1 \text{ if } p \text{ is prime.}$ Hence proved.

Ex. Find all subgroups of $(\mathbb{Z}_{12}, +_{12})$.

Sol. : We know that for any group G, if $a \in G$ then $\langle a \rangle = \{a^n : n \in \mathbb{Z}\}$ is a subgroup of G. Let $\mathbb{Z}_{12} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}, \overline{11}\}$ i) $\langle \overline{0} \rangle = \{\overline{0}^n : n \in \mathbb{Z}\} = \{\overline{0}\}$ ii) $\langle \overline{1} \rangle = \{\overline{1}^n : n \in \mathbb{Z}\} = \{n\overline{1} : n \in \mathbb{Z}\}$ $= \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}, \overline{11}\}$ $\langle \overline{1} \rangle = \langle \overline{5} \rangle = \langle \overline{7} \rangle = \langle \overline{11} \rangle = \mathbb{Z}_{12} : (1, 12) = (5, 12) = (7, 12) = (11, 12) = 1$ iii) $\langle \overline{2} \rangle = \{\overline{2}^n : n \in \mathbb{Z}\} = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\} = \langle \overline{10} \rangle : \overline{2}^{-1} = \overline{10}$ iv) $\langle \overline{3} \rangle = \{\overline{3}^n : n \in \mathbb{Z}\} = \{\overline{0}, \overline{3}, \overline{6}, \overline{9}\} = \langle \overline{9} \rangle : \overline{3}^{-1} = \overline{9}$ v) $\langle \overline{4} \rangle = \{\overline{4}^n : n \in \mathbb{Z}\} = \{\overline{0}, \overline{4}, \overline{8}\} = \langle \overline{8} \rangle : \overline{4}^{-1} = \overline{8}$ vi) $\langle \overline{6} \rangle = \{\overline{6}^n : n \in \mathbb{Z}\} = \{\overline{0}, \overline{6}\}$ Thus $\{\overline{0}\}, \{\overline{0}, \overline{6}\}, \{\overline{0}, \overline{4}, \overline{8}\}, \{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}, \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\}$ & \mathbb{Z}_{12} are the subgroups of \mathbb{Z}_{12} .

Ex. Show that (\mathbb{Z}_7, \times_7) is a cyclic group. Find all its generators, all its proper subgroups and the order of every element.

Proof. : Let $(\mathbb{Z}_7) = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}, \times_7\}$ is a group of order 6.

We know that for any group G, if $a \in G$ then $\langle a \rangle = \{a^n : n \in \mathbb{Z}\}$ is a subgroup of G. i) $< \overline{1} > = \{\overline{1}^n : n \in \mathbb{Z}\} = \{\overline{1}\}$ ii) $\langle \overline{2} \rangle = \{\overline{2}^n : n \in \mathbb{Z}\} = \{\overline{2}^1, \overline{2}^2, \overline{2}^3 = \overline{1}\}$ $=\{\bar{2}, \bar{4}, \bar{1}\} = <\bar{4}>$ $\because \bar{2}^{-1} = \bar{4}$ iii) $<\overline{3} > = \{\overline{3}^n : n \in \mathbb{Z}\} = \{\overline{3}^1, \overline{3}^2, \overline{3}^3, \overline{3}^4, \overline{3}^5, \overline{3}^6 = \overline{1}\}$ $= \{ \overline{3}, \overline{2}, \overline{6}, \overline{4}, \overline{5}, \overline{1} \} = \mathbb{Z}_{7}$ $<\bar{3}>=<\bar{3}^5>=\mathbb{Z}_7$:: (5, 6) = 1 साध्द विन्दात मानवः। i.e. $<\bar{3}> = <\bar{5}> = \mathbb{Z}_{7}$ $\therefore \mathbb{Z}_7$ is a cyclic group with generators $\overline{3} \& \overline{5}$. iv) $<\bar{6}> = \{\bar{6}^n : n \in \mathbb{Z}\} = \{\bar{6}, \bar{1}\}\$ \therefore { $\overline{1}$, $\overline{6}$ }, { $\overline{1}$, $\overline{2}$, $\overline{4}$ } are the proper subgroups of \mathbb{Z}_{7} . The order of every element of \mathbb{Z}_7 are \therefore 1 is the least positive integer such that $\overline{1}^1 = \overline{1}$ o(1) = 1, $o(\bar{6}) = 2$, $\therefore 2$ is the least positive integer such that $\bar{6}^2 = \bar{1}$ $o(\overline{2}) = o(\overline{4}) = 3$: 3 is the least positive integer such that $\overline{2}^3 = \overline{4}^3 = \overline{1}$ \therefore 6 is the least positive integer such that $\overline{3}^6 = \overline{5}^6 = \overline{1}$ and $o(\bar{3}) = o(5) = 6$

Ex. Show that $(\mathbb{Z}_{11}) = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}\}, \times_{11}$ is a cyclic group. Find all its generators, all its proper subgroups and the order of every element. **Proof.** : We know that for any group G, if $a \in G$ then $\langle a \rangle = \{a^n : n \in \mathbb{Z}\}$ is a subgroup of G. i) $< \bar{1} > = \{ \bar{1}^n : n \in \mathbb{Z} \} = \{ \bar{1} \}$ ii) $\langle \overline{2} \rangle = \{\overline{2}^n : n \in \mathbb{Z}\} = \{\overline{2}^1, \overline{2}^2, \overline{2}^3, \overline{2}^4, \overline{2}^5, \overline{2}^6, \overline{2}^7, \overline{2}^8, \overline{2}^9, \overline{2}^{10} = \overline{1}\}$ $= \{ \overline{2}, \overline{4}, \overline{8}, \overline{5}, \overline{10}, \overline{9}, \overline{7}, \overline{3}, \overline{6}, \overline{1} \} = \mathbb{Z}_{11}$ $<\bar{2}>=<\bar{2}^{3}>=<\bar{2}^{7}>=<\bar{2}^{9}>=\mathbb{Z}_{11}$: (3, 10)=(7, 10)=(9, 10)=1 i.e. $<\bar{2}>=<\bar{8}>=<\bar{7}>=<\bar{6}>=\mathbb{Z}_{11}$ $\therefore \mathbb{Z}_{11}$ is a cyclic group with generators $\overline{2}$, $\overline{8}$, $\overline{7} \& \overline{6}$. iii) $<\bar{3}> = \{\bar{3}^n : n \in \mathbb{Z}\} = \{\bar{3}, \bar{9}, \bar{5}, \bar{4}, \bar{1}\} = <\bar{4}> \quad \because \bar{3}^{-1} = \bar{4}$ iv) $\langle \bar{5} \rangle = \{ \bar{5}^n : n \in \mathbb{Z} \} = \{ \bar{5}, \bar{3}, \bar{4}, \bar{9}, \bar{1} \} = \langle \bar{9} \rangle \qquad \because \bar{5}^{-1} = \bar{9}$ $v < \overline{10} > = \{\overline{10}^n : n \in \mathbb{Z}\} = \{\overline{10}, \overline{1}\}$ \therefore { 1, 10}, { 1, 3, 4, 5, 9}, are the proper subgroups of \mathbb{Z}_{11} . The order of every element of \mathbb{Z}_{11} are \therefore 1 is the least positive integer such that $\overline{1}^1 = \overline{1}$ $o(\bar{1}) = 1$, $o(\overline{10}) = 2$, $\because 2$ is the least positive integer such that $\overline{10}^2 = \overline{1}$ $o(\bar{3}) = o(\bar{4}) = o(\bar{5}) = o(\bar{9}) = 5$ \therefore 5 is the least positive integer such that $\overline{3}^5 = \overline{4}^5 = \overline{5}^5 = \overline{9}^5 = \overline{1}$ and $o(\bar{2}) = o(\bar{6}) = o(\bar{7}) = o(\bar{8}) = 10$ \therefore 10 is the least positive integer such that $\overline{2}^{10} = \overline{6}^{10} = \overline{7}^{10} = \overline{8}^{10} = \overline{1}$ **Ex.** Let A, B be subgroups of a finite group G, whose orders are relatively prime. Show that $A \cap B = \{e\}$ **Proof:** We have (o(A), o(B)) = 1. \therefore There exist integers m, n such that m.o(A) + n.o(B) = 1....(1)व्यं सिध्दि विन्दति मानवः। Let $x \in A \cap B$ $\therefore x \in A \text{ and } x \in B$ \therefore o(x) | o(A) and o(x) | o(B) \therefore o(x) | m.o(A) + n.o(B) \therefore o(x) | 1 by (1)

 $\therefore x^1 = e$

 $\therefore \mathbf{x} = \mathbf{e}$

Hence $A \cap B = \{ e \}$ is proved.

Ex. Let G be a groups of prime order p, then prove that G has no proper subgroup. **Proof:** Let G be a groups of prime order p.

∴ o(G) = p.
Let H be a subgroup of a group G.
By Lagrange's theorem o(H) | o(G)
⇒ o(H) | p
⇒ o(H) = 1 or p ∵ p is prime number.
If o(H) = 1, then H = {e} is not a proper subgroup.
If o(H) = p, then o(H) = o(G) ⇒ H = G is not a proper subgroup.
Hence G has no proper subgroup is proved.

Ex. Show that every proper subgroup of a group of order 35 is cyclic.

Proof. : Let G be a groups of order 35 and H be a proper subgroup G.

By Lagrange's theorem o(H) | 35

 \therefore o(H) = 5 or 7 \therefore H is a proper subgroup G.

i.e. o(H) is prime and every group of prime order is cyclic.

 \therefore H is cyclic.

Hence every proper subgroup of a group of order 35 cyclic is proved.

Ex. Show that every proper subgroup of a group of order 77 is cyclic.

Proof. : Let G be a groups of order 77 and H be a proper subgroup G.

By Lagrange's theorem o(H) | 77

 \therefore o(H) = 7 or 11 \therefore H is a proper subgroup G.

i.e. o(H) is prime and every group of prime order is cyclic.

 \therefore H is cyclic.

Hence every proper subgroup of a group of order 77 cyclic is proved.

```
Ex. Find the remainder obtained when 15^{27} is divided by 8.
```

```
Sol.: By taking a = 15 and n = 8, we have (a, n) = (15, 8) = 1 and \emptyset(n) = \emptyset(8) = 4
```

```
∴ By Euler's theorem, a^{\emptyset^{(n)}} \equiv 1 \pmod{2}, we get,
```

```
15^{\emptyset^{(8)}} \equiv 1 \pmod{8}
```

```
i.e. 15^4 \equiv 1 \pmod{8}
```

```
\therefore (15^4)^6 \equiv 1^6 \pmod{8}
```

```
\therefore 15^{24} \equiv 1 \pmod{8}.....(1)
```

```
As 15 \equiv 7 \pmod{8}
```

```
\therefore 15^2 \equiv 7^2 \pmod{8}
```

```
\therefore 15^2 \equiv 1 \pmod{8}
```

$$\therefore 15^3 \equiv 7x1 \pmod{8}$$

 $\therefore 15^3 \equiv 7 \pmod{8} \dots \dots (2)$

From (1) and (2), we get, $15^{24} \times 15^3 \equiv 1 \times 7 \pmod{8}$ $\therefore 15^{27} \equiv 7 \pmod{8}$ $\therefore 7$ is the remainder when 15^{27} is divided by 8.

Ex. Find the remainder obtained when 33^{19} is divided by 7.

Sol.: By taking a = 33 and p = 7 i.e. p = 7 is prime and p \nmid a. \therefore By Fermat's theorem, $a^{p-1} \equiv 1 \pmod{p}$, we get, $33^6 \equiv 1 \pmod{7}$ $\therefore (33^6)^3 \equiv 1^3 \pmod{7}$ $\therefore 33^{18} \equiv 1 \pmod{7}$ and $33 \equiv 5 \pmod{7}$ $\therefore 33^{18} \times 33 \equiv 1 \times 5 \pmod{7}$ $\therefore 33^{19} \equiv 5 \pmod{7}$ $\therefore 5$ is the remainder when 33^{19} is divided by 7.

Ex. Find the remainder obtained when 3^{54} is divided by 11.

Sol.: By taking a = 3 and p = 11 i.e. p = 11 is prime and $p \nmid a$. \therefore By Fermat's theorem, $a^{p-1} \equiv 1 \pmod{p}$, we get,

```
3^{10} \equiv 1 \pmod{11}

\therefore (3^{10})^5 \equiv 1^5 \pmod{11}

\therefore 3^{50} \equiv 1 \pmod{11}

and 3^4 = 81 \equiv 4 \pmod{11}

\therefore 3^{50} \times 3^4 \equiv 1 \times 4 \pmod{11}

\therefore 3^{54} \equiv 4 \pmod{11}

\therefore 4 \text{ is the remainder when } 3^{54} \text{ is divided by } 11.
```

Normal Subgroup: A subgroup H of a group G is called normal subgroup of G if $ghg^{-1} \in H$ for all $g \in G$ and all $h \in H$.

Ex. Prove that every subgroup of an abelian group is normal. **Proof:** Let G be an abelian group and H be any subgroup of G.

∴ gh = hg \forall h, g ∈ G(1) For any h ∈ H ⊆ G and for any g ∈ G, ghg⁻¹ = hgg⁻¹ = he = h ∈ H by (1) ∴ H is a normal subgroup of G is proved. **Ex.** Prove that every subgroup of a cyclic group is normal.

Proof: Let G be a cyclic group and H be any subgroup of G.

As every cyclic group is an abelian group.

∴ $gh = hg \forall h, g \in G$ (1) For any $h \in H \subseteq G$ and for any $g \in G$, $ghg^{-1} = hgg^{-1} = he = h \in H$ by (1)

∴ H is a normal subgroup of G is proved.

<u>Ex.</u> If H is a subgroup of a group G and if the normalize of H, $N(H) = \{g \in G : gHg^{-1} = H\}$, then prove that a) N(H) is subgroup of G and b) H is a normal subgroup of N(H).

Proof: Let H is a subgroup of a group G and $N(H) = \{g \in G: gHg^{-1} = H\}$ is the normalize of H.

a) As $aHa^{-1} = H \forall a \in H$ $\therefore a \in H \Rightarrow a \in N(H) \Rightarrow H \subseteq N(H) \subseteq G.$ For $a, b \in N(H) \Rightarrow a, b \in G$ with $aHa^{-1} = H$ and $bHb^{-1} = H$ (1) Now $a, b \in G \Rightarrow ab^{-1} \in G$ Consider $(ab^{-1})H(ab^{-1})^{-1} = (ab^{-1})H(ba^{-1})$ $= a(b^{-1}Hb)a^{-1}$ $= aHa^{-1} \qquad \because bHb^{-1} = H \Rightarrow b^{-1}Hb = H$ = HHence $ab^{-1} \in N(H).$ $\therefore N(H)$ is a subgroup of G is proved. b) For any $a \in N(H) \Rightarrow aHa^{-1} = H.$ \therefore H is a normal subgroup of N(H). Hence proved.

Index: If H is a subgroup of a finite group G, then the number of distinct right (or left) cosets

of H in G is called index of H in G. Denoted by (G:H) or $i_G(H) = \frac{O(G)}{O(H)}$

Ex. If G is a group and H is a subgroup of index 2 in G, then prove that H is a normal subgroup of G.

```
Proof: Let H be a subgroup of index 2 in G. Then number of distinct right (or left) cosets of H in G is 2. Let g \in G \Longrightarrow g \in H or g \notin H.
```

If $g \in H$ then $gHg^{-1} = H$.

And if $g \notin H$ then $gH \neq H$ and $H \neq Hg$ i.e. $gH \cap H = \emptyset$ and $H \cap Hg = \emptyset$

As there are only two distinct right (or left) cosets of H in G

 \Rightarrow G = He \cup Hg and G = eH \cup gH

 $\Rightarrow G = H \cup Hg = H \cup gH$

 \Rightarrow Hg = gH

 \Rightarrow H = gHg⁻¹

Thus either case $gHg^{-1} = H \forall g \in G$. Hence H is a normal subgroup of G is proved.

UNIT-2-SUBGROUP

1) Which of the following is a improper subgroup of a group G?										
(A) {e} (B) G (C) every subgroup of G (D) None of the above										
2) Which of the following is a trivial subgroup of a group G?										
(A) $\{e\}$ (B) G (C) every subgroup of G (D) None of the above										
3) A subgroup H of a group G is called if $H \neq G$										
(A) trivial (B) improper (C) proper (D) None of the above										
4) Which of the following is a subgroup of a group $G = \{1, -1, i, -i\}$ under usual										
multiplication?										
(A) $\{1, i\}$ (B) $\{-1, -i\}$ (C) $\{i, -i\}$ (D) $\{1, -1\}$										
5) Which of the following is a subgroup of the group $(Z_8, +_8)$?										
(A) $\{\overline{0}, \overline{3}, \overline{5}\}$ (B) $(\mathbb{Z}_4, +_4)$? (C) $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ (D) $\{\overline{0}, \overline{4}, \overline{6}\}$										
6) Which of the following is a not subgroup of $(Z, +)$?										
(A) The set of all even integers (B) nZ for any $n \in N$										
(C) The set of all odd integers (D) {0}										
7) Which of the following is a not subgroup of the group $(R, +)$?										
(A) $(R, +)$ (B) $(Q, +)$ (C) $(Z, +)$ D) None of these										
8) Let H, K be subgroups of a group G. Then $H \cup K$ is a subgroup of G if and only if										
(A) $H \subseteq K$ (B) $K \subseteq H$ (C) $H \subseteq K$ or $K \subseteq H$ (D) $H \subseteq K$ and $K \subseteq H$										
9) The number of generators for the group $G = \{1, -1, i, -i\}$ under usual multiplication are										
(A) 1 (B) 2 (C) 3 (D) 0										
10) Which of the following group is not cyclic?										
(A) $G = \{1, -1, i, -i\}$ (B) $(Z_6, +_6)$ (C) (Z_8, X_8) (D) $(Z, +)$										
11) Which of the following group is abelian but not cyclic?										
(A) $G = \{1, -1, i, -i\}$ (B) $(Z_6, +_6)$ (C) $(Q, +)$ (D) $(Z, +)$										
12) If A and B are two subgroups of a group G, then which of the following is										
certainly a subgroup of G?										
(A) $A \cap B$ (B) $A \cup B$ (C) AB (D) None of these										
13) The number of proper subgroups of the group $(Z, +)$ are										
(A) 1 (B) 2 (C) 5 (D) infinite										
14) Cyclic group of order 10 has number of subgroups.										
(A) 1 (B) 2 (C) 4 (D) 10										
15) Cyclic group of order 15 has number of subgroups.										
(A) 1 (B) 2 (C) 4 (D) 10										

16) Every cyclic grou	ip has at least ge	nerators.	
(A) 1	(B) 2	(C) 3	(D) infinite
17) The number of di	stinct left cosets of a	subgroup $H = \{1, -1\}$	} in the group
$G = \{1, -1, i, -i\}$	under usual multiplic	cation are	
(A) 1	(B) 2	(C) 3	(D) 4
18) If H is a subgroup	p of a finite group G,	then o(H) o(G). This	s is the statement of
theorem.			
(A) Euler's	(B) Fermat's	(C) Lagrange's	(D) Cauchy's
19) If $n \in N$ and $a \in$	Z such that $(a, n) = 1$, then $a^{\emptyset(n)} \equiv 1 \pmod{2}$	l n). This is the
statement of	. theorem.		
(A) Euler's	(B) Fermat's	(C) Lagrange's	(D) Cauchy's
20) If p is prime and	$a \in \mathbb{Z}$, such that $p \nmid a$	a, then $a^{p-1} \equiv 1 \pmod{p}$	n). This is the
statement of	. theorem.	and the second s	9
(A) Euler's	(B) Fermat's	(C) Lagrange's	(D) Cauchy's
21) Let G be a finite	group and $a \in G$. The	$a^{o(G)} = \dots$	mar Ba
(A) e	(B) a	(C) a^2	(D) o(G)
22) Let $\mathcal{O}(n)$ be an E	uler's totient function	n. Then $Ø(10) = \dots$	R
(A) 1	(B) 2	(C) 4	(D) 9
23) Let $\mathcal{O}(n)$ be an Eq	uler's totient function	n. Then Ø(17)=	
(A) 1	(B) 2	(C) 16	(D) 7
24) The remainder of	otained when 3 ⁵⁴ divi	ided by 11 is	ーー
(A) 5	(B) 3	(C) 4	(D) 7
25) The number of su	ubgroups of a group c	of order 41 =	3
(A) 0	(B) 1	(C) 2	(D) 41

।।स्वकमर्णा तमस्यर्च्य सिध्दिं विन्दति मानवः।।

32

19.20

UNIT-3: HOMOMORPHISM AND ISOMORPHISM OF GROUPS

- ★ Homomorphism (or Group homomorphism): Let (G, *) and (G', *') be any two groups, then the mapping f: G → G' is said to be homomorphism (or Group homomorphism) if $f(a * b) = f(a) *' f(b) \forall a, b \in G$.
- ★ Trivial Homomorphism: Let (G, *) and (G', *') be any two groups, then the mapping f: G → G' defined by $f(a) = e' \forall a \in G$ is called trivial homomorphism where e' is an identity element in G'.
- ***** Remark: A homomorphism f: $G \rightarrow G$ is called an <u>Endomorphism</u>.
- ★ One-One Function: A function $f: G \to G'$ is said to be one-one function (or injective function) if $f(a) = f(b) \Rightarrow a = b$.
- ★ Onto Function: A function $f: G \to G'$ is said to be onto function (or surjective function) if for $y \in G' \Rightarrow \exists x \in G$ with f(x) = y.
- * Bijective Map: A one-one and onto map is called the bijective map.
- ★ Kernel of homomorphism: Let f: $(G, *) \rightarrow (G', *')$ be homomorphism, then the set Ker(f) = {x ∈ G: f(x) = e', indentity element in G'} is called kernel of homomorphism.

<u>Ex.</u> Let $(\mathbb{Z}, +)$ be the group of integers under addition and $G = \{2^n : n \in \mathbb{Z}\}$ group under multiplication. Show that $f: \mathbb{Z} \to G$ defined by $f(n) = 2^n, \forall n \in \mathbb{Z}$ is onto group homomorphism.

Proof: For m, $n \in \mathbb{Z} \Rightarrow f(m) = 2^m$ and $f(n) = 2^n$

Consider, $f(m + n) = 2^{m+n}$

$$= 2^{m} \cdot 2^{n}$$

= f(m).f(n)

 \therefore f is group homomorphism.

For $2^n \in G \Rightarrow \exists n \in \mathbb{Z}$ with $f(n) = 2^n$

 \therefore f is onto.

Hence, f is onto group homomorphism is proved.

Ex. Prove that the mapping $f: C \to C_0$ such that $(z) = e^z$ is a homomorphism of the additive group of complex numbers onto the multiplicative group of non-zero complex numbers. What is the kernel of f?

Proof: Let the mapping $f: C \to C_0$ defined by $(z) = e^z$

For
$$z_1, z_2 \in C \Longrightarrow f(z_1) = e^{z_1}$$
 and $f(z_2) = e^{z_2}$

Now
$$f(z_1 + z_2) = e^{z_1 + z_2} = e^{z_1} e^{z_2} = f(z_1) f(z_2)$$

 \therefore f is a homomorphism.

For any non zero complex number z in $C_0 \Longrightarrow \exists \log z \in C$ with $f(\log z) = e^{\log z} = z$ \therefore f is onto.

Hence f is onto group homomorphism.

 $1 \in C_0 \text{ is a multiplicative identity.}$ $\therefore \text{ Ker } f = \{ z \in C : f(z) = 1 \}$ $= \{ z \in C : e^z = 1 \}$ $= \{ 0 \}$

Ex. Consider $(\mathbb{Z}, +)$ the additive group of integers and $G = \{1, -1, i, -i\}$ the group under multiplication. Show that $f : \mathbb{Z} \to G$, defined by $f(n) = i^n \forall n \in \mathbb{Z}$ is group homomorphism. Find its Kernel.

Proof: Let $m, n \in \mathbb{Z} \Rightarrow f(m) = i^m$ and $f(n) = i^n$ Consider, $f(m+n) = i^{m+n}$ $= i^m \cdot i^n$ $= f(m) \cdot f(n)$ $\therefore f$ is group homomorphism. $1 \in G$ is an identity element. $\therefore Ker(f) = \{n \in \mathbb{Z} : f(n) = 1\}$ $= \{n \in \mathbb{Z} : i^n = 1\}$ $= 4 \mathbb{Z}$

Ex. Let $\mathbb{C}^* = \mathbb{C} - \{0\}$, $\mathbb{R}^* = \mathbb{R} - \{0\}$ be the groups under multiplication. Show that

 $f: \mathbb{C}^* \to \mathbb{R}^*$ defined by $f(z) = |z|, \quad \forall z \in \mathbb{C}^*$ is a group homomorphism. Find its kernel. **Proof:** For $z_1, z_2 \in \mathbb{C}^*$

$$\Rightarrow f(z_1) = |z_1| \text{ and } f(z_2) = |z_2|$$

Consider $f(z_1, z_2) = |z_1 z_2|$
 $= |z_1| \cdot |z_2|$
 $= f(z_1) \cdot f(z_2)$
 $\therefore f \text{ is group homomorphism.}$
 $1 \in \mathbb{R}^* \text{ is an identity element.}$
 $\therefore Ker(f) = \{ z \in \mathbb{C}^* : f(z) = 1 \}$
 $= \{ z \in \mathbb{C}^* : |z| = 1 \}$
 $\therefore Ker(f) = \text{Set of all complex numbers whose modulus is 1}$

Ex. Let G = { a, a², a³, ..., a¹²(= e) } be a cyclic group of order 12 generated by a. Show that f: G → G defined by f(x) = x⁴ ∀ x ∈ G is a group homomorphism. Find its Kernel.
Proof: Let G be a cyclic group of order 12 generated by a.

 $\therefore G \text{ is abelian.}$ $\therefore (xy)^n = x^n y^n \forall x, y \in G \qquad (1)$ For $x, y \in G \Rightarrow f(x) = x^4$ and $f(y) = y^4$ Consider $f(xy) = (xy)^4$ $= x^4 \cdot y^4 \qquad \text{by (1)}$ $= f(x) \cdot f(y)$ $\therefore f \text{ is group homomorphism.}$

As $a^{12} = e$ is an identity element in G $\therefore Ker(f) = \{x \in G : f(x) = e\}$ $= \{x \in G : x^4 = e\}$ $= \{e, a^3, a^6, a^9\}$

Ex. Consider $(\mathbb{R}, +)$ a group of reals under usual addition. Show that 1) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 2x \forall x \in \mathbb{R}$ is a group homomorphism. Find its Kernel. 2) $g : \mathbb{R} \to \mathbb{R}$ defined by $g(x) = x + 1 \quad \forall x \in \mathbb{R}$ is not a group homomorphism. **Proof:** 1) Let $x, y \in \mathbb{R} \Rightarrow f(x) = 2x$ and f(y) = 2yConsider, f(x + y) = 2(x + y)= 2x + 2y= f(x) + f(y)f is group homomorphism. $0 \in \mathbb{R}$ is an identity element. $\therefore Ker(f) = \{x \in \mathbb{R} : f(x) = 0\}$ $= \{ x \in \mathbb{R} : 2x = 0 \}$ $= \{0\}$ 2) Let, $x, y \in \mathbb{R} \Rightarrow g(x) = x + 1$ and g(y) = y + 1Consider, g(x) + g(y) = x + 1 + y + 1= x + v + 2(1)g(x + y) = x + y + 1 ------And (2) $\therefore \operatorname{By}(1) \& (2) \Rightarrow g(x+y) \neq g(x) + g(y)$ \therefore g is not a group homomorphism is proved.

Ex. Let, $G = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{R}, ad - bc \neq 0 \}$ the group of all non-singular matrices of order 2 over \mathbb{R} under matrix multiplication and let $\mathbb{R}^* = \mathbb{R} - \{0\}$ the group of non-zero real numbers under multiplication. Define $f : G \to \mathbb{R}^*$ by f(A) = |A| for all $A \in G$. Show that f is onto group homomorphism and find it's Kernel. **Proof:** For $A, B \in G \Rightarrow f(A) = |A| \& f(B) = |B|$

Consider
$$f(AB) = |AB|$$

= $|A||B|$

$$= f(A).f(B)$$

 \therefore *f* is group homomorphism.

For $x \in \mathbb{R}^* \Rightarrow \exists A = \begin{bmatrix} x & 0 \\ 0 & 1 \end{bmatrix} \in G$ with $|A| = x \neq 0$ Such that $f(A) = \begin{vmatrix} x & 0 \\ 0 & 1 \end{vmatrix} = x$

∴ *f* is ontogroup homomorphism. $1 \in \mathbb{R}^*$ is an identity element. ∴ $Ker(f) = \{A \in G : f(A) = 1\}$

For $1 \in G' \Rightarrow 2 \in G$ with f(2) = 1And $-1 \in G' \Rightarrow 3 \in G$ with f(3) = -1 \therefore f is onto. Hence, f is onto group homomorphism is proved. **Ex.** Let $f: G \to G'$ be a group homomorphism. Prove that i) If e is an identity element of G then f(e) is the identity element of G'. ii) $f(a^{-1}) = [f(a)]^{-1}, \forall a \in G.$ iii) $f(a^m) = [f(a)]^m$, $\forall a \in G and m \in \mathbb{Z}$. **Proof:** Let, f: $G \rightarrow G'$ be a group homomorphism. i) Let e is an identity element of G and e' be an identity element of G'. For $a \in G \Rightarrow f(a) \in G'$ \therefore f(a)e' = f(a) = f(ae)= f(a).f(e) : f is homomorphism. \therefore e' = f(e) by left cancellation law i.e. f(e) is an identity element of G'. ii) For $a \in G \implies a^{-1} \in G$ with $aa^{-1} = e$ \therefore f(aa⁻¹) = f(e) : $f(a). f(a^{-1}) = e'$ $f(a^{-1}) = f(a)^{-1} \cdot e'$ $\therefore f(a^{-1}) = [f(a)]^{-1}$ $\forall a \in G.$ iii) Case i) If m is positive integer then $f(a^{m}) = f(a. a. a. ...a)$ m times = f(a).f(a).f(a)....f(a) : f is homomorphismm times \therefore f(a^m) = [f(a)]^m Case ii) If m = 0, then $f(a^0) = f(e) = e' = [f(a)]^0$ Case iii) If m is negative integer, then m = -n, where n is positive integer, \therefore $f(a^m) = f(a^{-n})$ $= f[(a^{-1})^n]$ $= f[(a^{-1})]^n$ $= [f(a)^{-1}]^n$ $=f(a)^{-n}$ $= [f(a)]^m \forall a \in G.$ \therefore By cases (i), (ii) & (iii) $f(a^m) = [f(a)]^m$, $\forall a \in G$ and $m \in \mathbb{Z}$. Hence proved.

Ex. Prove that homomorphic image of an abelian group is abelian.

Proof: Let $f: G \to G'$ be a group homomorphism, then

 $f(G) = \{ f(x) : x \in G \} \text{ is homomorphic image of } G \text{ and } G \text{ is abelian.}$ For $a', b' \in f(G) \Rightarrow \exists a, b \in G \text{ with } f(a) = a' \& f(b) = b'.$ Consider, $a'b' = f(a) \cdot f(b)$ $= f(ab) \quad \because f \text{ is homomorphism.}$ $= f(ba) \because G \text{ is abelian}$ $= f(b) \cdot f(a) \because f \text{ is homomorphism.}$ $\therefore a'b' = b'a'$ Hence, homomorphic image of an abelian group is abelian is proved.

• NOTE: Converse of above is not true.

Ex. Prove that homomorphic image of cyclic group is cyclic.

Proof: Let, $f: G \to G'$ be a group homomorphism, then

 $f(G) = \{f(x): x \in G\} \text{ is homomorphic image of } G \text{ and } G \text{ is a cyclic group say}$ $G = \langle a \rangle$ $Claim: f(G) = \langle f(a) \rangle$ As $a \in G \Rightarrow f(a) \in f(G)$ $\Rightarrow \langle f(a) \rangle \subseteq f(G) \dots \dots \dots (1)$ $Let y \in f(G) \Rightarrow \exists x \in G \text{ with } f(x) = y$ $Now, x \in G \Rightarrow \exists m \in \mathbb{Z} \text{ with } x = a^m$ $\therefore y = f(x) = f(a^m) = [f(a)]^m \in \langle f(a) \rangle$ $\therefore f(G) \subseteq \langle f(a) \rangle \dots \dots \dots (2)$ $\therefore By (1) \text{ and } (2) \ f(G) = \langle f(a) \rangle$ Hence, homomorphic image of cyclic group is cyclic.

Ex. Prove that homomorphic image of finite group is finite. **Proof:** Let, $f: G \rightarrow G'$ be a group homomorphism, then

 $f(G) = \{ f(x) : x \in G \} \text{ is homomorphic image of } G \text{ and } G \text{ is a finite say} \\ G = \{ x_1, x_2, x_3, \dots, x_n \} \\ \therefore f(G) = \{ f(x_1), f(x_2), f(x_3), \dots, f(x_n) \} \text{ which is finite.}$

Hence, homomorphic image of a finite group is finite is proved.

• NOTE : Converse of above is not is true.

Ex. Let, f: G → G' be a group homomorphism, then prove that
i) Ker(f) is a subgroup of G.
ii) f is one-one iff Ker(f) = {e} where e is an identity element in G.

Ex. Let, f and g be group homomorphism from $G \to G$. Show that $H = \{x \in G : f(x) = g(x)\}$ is a subgroup of G. **Proof:** Let f and g be group homomorphisms from $G \to G$ with $H = \{x \in G : f(x) = g(x)\}$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCHNCE SR COLLEGE, PIMPALNER

We observe that f(e) = e and g(e) = e for $e \in G \therefore e \in H$ \therefore *H* is non-empty subset of *G*. For x, $y \in H \Rightarrow x, y \in G$ with f(x) = g(x) & f(y) = g(y) $\Rightarrow xy^{-1} \in G$ with $f(xy^{-1}) = f(x) \cdot f(y^{-1})$ \therefore f is homomorphism. : $f(xy^{-1}) = f(x).f(y)^{-1}$ $= g(x).g(y)^{-1}$ $= g(x).g(y^{-1})$ \therefore $f(xy^{-1}) = g(xy^{-1}) \therefore g$ is homomorphic. $\Rightarrow x v^{-1} \in H$ \therefore H is a subgroup of G is proved. Somorphism : Let, (G, *) and (G', *') be any two groups then the mapping $f : G \to G'$ is said to be an isomorphism if 1) f is group homomorphism, 2) f is one-one & 3) f is onto. **Remark:** An isomorphism $f : G \to G$ is called an <u>automorphism</u>. **Ex.** Let *G* be a group of all matrices of the type $\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a, b \in G \text{ and } a^2 + b^2 = 1 \}$ under matrix multiplication and G' be a group of non-zero complex numbers under multiplication. Show that $f: G \to G'$ defined by $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} = a + ib$, is an isomorphism. **Proof:** Let $f : G \to G'$ defined by $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} = a + ib$. i) For A = $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$, B = $\begin{bmatrix} c & d \\ -d & c \end{bmatrix} \in G \Longrightarrow f(A) = a + ib and f(B) = c + id$ Now AB = $\begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} c & d \\ -d & c \end{bmatrix} = \begin{bmatrix} ac - bd & ad + bc \\ -bc - ad & -bd + ac \end{bmatrix}$ i.e. AB = $\begin{bmatrix} ac - bd & ad + bc \\ -(ad + bc) & ac - bd \end{bmatrix}$ $\therefore f(AB) = (ac - bd) + i(ad + bc) = (a + ib)(c + id) = f(A).f(B)$ \therefore f is a homomorphism. ii) Suppose $f(\begin{bmatrix} a & b \\ -b & a \end{bmatrix}) = f(\begin{bmatrix} c & d \\ -d & c \end{bmatrix})$ \Rightarrow a + ib = c + id \Rightarrow a = c and b = d $\Rightarrow \begin{bmatrix} a & b \\ -b & a \end{bmatrix} = \begin{bmatrix} c & d \\ -d & c \end{bmatrix}$ \therefore f is one one. iii) For $a + ib \in G' \Longrightarrow \exists \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \in G$ with $(\begin{bmatrix} a & b \\ -b & a \end{bmatrix}) = a + ib$. By (i), (ii), (iii) f is an isomorphism is proved

<u>Ex.</u> Let, $(\mathbb{R}, +)$ be a group of reals under addition and (\mathbb{R}^+, \times) the group of positive reals under multiplication. Show that $f : \mathbb{R} \to \mathbb{R}^+$ defined by $f(x) = 2^x \quad \forall x \in \mathbb{R}$ is an

isomorphism.

<u>Proof</u>: 1) For $x, y \in \mathbb{R} \implies f(x) = 2^x$ and $f(y) = 2^y$ Consider $f(x + y) = 2^{x+y}$ $= 2^{x} \times 2^{y}$ \therefore $f(x+y) = f(x) \times f(y)$ \therefore f is group homomorphism. 2) For $x, y \in \mathbb{R}$ Let f(x) = f(y) $\therefore 2^{x} = 2^{y}$ $\therefore \log_2 2^x = \log_2 2^y$ $\therefore x = y$ \therefore f is one-one. 3) For $x \in \mathbb{R}^+ \Rightarrow x$ is a positive real number $\exists \log_2 x \in \mathbb{R}$ Such that $f(log_2 x) = 2^{log_2 x} = x$ \therefore f is onto. \therefore By (1), (2) and (3) f is an isomorphism is proved. **Ex.** Consider the group (\mathbb{Z}_5 , $+_5$) and $G = \{a, a^2, a^3, a^4, a^5(=e)\}$ be a cyclic group generated by a.Show that $f:\mathbb{Z}_5 \to G$ defined by $f(\bar{n}) = a^n \forall \bar{n} \in \mathbb{Z}$ is an isomorphism. **Proof:** 1) For $\overline{m}, \overline{n} \in \mathbb{Z}_5 \Rightarrow f(\overline{m}) = a^m$ and $f(\overline{n}) = a^n$ Consider $f(\overline{m} + _5 \overline{n}) = f(\overline{m + n})$ $=a^{m+n}$ $=a^{m}.a^{n}$ $\therefore f(\overline{m} + _{5}\overline{n}) = f(\overline{m}).f(\overline{n})$ \therefore f is a group homomorphism. 2) For \overline{m} , $\overline{n} \in \mathbb{Z}_5$ Suppose $f(\overline{m}) = f(\overline{n})$ ः am=nanतमध्यच्ये सिधिद विन्दति मानवः। $\therefore m = n$ $\therefore \overline{m} = \overline{n}$ \therefore f is one-one. 3) For $a^n \in G \implies \exists \ \overline{n} \in \mathbb{Z}_5$ with $f(\overline{n}) = a^n \therefore f$ is onto. \therefore By (1), (2) and (3) f is an isomorphism is proved.

Ex. Let G be a group and a ∈ G. Show that f_a : G → G defined by f_a(x) = axa⁻¹, for all x ∈ G is an automorphism.
Proof: 1) f_a is a group homomorphism:

For
$$x, y \in G$$
, we have $f_a(x) = axa^{-1}$ and $f_a(y) = aya^{-1}$
Consider $f_a(xy) = a(xy)a^{-1}$

$$= (ax) \in (ya^{-1})$$

$$= (ax)(a^{-1}a)(ya^{-1})$$

$$= (axa^{-1})(aya^{-1})$$

$$= f_a(x), f_a(y)$$

$$\therefore f_a \text{ is group homomorphism.}$$
2) f_a is group homomorphism.
2) f_a is one-one:
Let. $-f_a(x) = f_a(y)$ for $x, y \in G$

$$\therefore axa^{-1} = aya^{-1}$$
 $x = y$ by cancellation laws

$$\therefore f_a$$
 is one-one.
3) f_a is one-one.
4) $f_a(a^{-1}xa) = a(a^{-1}xa)a^{-1} = x$

$$\therefore f_a$$
 is one.
By (1), (2) and (3) f_a is an automorphism is proved.
Ex. Let G be a group and $f : G \to G$ be a map defined by $f(x) = x^{-1}$ For all $x \in G$.
Prove that a) If G is abelian then f is an isomorphism.
b) If f is group homomorphism then G is abelian.
Proof: a) Let G is abelian.

$$\therefore xy = yx \forall x, y \in G$$
1) 1) For $x, y \in G \Rightarrow f(x) = x^{-1}$ and $f(y) = y^{-1}$
Consider $f(xy) = f(y)$

$$\therefore x^{-1} = y^{-1}$$

$$\therefore (x^{-1})^{-1} = (y^{-1})^{-1}$$

$$\therefore x = y$$

$$\therefore f is one-one.
3) For $x \in G \Rightarrow \exists x^{-1} \in G$ with $f(x^{-1}) = (x^{-1})^{-1} = x$

$$\therefore f is onto.
By (1), (2) and (3), f is an isomorphism.
b) Suppose f is a group homomorphism.
For $x, y \in G$
Consider $xy = [(xy)^{-1}]^{-1}$$$$$

$$= f(xy)^{-1}$$

$$= f(y^{-1}x^{-1})$$

$$= f(y^{-1})f(x^{-1}) \because f \text{ is homomorphic}$$

$$= (y^{-1})^{-1}(x^{-1})^{-1}$$

$$\therefore xy = yx$$
Hence *G* is abelian is proved.

Ex. Let *G* be a group and $f : G \to G$ be a map defined by $f(x) = x^{-1}$
For all $x \in G$. Prove that *G* is abelian iff *f* is an automorphism.

Proof: Let *G* is abelian.

$$\therefore xy = yx \qquad \forall x, y \in G$$
(1)

1) For $x, y \in G \Rightarrow f(x) = x^{-1}$ and $f(y) = y^{-1}$

Consider $f(xy) = f(yx)$
By (1)
 $f(xy) = f(x) \cdot f(y)$

 $\therefore f(xy) = f(x) \cdot f(y)$

 $\therefore f(xy) = f(x) \cdot f(y)$

 $\therefore f(xy) = f(x) \cdot f(y)$

 $\therefore x^{-1} = y^{-1}$

 $\therefore (x^{-1})^{-1} = (y^{-1})^{-1}$

 $\therefore x = y$

 $\therefore f$ is one-one.

3) For $x \in G \Rightarrow \exists x^{-1} \in G$ with $f(x^{-1}) = (x^{-1})^{-1} = x$

 $\therefore f$ is one distance.

By (1), (2) and (3) *f* is an isomorphism.

Conversely: Suppose *f* is an automorphism hence *f* is a group homomorphism.

For $x, y \in G$

Consider $xy = [(xy)^{-1}]^{-1}$

 $= f(y^{-1}x^{-1})$

 $= f(y^{-1})f(x^{-1}) \because f$ is homomorphic

 $= (y^{-1})f(x^{-1})$

 f is onto.

Hence G is abelian is proved.

<u>Ex.</u> Prove that every finite cyclic group of order n is isomorphic to $(\mathbb{Z}_n, +_n)$.

Proof: Let, G be a finite cyclic group of order n.

$$\therefore G = \{e, a, a^2, \dots, a^{n-1}\} = \langle a \rangle$$

Define $f : G \to \mathbb{Z}_n$ by $f(a^k) = \overline{k} \forall a^k \in G$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCHNCE SR COLLEGE, PIMPALNER.

For
$$a^k \& a^s \in G$$
, we have $f(a^k) = \bar{k}$ and $f(a^s) = \bar{S}$.
By division algorithm $k + s = nq + r$ where $0 \le r < n$
 $\therefore \overline{k + s} = \bar{r}$
Consider $f(a^k, a^s) = f(a^{n+s})$
 $= f(a^{nq+r})$
 $= f(a^{nq+r})$
 $= f(a^n)^q \cdot a^r]$
 $= f(a^r)$
 $= \bar{r}$
 $= f(a^r)$
 $= \bar{r}$
 $= k + s$
 $= \bar{k} + s$
 $\Rightarrow f(a^k, a^s) = f(a^k) + n f(a^s)$
 $\therefore \bar{h}$ is a group homomorphism.
Also for $a^k \& a^s \in G$
Let $f(a^k) = f(a^s)$
 $\therefore \bar{k} = \bar{s}$
 $k = s$ $\therefore 0 \le k, s \le n$
 $\therefore a^k = a^s$
 $\therefore f$ is one-one.
For $\bar{k} \in \mathbb{Z}_n \Rightarrow \exists a^k \in G$ with $f(a^k) = \bar{k} \therefore \bar{f}$ is onto.
Hence f is an isomorphism is proved.
Ex. Prove that every infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$.
Proof: Let G be a infinite cyclic group generated by a .
i.e. $G = \{a^n : n \in \mathbb{Z}\}$
Define $f : G \to \mathbb{Z}$ by $f(a^n) = n \forall a^n \in G$
1) For a^m and $a^n \in G$, we have $f(a^m) = m$ and $f(a^n) = n$
Consider, $f(a^m.a^n) = f(a^{mn}) + f(a^m)$
 $= m + n$
 $= f(a^m) + f(a^n)$
 \therefore f is group homomorphism.
2) Let $f(a^m) = f(a^n) - \forall m, n \in G$
 $\Rightarrow m = n$
 $\Rightarrow a^m = a^n$
 $\therefore f$ is one-one.

3) For $n \in \mathbb{Z} \Rightarrow \exists a^n \in G$ with $f(a^n) = n$.

 \therefore f is onto.

 \therefore By (1), (2) and (3), f is an isomorphism.

i.e. $G \cong \mathbb{Z}$ is proved.

<u>Ex.</u> Let $f : G \to G'$ be a group homomorphism. If $a \in G$ and o(a) is finite then show that o(f(a))|o(a). **Proof:** Let $f : G \to G'$ be a group homomorphism and $a \in G$ with o(a) is finite say o(a) = n. $\therefore a^n = e$ $\therefore f(a^n) = f(e)$ $\therefore f(a)^n = e'$ f is homomorphic. $\therefore o(f(a))|n$ $\therefore o(f(a)) | o(a).$ Hence proved. **Ex.** If $f: G \to G'$ be an isomorphism then show that $o(a) = o(f(a)) \forall a \in G$. **Proof:** Let, $f : G \to G'$ is an isomorphism. Case i) If o(a) is finite say o(a) = n $\therefore a^n = e$ $\therefore f(a^n) = f(e)$ $\therefore f(a)^n = e' \qquad \because f \text{ is homomorphism.}$ $\therefore o(f(a)) \leq n$ $\therefore o(f(a)) \le o(a) \quad ----- \quad (1)$ If o(f(a)) = m then $f(a)^m = e'$ $f(a^m) = f(e)$ \therefore f is homomorphism. $\therefore a^m = e$: f is one-one. $o(a) \leq m$ $o(a) \le o(f(a))$ ------(2) : By (1) and (2) o(a) = o(f(a))Case ii) If o(a) is infinite then we have to prove o(f(a)) is infinite. If o(f(a)) is finite say m. $\therefore f(a)^m = e'$ $\therefore f(a^m) = f(e)$ $\therefore f$ is homomorphism. $\therefore a^m = e :: f \text{ is one-one.}$ $\therefore o(a) \le m$, which contradicts to o(a) is infinite. $\therefore o(f(a))$ is infinite. : By cases (i) and (ii) o(a) = o(f(a)) is proved.

<u>Ex</u>. If $G = \{1, -1, i, -i\}$ is the group under multiplication and $\overline{G} = \{\overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ is a group under multiplication modulo 10 then Show that *G* and \overline{G} isomorphic.

Proof: Let $G = \{1, -1, i, -i\}$ is a group under multiplication with identity element 1. We observe that o(1) = 1, o(-1) = 2, o(i) = o(-i) = 4Let $\overline{G} = \{\overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ is a group with identity element $\overline{6}$. $\therefore o(\bar{6}) = 1$, $o(\bar{2}) = 4 = o(\bar{8})$ $\therefore \bar{2}^{-1} = \bar{8}$ and $o(\bar{4}) = 2$: We define $f: G \to \overline{G}$ as $f(1) = \overline{6}$, $f(-1) = \overline{4}$, $f(i) = \overline{2}$, $f(-i) = \overline{8}$ Which is one-one and onto. For $-1, -i \in G$, We have $f((-1)(-i)) = f(i) = \overline{2}$ and $f(-1) \times_{10} f(-i) = \bar{4} \times_{10} \bar{8} = \bar{2}$ ∴ $f((-1)(-i)) = f(-1) \times_{10} f(-i)$ which is true for all element in *G*. \therefore f is group homomorphism. \therefore f is group isomorphism. *i.e.* $G \cong \overline{G}$ is proved. **Ex.** Show that the groups $G = \{1, -1, i, -i\}$ is the group under usual multiplication and $\mathbb{Z}'_{8} = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ is a group under multiplication modulo 8 are not isomorphic. **Proof:** Suppose G is isomorphic to \mathbb{Z}'_{8} . *i.e.* $G \cong \mathbb{Z}'_{8}$ *i.e.* $f : G \to \mathbb{Z}'_8$ is an isomorphism. We observe that $1 \in G$ is an identity element. $\therefore o(1) = 1, o(-1) = 2, o(i) = o(-i) = 4$ and $\overline{1} \in \mathbb{Z}'_{8}$ is an identity element under \times_{8} . $\therefore o(\bar{1}) = 1, o(\bar{3}) = 2, o(\bar{5}) = 2, o(\bar{7}) = 2.$ As $i \in G$ with o(i) = 4 \therefore o(f(i)) = 1 or 2which contradicts to equation (1). \therefore G and \mathbb{Z}'_8 are not isomorphic is proved. **Ex.** Show that the set of all automorphisms of a group G forms a group under composition of mappings. **Proof:** Let, A be the set of all automorphisms of a group G. *i.e.* $A = \{f \mid f : G \to G \text{ is an automorphism.}\}$ 1) For $f, g \in A$ \Rightarrow $f: G \rightarrow G \& g: G \rightarrow G$ is an automorphism. \Rightarrow fog : G \rightarrow G is an automorphism. \Rightarrow fog \in A *i.e.* Composition of mappings is a binary operation in A. 2) For f, g & $h \in A$, we have [(fog)oh](x) = (fog)(h(x)) $= f\left[g(h(x))\right]$ $= fo \left[g(h(x))\right]$

10) Homomorphic image of a finite group is
[A] cyclic [B] abelian [C] finite [D] infinite
11) Let $G = \{a, a^2, a^3, \dots, a^{12}(=e)\}$ be a cyclic group of order 12 generated by a .
If $f: G \to G$ defined by $f(x) = x^4 \forall x \in G$ is a group homomorphism,
then $Ker(f) = \dots$
[A] $\{e\}$ [B] $\{e, a^3, a^6, a^9\}$ [C] $\{e, a^4, a^8\}$ [D] $\{1, -1\}$
12) Let $(\mathbb{Z}, +)$ the additive group of integers and $G = \{1, -1, i, -i\}$ the group under
multiplication. If $f : \mathbb{Z} \to G$, defined by $f(n) = i^n \forall n \in \mathbb{Z}$ is homomorphism,
then $Ker(f) = \dots$
[A] $\{e\}$ [B] Z [C] $_{4}$ Z [D] $\{1, -1\}$
13) An isomorphism f: $G \rightarrow G$ is called an
[A] Endomorphism [B] Homomorphism [C] Automorphism [D] None of these
14) Let, (<i>G</i> ,*) and (<i>G'</i> ,*') be any two groups then the mapping $f : G \to G'$ is said to be an
isomorphism if
[A] f is group homomorphism [B] f is one-one
[C] f is onto [D] All of these
15) Let G be a group and $f: G \to G$ be a map defined by $f(x) = x^{-1}$ for all $x \in G$,
is group homomorphism then group G is
[A] cyclic [B] abelian [C] finite [D] infinite
16) Every finite cyclic group of order n is isomorphic to
$[A] (\mathbb{Z}_n, +_n) [B] (\mathbb{Z}, +) [C] (Q, +) [D] (R, +)$
17) Every infinite cyclic group of order n is isomorphic to
$[A] (\mathbb{Z}_n, +_n) [B] (\mathbb{Z}, +) \qquad [C] (Q, +) \qquad [D] (R, +)$
42.
1200 22
स्विकमणा तमभ्यच्या साध्द विन्दात मानवः।

UNIT 4: RINGS

Ring: A non-empty set R with two binary operations + (addition) and \cdot (multiplication) *i.e.* $(R, +, \cdot)$ is called a ring if: I) (R, +) is an abelian group. II) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for $a, b \in R$. III) a(b + c) = ab + ac (left distributive law) and (a+b)c = ac + bc (right distributive law) $\forall a, b, c \in R$ **Commutative Ring:** A ring (R, +, .) is said to be a commutative ring if $a \cdot b = b \cdot a \ \forall a, b \in R$ **Ring with unity (or ring with identity):** A ring (R, +, .) is said to be a ring with unity (or ring with identity) if there exists an element $1 \in R$ with $a \cdot 1 = 1 \cdot a = a, \forall a \in R$. **Ring with zero divisors:** A ring (R, +, .) is said to be a ring with zero divisors if $\exists a, b \in R$ with $a \neq 0, b \neq 0$ but ab = 0. **Ring without zero divisors:** A ring (R, +, .) is said to be a ring without zero divisors if $ab = 0 \Rightarrow$ either a = 0 or b = 0. e.g.1 (\mathbb{Z} , +, .), (\mathbb{Q} , +, .), (\mathbb{R} , +, .), (\mathbb{C} , +, .) are commutative rings with unity and without zero divisors. 2) Let \mathbb{R} be the set of all 2×2 matrices over reals then (\mathbb{R} , +, .) is a non-commutative ring with unity. 3) $(_2\mathbb{Z}, +, .)$ is a commutative ring without unity. 4) $(\mathbb{Z}_8, +_8, \times_8)$ is a commutative ring with unity and with zero divisors. $\therefore \overline{2} \neq \overline{0}, \overline{4} \neq \overline{0}$ but $\overline{2} \times_8 \overline{4} = \overline{0}$. Multiplicative Inverse: An element $b \in R$ is said to be multiplicative inverse of an element $a \in R$ if $a \cdot b = b \cdot a = 1$ where 1 is an identity/unity in R. **Remark:** वन्दात मानवः। Additive identity is called zero element. 1. Multiplicative identity is called unity. 2. Those elements have multiplicative inverse are called units. 3. **Theorem**: Let (R, +, .) be a ring and $a, b, c \in R$ then $a \cdot 0 = 0 \cdot a = 0$ 1) a(-b) = -(ab) = (-a)b2) (-a)(-b) = ab3) a(b-c) = ab - ac4) (a-b)c = ac - bc5)

Proof: Let, (R, +, .) be a ring. I) $0 \in R$ is an additive identity. $\therefore 0 + 0 = 0$ $\therefore a(0+0) = a0$ by left distributive law $\therefore a0 + a0 = a0$ $a_{0} a_{0} a_{0$ a0 = 0by left cancellation law ... Similarly 0a = 0 $\therefore a0 = 0 = 0a$ II) As (-b) + b = 0 $\therefore a[(-b) + b] = a0$ $\therefore a(-b) + ab = 0$ by (1) \therefore a(-b) = -(ab)Similarly (-a)b = -(ab) $\therefore a(-b) = -(ab) = (-a)b$ III) Consider (-a)(-b) = -[a(-b)] = -[-(ab)] $\therefore (-a)(-b) = ab$ IV) Consider a(b - c) = a[b + (-c)] = ab + a(-c) by left distributive law $\therefore a(b-c) = ab - ac$ by (2) V) Consider (a - b)c = [a + (-b)]c = ac + (-b)c by right distributive law $\therefore (a-b)c = ac - bc$ by (2) Hence proved.

Theorem: Let (R, +, .) be a ring with identity element 1 and $a \in R$, then 1) (-1)a = -a 2) (-1)(-1) = 1. **Proof:** Let, (R, +, .) be a ring with identity element 1 and $a \in R$ 1) Consider $(-1)a = -(1 \cdot a)$ $\therefore (-1)a = -a$ \therefore 1 is an identity element. 2) Consider $(-1)(-1) = (1 \cdot 1)$ $\therefore (-1)(-1) = 1$ Hence proved.

Ex: Show that a ring *R* is commutative if and only if $(a + b)^2 = a^2 + b^2 + 2ab \quad \forall \ a, b \in R.$ **Proof**: Suppose a ring *R* is commutative. $\therefore ab = ba \quad \forall \ a, b \in R$ ------ (1)

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR COLLEGE, PIMPALNER.

Consider,

$$(a + b)^{2} = (a + b)(a + b)$$

$$= (a + b)a + (a + b)b$$
by left distributive law
$$= a^{2} + ba + ab + b^{2}$$
by right distributive law
$$= a^{2} + ab + ab + b^{2}$$
by (1)
$$= a^{2} + 2ab + b^{2}$$

$$\therefore (a + b)^{2} = a^{2} + b^{2} + 2ab + ab + b^{2} + 2ab + a, b \in R$$

$$Conversity: Suppose (a + b)^{2} = a^{2} + b^{2} + 2ab + b^{2}$$

$$\therefore (a + b)(a + b) = a^{2} + 2ab + b^{2}$$

$$\therefore (a + b)(a + b) = a^{2} + 2ab + b^{2}$$

$$\therefore (a + b)a + (a + b)b = a^{2} + 2ab + b^{2}$$

$$\therefore a^{2} + ba + ab + b^{2} = a^{2} + ab + ab + b^{2}$$

$$\therefore ba = ab$$
by cancellation laws
$$\therefore \text{ Ring } R \text{ is commutative ring is proved.}$$
Ex: Let R be a ring with identity element 1 and
$$(ab)^{2} = a^{2}b^{2} + a, b \in R$$
Froof: Let R be a ring with identity element 1 and
$$(ab)^{2} = a^{2}b^{2} + a, b \in R$$

$$(1)$$
For $a, b + 1 \in R$, we have
$$[a(b + 1)]^{2} = a^{2}(b + 1)^{2}$$

$$\therefore (a(b + 1) \cdot a(b + 1)) = a^{2}(b + 1)(b + 1)$$

$$\therefore (ab)^{2} + aba + a^{2}b + a^{2} = a^{2}b^{2} + a^{2}b + a^{2}b + a^{2}$$

$$\therefore a^{2}b^{2} + aba + a^{2}b + a^{2} = a^{2}b^{2} + a^{2}b + a^{2}b + a^{2}$$

$$\therefore aba = a^{2}b + a^{2}b + a^{2} = a^{2}b^{2} + a^{2}b + a^{2}b + a^{2}$$

$$\therefore aba = a^{2}b + a^{2}b + a^{2} = a^{2}b^{2} + a^{2}b + a^{2}b + a^{2}$$

$$\therefore aba = a^{2}b + a^{2}b + a^{2} = a^{2}b^{2} + a^{2}b + a^{2}b + a^{2}$$

$$\therefore aba = a^{2}b + a^{2}b + a^{2} = a^{2}b^{2} + a^{2}b + a^{2}b + a^{2}$$

$$\therefore aba = a^{2}b + a^{2}b + a^{2} = a^{2}b^{2} + a^{2}b + a^{2}b + a^{2}$$

$$\therefore (ab + b)(a + 1) = (a + 1)(a + 1)b$$

$$\therefore (ab + b)(a + 1) = (a + 1)(ab + b)$$

$$\therefore a^{2}b + ab + ba + b = a^{2}b + ab + ab + b$$
by (2)

$$\therefore ba = ab + a, b \in R$$

Hence R is a commutative ring is proved.

Ex: Show that $(\mathbb{Z}_6, +_6, \times_6)$ is a commutative ring with unity and with zero divisors.

Proof: Let, $\mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$

	We prepare composit	ion tabl	les of	$f +_{\epsilon}$	₅ &	\times_6	for Z	Z ₆ as	s fol	lows
		$+_{6}$	$\overline{0}$	1	2		3	$\overline{4}$	5	
		$\overline{0}$	$\overline{0}$	1	2		3	4	5	
		1	1	$\overline{2}$	3		$\overline{4}$	5	$\overline{0}$	
_		$\overline{2}$	2	3	4		5	$\overline{0}$	1	
1		3	3	4	5		$\overline{0}$	1	$\overline{2}$	
		$\overline{4}$	$\overline{4}$	5	$\overline{0}$		1	$\overline{2}$	3	
		5	5	ō	_1		2	3	$\overline{4}$	
			an	हो.	1413	00*	R;	1		
	70	X_6	ō		1	2	3	4	5	
	100	ō	ō	M	Ō	Ō	ō	ō	$\overline{0}$	901
	15-1	ī	ō		ī	2	3	4	5	
	LE /	2	ō	;	2	4	ō	2	4	えくない
	1 1 de	3	ō	;	3	ō	3	ō	3	20/3
		4	ō	1	4	2	ō	4	2	E I
	Ĕ	5	ō		5	4	3	2	1	E
	We observe that	and	oro	hin	0.001		rotic	nair	. 77	ora also comm

We observe that $+_6$ and \times_6 are binary operations in \mathbb{Z}_6 are also commutative and associative in \mathbb{Z}_6 . Additive inverse of $\overline{0}$, $\overline{1}$, $\overline{2}$, $\overline{3}$, $\overline{4}$, $\overline{5}$ are $\overline{0}$, $\overline{5}$, $\overline{4}$, $\overline{3}$, $\overline{2}$, $\overline{1}$ resp. in \mathbb{Z}_6 . $\overline{0} \in \mathbb{Z}_6$ is an additive identity and $\overline{1} \in \mathbb{Z}_6$ is a multiplicative identity in \mathbb{Z}_6 . As $\mathbb{Z}_6 \subseteq \mathbb{Z}$ \therefore distributive laws hold in \mathbb{Z}_6 .

 \therefore (\mathbb{Z}_6 , +₆,×₆) is a commutative ring with unity and with zero divisors.

 $\therefore \overline{2} \neq 0, \overline{3} \neq 0 \text{ and } \overline{4} \neq \overline{0} \text{ but } \overline{2} \times_{6} \overline{3} = \overline{0} \text{ and } \overline{3} \times_{6} \overline{4} = \overline{0}.$

Ex: Show that the set $R = \{0, 2, 4, 6\}$ is a commutative ring under addition and multiplication modulo 8.

Proof: Let $R = \{0, 2, 4, 6\}$

We prepare composition tables of $+_8$ and \times_8 for R as follows

$+_{8}$	0	2	4	6		\times_8	0	2	4	6	
0	0	2	4	6	-	0	0	0	0	0	
2	2	4	б	0		2	0	4	0	4	
4	4	6	0	2		4	0	0	0	0	
6	6	0	2	4		6	0	4	0	4	

We observe that $+_8$ and \times_8 are binary operations in *R*, are also commutative and associative in *R*. $\therefore R \subseteq \mathbb{Z}$.

Additive inverse of 0,2,4 & 6 are 0,6,4 & 2 in *R*.

 $0 \in R$ is an additive identity. As $R \subseteq \mathbb{Z}$.

 \therefore Distributive laws hold in *R*.

 \therefore (*R*, +₈,×₈) is a commutative ring is proved.

Ex: Show that $\mathbb{Z}_7 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$ forms a ring under addition and multiplication modulo 7. **Proof:** Let $\mathbb{Z}_7 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$

We	We prepare composition tables of $+_7 \& \times_7$ for \mathbb{Z}_7 as follows														
+7	$\overline{0}$	1	$\overline{2}$	3	4	5	6	h hirra,	Ō	1	$\overline{2}$	3	$\overline{4}$	5	6
ō	$\overline{0}$	1	2	3	4	5	6	0	Ō	ō	Ō	Ō	$\overline{0}$	$\overline{0}$	$\overline{0}$
1	1	2	3	4	5	6	$\overline{0}$	ī	ō	1	2	3	4	5	6
2	$\overline{2}$	3	4	5	6	ō	1	2	ō	2	4	6	1	3	5
3	3	4	5	6	ō	1	2	3	ō	3	6	2	5	ī	4
$\overline{4}$	4	5	6	ō	1	2	3	4	ō	$\overline{4}$	ī	5	2	6	3
5	5	6	ō	1	2	3	4		5 0	5	3	1	6	4	$\overline{2}$
6	6	$\overline{0}$	1	2	3	4	5	- A	5 0	6	5	4	3	2	ī

We observe that $+_7$ and \times_7 are binary operations in \mathbb{Z}_7 , are also commutative and associative in \mathbb{Z}_7 . $: \mathbb{Z}_7 \subseteq \mathbb{Z}$.

Additive inverse of $\overline{0}$, $\overline{1}$, $\overline{2}$, $\overline{3}$, $\overline{4}$, $\overline{5}$, $\overline{6}$ are $\overline{0}$, $\overline{6}$, $\overline{5}$, $\overline{4}$, $\overline{3}$, $\overline{2}$, $\overline{1}$ respectively in \mathbb{Z}_7 . $0 \in \mathbb{Z}_7$ is an additive identity and $\overline{1} \in \mathbb{Z}_7$ is a multiplicative identity in \mathbb{Z}_7 .

As $\mathbb{Z}_7 \subseteq \mathbb{Z}$: distributive laws hold in \mathbb{Z}_7 .

Hence, \mathbb{Z}_7 forms a commutative ring under $+_7$ and \times_7 is proved.

Ex: In the ring $(\mathbb{Z}_{10}, +_{10}, \times_{10})$, find all divisors of zero.

Solution: Let, $(\mathbb{Z}_{10}, +_{10}, \times_{10})$ be a ring with zero element $\overline{0}$.

We	prep	are tab.	le for \times_1	$_0$ of \mathbb{Z}_1	₀ as fol	lows	17 17	त्वति	9671			
>	< ₁₀	ō	ī	2	3	4	5	6	7	8	9	-
	ō	$\overline{0}$	$\overline{0}$	ō	ō	Ō	Ō	ō	$\overline{0}$	$\overline{0}$	$\overline{0}$	
	1	$\overline{0}$	ī	2	3	4	5	6	7	8	9	
	2	$\overline{0}$	$\overline{2}$	$\overline{4}$	6	8	$\overline{0}$	$\overline{2}$	4	6	8	J
	3	$\overline{0}$	3	$\overline{6}$	9	$\overline{2}$	5	8	ī	$\overline{4}$	7	
	4	$\overline{0}$	$\overline{4}$	8	$\overline{2}$	6	$\overline{0}$	$\overline{4}$	8	$\overline{2}$	6	
	5	$\overline{0}$	5	$\overline{0}$	5	$\overline{0}$	5	$\overline{0}$	5	$\overline{0}$	5	
	6	$\overline{0}$	6	$\overline{2}$	8	$\overline{4}$	$\overline{0}$	6	$\overline{2}$	8	$\overline{4}$	

MTH-302(A): GROUP THEORY

	7	$\overline{0}$	7	4	Ī	8	5	2	9	6	3	
	8	$\overline{0}$	8	6	$\overline{4}$	$\overline{2}$	$\overline{0}$	8	6	$\overline{4}$	$\overline{2}$	
	9	$\overline{0}$	<u>9</u>	8	3	$\overline{6}$	5	$\overline{4}$	3	$\overline{2}$	1	
	From the	e table, v	we obse	erve that	at $\overline{2} \neq \overline{0}$	$\overline{0}, \overline{4} \neq \overline{0}$	$,\overline{5}\neq\overline{0},$					
	$\overline{6} \neq \overline{0}, \overline{8}$	$\neq \overline{0}$ b	ut $\overline{2} \times \overline{2}$	$10\overline{5} =$	$\overline{0}, \overline{4} \times_1$	$\bar{5} = 1$	$\bar{0}, \bar{5} \times_{10}$	$\overline{6} = \overline{0}$	and $\overline{5}$	$X_{10} \bar{8}$	$=\overline{0}.$	
ſ	∴ <u>2</u> , <u>4</u> , <u>5</u> ,	6 & 8 a	re the z	zero div	isors in	a give	n ring.			10		
												==
Ex: 0	On the set	Z of int	egers, d	lefine b	inary o	peration	ns 🕀 an	d 🖸 as				
	$a \oplus b =$	a + b	– 1 and	$a \odot b$	= a +	b – ak	∀a,b	∈ ℤ.				
	Show the	at (ℤ,⊕	, O) is	a comn	nutative	e ring w	vith iden	tity eler	ment 0.			
Proo	f : I) <u>(ℤ, ⊕</u>) is an a	belian	group:-								
	Let, <i>a</i> , <i>b</i> ,	$c \in \mathbb{Z}$	5		1000		લ एक		800			
	1) a ⊕ b	b = a + b	<i>b</i> – 1	$\in \mathbb{Z}$	∀ a,b	∈ ℤ.		9 Q.		3. N		
	∴ ⊕ is a	binary	operati	on in Z	_			(¹ 9	$\lambda \setminus$	a		
	2) Const	ider, a	$\oplus(b \oplus$	c) = c	ι⊕(b -	+ c - 1)		2			
			6	= a	+ <i>b</i> +	<i>c</i> − 1 −	1 .	2	E			
			E	= (0	i + b -	(1) + c	-1		3			
		~ (1	h m	= (a)	i + b - b	- 1)⊕c	Va han					
	÷Φ	b u d	$D \oplus 0$	c) = (c)	$(\oplus b)$	D C		2	5			
	$3) \Delta s a$	тэ assov	$a \pm 1$ -	– 1 – c	r = 1.6	Pa V	$a \in \mathbb{Z}$		3			
) ASU • 1 ($ = \pi i s a t$	u i denti	tv elem	u = 1	lor D	αсш	1	3			
	$(1) \Lambda s a$		\rightarrow = 2		7 with		5-		24			
	(4) AS u	(2 - a)		$-u \in$	_ 1 _	1 - (2)	-a	a S	\$?,]			
	· 2	(2 - u)	-u	2 - u	-1 -	1 - (2	- u) (Ju				
	(1) (2)	-u is all $-u$ h -	$a \perp b$	-1-h	$\mu \mu$	1 - h	Da V	ahe	77			
) Asu • Ф;	$\Psi D =$	u + b =	-1 - l) + u -		Uu v	<i>u, D</i> C	Ш.			
	• (7)	Φ) is an	abolia		पिथित	य ।स	ाध्द ाव	न्दातः	मानतः			-
	(<u>ш</u> , ($b - a \perp$	b = a	$h \subset \mathbb{Z}$	v. ∀ah	c 7/			_			
	Consider	u = u +	b = u		$(h \pm c)$	-bc						
	Constact	i, u O(I	5 (5)	= a + a + a + a + a + a + a + a + a + a	h + c -	-bc	a(b+c)	-hc				
				= a + i	b + c - b + c - b	bc - c	a(b + c) ab - ac	+ abc	(1)			
	& (a ($(\Im b) \odot b$	c = (a	+ b - b	ab)⊙c	2						
			= a -	+ b — a	b + c -	- (a +	b-ab	C				
			=a -	+ b — a	b+c	- ac –	bc + al	DC	· (2	()		
	By (1)	and (2)	_a ⊙(l	$b \odot c$	= (a (⊙b) ⊙	С					
	\therefore \odot	1s assoc	iative in	n ℤ.								

3) Consider,
$$a \odot (b \oplus c) = a \odot (b + c - 1)$$

 $= a + b + c - 1 - a(b + c - 1)$
 $= a + b + c - 1 - ab - ac + a$
 $= 2a + b + c - ab - ac - 1$ ---- [3]
& $(a \odot b) \oplus (a \odot c) = (a + b - ab) \oplus (a + c - ac)$
 $= a + b - ab + a + c - ac - 1$
 $= 2a + b + c - ab - ac - 1$ ----- [4]
By [3] and [4] $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$
Similarly $(a \oplus b) \odot c = (a \odot c) \oplus (b \odot c) \forall a, b, c \in \mathbb{Z}$
i.e. distributive laws hold in \mathbb{Z} . $\therefore (\mathbb{Z}, \oplus, \odot)$ is a ring.
4) As $a \odot b = a + b - ab = b + a - ba = b \odot a \forall a, b \in \mathbb{Z}$.
 $\therefore \odot$ is commutative in \mathbb{Z} .
5) As $0 \in \mathbb{Z}$ with $a \odot 0 = a + 0 - a \cdot 0 = a = 0 \odot a \forall a \in \mathbb{Z}$
 $\therefore \overline{0} \in \mathbb{Z}$ is an identity element in \mathbb{Z} .
Hence, $(\mathbb{Z}, \oplus, \odot)$ is a commutative ring with identity element 0 is proved.

Ex: Prove that a non-zero element \overline{m} in $(\mathbb{Z}_n, +_n, \times_n)$ is a zero divisor if and only if m is not relatively prime to n, where n > 1.

Proof: Suppose a non-zero element *m* is a zero divisor.

 $\therefore \overline{m}$ is a zero divisor.

Ex: Show that $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, ..., \overline{(n-1)}\}\$ the set of residue classes of integers modulo n, forms a commutative ring with identity element underaddition modulo $n(+_n)$ and multiplication modulo $n(\times_n)$ operations.

Proof : I) $(\mathbb{Z}_n, +_n)$ is an abelian group:-1) As $\bar{a} +_n \bar{b} = \overline{a + b} \in \mathbb{Z}_n \quad \forall \bar{a}, \bar{b} \in \mathbb{Z}_n$ \therefore +_n is a binary operation in \mathbb{Z}_n . 2) As $\bar{a} +_n (\bar{b} +_n \bar{c}) = \bar{a} +_n (\overline{b+c})$ $=\overline{a+(b+c)}$ $=\overline{(a+b)+c}$ $=\overline{(a+b)}+_{n}\overline{c}$ $= (\bar{a} +_n \bar{b}) +_n \bar{c} \quad \forall \ \bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_n$ \therefore +_n is associative in \mathbb{Z}_n . 3) As $\bar{a} +_n \bar{0} = \overline{a + 0} = \bar{a} = \bar{0} +_n \bar{a} \quad \forall \ \bar{a} \in \mathbb{Z}_n$ $\therefore \overline{0}$ is an additive identity in \mathbb{Z}_n . 4) For $\bar{a} \in \mathbb{Z}_n \implies \exists (n-a) \in \mathbb{Z}_n$ with $\overline{a} +_n \overline{(n-a)} = \overline{a + (n-a)} = \overline{0} = \overline{(n-a)} +_n \overline{a}$ $\therefore \overline{n-a}$ is an additive inverse in \mathbb{Z}_n . 5) As $\bar{a} +_n \bar{b} = \overline{a + b} = \overline{b} + \overline{a} = \overline{b} +_n \overline{a} \quad \forall \ \bar{a}, \bar{b} \in \mathbb{Z}_n$ $\therefore +_n$ is commutative in \mathbb{Z}_n . II) As $\bar{a} \times_n \bar{b} = \bar{a}\bar{b} \in \mathbb{Z}_n \quad \forall \ \bar{a}, \bar{b} \in \mathbb{Z}_n$ $\therefore \times_n$ is a binary operation in \mathbb{Z}_n . Consider, $\bar{a} \times_n (\bar{b} \times_n \bar{c}) = \bar{a} \times_n \bar{bc} = \bar{a}(\bar{bc}) = \bar{(ab)c}$ $= \overline{ab} \times_n \overline{c} = (\overline{a} \times_n \overline{b}) \times_n \overline{c}$ $\forall \bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_n$ $\therefore \times_n$ is associative in \mathbb{Z}_n . III) For $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_n$ and the set of th Consider, $\bar{a} \times_n (\bar{b} +_n \bar{c}) = \bar{a} \times_n (\bar{b} + c)$ $= \overline{a(b+c)}$ $= \overline{ab + ac}$ $= \overline{ab} + \overline{ac}$ $= (\bar{a} \times_{n} \bar{b}) +_{n} (\bar{a} \times_{n} \bar{c})$ Similarly, $(\bar{a} +_n \bar{b}) \times_n \bar{c} = (\bar{a} \times_n \bar{c}) +_n (\bar{b} \times_n \bar{c})$

 \therefore distributive laws holds in \mathbb{Z}_n .

Consider, $a \odot (b + c) = \frac{a(b+c)}{2} = \frac{ab}{2} + \frac{ac}{2} = (a \odot b) + (a \odot c)$ Similarly, $(a + b) \odot c = (a \odot c) + (b \odot c)$ *i.e.* distributive laws holds in *R*.

IV) As $a \odot b = \frac{ab}{2} = \frac{ba}{2} = b \odot a \forall a, b \in R$
\therefore \odot is commutative in <i>R</i> .
V) As $a \odot 2 = \frac{a(2)}{2} = a = 2 \odot a \forall a \in R$
\therefore 2 is an identity element in R.
Hence $(R, +, \Theta)$ is commutative ring with identity element 2
is proved.
Integral Domain: A commutative ring without zero divisors is called an
Integral domain.
Field: A commutative ring with identity element and having inverse to all
non-zero elements is called a Field.
Division Ring (or Skew field): A ring with identity element is called a Division ring or skew field.
forms an integral domain under usual addition and multiplication of complex numbers. Proof: I) $(\mathbb{Z}[i], +)$ is an abelian group: 1) As $(a + ib) + (c + id) = (a + c) + i(b + d) \in \mathbb{Z}[i]$ $\forall a + ib, c + id \in \mathbb{Z}[i] \therefore + \text{ is a binary operation in } \mathbb{Z}[i].$ 2) As $(a + ib) + [(c + id) + (e + if)]$ = (a + ib) + (c + e) + i(d + f) = [(a + c) + e] + i[(b + d) + f] = [(a + c) + e] + i[(b + d) + f] = [(a + c) + i(b + d) + (e + if)] $= [(a + ib) + (c + id)] + (e + if) \forall a + ib, c + id, e + if \in \mathbb{Z}[i]$ <i>i.e.</i> + is associative in $\mathbb{Z}[i].$ 3) As $(a + ib) + (0 + i0) = a + ib = (0 + 0i) + (a + ib)$ $\forall a + ib \in \mathbb{Z}[i]$
$\therefore 0 + i0$ is an identity element in $\mathbb{Z}[i]$.
4) As $(a + ib) + (-a - ib) = 0 + i0 = (-a - ib) + (a + ib)$
$\therefore -a - ib \text{ is an inverse of } a + ib \text{ in } \mathbb{Z}[i].$
5) As $(u + ib) + (c + ia) = (u + c) + i(b + a)$ - $(c + a) + i(d + b)$
$= (c + id) + i(a + ib) \forall a + ib c + id \in \mathbb{Z}[i]$
\therefore + is commutative in $\mathbb{Z}[i]$.

II) 1) As
$$(a + ib)(c + id) = (ac - bd) + i(ad + bc) \in \mathbb{Z}[i] \forall a + ib, c + id \in \mathbb{Z}[i]$$

 $\therefore \cdot is a binary operation in \mathbb{Z}[i].$
2) For $(a + ib), (c + id), (e + if) \in \mathbb{Z}[i]$
Consider $(a + ib)[(c + id)(e + if)]$
 $= (a + ib)[(c - df) + i(cf + de)]$
 $= (ace - adf - bcf - bde) + i(acf + ade + bce - bdf)$
 $= [(ac - bd) + i(ad + bc)](e + if)$
 $\Rightarrow [(ac - bd) + i(ad + bc)](e + if)$
 $\therefore \cdot is a associative operation in \mathbb{Z}[i].$
III) For $a + ib, c + id \& e + if \in \mathbb{Z}[i]$
Consider, $(a + ib)[(c + id) + (e + if)]$
 $= (ac + ae - bd - bf) + i(ad + af + bc + be)$
 $= (ac - bd) + i(ad + bc) + (ae - bf) + i(af + be)$
 $= (ac - bd) + i(ad + bc) + (ae - bf) + i(af + be)$
 $= (a + ib)(c + id) + (a + ib)(e + if)$
Similarly $[(a + ib) + (c + id)](e + if) = (a + ib)(e + if) + (c + id)(e + if)$
 $i.e.$ distributive laws holds in $\mathbb{Z}[i]$.
IV) As $(a + ib)(c + id) = (ac - bd) + i(ad + bc)$
 $= (ca - db) + i(da + cb)$
 $= (c + id)(a + ib) \forall a + ib, c + id \in \mathbb{Z}[i]$
 $\therefore \cdot is commutative in \mathbb{Z}[i]$.
V) If $(a + ib)(c + id) = 0 + i0$
 $\Rightarrow either a + ib = 0 + i0$ or $c + id = 0 + i0$

Ex. Show that $R = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ is an integral domain under usual addition and multiplication of complex numbers.

Proof: I) (R, +) is an abelian group:

1) As
$$(a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2} \in R$$

 $\forall a + b\sqrt{2}, c + d\sqrt{2} \in R : + \text{ is a binary operation in } R.$
2) As $(a + b\sqrt{2}) + [(c + d\sqrt{2}) + (e + f\sqrt{2})]$
 $= (a + b\sqrt{2}) + (c + e) + (d + f)\sqrt{2}$
 $= [a + (c + e)] + [b + (d + f)]\sqrt{2}$
 $= [(a + c) + e] + [(b + d) + f]\sqrt{2}$
 $= (a + c) + (b + d)\sqrt{2} + (e + f\sqrt{2})$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR COLLEGE, PIMPALNER.

$$= [(a + b\sqrt{2}) + (c + d\sqrt{2})] + (e + f\sqrt{2})$$

$$\forall a + b\sqrt{2}, c + d\sqrt{2}, e + f\sqrt{2} \in R$$
i. e. + is associative in *R*.
3) As $(a + b\sqrt{2}) + (0 + 0\sqrt{2}) = a + b\sqrt{2} = (0 + 0\sqrt{2}) + (a + b\sqrt{2})$

$$\forall a + b\sqrt{2} \in R$$

$$\therefore 0 + 0\sqrt{2} \text{ is an identity element in } R.$$
4) As $(a + b\sqrt{2}) + (-a - b\sqrt{2}) = 0 + 0\sqrt{2} = (-a - b\sqrt{2}) + (a + b\sqrt{2})$

$$\therefore -a - b\sqrt{2} \text{ is an inverse of } a + b\sqrt{2} \text{ in } R.$$
5) As $(a + b\sqrt{2}) + (c + d\sqrt{2})$

$$= (a + c) + (b + d)\sqrt{2}$$

$$= (c + a) + (d + b)\sqrt{2}$$

$$= (c + d\sqrt{2}) + (a + b\sqrt{2}) \forall a + b\sqrt{2}, c + d\sqrt{2} \in R$$

$$\therefore + \text{ is commutative in } R.$$
II) 1) As $(a + b\sqrt{2})(c + d\sqrt{2}) = (ac - bd) + (ad + bc)\sqrt{2} \in R$

$$\forall a + b\sqrt{2}, c + d\sqrt{2} \in R$$

$$\therefore \text{ is a binary operation in } R.$$
2) For $(a + b\sqrt{2})[(c + d\sqrt{2})(e + f\sqrt{2})] \in \mathbb{R}$
Consider $(a + b\sqrt{2})[(c + d\sqrt{2})(e + f\sqrt{2})]$

$$= (ac + 2adf + 2bcf + 2bde) + (acf + ade + bce + 2bdf)\sqrt{2}$$

$$= [(ac + 2bd) + (ad + bc)\sqrt{2}](e + f\sqrt{2})$$

$$= [(a + b\sqrt{2})(c + d\sqrt{2})](e + f\sqrt{2})$$

$$= [(a + b\sqrt{2})(c + d\sqrt{2})](e + f\sqrt{2})$$

$$= (ac + ad\sqrt{2})(c + d\sqrt{2}) + (a + bc)\sqrt{2}$$

$$= (ac + ad\sqrt{2})(c + d\sqrt{2}) + (a + bc)\sqrt{2}$$

$$= (ac + b\sqrt{2})((c + d\sqrt{2}) + (a + bc)\sqrt{2}$$

$$= (ac + b\sqrt{2})((c + d\sqrt{2}) + (a + bc)\sqrt{2}$$

$$= (ac + b\sqrt{2})((c + d\sqrt{2}) + (a + bc)\sqrt{2}$$

$$= (ac + b\sqrt{2})((c + d\sqrt{2}) + (a + bc)\sqrt{2}$$

$$= (ac + bd - bf) + (ad + af + bc + be)\sqrt{2}$$

$$= (ac + bd - bf) + (ad + bc)\sqrt{2}(e + f\sqrt{2})$$

$$= (a + b\sqrt{2})(c + d\sqrt{2}) + (a + b\sqrt{2})(e + f\sqrt{2})$$
Similarly $[(a + b\sqrt{2})(c + d\sqrt{2})](e + f\sqrt{2})$

$$= (a + b\sqrt{2})(c + d\sqrt{2}) + (c + d\sqrt{2})(e + f\sqrt{2})$$

$$= (a + b\sqrt{2})(c + d\sqrt{2}) + (c + d\sqrt{2})(e + f\sqrt{2})$$

$$= (a + b\sqrt{2})(c + d\sqrt{2}) + (c + d\sqrt{2})(e + f\sqrt{2})$$

$$= (a + b\sqrt{2})(c + d\sqrt{2}) + (c + d\sqrt{2})(e + f\sqrt{2})$$

$$= (a + b\sqrt{2})(c + f\sqrt{2}) + (c + d\sqrt{2})(e + f\sqrt{2})$$

$$= (a + b\sqrt{2})(c + f\sqrt{2}) + (c + d\sqrt{2})(e + f\sqrt{2})$$

$$= (a + b\sqrt{2})(c + f\sqrt{2}) + (c + d\sqrt{2})(e + f\sqrt{2})$$

$$= (a + b\sqrt{2})(e + f\sqrt{2}) + (c + d\sqrt{2})(e + f\sqrt{2})$$

$$= (a + b\sqrt{2})(e + f\sqrt{2}) + (c + d\sqrt{2})(e + f\sqrt{2})$$

$$= (a + b\sqrt{2})(e + f\sqrt{2}) + (c + d\sqrt{2})(e + f\sqrt{2})$$

$$= (a + b\sqrt{2})(e + f\sqrt{2}) + (c + d\sqrt{2})(e + f\sqrt{2})$$

$$= (a + b\sqrt{2})(e + f\sqrt{2}) +$$

 $-5^{}$

IV) As
$$(a + b\sqrt{2})(c + d\sqrt{2}) = (ac - bd) + (ad + bc)\sqrt{2}$$

 $= (ca - db) + (da + cb)\sqrt{2}$
 $= (c + d\sqrt{2})(a + b\sqrt{2}) \quad \forall a + b\sqrt{2}, c + d\sqrt{2} \in R$
 \therefore is commutative in R .
V) If $(a + b\sqrt{2})(c + d\sqrt{2}) = 0 + 0\sqrt{2}$
 \Rightarrow either $a + b\sqrt{2} = 0 + 0\sqrt{2}$ or $c + d\sqrt{2} = 0 + 0\sqrt{2}$
 $i.e. (R, +, \cdot)$ is a commutative ring without zero divisors.
 $\therefore (R, +, \cdot)$ is an integral domain is proved.

Ex: Show that $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\}$ is an integral domain under usual addition and multiplication of complex numbers.

Proof: 1)
$$(\mathbb{Z}[\sqrt{-5}], +)$$
 is an abelian group:
1) As $(a + b\sqrt{-5}) + (c + d\sqrt{-5}) = (a + c) + (b + d)\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$
 $\forall a + b\sqrt{-5}, c + d\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$
 \therefore + is a binary operation in $\mathbb{Z}[\sqrt{-5}]$.
2) As $(a + b\sqrt{-5}) + [(c + d\sqrt{-5}) + (e + f\sqrt{-5})]$
 $= (a + b\sqrt{-5}) + (c + e) + (d + f)\sqrt{-5}$
 $= [a + (c + e)] + [b + (d + f)]\sqrt{-5}$
 $= [(a + c) + e] + [(b + d) + f]\sqrt{-5}$
 $= [(a + c) + (b + d)\sqrt{-5} + (e + f\sqrt{-5})]$
 $= [(a + b\sqrt{-5}) + (c + d\sqrt{-5})] + (e + f\sqrt{-5})$
 $= [(a + b\sqrt{-5}) + (c + d\sqrt{-5})] + (e + f\sqrt{-5})$
 $\forall a + b\sqrt{-5}, c + d\sqrt{-5}, e + f\sqrt{-5} \in \sqrt{-5}]$
i. e. + is associative in $\mathbb{Z}[\sqrt{-5}]$.
2) As $(a + b\sqrt{-5}) + (0 + 0\sqrt{-5})$ and the determined of the equation of the equation
$$\forall a + b\sqrt{-5}, c + d\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$$
II) 1) As $(a + b\sqrt{-5})(c + d\sqrt{-5}) = (ac - bd) + (ad + bc)\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$
 $\forall a + b\sqrt{-5}, c + d\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$
2) For $(a + b\sqrt{-5}), (c + d - 5), (e + f\sqrt{-5}) \in \mathbb{Z}[\sqrt{-5}]$.
Consider $(a + b\sqrt{-5})[(c + d\sqrt{-5})(e + f\sqrt{-5})]$
 $= (a + b\sqrt{-5})[(c - 5df) + (cf + de)\sqrt{-5}]$
 $= (ace - 5adf - 5bcf - 5bde) + (acf + ade + bce - 5bdf)\sqrt{-5}$
 $= [(ac - 5bd) + (ad + bc)\sqrt{-5}](e + f\sqrt{-5})$
 $= [(ac - 5bd) + (ad + bc)\sqrt{-5}](e + f\sqrt{-5})$
 $= [(a + b\sqrt{-5})(c + d\sqrt{-5})](e + f\sqrt{-5})$
 $\therefore \cdot is a associative operation in \mathbb{Z}[\sqrt{-5}]$.
Consider, $(a + b\sqrt{-5})(c + d\sqrt{-5}) + (e + f\sqrt{-5})$
 $= (ac + bd - 5)[(c + d\sqrt{-5}) + (e + f\sqrt{-5})]$
 $= (ac + bd - 5)[(c + d\sqrt{-5}) + (e + f\sqrt{-5})]$
 $= (ac - bd) + (ad + bc)\sqrt{-5} + (ac - bf) + (af + be)\sqrt{-5}$
 $= (ac - bd) + (ad + bc)\sqrt{-5} + (ac - bf) + (af + be)\sqrt{-5}$
 $= (a + b\sqrt{-5})(c + d\sqrt{-5}) + (a + b\sqrt{-5})(e + f\sqrt{-5})$
Similarly $[(a + b\sqrt{-5}) + (c + d\sqrt{-5})](e + f\sqrt{-5})$
 $i. e. distributive laws holds in \mathbb{Z}[\sqrt{-5}].$
IV) As $(a + b\sqrt{-5})(c + d\sqrt{-5}) = (ac - bd) + (ad + bc)\sqrt{-5}$
 $= (c + db) + (da + cb)\sqrt{-5}$
 $\Rightarrow e(c + d\sqrt{-5}) = 0 + 0\sqrt{-5}$
 $\Rightarrow either a + b\sqrt{-5} = 0 + 0\sqrt{-5}$ or $c + d\sqrt{-5} = 0 + 0\sqrt{-5}$
 $i. e. (\mathbb{Z}[\sqrt{-5}], +, \cdot)$ is an integral domain is proved.

Ex. Let \mathbb{R} be the set of all real numbers. Show that $\mathbb{R} \times \mathbb{R}$ forms a field under addition and multiplication defined by (a, b) + (c, d) = (a + c, b + d)& $(a, b) \cdot (c, d) = (ac - bd, ad + bc)$. **Proof**: I) $(\mathbb{R} \times \mathbb{R}, +)$ is an abelian group: 1) As $(a, b) + (c, d) = (a + c, b + d) \in \mathbb{R} \times \mathbb{R}$ $\forall (a, b), (c, d) \in \mathbb{R} \times \mathbb{R}$ \therefore + is a binary operation in $\mathbb{R} \times \mathbb{R}$. 2) As (a, b) + [(c, d) + (e, f)]= (a, b) + [(c, d) + (e, f)]= (a, b) + (c + e, d + f)= (a + c + e, b + d + f)= (a + c, b + d) + (e, f) $= [(a,b) + (c,d)] + (e,f) \forall (a,b), (c,d), (e,f) \in \mathbb{R} \times \mathbb{R}$ *i.e.* + is associative in $\mathbb{R} \times \mathbb{R}$. 3) As $(a, b) + (0, 0) = (a, b) = (0, 0) + (a, b) \forall (a, b) \in \mathbb{R} \times \mathbb{R}$ \therefore (0,0) is an identity element in $\mathbb{R} \times \mathbb{R}$. 4) As (a, b) + (-a, -b) = (0, 0) = (-a, -b) + (a, b) \therefore (-a, -b) is an inverse of (a, b) in $\mathbb{R} \times \mathbb{R}$. 5) As (a, b) + (c, d) = (a + c, b + d)= (c + a, d + b) $= (c, d) + (a, b) \quad \forall (a, b), (c, d) \in \mathbb{R} \times \mathbb{R}$ \therefore + is commutative in $\mathbb{R} \times \mathbb{R}$. II) 1) As (a, b). $(c, d) = (ac - bd, ad + bc) \in \mathbb{R} \times \mathbb{R} \quad \forall (a, b), (c, d) \in \mathbb{R} \times \mathbb{R}$ \therefore · is a binary operation in $\mathbb{R} \times \mathbb{R}$. 2) For $(a, b), (c, d) \& (e, f) \in \mathbb{R} \times \mathbb{R}$ Consider (a, b). [(c, d), (e, f)]= (a, b). [(ce - df, cf + de)]= (ace - adf - bcf - bde, acf + ade + bce - bde)= (ac - bd, ad + bc). (e, f)= [(a,b).(c,d)].(e,f) \therefore · is a associative operation in $\mathbb{R} \times \mathbb{R}$. III) For $(a, b), (c, d) \& (e, f) \in \mathbb{R} \times \mathbb{R}$ Consider (a, b). [(c, d) + (e, f)]= (a, b).(c + e, d + f)= (ac + ae - bd - bf, ad + af + bc + be)= (ac - bd, ad + bc) + (ae - bf, af + be)= (a, b). (c, d) + (a, b). (e, f)

Similarly
$$[(a, b) + (c, d)]$$
. $(e, f) = (a, b)(e, f) + (c, d)(e, f)$
i. e. distributive laws holds in $\mathbb{R} \times \mathbb{R}$.
IV) As (a, b) . $(c, d) = (ac - bd, ad + bc)$
 $= (ca - db, da + cb)$
 $= (ca - db, da + cb)$
 $= (c, d)$. $(a, b) \lor (a, b), (c, d) \in \mathbb{R} \times \mathbb{R}$
 \therefore is commutative in $\mathbb{R} \times \mathbb{R}$.
V) As (a, b) . $(1, 0) = (a, b) = (1, 0)$. $(a, b) \lor (a, b) \in \mathbb{R} \times \mathbb{R}$
 \therefore $(1, 0)$ is a multiplicative identity element in $\mathbb{R} \times \mathbb{R}$.
VI) If $(a, b) \neq (0, 0)$ then $(a, b)^{-1} = (\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2})$.
 (a, b) . $(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}) = (\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2})$. $(a, b) = (1, 0)$
i.e. every non-zero element has inverse in $\mathbb{R} \times \mathbb{R}$
 \therefore $(\mathbb{R} \times \mathbb{R}, +, \cdot)$ is a commutative ring with unity and every non-zero element has inverse in it.
 \therefore $(\mathbb{R} \times \mathbb{R}, +, \cdot)$ is a field.
Ex: For $n > 1$, Prove that \mathbb{Z}_n is an integral domain iff n is prime.
Proof: Suppose \mathbb{Z}_n is an integral domain. We have to prove n is prime.
If n is not prime then $n = mt$ for $1 \le m \le n \& 1 < t < n$.
 $\therefore \overline{n} = \overline{mt}$
 $\therefore \overline{m} = \overline{0}$ or $\overline{t} = \overline{0}$ $\therefore \mathbb{Z}_n$ is an integral domain
 $\therefore n \mid m$ and $n \mid t$ which contradicts to $1 < m < n \& 1 < t < n$.
Hence, n is prime.
For $\overline{a} \& \overline{b} \in \mathbb{Z}_n$ with $\overline{a} \times_n \overline{b} = \overline{0}$ $\therefore \overline{ab} = \overline{0}$
 $\therefore n \mid a \text{ or } n \mid \overline{b} = 0$ $\therefore \overline{a} = \overline{0}$
 $\therefore \overline{a} = \overline{0}$ or $\overline{b} = \overline{0}$
i.e. \mathbb{Z}_n has no zero divisors.
Hence, \mathbb{Z}_n is an integral domain is proved.

Ex: Prove that commutative ring $(R, +, \cdot)$ is an integral domain iff cancellation laws holds in *R*. **Proof:** Suppose, a commutative ring $(R, +, \cdot)$ is an integral domain.

For $a, b, c \in R$ Let ab = ac with $a \neq 0 \therefore a(b - c) = 0$ $\therefore b - c = 0 \quad \because R$ is an I.D

 $\therefore h = c$ *i.e.* cancellation laws holds in *R*. Conversely, Suppose cancellation laws hold in *R*. Let ab = 0 for $a, b \in R$ If a = 0, then we are through. If $a \neq 0$, then ab = a0 \therefore b = 0by cancellation law *i.e.* $ab = 0 \Rightarrow either a = 0 \text{ or } b = 0$ \therefore (*R*, +,·) is an integral domain is proved. **Ex:** Prove that a commutative ring $(R, +, \cdot)$ is an integral domain if and only if $a, b \in R, ab = 0 \Rightarrow either a = 0 or b = 0.$ **Proof**: Suppose, a commutative ring $(R, +, \cdot)$ is an integral domain. \therefore cancellation laws holds in *R*. For $a, b \in R$ Suppose, ab = 0If a = 0, then we are through. But if $a \neq 0$ then $ab = 0 \Rightarrow ab = a0 \Rightarrow b = 0$ by cancellation law $\therefore ab = 0 \Rightarrow either a = 0 or b = 0$ Conversely, Suppose For $a, b \in R$ $\therefore ab = 0 \Rightarrow either a = 0 or b = 0$ *i.e.* R has no zero divisors. \therefore (R, +, ·) is an integral domain is proved. Ex: Prove that every field is an integral domain but converse may not be true. **Proof**: Let, $(F, +, \cdot)$ be any field. *i.e.* $(F, +, \cdot)$ is a commutative ring with identity element 1 and every non-zero element has inverse in it. For $a, b \in F$ Suppose ab = 0 (1) If $a \neq 0$ then a^{-1} is exists. \therefore F is field. Pre-multiplying by a^{-1} to equation (1), we get $a^{-1}(ab) = a^{-1}0$ $\Rightarrow (a^{-1}a)b = 0$ $\Rightarrow 1 \cdot b = 0$ $\Rightarrow b = 0$ \therefore (*F*, +, ·) has no zero divisors.

Hence, $(F, +, \cdot)$ is an integral domain.

Hence every field is an integral domain is proved. But converse may not be true.*e*. *g*. $(\mathbb{Z}, +, \cdot)$ is an integral domain but not a field.

$$\therefore 2^{-1} = \frac{1}{2} \notin \mathbb{Z}.$$

Ex: Prove that every finite integral domain is a field. **Proof**: Let $(R, +, \cdot)$ be any finite integral domain. *i.e.* $(R, +, \cdot)$ is a commutative ring without zero divisors. As R is a finite say $R = \{a_1, a_2, ..., a_n\}$ where $a_1, a_2, ..., a_n$ are distinct elements of R. For $a \in R$ with $a \neq 0$ \therefore $aa_1, aa_2, aa_3, \dots, aa_n$ are the distinct elements of R. $\therefore R = \{aa_1, aa_2, aa_3, \dots, aa_n\}$ As $a \in R$ \therefore $a = aa_k$ for some k. <u>Claim</u>: a_k is an identity element. For $a_j \in R \Rightarrow a_j = a \cdot a_r$ for some r. $= (a \cdot a_k)a_r$ $=(a_k a)a_r$ $=a_k(aa_r)$ $\therefore a_j = a_k \cdot a_j$ \therefore a_k is an identity element. Denoted by $a_k = 1$ $\therefore a_k = 1 \in R. \Rightarrow 1 = a \cdot a_s$ for some S. \therefore Every non-zero element has inverse in *R*. \therefore (R, +, ·) is a field. Hence every finite integral domain is a field is proved. **Ex**: Prove that $(\mathbb{Z}, +, \cdot)$ is an integral domain but not field. **Proof**: Let $(\mathbb{Z}, +, \cdot)$ is a commutative ring with identity element 1.

For $a, b \in \mathbb{Z}$ with $ab = 0 \Rightarrow either a = 0$ or b = 0*i.e.* \mathbb{Z} has no zero divisors. $\therefore (\mathbb{Z}, +, \cdot)$ is an integral domain. But for any non-zero integer *n* has multiplicative inverse $\frac{1}{n} \notin \mathbb{Z}$ $\therefore (\mathbb{Z}, +, \cdot)$ is not a field.

Ex. If p is prime number, then show that \mathbb{Z}_p is an integral domain. **Proof**: Let p is prime.

For $\bar{a} \& \bar{b} \in \mathbb{Z}_p$ with $\bar{a} \times_p \bar{b} = \bar{0}$ $\therefore \bar{ab} = \bar{0}$

 $\therefore p \mid a \text{ or } p \mid b \quad \because p \text{ is prime.}$ $\therefore \overline{a} = \overline{0} \text{ or } \overline{b} = \overline{0}$ $i. e. \mathbb{Z}_p \text{ has no zero divisors.}$ Hence \mathbb{Z}_p is an integral domain is proved.

Ex. In the ring $(\mathbb{Z}_7, +_7, \times_7)$, find

i) - $(\overline{4} \times_7 \overline{6})$, ii) $\overline{3} \times_7 (\overline{-6})$, iii) $(\overline{-5}) \times_7 \overline{(-5)}$,

iv) Units in \mathbb{Z}_7 , v) additive inverse of $\overline{6}$, vi) zero divisors.

Is \mathbb{Z}_7 a field or an integral domain? Justify.

Proof: Let $(\mathbb{Z}_7, +_7, \times_7)$ be a ring

We prepare composition tables of $+_7$ & \times_7 for \mathbb{Z}_7 as follows

1	. 1		1				/	/	/							
$+_{7}$	$\overline{0}$	Ī	2	3	4	5	6		X_7	ō	1	2	3	$\overline{4}$	$\overline{5}$	6
$\overline{0}$	ō	1	2	3	4	5	6		Ō	ō	Ō	ō	ō	Ō	$\overline{0}$	ō
1	ī	2	3	4	5	6	ō		1	ō	1	2	3	$\overline{4}$	5	6
2	2	3	4	5	6	ō	1	K	2	ō	2	4	6	1	3	5
3	3	4	5	6	ō	1	2	R	3	ō	3	6	$\overline{2}$	5	ī	4
$\overline{4}$	4	5	6	$\overline{0}$	1	2	3	2	4	ō	<u>4</u>	ī	5	2	6	3
5	5	6	$\overline{0}$	ī	2	3	4	The	5	ō	5	3	ī	6	$\overline{4}$	2
6	6	$\overline{0}$	ī	2	3	4	5	N.	6	ō	6	5	4	3	$\overline{2}$	1
	- V						1000		-							

In \mathbb{Z}_7 , $\overline{0} \in \mathbb{Z}_7$ is an additive identity and $\overline{1} \in \mathbb{Z}_7$ is a multiplicative identity in \mathbb{Z}_7 . Additive inverse of $\overline{0}$, $\overline{1}$, $\overline{2}$, $\overline{3}$, $\overline{4}$, $\overline{5}$, $\overline{6}$ are $\overline{0}$, $\overline{6}$, $\overline{5}$, $\overline{4}$, $\overline{3}$, $\overline{2}$, $\overline{1}$ respectively.

i) - $(\bar{4} \times_7 \bar{6}) = - (\bar{3}) = \bar{4}$

ii) $\bar{3} \times_7 (-6) = \bar{3} \times_7 \bar{1} = \bar{3}$

iii) $(\overline{-5}) \times_7 \overline{(-5)} = \overline{2} \times_7 \overline{2} = \overline{4}$

iv) As $\overline{2} \times_7 \overline{4} = \overline{1}$, $\overline{3} \times_7 \overline{5} = \overline{1} \& \overline{6} \times_7 \overline{6} = \overline{1}$ $\therefore \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}$ are the units in \mathbb{Z}_7 .

v) Additive inverse of $\overline{6} = -\overline{6} = \overline{1}$. $\overline{6} + \overline{7}\overline{1} = \overline{0}$

vi) From second table we observe that product of two non-zero

elements is not zero. \therefore No zero divisors in \mathbb{Z}_7 .

We observe that $(\mathbb{Z}_7, +_7, \times_7)$ is a commutative ring with unity

and every non-zero element has inverse in it.

 \therefore (\mathbb{Z}_7 , $+_7$, \times_7) is a field and hence an integral domain.

Ex. Which of the following rings are integral domains?
(i) Z₁₈₇, (ii) Z₆₁, (iii) Z₂₂, (iv) (Z, +, ·).

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR COLLEGE, PIMPALNER.

Solution: By using the result that if p is prime, then \mathbb{Z}_p is an integral domain, we have,

i) $187 = 11 \times 17$ is not prime. $\therefore \mathbb{Z}_{187}$ is not an integral domain.

ii) 61 is prime. $\therefore \mathbb{Z}_{61}$ is an integral domain.

iii) 22 = 2 × 11 is not prime. $\therefore \mathbb{Z}_{22}$ is not an integral domain.

iv) $(\mathbb{Z}, +, \cdot)$ is a commutative ring with unity but has no zero divisors

 \therefore (Z, +, ·) is not an integral domain.

Boolean ring: A ring $(R, +, \cdot)$ is said to be a Boolean ring if $a^2 = a \forall a \in R$. $e.g.(\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}, +_2, \times_2)$ is a Boolean ring. $\because \overline{0}^2 = \overline{0} \times_2 \overline{0} = \overline{0}$ and $\overline{1}^2 = \overline{1} \times_2 \overline{1} = \overline{1}$.

Ex: Prove that every Boolean ring is a commutative ring.

Proof: Let, $(R, +, \cdot)$ be any Boolean ring.

$$\therefore a^{2} = a \quad \forall a \in R.$$

For $a \in R \Rightarrow -a \in R.$

$$\Rightarrow (-a)^{2} = -a$$

$$\Rightarrow a^{2} = -a$$

$$\Rightarrow a^{2} = -a$$

$$\Rightarrow a = -a \quad \forall a \in R \qquad \dots \qquad (1)$$

For $a, b \in R \Rightarrow a + b \in R$

$$\Rightarrow (a + b)^{2} = (a + b)$$

$$\Rightarrow (a + b)(a + b) = (a + b)$$

$$\Rightarrow a(a + b) + b(a + b) = (a + b)$$

$$\Rightarrow a^{2} + ab + ba + b^{2} = a + b$$

$$\Rightarrow ab = -ba$$

$$\Rightarrow ab = -ba$$

$$\Rightarrow ab = ba \qquad by (1)$$

i.e. $(R, +, \cdot)$ is a commutative ring.
Hence every Boolean ring is a commutative ring.

Ex: In a Boolean ring *R*. Show that *i*) $2x = 0 \forall x \in R$, *ii*) $xy = yx \forall x, y \in R$. **Proof:** Let $(R, +, \cdot)$ be any Boolean ring.

$$\therefore x^{2} = x \quad \forall x \in R$$
1) For $x \in R \Rightarrow -x \in R$

$$\Rightarrow (-x)^{2} = -x$$

$$\Rightarrow x^{2} = -x$$

$$\Rightarrow x = -x \quad \dots \quad (1)$$

$$\Rightarrow x + x = 0$$

 $\Rightarrow 2x = 0 \quad \forall x \in R.$ 2) For $x, y \in R \Rightarrow x + y \in R$ $\Rightarrow (x + y)^2 = (x + y)$ $\Rightarrow (x + y)(x + y) = (x + y)$ $\Rightarrow x(x + y) + y(x + y) = (x + y)$ $\Rightarrow x^2 + xy + yx + y^2 = x + y$ $\Rightarrow x + xy + yx + y = x + y$ $\Rightarrow xy = -yx$ $\Rightarrow xy = yx \quad \forall x, y \in R \quad by (1)$ Hence proved.

UNIT 4: RINGS [MCQ'S]

1) If (R, +, .) is a ring	with zero element 0 t	<mark>hen for all a∈ R wi</mark>	$a.0 = 0.a = \dots$
A) a	B) 0	C) 1	D) None of these
2) If Z_p is finite field the	nen p is	A al	SIL I
A) composite	B) even	C) prime	D) odd
3) Ring $(Z_n, +_n, \times_n)$ is	a <mark>n int</mark> egral domain a	nd a field if and on	ly if n is
A) composite	B) even	C) prime	D) odd
4) Ring $(Z_n, +_n, \times_n)$ is	no <mark>t a field if an</mark> d only	y if n is	<u>s</u>
A) composite	B) even	C) prime	D) odd
5) Ring $(Z_n, +_n, \times_n)$ is	a ring with zero divis	sors if and only if n	is
A) composite	B) even	C) prime	D) odd
6) Ring $(Z_n, +_n, \times_n)$ is	a ring without zero d	ivisors if and only	if n is
A) composite	B) even	C) prime	D) odd
7) A non-zero element	m in ring $(Z_n, +_n, \times_n)$) is invertible if an	d only if
A) m and n are a	even	B) m and n are of	dd
C) m and n are n	elatively prime	D) None of these	
8) If p is prime then Z_{I}	, is		
A) Not Ring	B) Boolean Ring	C) Finite Field	D) None of these
9) Every field is			
A) a Boolean rin	ng	B) an Integral do	main
C) Not a ring		D) Not Integral d	lomain
10) Every Integral don	nain is		
A) Not a ring	B) a field	C) May not be a	field D) a Boolean ring

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR COLLEGE, PIMPALNER.

11) Every finite	Integral domain is		
A) Not a	ring B) a field	C) not a field	D) Boolean ring
12) Which of the	e following is a field?		
A) (Z, +,	(Q, +, .) B) $(Q, +, .)$	C) (2Z, +, .)	D) None of these
13) Which of the	e following is a field ?		
A) Z ₁₈	B) Z ₁₉	C) Z ₄₈	D) Z ₁₈₇
14) Which of the	e following is not a field	?	
A) Z ₁₉	B) Z ₂₉	C) Z ₄₁	D) Z ₁₈₇
15) (Z, +, .) is an	integral domain and	WOODS TI. STRO	
A) a field	B) not a field	C) a Boolean ring	g D) None of these
16) (Z, +, .) is	STITUTE COST	राहेब करू	924
A) an inte	gral domain but not a fie	ld B) both an integr	al domain and a field
C) a field	but not an integral doma	in D) neither an inte	gral domain nor a field
17) (2Z, +, .) the	ring of even integers is	Integral domain	
A) with u	nity	B) without unity	E I
C) with ze	ero divis <mark>ors</mark>	D) None of these	3
18) If R is a con	mutative ring and a, b ∈	R then $(a+b)^2 =$	a l
	D > 2 + 1 + 2 + 2	(1) $(2, 1, 2, 1, 1, 1)$	D) None of these
A) a+b	$B) a^{-}+b^{-}+2ab$	C) a +b +ab+ba	D) None of these
A) a+b 19) If R is a ring	(and a, b \in R such that (a	(c) a + b + ab + ba + ba + ba + ba + ba +	en R is
A) a+b 19) If R is a ring A) Ring v	(and a, b \in R such that (a vith zero divisors	$a+b)^{2} = a^{2}+b^{2}+2ab$ the B) Field	en R is
A) a+b 19) If R is a ring A) Ring v C) Comm	(and a, b \in R such that (a vith zero divisors) attrive	(C) $a + b + ab + ba$ $(a+b)^2 = a^2 + b^2 + 2ab$ the B) Field D) None of these	en R is
A) a+b 19) If R is a ring A) Ring v C) Comm 20) Zero divisor	B) a^2+b^2+2ab c and a, $b \in \mathbb{R}$ such that (a vith zero divisors utative s in a ring (Z ₆ , + ₆ , x ₆) are	(c) $a + b + ab + ba$ $(a+b)^2 = a^2 + b^2 + 2ab$ the (b) Field (c) None of these	en R is
A) a+b 19) If R is a ring A) Ring v C) Comm 20) Zero divisor A) 2, 3	B) a^2+b^2+2ab (and a, $b \in \mathbb{R}$ such that (a with zero divisors utative s in a ring (Z ₆ , + ₆ , x ₆) are B) $\overline{1}, \overline{5}$	C) $\ddot{a} + b + ab + ba$ $(a+b)^2 = a^2 + b^2 + 2ab$ the B) Field D) None of these C) $\bar{0}, \bar{5}$	D) None of these
A) a+b 19) If R is a ring A) Ring v C) Comm 20) Zero divisor A) 2, 3 21) If R is a Boo	B) $a^{2}+b^{2}+2ab$ a and a, $b \in \mathbb{R}$ such that (a with zero divisors utative s in a ring (Z ₆ , + ₆ , x ₆) are B) $\overline{1}, \overline{5}$ blean ring then $a^{2} = \dots$ fo	C) $\ddot{a} + b + ab + ba$ $(a+b)^2 = a^2 + b^2 + 2ab$ the B) Field D) None of these C) $\bar{0}, \bar{5}$ r all $a \in \mathbb{R}$.	D) None of these
A) a+b 19) If R is a ring A) Ring v C) Comm 20) Zero divisor A) $\overline{2}, \overline{3}$ 21) If R is a Boo A) 0	B) $a^{2}+b^{2}+2ab$ and a, $b \in \mathbb{R}$ such that (a with zero divisors utative s in a ring (Z ₆ , + ₆ , x ₆) are B) $\overline{1}, \overline{5}$ blean ring then $a^{2} = \dots$ fo B) 1	C) $a + b + ab + ba$ $(a+b)^2 = a^2 + b^2 + 2ab$ the B) Field D) None of these C) $\overline{0}, \overline{5}$ r all $a \in \mathbb{R}$. C) a	D) None of these D) None of these
 A) a+b 19) If R is a ring A) Ring v C) Comm 20) Zero divisor A) 2 2 21) If R is a Boo A) 0 22) If R is a Boo	B) $a^{2}+b^{2}+2ab$ a and a, $b \in \mathbb{R}$ such that (a with zero divisors utative s in a ring (Z ₆ , + ₆ , x ₆) are B) $\overline{1}, \overline{5}$ blean ring then $a^{2} = \dots$ fo B) 1 blean ring then R is	C) $\ddot{a} + b + ab + ba$ $(a+b)^2 = a^2 + b^2 + 2ab$ the B) Field D) None of these C) $\bar{0}, \bar{5}$ r all $a \in \mathbb{R}$.	D) None of theseD) None of theseD) None of these
 A) a+b 19) If R is a ring A) Ring v C) Comm 20) Zero divisor A) 2 2, 3 21) If R is a Boo A) 0 22) If R is a Boo A) ring w	B) $a^{+}b^{-}+2ab$ g and a, $b \in R$ such that (a vith zero divisors utative s in a ring (Z ₆ , + ₆ , x ₆) are B) $\overline{1}, \overline{5}$ olean ring then $a^2 = \dots$ fo B) 1 olean ring then R is	C) $a + b + ab + ba$ $(a+b)^2 = a^2 + b^2 + 2ab$ the B) Field D) None of these C) $\overline{0}, \overline{5}$ r all $a \in \mathbb{R}$. C) a B) a field	 D) None of these D) None of these D) None of these
A) $a+b$ 19) If R is a ring A) Ring v C) Comm 20) Zero divisor A) $\overline{2}, \overline{3}$ 21) If R is a Boo A) 0 22) If R is a Boo A) ring w C) a comm	B) $a^{+}b^{-}+2ab$ g and a, $b \in R$ such that (a vith zero divisors utative s in a ring (Z ₆ , + ₆ , x ₆) are B) $\overline{1}, \overline{5}$ olean ring then $a^2 = \dots$ fo B) 1 olean ring then R is ith zero divisors nutative ring	C) $a + b + ab + ba$ $(a+b)^2 = a^2 + b^2 + 2ab$ the B) Field D) None of these C) $\overline{0}, \overline{5}$ r all $a \in \mathbb{R}$. C) a B) a field D) an integral do	 D) None of these D) None of these D) None of these
 A) a+b 19) If R is a ring A) Ring v C) Comm 20) Zero divisor A) 2 2, 3 21) If R is a Boo A) 0 22) If R is a Boo A) ring w C) a comm 23) If R is a Boo	B) $a^{+}+b^{+}+2ab$ g and a, $b \in R$ such that (a with zero divisors utative s in a ring (Z ₆ , + ₆ , x ₆) are B) $\overline{1}$, $\overline{5}$ blean ring then $a^2 = \dots$ fo B) 1 blean ring then R is ith zero divisors nutative ring blean ring then $a + a = \dots$	C) $a + b + ab + ba$ $(a+b)^2 = a^2 + b^2 + 2ab$ the B) Field D) None of these C) $\overline{0}, \overline{5}$ r all $a \in \mathbb{R}$. C) a B) a field D) an integral do for all $a \in \mathbb{R}$.	 D) None of these D) None of these D) None of these
A) $a+b$ 19) If R is a ring A) Ring v C) Comm 20) Zero divisor A) $\overline{2}, \overline{3}$ 21) If R is a Boo A) 0 22) If R is a Boo A) ring w C) a comm 23) If R is a Boo A) a	B) $a^{+}b^{-}+2ab$ g and a, $b \in R$ such that (a with zero divisors utative s in a ring (Z ₆ , + ₆ , x ₆) are B) $\overline{1}$, $\overline{5}$ blean ring then $a^2 = \dots$ fo B) 1 blean ring then R is ith zero divisors nutative ring blean ring then a + a = B) 0	C) $a + b + ab + ba$ $(a+b)^2 = a^2 + b^2 + 2ab$ the B) Field D) None of these C) $\overline{0}, \overline{5}$ r all $a \in \mathbb{R}$. C) a B) a field D) an integral do for all $a \in \mathbb{R}$. C) 1	D) None of these D) None of these D) None of these main D) -a
A) $a+b$ 19) If R is a ring A) Ring w C) Comm 20) Zero divisor A) $\overline{2}, \overline{3}$ 21) If R is a Boo A) 0 22) If R is a Boo A) ring w C) a comm 23) If R is a Boo A) a 24) If R is a Boo	B) $a^{+}b^{-}+2ab$ g and a, $b \in \mathbb{R}$ such that (a with zero divisors utative s in a ring (Z ₆ , + ₆ , x ₆) are B) $\overline{1}$, $\overline{5}$ blean ring then $a^2 = \dots$ fo B) 1 blean ring then R is ith zero divisors nutative ring blean ring then a + a = B) 0 blean ring then for a, $b \in \mathbb{R}$	C) $a + b + ab + ba$ $a+b)^2 = a^2 + b^2 + 2ab$ the B) Field D) None of these C) $\overline{0}, \overline{5}$ r all $a \in \mathbb{R}$. C) a B) a field D) an integral do for all $a \in \mathbb{R}$. C) 1 R with $a + b = 0 \implies .$	D) None of these D) None of these D) None of these main D) -a

॥ अंतरी पेटवू ज्ञानज्योत ॥

विद्यापीठ गीत

मंत्र असो हा एकच हृदयी 'जीवन म्हणजे ज्ञान' ज्ञानामधूनी मिळो मुक्ती अन मुक्तीमधूनी ज्ञान ॥धृ ॥ कला, ज्ञान, विज्ञान, संस्कृती साधू पुरूषार्थ साफल्यास्तव सदा 'अंतरी पेटवू ज्ञानज्योत' मंगल पावन चराचरातून स्त्रवते अक्षय ज्ञान ॥१ ॥ उत्तम विद्या, परम शक्ति ही आमुची ध्येयासक्ती शील, एकता, चारित्र्यावर सदैव आमुची भक्ती सत्य शिवाचे मंदिर सुंदर, विद्यापीठ महान ॥२ ॥ समता, ममता, स्वातंत्र्याचे नांदो जगी नाते, आत्मबलाने होऊ आम्ही आमुचे भाग्यविधाते, ज्ञानप्रभुची लाभो करूणा आणि पायसदान ॥३ ॥ – कै.प्रा. राजा महाजन

THE NATIONAL INTERGRATION PLEDGE

"I solemnly pledge to work with dedication to preserve and strengthen the freedom and integrity of the nation.

I further affirm that I shall never resort to violence and that all differences and disputes relating to religion, language, region or other political or economic grievance should be settled by peaceful and constitutional means."