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2.7 Euler’s Theorem and Fermat’s Theorem.
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3.3 Kernel of a Group Homomorphism and it’s Properties.
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3.5 Definition and Examples of Automorphism of Groups.
3.6 Properties of Isomorphism of Groups.
Unit -4: Rings Marks-15
4.1 Definition and Simple Properties of a Ring.
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4.3 Ring with zero divisors and without zero Divisors.
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Recommended Book: -
1. University Algebra: N. S. Gopalakrishnan, New age international
publishers, 2018. (Chapter 1: 1.3, 1.4, 1.5, 1.6,1.7, 1.8, 1.9) Page 6 of 26
Reference Books: -
1. Topics in Algebra: I. N. Herstein (John Wiley and Sons).
2. A first Course in Abstract Algebra: J. B. Fraleigh (Pearson).
3. A course in Abstract Algebra: Vijay K. Khanna and S. K. Bhambri, Vikas
Publishing House Pvt. Ltd., Noida.
Learning Outcomes:
Upon successful completion of this course the student will be able to:
a) understand group and their types which is one of the building blocks of
pure and applied mathematics.
b) understand Lagarnge, Euler and Fermat theorem
¢) understand concept of automorphism of groups
d) understand concepts of homomorphism and isomorphism
e) understand basic properties of rings and their types such as integral

domain and field.
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UNIT-1: GROUPS

Binary Operation: Let G be a non-empty set. A function * : G x G - G given by
* (a,b) =a* b, is called a binary operation on (or in) G.
Notation:
1) We use the notation a * b to denote * (a, b). If G is a non-empty set with a binary
operations * then we denote this algebraic structure by (G, *)

2) Throughout this course we use the following notations:

1) N: The set of all natural numbers.

1) Z: The set of all integers.

1ii) Q: The set of all rational numbers.

Iv) R: The set of all real numbers.

V) C: The set of all complex numbers.
Note: A non-empty set G is said to be closed for * if whenever a, b € G implies a*b € G.
e.g. 1) Usual addition and multiplication are binary operations in N, Z, Q, R and C.

2) Usual subtraction of natural numbers is not a binary operation in N,
» 2,3eNbut2-3=-1¢N.

3) Division of two integers is not a binary operation in Z, = 22,5 € Z but % ¢ 7.

Group: A non-empty set G with a binary operation * is said to be a group if

1) *isassociativeinGie. (a*b)*c =a*(b*c),V ab,ce G.

I1) G has an identity elemente e Gwitha*e=a=e*a,V a€ G.

iii) Every element of G has an inverse in G w.r.t. *.

I.e. for each a € G, there exists b € Gsuchthata*b=e=b *a.
Note: A group G with a binary operation * is denoted by (G, *) or < G, * > or simply G.
Examples:
1) (Z, +), (Q, +), (R, +), (C, +) are groups w.r.t. usual addition with identity element
0 and inverse of any a is -a.

2) (Q'=Q-{0}, X),(R'=R-{0}, x).(C'=C-{0}, x)are groups w.r.t. usual
multiplication with identity element 1 and inverse of any element a is i

Ex. Show that G = {1, -1} is a group w.r.t. usual multiplication.
Sol. Consider a table for the binary operation multiplication.

X 1 -1
1 1 -1
-1 -1 1

We observe that all entries in the table are elements of G. Therefore multiplication is a binary
operation in G. We know that multiplication operation of numbers is associative.

Also 1 is an identity of G and from the table 1.1 = (-1).(-1) = 1 i.e. every element has
multiplicative inverse in G. Hence (G, .) is a group.
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Ex. Show that G = {1, -1, i, -i}, where i=v—1 , is a group w.r.t. usual multiplication
of complex numbers.
Sol. Consider a multiplication table for the binary operation multiplication

X | 1 -1 I -1
1 1 -1 I -1
-1 -1 1 -1 I
I [ -1 -1 1
-1 |-l I 1 -1

We observe that all entries in the table are elements of G. Therefore multiplication is a binary
operation in G. We know that multiplication operation of numbers is associative.

Also 1 is an identity of G and from the table elements 1, -1, i and -i has inverses 1, -1, -i and i
in G i.e. every element has multiplicative inverse in G. Hence (G, .) is a group.

EX. Let G be the set of all 2X 2 matrices over real numbers. Then G is a group w.r.t.
addition of matrices but it is not a group w.r.t. multiplication of matrices.
Sol. 1) i) Clearly addition of matrices is a binary operation and is associative in G.

ii) 0 = [O 0 Is the identity element of G.

d g]EG EI[_ _d]eGsuchthat

o g ) g W] B

e

Hence (G,+) isa group.

1) For any [

2) (G, .) is not group because [421 2] has no multiplicative inverse in G as |i 2 =0

Ex. Let G ={A: Ais non-singular matrix of order n over R}. Show that G is a group w.r.t.
usual multiplication of matrices.
Proof:
i) LetA,Be G.
~ A, B are non-singular matrices of order n.
~ |Al #0, |B| #0.
~ |AB| = |A]|B| # O.
~ AB € G.
Thus multiplication of matrices is a binary operation on G.
1) We know that matrix multiplication is associative
.e. (AB)C=A(BC),v A/B,Ce G
I i) Forany A € G, Al = A = |A, where | is the identity matrix of order nin G.
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| is the identity element of G.
iv) Let A € G.
~ Al = 0
Then3 Al=B= ﬁadj(A) such that AB = BA = |
Thus every element of G has inverse in G.
~ (G, .)isagroup is proved.

Ex. Let Q" denote the set of all positive rationals. Fora,b € Q*, definea* b = %
Show that (Q *, *) is a group.
Proof:i) Clearlya,be Q"= a*b= % EQ".
i.e. *isclosed in Q".
ii) Leta, b,c € Q".

Consider (a * b)*Czaz_b*c: G)e _ ave
bc
anda*(b*c)=a* be - 2(5) _ abe
2 2 4
~(@*b)*c=a*(b*c).
i.e. * is associative in Q".
iii) For a € Q", we have
a*2= 32—2=aand2*a=22—a=a.
=~ 2 is the identity element in Q.

iv) Forae Q" 3 ge Q" with

= a(g):Zand (3)*a: @:2

2 a 2

S

a*

-

4 . . .
~a =-le. every element has inverse in Q".
Hence (Q7, *) is a group.

Ex. Prove that G = { [i z] : x 1S a non-zero real number} is a group under matrix
multiplication.

Proof: Let ¢ ={ [i z] : x Is a non-zero real number} with operation multiplication

2Xy 2Xxy

2xXy  2Xy

* X &y are non zero real numbers = 2xy is non zero real number.
=~ Multiplication is closed in G.

ii)ForA=[§ E]Bz[z i]&cz[z ;]erehave,

i) For A= z]&B=[§ ﬁeG:ABz[
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2xy 2xy] [2 E] _[4xyz 4xyz] by equation (1)

(AB)C = [

2Xy  2Xxy 4xyz 4Axyz
_x x1[2yz 2yz] [4xyz 4xyz .
& A(BC) = [X X] [Zyz 2yz] " |4xyz 4xyz] by equation (1)

=~ (AB)C = A(BC)
~ Multiplication is associative in G.

1 1
iii) As %isanon zero real number = E = [ 2| € G is an identity element
2 2
1o
. _ X Xi|2 2| _ X X]_
'AE__X 11 _[X x]_A
_2 2_
11
gea=|? 2" T|=|" 1]=Av A=[ |eG.
1 1flx xl Ix x X X
2 2

. e. ideﬁtity element is exist in G.
. X X Y ¥i...
iv) For A = [X X] € G, suppose B = [y y] Is inverse of A.

11 11
: _e=paiel® XIPF Y=z 2 2xy 2xyl_|7 2
~AB=E=BAie | [|[; y|=]i 1 [ny 2xy‘l1 :
2 2 2 2
1

2Xy:%=>y=4—1X which is a non zero real number = B =% *|eG

I. e. every element has inverse in G.
Hence G is a group under matrix multiplication is proved.

Properties of Groups:
Theorem: If G is a group, then i) Identity element of G is unique,
1) Every element of G has unique inverse in G,
i) (@h)*=av a€G
iv) (ab)* =b'a’ v a, b € G (Reversal law for the inverse of a product)
Proof: Let G be a group.
I)Let e and e' be identity elements of G.
~ee'=e ~ e'isan identity element of G.
and ee'=e" - eisan identity element of G.
~ e = e'. Hence identity element of G is unique
I1) For a € G. Suppose b and c are inverses of a in G.
~ab=e=baandac=e=ca
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Now b =eb
=(ca) b
= c(ab) by associative law
=ce
=cC
Hence a has unique inverse in G
lii) Letae G
~aa'=e=a"a
By definition of inverse of an element, a is the inverse of a™
(a'l)'1 =a
V) Leta,be G
Consider (ab)(b™* a®) = a(bb™) a™ by associative law.
= aea™ by associative law

=aa™
=€ iieennn (1)
Similarly, we have (b™a?) (ab) =e ......... )

~(ab)*=b*a'vabeG

Theorem: Let G be agroup and a, b, c € G. Then
1) Left cancellation law : ab=ac = b =,
i) Right cancellation law: ba=ca=b=c
Proof: Let Gbeagroupanda, b, c € G.
i)ab =ac
Pre-multiplying both the sides by a, we get
a’(ab) =a™ (ac)
~(@'a)b=(a"a))c by associative law
~eb=ec
~b=c
1) ba=ca
Post-multiplying both the sides by a™, we get
(ba)a’= (ca)a™
= b(aa™) = c(aa™) by associative law
~ be=ce
~b=c
Hence proved.
Theorem: Let G be a group and a, b € G. Then the equations
1) ax = b and i) ya = b have unique solutions in G.
Proof: Let Gbeagroupanda, b € G.
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1) Consider the equation ax = b.
Pre-multiplying both the sides by a™, we get
a'(ax)=a'b
~(@'a)x=a'b by associative law
~ex=a’'b
~x=a'b
Hence, x= a™'b is a solution of the equation ax = b.
Uniqueness: Suppose X; and X, are solutions of ax = b.
axy=bandax,=b
s axy = axp
% Xy = X; by left cancellation law.
Hence ax = b has unique solution in G.
i) Similarly, we have y = ba™ is the unique solution of ya=b in G.

Abelian groups: A group G is said to be abelian group ifab =ba, vV a, b € G.
e.q.1) (Z, +), (Q, +), (R, +), (C, +) are abelian groups.

2) LetG = {[i g] ad-bc #0,a,b,c,d € R }. Then G is a group w.r.t. matrix

multiplication. But it is not an abelian group.

-.-ForA:[(l) g]&B:H ;L]wehave

ae=[o oIl sl=lots 2312%3 o)
1 4171 2]_[14+0 2+ 1 14

BA:[l 3”0 3]:[1+0 2+9]:[1 11

-~ AB % BA

Finite and Infinite Group: A group G is said to be finite if the number of elements in G is
finite otherwise it is called an infinite group.

Order of Group: If G is a finite group then the number of elements in G is called order of
G and it is denoted by o(G).

Note: (Z, +), (Q, +), (R, +), (C, +) are infinite abelian groups.

Ex.: LetZ,={0,1, 2,....... ,n — 1 } the set of all residue classes of integers modulo n.
Define a binary operation +, in Z,, asa +, b = a + b = F where r is the remainder
obtained when a + b is divided by n. Show that (Z,, +,) is a finite abelian group.

Sol. i) Leta, b € Z,, and r is the remainder obtained when a + b is divided by n.

~0<r<n
Hencea+,b=a+b=t €7,
& Zqis closed w.r.t. +,

ii) Leta, b,c€Z,
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@+, b)+, T=(a+b)+, T
=(a+b)+c
=a+(b+c)
=a+,(b+c)
=a+,( b +,C)

-~ +, IS associative in Z,,

lii) Forany a € Z,
a+t,0=a+0=3and0+,a=0+a=a
=~ 0 is the identity of Z,

iv) Fora € Z,, 3 n —a € Zj, such that
at,n—a=-atn—a=n=0andn—a+,a=n—a+ta=n=0
Hence every element of Z, has inverse in Z,

v) For 3, b € Z,,
at,b=a+b=b+a=b+,2a
~ +, IS commutative in Z,

vi) Z, contains n elements and n is finite.

Z, 1s a finite set.

Thus (Z,, +5) is a finite abelian group.

Ex. Show that G = Q — {-1} is an abelian group under the binary operation
a*b=a+b+ab,vabeG.
Proof: Let * be a binary operation defined on G = Q — {-1} by
a*b=a+b+ab,va beG.
i) Leta,b,ce G
Consider (a*b)*c=(a+b+ab)*c
=(a+b+ab)+c+(@a+b+ab)c
zat+b+ab+c+ac+bc+abc
=za+b+ct+tab+ac+bc+abc
=at+b+c+bc+ab+ac+abc
=a+(b+ctbc)+a(b+c+hbc)
=a* (b+c+hbc)
=a*(b*c)
~(@*b)*c=a*(b*c).
I.e. *isassociative in G
i) For a € G, we have
a*0=a+0+a0=aand0*a=0+a+0a=a.
=~ 0 is the identity element of G.
i) Let a € G, suppose b is an inverse of a
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a*b=b*a=0
~a+b+ab=0
~b(l+a)=-a
sbh=—2eGw —==%-1

1+a 1+a
I.e. every element has inverse in G.
Hence (G, *) is a group.
iv) Asa*b=a+b+ab=b+at+tba=b*aVvabeG.

~ * is commutative in G.
Hence (G, *) is an abelian group is proved.

Ex. Show that G = R — {1} is an abelian group under the binary operation
a*b=a+b-ab,va beG.
Proof: Let * be a binary operation defined on G =R — {1} by
a*b=a+b-ab,va beG.
i) Leta,b,ceG
Consider (a*b)*c=(a+b-ab)*c
=(at+b-ab)+c-(a+b-ab)c
za+b-ab+c-ac-bc+abc
=at+tb+c-ab-ac-bc+abc
=at+b+c-bc-ab-ac+abc
=za+(b+c-bc)-a(b+c-hbc)
=a*(b+c-hc)
=a*(b*c)
~(@*b)*c=a*(b=*c).
I.e. *isassociative in G
ii) For a € G, we have
a*0=a+0-a0=aand0*a=0+a-0a=a.
=~ 0 is the identity element of G.
iii) Let a € G, suppose b is an inverse of a

a*b=Db*a=0
~a+b-ab=0
~b(l-a)=-a

ch="eGw 2%1
1-a 1-a
I.e. every element has inverse in G.
Hence (G, *) is a group.
iv)Asa*b=a+b-ab=b+a-ba=b*avabeG.
=~ *is commutative in G.
Hence (G, *) is an abelian group is proved.
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Ex. Let Q" denote the set of all positive rational numbers and for any a, b € Q ¥, define
a*b= %. Show that (Q ¥, *) is an abelian group.
Proof:i) Clearlya,be Q" = a*b= % EQ".

i.e. *isclosed in Q"
ii) Fora, b, ce Q".

ab
Consider(a*b)*c=(%)*c=(33)cz%
be, _ A _ab
*(h*p)=q* (2% =3’/ _3abc
anda*(b*c)=a (3) . 3

~(@*b)*c=a*(b*c).
i.e. * is associative in Q".
iii) For a € Q", we have

3 3
a*3= a?=aand3*a= ?a:a.

=~ 3 is the identity element of Q".
iv) Fora e Q*. 3 § € Q" with

9 9
9 a@) 9 Z)a
a* —= 2%+ =3and (—)*az(a) =3
3 a 3
- 9. . .
~at= - l.e.every element has inverse in Q.

Hence (Q°, *) is a group.
v)Asa*b:?:%:b*aVa,beQﬁ
~* is commutative in Q.
Hence (Q°, *) is an abelian group is proved.

Ex. Let G ={(a, b): a, b € R, a # 0}. Show that (G, ©O) is a non-abelian group,
where (a, b) O (c, d) = (ac, ad + b).
Sol. Let G ={(a, b): a, b € R, a # 0} and operation O is defined by
(@ b)O(c,d)=(ac,ad +b)V (a,b),(c,d) e G
i) Let (a, b), (c,d) € G
~a#0,c£0
~ac#£0
~(@b)O(c,d)=(ac,ad +b) € G
~ O isclosed in G.
I1) Associativity: Let (a, b), (c, d), (e, f € G.
[(a,b) ©(c,d)] O (e, f)=(ac, ad +b) O (e, 1)
= (ace, acf +ad+b) ........ (1)
(@, b)O[(c,d) O (e, f)] = (a, b) O (ce, cf+d)
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= (ace, acf+ad+b) ........ (2)
From (1) and (2)
[(@, b) O (e, d)] O (e,T) =(a,b) O[(c,d) O (e, )]
=~ O Is associative.
1ii) Existence of identity element: As1 & 0 € R = (1, 0) € G with
(a,b)0(1,0)=(a,b)=(1,00(,b)=(a,b)V(ab)etC
Thus (1, 0) is the identity of G.
Iv) Existence of inverse:
For (a, b) € G. Suppose (c, d) is inverse of (a, b).
~(a,b)O(c,d)=(1,0)
I.e. (ac, ad+b) = (1, 0)

l.e,ac=1,ad+b=0

se=t&d= 2
a

a
- 1 -b 1
Hence (a, b)lz(g, —)€EG v-#0
~ Gisagroup.
v) For (1, 2), (3,4) € G.
(1,2)0(3,4)=(3,4+2) =(3,6)
and (3,4) 0 (1, 2) = (3, 6+4) = (3, 10)
(1,200@3B,4)+3,4)0(1,2)
~ O 1s not commutative in G.
Hence G is a non-abelian group is proved.

Ex. Let G be a group and for all a, b € G, (ab)" =a" b", for three consecutive integers n.
Show that G is an abelian group.

Proof: Let (ab)"=a"0" .......... (1)
(@)™ =a" ™ .. (2)
& (@)™ =a"p"? ........(3)

From (2), a‘n+1 bn+1: (ab)n+l
(a"a) (b"b) = (ab)" (ab) = (a"b") (ab) by (1)
~a'(@")b=a"(b"a)b
~ab" =b"a by cancellation laws. .....(4)
Similarly from (2) and (3), we have ab™* = b™'a
Now ab™* = b™a
~a(b"b)=(b"b)a
« (ab"b = b" (ba)
~(b"a)b=(b"b)a by (4)
=~ b"(ab) = b" (ba)
~ ab = ba by lett cancellation law.
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Thusab=ba, v a,be G.
Hence G is abelian group is proved.

Ex. Show that a group G is abelian if and only if (ab)? = a’h? V a, b € G.
Proof: Let G be an abelian group and a, b € G.
~ab=bha.... (1)
Now (ab)? = (ab)(ab)
= a(ba)b)
=a(ab)b by (1)
= (aa)(bb)
= (aa)(bb)
= a’b?
Conversely, suppose that (ab)’ = a’h%, vV a, b € G.
For a, b € G. we have (ab)? = a’h®
~ (ab)(ab) = (aa)(bb)
=~ a(ba)b) = a(ab)b)
=~ (ba) = (ab) by cancellation laws
~ab=ba Vv abeCG.
Hence G is an abelian group is poved.

Ex. If in a group G, every element is its own inverse then prove that G is abelian.
Proof: Let G be a group in which every element is its own inverse.
~ForabeG=a'=aandb’=bh....... 1)
Nowa,beG=abeG
= (ab)'=ab
= blat=ab
= ba=ab by (1)
Hence G is an abelian group is poved.
Ex. If G is a group such that a’ = e, V a € G, then show that G is abelian.
Proof: Let G be a group such that a’=e, V a € G.
~Fora,beG=a’=eandb’=e........ (1)
Nowa, beG=abeG

= (ab)’=e
= (ab)’=ee -~ eisidentityin G
= (ab)’=a’ b’ by (1)

= (ab)(ab) = (aa)(bb)

= a(ba)b = a(ab)b

= (ba) = (ab) by cancellation laws
= ab =ba
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Hence G is an abelian group is proved.

Euler's Totient Function: The function @: N — N defined by
@(n) = The number of positive integers less than or equal to n and relatively
prime to n, is called Euler's totient function.
eg.1)®(@8)=4 - 1,3,5,7 are positive integers < 8 and relatively prime to 8.
2)p(1)=1
30 (5)=4
Note: If p is prime, then @(p) =P -1

EX. Let Z, denotes the set of all prime residue classes moduloni.e. Z,={a € Z,: (a, n) = 1}.
Show that Z, is an abelian group of order @(n) w.r.t. X,.
Proof: i) Let a, b € Z, and r is the remainder obtained when ab is divided by n.
Now3a,be Z,= (a,n)=1and (b,n)=1
= (ab,n) =1
= (r,n)=1 ~ab =r (modn)
=T EZ,
Hencea x,b=ab=t7 € Z,
X, Is closed in Z,.
ii) Clearly (a x,b) X,c=a X, (bx,c)V
i)(1,nN=1=1€Z,Alsoax,1 =a=1
1 is the identity of Z, w.r.t. x,
iv) Leta € Z,,
~(a,n)=1
~ There exist p, g € Z such that ap + nq = 1.
- ap-1=(-g)n
~ap - 1= 0 (modn)
. ap =1 (modn)

Hence every element of Z,, has inverse w.r.t. X, in Z,
V)Asax,b=ab=ba=bx,aVv 3,b€eZ,
vi) Z, contains exactly @(n) elements.
From (i) to (vi), Z, is an abelian group of order @(n).

Remark: In Zg={1, 3, 5, 7} i) 1 is the identity of Zs.
5

1
i) (M)'=1,(3)'=3, () =5, (7) = 7 and iii) 0(Zs) = ®(8) = 4.
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Integral power of an element in a group: Let G be a group and a € G. For an integer n, we
define a" as follows: i) a" = aaa...a n-times ifn >0, ii)a" = e ifn=0and
iiiya"=atata’..a’ -n-timesif n <0
eg.1)In(Z, +)i)2'=2+2+2+2=8,ii)2°=0,
iii)2*=2t+2t+ 21+ 2 = (-2) + (-2) + (-2) + (-2) = -8
2) In (Zs, +6) i) (2)'=2+s2+s 2+ 2 =8 =2 ,ii) (2)°=0,
i) (2)" = (2)" +6 (2) " +6 (2) 46 (2) ' =4 +6 A +s 4+ 4 = 1
3)In(Zs={1,3,5,7} %) i) B)'=3 x33 X3 x33=81=1,ii) (3)°=1,

i) 3)* =) x5 () x5 (3) ' xg(3) =3 Xg3 Xsg3 x53=81=1
Ex.: Let G be agroup and a € G, n € Z, Prove that (a")* = (a*)"
Proof: Case (i) n>0
~@'=(aaa....a)" ntimes=a‘a*a’..a’ n-times=(a")"
Case (i)n=0
(aO)-l —el=p= (a-l)O
Case (iii)n<0
@)'=@'ata'..a)t-ntimes=(@")*@"H"......... @h*-ntimes=(ah"
Thus @)™ = (@")" V n € Z is proved.
Ex.: Leta € G and n € Z, Prove thata™ = (a')"
Proof: Denote-n=m<20
~a"=a"=a'a’a’.a'-mtimes=a‘a'a’..a’ n-times=(@a")"
Hence proved.
Ex.: Let G be agroupanda € G. Form, n € N, prove that
i)a"a"=a""and i) @)" =a™
Proof: Letm, n € N.
i)a"a"=(aa....am-times) (aa..... an-times)
=(aa.... amtn-times)
— am+n
i) (@")"=(aa.... am-times)"
=(aa....am-times) (aa .... am-times)...... (aa....am-times) n-times
=aa....amn-times
- amn

Hence proved.

Ex.: Let G be a group and a, b € G be such that ab = ba. Prove that (ab)" = a" b", for all n € Z.
Proof: Letn € Z and a, b € G be such that ab = ba.
Case (i) neN
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We first prove the result ab” = b"a by induction on n.
Forn=1,ab'=ab=ba=ba.
Suppose that ab*= b¥a, fork € N
Now ab*** = a(b*b)
= (ab)b
= (b*a)b
= b*(ab)
= b¥(ba)
= (b*b)a
- b"”a
I. e. result is true for n = k = result is true for n = k+1
Hence by induction, ab"=b"a, vneN .. .... (i)
Now we claim (ab)" =a"b", v n € N.
Forn=1, (ab)' =ab=a'b’
Suppose that (ab)* = a“b.
Now (ab)“"* = (ab)“(ab)
= (a“ b*)(ab)
= a“(b*a)b
=a“ (abb by (i)
= (@a)(b*b)
— ak+1bk+1
Hence by induction (ab)" = a"b", v n € N.
case (ii) n = 0. Then (ab)’=e = ee = a°h".
case (iii)n<0
Let n =-m, where m € N.
(ab)" = (ab)™
= ((ab)™)"
=((ba))™ -~ ab=bha
— (a-l b-l)m
=@H™ ("™ bycase (i)asmeN
=a"b™
=a"b".
Hence from case (i), (ii) and (iii), (ab)"=a"b", v n € Z is proved.

Order of an Element in a Group: Let G be a group and a € G. The smallest positive integer
n (if it exists) such that a" = e, is called order of a and it is denoted by o(a). If no such
Integer exists then a is said to be of infinite order.

Note: 1) The order of the identity element in any group is 1.

2) Let Gbeagroup anda € G. If m € N is such that a™ = e then 0 (a) < m
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Examples:
1) Consider the group G = {1, -1, i, -i} under multiplication. Then
o(l)=1- 1'=1.
i)o(-1) =2+ (-1)'=-1%1,(-1)’=1.
iio)=4~ () =i#1 >()°=-1#1(@G0)°=-i#1,(@()"'=1
iv)o(-i)=4~ (-)=-i#l () =-1%1 (i)P=i#1 (-)=1
2) Consider the group (Ze, +5) with identity 0. Then
00)=1,0(1)=6,0(2)=3,0(3)=2,0(4)=3,0(5) =6.
3) In (Z, +), the order of 2 is infinite because there is no n € N such that 2" = 0.

Theorem: The order of every element in a finite group is finite.
Proof: Let G be a finite group of order nand a € G.
ConsiderasetS={a™ me N }. Then S c G.
Since G is finite, all the elements of S can not be distinct.
~ a'=a'forsomer,teN,r>t
~ a'=e Dby cancellation law.

~0(a) <r-t
~ 0 (a) is finite
Hence order of every element of a finite group is finite is proved.

Ex.: Let G be agroup and a, b € G. Prove that 1) o (a™) = 0 (a) and 2) o (a) = o (b™ab).
Proof:
1) Case (i) o(a) is finite say m.
. a'=e
(am )-1 — e-l =
~ @H)"=e
» o@)<m
ie.o@@h) < o(a) ....... (1)
Using (1), 0 (@)™ < o(a™)
ie.o@<o@........ (2)
From (1) and (2) o(a™) = o(a)
Case (ii) o (a) is infinite.
Let if possible o (a™) is finite say .
(a-l)r —e
- (al’)-l =
~a =el=e
~ 0@ <r
Impossible “- o(a) is infinite
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%
Hence o (a™) is infinite.

. o(@"h) =o(a).

2) Claim: (b* ab)"=b™*a’h, v n€N.
We prove it by induction on n.
Forn=1, (b*ab)' =b™ab =b"a'b
Assume that (b™ab)* = b*a*b, where k € N
Now (b™ab)*** = (b™ab)*(b™ab)

= (b™*a*b)(b™ab)

= ba* (bbt)ab

= bakeab

= ba ab

— b-lak+lb
Result is true for k + 1 also.
Hence by principle of finite induction
(b*ab)"=b™*a"h, vn € N.

Case (i) o (a) is finite say m.
~oa'=e
Now (b ab)™ = b'a™b

=b'eb ~vaM=e
=b"b
=e
~ o(btab)<m
~ o(btab) <o(@)...... (1)
Using (1), we have
o((b™)™ (b* ab) (b™)) < o(b™ ab)
=~ o((bbMa(bb™) < o(b™ ab)
- o(eae) < o(b™ ab)
~ 0@ <o(tab)....... )
from (1) and (2), o(a) = o(b™ ab).

Case (ii) o(a) is infinite.

Let if possible o(b™ab) is finite say m.
~ (blab)"=e

~ b'ta"b=e

~ a"=beb™

~ a"=bb"

~a"=e

~0@<=m

Impossible - o(a) is infinite.

Hence o(b™ab) is infinite.
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=~ o(a) = o(b™ab).

Ex.: Let G be agroup and a, b € G. Prove that o(ab) = o(ba)
Proof: We have ab = e(ab) = (b™b) (ab) =b™(ba) b

= o(ab) = o(b™(ba)b)

~ o(ab)=o(ba) - o(b™ab) = o(a)

Hence proved.

Ex. Let G be agroup and a € G, n € N. Show that a" = e if and only if o (a)|n.
Sol.: Leta"=eand o (a) =m.

By applying division algorithm on m and n, we get

n=mqg+r, where0 <r<m..(1)

Suppose that r # 0

~ r=n-mq

. aI’ — an-mq

. ar - an a-mq

. a'r — an (am) -q

~ a=e(e)™ va'=e&o(@)=m

~oa=e

Thusa =eandr>0

~o0(@<r

~ m<r

Impossible. ~- o(a) =m

~ r=0

Hence by equation (1), n=mqg. ~ m |ni.e. o(a)|n
Conversely, Suppose that o(a)|n

n=o (a)k, forsomek € N
. a'= ao(a)k — (ao(a)) k — ek = e
Hence proved.

Ex. In the group ( Z'5, x5), find (i) ( 3)?ii) (3)? iii) o(3) iv) 0(4)
Sol. Let Z'; ={1, 2, 3, 4, 5, 6} be a group under x-.
) (3)?=3x;3= 2.
i) D =[@®"TP=2)3°=2x%x:2%x;,2=1. ~@"'=2
iii) Here 1 € Z'; is an identity element.
Now (3)'=3+#1,(3)°=2+#1,(3°=6=1,3)"'=4+1,
(3)°=5%1,(3)°=1
~ 0(3)=6
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[\)I

iv)As (4)'=4 # 1, (4)* =
» 0(4)=3

Sol LetZ'y, ={1, 2, 3, 4, 5 6,7,8,9,10} be a group under X,
) (4) =4 x4 %14=0.
ii) (5)°=5 %y, 5= 3.
iii) Here 1€ Z,, is an identity element.
Now (9)' =9 # 1, (9)° -4¢1 (9)°=3=#1,

9)*'=5+1,09)°=
~ 0(9)=5
iV)As (7)'=7#1,(7)?=5+#1,(7)°=2+1,7)"=3#1,(7)°=10 # 1,
(MN°=4+1,7'=6+1,(7)°=9+1,(7)°=8+1,(NH"=1,
~ 0(7)=10

Ex.: Ifinagroup G, a° = e and aba * = b*, V a, b € G, then find order of an element b.
Sol.: Letinagroup G, a°>=eand aba *=b*,Va,bEG

As b? = aba™

~(b%? = (aba™) (aba™) = ab(a™'a)ba™= abeba™= ab%a™

~ b*=a(abat)a’ = a’ha’*

=~ (b%)2 = (a’ha”®) (a*ha?®) = a’b’a= a’(aba™)a™

~ b8 =ana’®
~ (b8)2 = (a’a”) (a’ha®) = a’b%a = a’(aba™)a™
= b16 = a’ba™

= (b16)2 = (a'ba™) (a'ba™”) = a’b’a™= a*(aba™)a™
~b32=abha®=ehe" =D

~b3l=e by cancellation law.

~o(b) =31

1) Which of the following operations is not binary in Z?
(A) addition (B) multiplication (C) subtraction  (D)division
2) Let G be a non-empty set. If a*(b*c) = (a*b)*c for all a, b, ¢ € G, then a binary
operation * on G is saidto be ...........
(A) associative (B) closure (C) commutative (D) abelian.
3) What is the identity element in the group (Z, +)?
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(A)0 (B)1 ©-1 (D) 2

4) Consider the group (Q*, *) where a* b = % for all a, b € Q*. What is the

identity element in Q" ?
(A)O (B)1 (C)2 (D)3

5) Consider the group (Q", *) wherea* b = az—b for all a, b € Q". What is the

inverse of an element a in Q" ?

(A) 2 (B) a (C) 4/a (D) a/2
6) Which of the following is not a group?
(A) (z, +) (B) (N, +) (C) G={1, -1, i, -i} under multiplication

(D) G =R — {1} under operationa*b=a+b-abforalla,be G

7) Which of the following is incorrect?
(A) ldentity element in a group is unique. (B) Every group is abelian.
(C) Inverse of every element in a group is unique. (D) None of the above.

8) In group G = {1, -1, i, -i} under usual multiplication i*=.....

(A) 1 (B) -1 ©) i (D) i
9) In the group (Zs, Xg), 3)*=........

(A) T (B) 3 ©)3 (D)7
10) Inagroup G, fora€ G, (a)'=......

(A) a (B)a* (C) e, identity in G (D) 1

11) Which of the following is an abelian group?
(A) G=R- {1} under operationa*b=a+b-abforalla,beG
(B) G={1,-1,1,-i,j, -, k, -k} the group of quaternions under multiplication
(C) G ={A: Aisanonsingular matrix of order n over R} under matrix mutl.
(D) G={(a,b):a,b e R, a=+ 0under operation (a, b)0(c, d) = (ac, bc+d)
for all (a, b),(c,d) e G
12) Which of the following is a non-abelian group?
(A) (Z, +) (B) G={1,-1,1, -i} under usual multiplication
(C) G=Q—{-1} under operationa*b=a+b+abforalla,beG
(D) G={(a,b):a,be R, a= 0under operation (a, b)0(c, d) = (ac, bc+d)
for all (a, b),(c,d) € G
13) Which of the following is a non-abelian group?
(A) (R, +) (B) (Zg, +s), (C) (Zs, +5)
(D) G ={ A: Aisanonsingular matrix of order n over R} under matrix mult.
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14) Which of the following groups is finite?
(A) (Z, +) (B) G ={1, -1, i, -i} under usual multiplication
(C) G=Q—{-1} under operationa*bh=a+b+abforalla,beG
(D) (Q", *) under the operation a * b = %for alla,be Q.
15) Which of the following groups is infinite?
(A) G ={1, -1, i, -i} under usual multiplication (B) (Zg, +5) (C) (Zg, +3")
(D) (Q", *) under the operation a * b = % foralla,b e Q.
16) The number of elements present in a finite group G is .....

(A) order of group (B) order of element(C) index of group(D) None of above
17) The order of the group (Zg, +¢) is......

(A) 2 (B) 3 (C)5 (D) 6
18) In the group (Z, +), (2)* = .....
(A) 0 (B) 2 (C)8 (D) 16
19) In the group (Zs, +¢), (3)* =.....
(A) 0 (B) 2 (€)3 (D)1
20) In the group (Zs, +g), (5)*= .....
(A) 1 (B) 3 (C)5 (D) 7
21) In the group G = {1, -1, i, -1} under usual multiplication, order of i = ...
(A) 1 (B) 2 (C) 3 (D) 4
22) Let G be agroup and a, b, ¢ € G Then (abc)™ =....
(A) a'blc? (B) c'a'b™ (C)c'b™a™ (D)a'c'p?
23) Let G be agroup and a, b € G such that ab = ba. Which of the following is incorrect?
(A) a“b = ba* forall k € N. (B) (ab)"=a"p" foralln€N.
(C) (ab)* =a'pb™ (D) None of the above
24) A group G is called as ... if the number of element in G is finite.
(A) abelian (B) finite (C) infinite (D) non-abelian
25) An abelian group is also known as .... group.
(A) finite (B) infinite (C) commutative (D) ordered
26) In any group G, o(@h) =........
(A) o(a) (B) o(G) (C) L/o(a) (D) 1/0(G)
27) In the group (Z, +), 0(2) =.....
(A) 0 (B) 1 (C)2 (D) infinite

28) How many elements in the group (Z, +) has finite order?
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(A) 1 (B) 2 (C)3 (D) infinite
29) If Gisagroupanda € G, m,ne Nthena™a"=....

(A) a™ (B) a™" (C) a™" (D) a™"
30) Order of the identity element in any group is ....

(A) 0O (B)1 (€2 (D) o(G)
31) Let Gbeagroupand a, b € G,m € N. Then (b'ab)"=.....

(A)b'a™b (B) b™Mab™ (C) b™ab (D) e
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UNIT-2: SUBGROUPS

Subgroup: Let (G, *) be a group. A non-empty subset H of G is said to be a subgroup of G
if (H, *) itself forms a group. Denoted by H < G.
Note:
1) {e} is a subgroup of group G and is called a trivial subgroup G.
2) G is asubgroup of group G and is called an improper subgroup of G.
3) A subgroup H of group G is called a proper subgroup of G if H = G.
4) If H is a subgroup of group G and K is a subgroup of H then K is a subgroup of group G.
5) If ais an element of G, then <a>={a": n € Z } is a subgroup of
e.g.1) sZ = {3n: n € N} is a subgroup of (Z, +).
2) (Q7, x) is a subgroup of (R -{0}, x)

Theorem: A non-empty subset H of a group G is subgroup of G if and only if
a,beH=ab'eH.
Proof: Suppose H is a subgroup of group G.
=~ H itself forms group.
~Fora,beH=a b eH by existence of inverse
= ab® € H by closure property
Conversely, Suppose a, b € H= ab™ € H.
We have to prove H itself forms a group.
1) Existence of Identity: As H is a non-empty subset H of G.
~a€H = a, a€eH = aa'=e€eH
ii) Existence of Inverse: Leta € H = e, a€ H =ea’=a*€H
i) Closure Property: Leta, b€ H = a, b* e H
= a(b)'eH
= abeH
iv) Associative law: Leta,b,ceH=4a,b,ce G “HCcG.
~ (ab)c = a(bc)
From (i) to (iv), H itself forms a group.
~ H is a subgroup of group G.

Theorem: A non-empty subset H of a group G is subgroup of G if and only if
i) a,beH=abeH,i)acH=a'eH
Proof: Suppose H is a subgroup of group G.
=~ H itself forms group.
~1)Fora,be H=abeH Dby closure property
ijaceH=a'€H by existence of inverse
Conversely, Suppose i)a,be H= ab € H.
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ijacH=a'eH
Now fora € H = a™ € H by (ii)
~ a, a'€H=aa" € Hby (i)
=eeH
I.e. identity element exist in H.
Again fora,b,ceH=a,b,ce G “HCcG.
~ (ab)c = a(bc)
I.e. associative law hold in H.
=~ H itself forms group.
~ H is a subgroup of group G.

Theorem: A non-empty subset H of G is subgroup of a finite group (G, *) if and only if
a,beH=a*beH

Proof: Suppose H is a subgroup of a finite group (G, *)
~ (H, *) itself forms group.
~Fora,beH=a*beH by closure property

Conversely, Supposea,be H=a*b e H .....()

Let G be a finite group say with n elements and a € H
= There exists a positive integer m such thata™ = e, where 1 <m <n
Now a € H = a’=a*a € H by (i)

Againa, a’€ H = a’=a*a’€ H
Ingenerala®" e H=¢e €eH
I.e. identity element exist in H.
Now e = a™ = a*a™'= a™*a.
~at = a™"eH
I. e. every element has inverse in H.
Againfora,b,ceH=a,b,ceG +HCSG
@*b)*c =a*(b*c)
I.e. associative law hold in H.
~ (H, *) itself forms group.
~ (H, *) is a subgroup of a finite group (G, *).

Theorem: Intersection of two subgroups of a group is a subgroup.
Proof: Suppose H and K be any two subgroups of a group G.

AseeHandee K= e€ HNK
~ HNK # @ i.e. HNK is a non empty subset of G.
Nowa,beHNK =a,beH&a bekK
= ab’ € H&ab™ € K H & K are subgroups of G
= ab’ € HNK
Hence HNK is a subgroup of a group G.
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Remark: 1) Intersection of finite number of subgroups of a group is a subgroup.
2) Union of two subgroups may not be a subgroup.
e.g. Let ,Z & 37 are subgroups of a group (Z, +) but (,Z U 3Z, +) is not a
subgroup of agroup (Z, +) 2,3 €,Z U 3Zbut2+3=5¢ ,Z U 3Z.

Theorem: Let H & K be any two subgroups of a group G. Then H U K is a subgroup of group
G if and only if either H € K or K € H.
Proof: Suppose H U K is a subgroup of group G. To prove eitherH S KorK < H.
Let if possible H € K and K & H.
~ there existsomeb € Hbutbg¢ Kandae Kbuta & H.
Nowbe HSC HU Kandae K< HU K
=a,be HU K
—ab’e HuU K =~ HU Kisasubgroup.
—ab™ € H and/orab’ € K
If ab® € Hthen (ab )b € H+~ b€ HandH is a subgroup.
~a(b'p) € H= ae € H= a € H which contradicts to a ¢ H.
Similarly ifab® € K = b € K which contradicts to b ¢ K.
=~ Our supposition is wrong.
Hence eitherH<S KorK < H.
Conversely : Suppose either H S Kor K € H.
~HU K=KorHU K=H
~ HU Kisasubgroup of group G. - H and K are subgroups of a group G.

Ex. Determine whether H;={ 0, 4, 8 }and H,={ 0, 5, 10 } are subgroups is a group (Zi, +1)
Sol. We prepare composition table for H;={ 0, 4, 8 }and H,={ 0, 5, 10 } with operation +,

+12 0 4 8

Ol
Ol
N
(0]

|
|
0l
l

(0]
(0]

Ol
N

+1, | O 5 | 10
0 | 0| 5|10
5 | 5|10 3

10 (10| 3 | 8
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As H; and H, are non-empty subsets of a finite group (Z,, +1,). We observe that +;, is

closed in H; but not in H,.
~ Hy is a subgroup of a group (Zy,, +12) but Hy is not a subgroup of a group (Z,, +1»).

Normalizer: Let G be a group and a € G. Then N(a) = {x € G : xa = ax} is called a normalize
of an element a of G.
Center of a Group: Let G be agroup. Then Z(G) ={x e G:xa=axVae G }iscalleda
center of a group G.

Ex: Let G be a group and a € G. Then show that N(a) = {x € G : xa = ax} is a subgroup of G.
Proof: LetN(a)={x€ G:xa=ax}
Foree G,ea=ae=¢e € N(a)
~ N(a) is a non empty subset of G.
For X,y € N(a) = xa =ax and ya =ay where X,y € G.
AsGisagroup. ~X,YE G=Xx,y'€ G=xy'€ G
Consider (xy™)a = x(ya)
=x(ay")  ~ yamay=y'a=ay"
= (xa) y™
= (@) y”
=a(xy™)
~xy*t € N(a)
Hence N(a) is a subgroup of group G is proved

EX: Let G be a group. Then show that Z(G) ={x € G: xa=ax V a € G } is a subgroup of G.
Proof: LetZ(G)={x€e G:xa=axVae G}

Foree G,ea=ae Vae G=re€e Z(G)

=~ Z(G) is a non empty subset of G.

Forx,y € Z(G) = xa=axandya=ayVa€ Gwherex,ye€ G.
AsGisagroup. ~X,YE G=x,y'€ G=xy'€ G
Consider (xy™)a = x(ya)

=x (ay™) v yazay=y'lazay'vae G
= (xa) y"

=(ax)y"

=a(xy™) vae G

~xy'e Z(G) Vvae G
Hence Z(G) is a subgroup of group G is proved

Ex: Let H be a subgroup of a group G and a € G. Then show that H, = {x € G : xa' € H }.
Proof: Letusdenote A={x€G:xa*€H}
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Nowx € A & xa' e H
e xat=h, forsomeh eH
<& Xx=ha
& X EH,
~H.,=Aie H,={xe€ G:xa'eH}
Hence proved.

EX: Let G be a group of all non-zero complex numbers under multiplication. Show that
H={a+ib:a’+b*=1}is asubgroup of G.
Proof: Let G be a group of all non-zero complex numbers under multiplication and
H={a+ib:a’+b*=1}
As 1 =1 +i0 is non-zero complex number with 1> + 0% = 1
~ 1€ H i.e. His a non empty subset of G.
Fora+ibandc+ide H=a’+b?’=1landc®+d*=1......... (1)

Consider (a + ib) (c +id)"* = Z:Z X Z:Z

_ (ac+bad)+i(bc—ad)
c?+d?

= (ac+ bd) +i(bc —ad) by (1)
Where (ac+bd)? + (bc-ad)’=a’c’+2achd+b?d*+b?c?-2bcad+a’d?

- az(cz n d2) " b2(02 " d2)

— (02 + dz) (az + b2)

=1 by (1).
~ (a+ib) (c+id)* e H.
Hence H is a subgroup of group G is proved.

Cyclic Group: A group G is said to be cyclic group if there exists an element a € G such that
every element of G is expressed in some integral powers of a.
Note: Here an element a is called generator of G and cyclic group G is denoted by
G=<a>or(@)={a":n€ezZ}.
e.g.1) (Z, +) is acyclic group generated by 1.
2) (nZ, +) is a cyclic group generated by n.
3) (Z, +,) is a cyclic group generated by 1.
4) Agroup G ={1, -1, i, -i} under multiplication is a cyclic group generated by i.

Theorem: Every cyclic group is abelian.
Proof: Let G be any cyclic group G generated by ‘a’.

~Forx,y€G = x=a"andy=a'forsomer,t € Z.
L Xy = dal=agt=a"™=ga = yX
~ G Is an abelian group. Hence Proved.
Note : i) If (m, n) =1 then m is generator of group (Z,, +,).
i) IfG=<a>witho(G)=nand (m,n)=1thenG=<a">for0<m<n.
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1ii) Every abelian group may not be cyclic.

e.0. (Z's={1, 3,5, 7}, Xs) is an abelian group but not cyclic because (1)"=1V n € Z,
(3)" =either3or 1VNneZ (5" =eitherS5or1VneZ&(7)"=either7or1VneZ
=~ 1,3,5 & 7 are not generators of Z's

Theorem: If G is a cyclic group generated by a then a™ is also generates G.
Proof: Let G be any cyclic group generated by ‘a’.
Hence G=<a>={a":n€eZ}.
Asa‘e<a'>=a'eG=<a'>cG...... (1)
ForyeG=<a>=y=a forsomer € Z.
sy=(@))=@) e<a’>

From (1) and (2), G=<a'>
~ ais also generates G is proved.

Ex: If G is be a group and a € G. Then prove that H={a" : n € Z } is the smallest subgroup
of G containing a.

Proof:i)Asa=a'€H ~H=#@.
~Forx,y€eH = x=a"andy =a'forsomer,t € Z.
Xy-l =a (at)-l =3 a—t — ar-t e H
~ H is a subgroup of group G.
i) Let K be any subgroup of group G containing a.
We have to prove H € K.
Letx € H= x=a for somer € Z.
= x=a € K aeKandK s a subgroup.
~ H < K.Hence H is the smallest subgroup of G containing a is proved.

Ex: Show that every subgroup of a cyclic group is cyclic.
Proof: Let G be any cyclic group generated by a.

~G=<a>={a":neZ}

Let H be a subgroup of G.

If H={e} then H = < e >and hence H is cyclic.
Suppose H # {e}.

Let x € H be such that x # e.

Now x € G= x=a" forsomep € Z, p # 0.
axt=@)'=af

Since either p or —p is positive =H contain at least one element a" such that n € N.
Let t be the least positive integer such that a' € H.
ClaimH=<a'>

As ade<a>=aeH=<a>cH...().
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letyeH=>yeG=<a>

~y=a" forsome m € Z.

By division algorithm, there exist integers g, r such that
m=qt+r,where0 <r<t ......... (2)

Ifr#0thena =a""=a"a"=a"@)"eH ~y=a"eHanda' eH
~ t < r by choice of t. Which contradictstor<t.
Hence r = 0.

~by(2) m=qt

~y=a"=a'=(@)"e<a>

HenceHc <a' >......(3)

From (1) and 3) H=<a">.

Hence H is a cyclic is proved.

group G is called dihedral group for n > 3.
Note:i) Dihedral group G is also written as
G={y, V3V’ ...... YL Y = e =X X, XY, XY ,xy™t xy = yix}
i) We write G = D,, since o(G) = 2n.

Ex. Find composition table forn =3 i.e. G=Dg = {e = x*=y? X, y, V%, Xy, xy’}.
Sol.: Letforn=3,G={e=x*=Vy", X, Y, ¥*, Xy, Xy’}= Dg
As in dihedral group xy = y™'x.
= 1) y(xy) = Yy %)= (yy )x = x.
i) yx = (yx)e = (yx)y’ = (yxy)y” = xy’
iii) y(xy?) = (yx)y’= (xy*)y’=(xy)y’= xy
V) Y*X = y(yX) = y(xy?) = (yxy)y = xy, etc.
Using this we get, composition table for the elements of G is

e X Y Y’ Xy Xy’

E e X Y Y Xy e
X X e Xy Xy’ y Y

Y y Xy’ Y e X Xy
y* y’ Xy E y xy” X
Xy Xy Y Xy’ X e Y
Y’ Xy’ y X Xy Y’ E

We observe that G is finite non-abelian group with o(G)= 0(Dg)=6.

Right coset: Let H be a subgroup of a group G and a € G. Then the set H,= {ha: h € H} is
called right coset of H by a in G.

Left coset: Let H be a subgroup of a group G and a € G. Then the set ;H={ah: h € H} is
called left coset of H by a in G.
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Note: Let H be a subgroup of a group G and a, b € G. Then (H,),= {(ha)b: h € H},
& .(,H)={a(bh): h € H}.

EX. Let G = {1, -1, , i} be a group under multiplication and H = {1, -1} be its subgroup.
Then find all right and left cosets of H in G.
Sol.: Let G ={1, -1, i, -i} be a group under multiplication and H = {1, -1} be its subgroup.
1) All right cosets of H in G are as follows
H={hl:heH}={1.1, (-1).1} ={1,-1}=H
H.={h(-1):h e H}={1.(-1), (-1).C1D}={-1,1} =H
Hi= {hi: h e H}={1.i, (-1).i} ={i, -i}
H.i= {h(-): h € H}={1.(-1), (-1).(-0)} = {1, 1}
l.e. {1, -1} & {i, -i} are the right cosets of H in G.
i) All left cosets of H in G are as follows
H={lh:he H}={1.1,1.(-D}={1, -1} =H
AH={(-Dh: h e H}={(-1).1, (-1).(-1)}={-1,1}=H
H={ih:he H}={i.1,i.(-1)} =i, -i}
iH={(-Dh:h e H}={(-1).1, (-).(-1)} = {-1, i}
l.e. {1, -1} & {i, -i} are the leftt cosets of H in G.

Ex. Let G={1,-1,1, -, ], -], Kk, -k} be a group under multiplication and H = {1, -1, i, -i}
be its subgroup. Find all the left and right cosets of H in G.
Sol..LetG={1,-1,1, -, j, -, k, -k} be a group under multiplicationand H = {1, -1, i, -i}
be its subgroup. Here we use i.j = k, j.k =i and k.i =]
1) All the left cosets of H in G are as follows
H={1h:he H}={1.1,1.(-1), 1.i, L.(-)} = {1, -1, i, -1} =H
4H={(-1)h: h e H}={(-1).1, (-1).(-1), (-).i, (-1).(-)}={-1,1,-i,i}=H
iH={ih: he H}={i.1,i.(-1), i.i, i.(-D} ={i, -1, -1, 1} = H
sH={(-)h: h e H}={(-1).1, (-1).(-1), (-D).i, (-0).(-D} ={-1,1,1, -1} =H
jH={h:he H}={.1,j.(-1), j.i, j.(-0)} = {0, -}, -k, Kk}
jH=A{CDh:h e H}={GD).1 Gi).¢-1), GD- GD)-GDF = {0 0 ko -KG
«H={kh: h € H}={k.1, k.(-1), k.i, k.(-D)} = {k, -k, j, -]}
«H={(-k)h: h € H}= {(-k).1, (-K).(-1), (-K).i, (-K).(-D)} = {-K, k, -}, J}
e. {1,-1,1i, -1} & {j, -], k, -k} are the leftt cosets of H in G.
Similarly all the right cosets of Hin G are {1, -1, i, -i} & {], -, k, -k}.

Theorem: Let G be a group and H a subgroup of G. Then
)He.=H=¢H
i) (Ha)o= Heap) and a(pH)= (anyH
ii) If G is abelianthenH, = H,vaeG
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Proof :i)He={he:he H}={h:he H}=H
and H={eh:heH}={h:heH}=H
~“He=H=H
i) (Hy)p= {(ha)b: h € H}

= {h(ab): h € H} by associative law.
= He)
Slmllarly a(bH)= (ab)H
i) Let G be an abelian groupanda € G
~ Hy={ha: h € H}
={ah: he H} - Gis abelian.
= aH
Hence proved.

Theorem: Let H be a subgroup of a group G. Then
aeH®H,=H
i) H=H, © and ab* € H

Proof : i) Suppose a € H. Let x € H,
~ X = ha, for some h € H
Ash,aeH=haeH = xeH

MTH -302(A): GROUP THEORY

HiCH....oo.o.. (1)
LetyeH
~y=ye=y@"a)=(yaaeH, »y, a € H and H is a subgroup.
AHCHy .. )

From (1) and (2) H=H,
Conversely, suppose H = H,
Nowa=ea€eH,=Hie. a€H.
Hence proved.
i) Hi= Hp © (Ha)o ™= (Ho)o™

& Ha )= Heo )

& Ha )= He

& H@ )= H

e ab*eH by (i)
Hence proved.

Theorem: Let H be a subgroup of a group G. Then
laeHe® H=H
ii),H=yHe andb'aeH

Proof : i) Suppose a € H. Letx € ;H
~ X = ah, for some h € H

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAl ANNASAHEB N. K. PATIL SCIENCE SR COLLEGE, PIMPALNER. 9



MTH -302(A): GROUP THEORY

Asa, heH—=aheH = x€eH

HCH....... )

LetyeH
y=ey=(aal)y=a@'y) € H »+a, y € H and H is a subgroup.
HC.H......... @)

From (1) and (2) H = ;H
Conversely, suppose H = ;H
Nowa=ae€e H=Hi.e.a€eH.
Hence proved.

i) ;H = pH & ™ (H) =, (,H)

(= (b_la)H =H
e b'aeH by (i)
Hence proved.

Theorem: Let H be a subgroup of a group G. Then

1) Any two right cosets of H are either disjoint or identical.

1) Any two left cosets of H are either disjoint or identical.
Proof : i) Let H, and H, be any two right cosets of H in G.

We have to prove either H, N H, = @ or H, = H,.

If H, N Hy, = @ then we are trough.

But if H, N H, # @ then there exist some x € H, N Hy,

~ X € H,and x € H,

~ X =haand x = kb forsome h, k e H

~ ha=kb forsomeh, ke H

~a=h'kbforsomeh,keH......... (1)

«Ha = Hp 'y by (1)

= Ha = (Hp"9)

» Ha =H, +h, k € Hand H is a subgroup = h*k e H = Hp "y = H

Hence any two right cosets of H are either disjoint or identical is proved.
1) Let ;H and ,H be any two left cosets of H in G.

We have to prove either ,H N ,H =@ or ;H = xH.

If ,H N yH = @ then we are trough.

But if ;H N yH # @ then there exist some x € ;H N ,H
~X€E,Handx € ,H

~ X =ah and x = bk forsome h, k e H

-~ ah = Dbk forsomeh, k e H

~a=bkh™ forsomeh, keH......... (1)

L
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o aH = o HH by (1)

waH =4 (@ H)

o H = pH +h, k € Hand H is a subgroup = kh™ € H = ,)H =H
Hence any two left cosets of H are either disjoint or identical is proved.

Lagranges Theorem: If H is a subgroup of a finite group G then o(H) | o(G).
Proof : Let H be a subgroup of a finite group G.

If H={e} or H=G then o(H) | o(G).

So suppose {e} c Hc Gi.e. 1 <o(H) <0o(G).

Let a; € G be such that a; & H.

~a #ev eeH.

Leto(H) =mand H={e, hy, hs, ......... hn}

Consider the right coset Ha; = {ay, hpay, hsay, ......... hmas }
~a; € Ha; buta; € H=He

Ha]_ = H

~ HN Ha1= 1)

We observe that Ha; contain m distinct elements = h; # h; = hja; # h;a; for all i, J.
~ H U Ha; contain exactly 2m elements.

If HU Ha; = G then o(G) = 2m = 2.0(H).

=~ 0(H) | o(G)

If H U Ha; # G then there exists a, € G be such that a, € H U Ha;.

~pFe vee Hu Hay

Consider the right coset Ha, = {a,, h,a,, hsay, ......... hpmas}

s a, EHa,buta, € HU Ha;i.e. a, € H=He and a, & Ha;

-~ He, Ha; and Ha, are pair wise disjoint.

Also Ha, contain m distinct elements.

~ H U Ha; U Ha, contain exactly 3m elements.

If HU Ha; U Ha, = G then o(G) = 3m = 3.0(H).

=~ 0(H) | o(G)

Otherwise we continue the above process. As G is finite, process must stop after a finite
number of steps. Suppose that we have k pair-wise disjoint right cosets say

H, Ha;, Hay, ............ Ha,, suchthatHU Ha; U Ha, U ........ U Ha =G

% 0(G) = km = k.o(H)

=~ 0(H) | o(G)

Ex. Show that every group of prime order is cyclic and hence abelian.
Proof: Let G be a group of prime order p.

~ There exista € G such thata # e * pis prime.

Consider a cyclic subgroup H=<a>.

~0o(H)>1 v a€ Handa=+e.
By Lagrange’s theorem, o(H) | o(G).
~o(H) Ip

~0o(H)=1orp - pisprime
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~o(H)=p w o(H) > 1.
~ 0(H) =0o(G)
~G=H=<a>

Hence G is a cyclic group.
As every cyclic group is abelian.
~ G is an abelian group is proved.

Ex. Show that order of every element of a finite group is a divisor of order of a group.
Proof: Let G be a finite group and a € G.

~ 0(a) is finite say m. -+ order of an element of a finite group is finite.
sa'=e

~<a>={ead,...... a™ }ie o(<a>)=m

By Lagrange’s theorem, o(< a >) | 0(G).

~m]o(G)

~0(a) | o(G)

Hence proved.

Ex. If ais an element of a finite group G, then show that a°® = e
Proof: Let G be a finite group and a € G.

~0(a) | o(G)

~ 0(G) =o(a).r, forsomer € N.

ao(G) - ao(a).r - (ao(a))r - er = e

Hence proved.

Euler’s Theorem: If an integer a is relatively prime to a natural number n then
a%™ = 1(mod n), where @(n) being the Euler’s totient function.

Proof: Consider Z, = {a : (a, n) = 1}, the group of prime residue classes modulo n.
Let(a,n)=1
. a€l,
catW=1 » 0(Z,) = ®(n) and 1 € Z, is an identity element.
na®m=7
=~ a?™= 1(mod n)
Hence proved.

Fermat’s Theorem: If p is prime number and a is an integer such that p + a then
a”'= 1(mod n).

Proof: Let p is a prime number and a € Z such that p 1 a.
Let(a,p)=1
= By Euler’s theorem
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- a0 = 1(mod p)
~ a”'= 1(mod p) @ (p)=p-1ifpisprime.
Hence proved.

Ex. Find all subgroups of (Z12, +12).

Sol. : We know that for any group G, ifa € G then <a > = {a": n € Z} is a subgroup of G.
)<0>={0":neZ}={0}
i)<1>={1r:n€Z}={nl:n€Z}

i) <2>={2":n€z}={0,2,46810}=<10> ~21=10
ivy<3>={3:n€7Z}={0,3,6,9}=<9> ~31=9

vV)<4>={4":n€Z}={0,48}=<8>41=8
vi)<6>={6":n€Z}={0,6}

EXx. Show that (Z7, x7) is a cyclic group. Find all its generators, all its proper subgroups
and the order of every element.
Proof.: Let (Z7 = {1,2,3,4,5, 6}, X7) is a group of order 6.
We know that for any group G, if a € G then <a > = {a": n € Z} is a subgroup of G.
<1>={In:neZ}={1}
ii)<2>={2":n€Z}={2,22,23=1}
=(2, % T)=<4> 221=1
iii)<3>={3n:n€eZ}={31,3233343536=1}
-(3,2,6 4 5 1}=1/
<3>=<35>=7Z7 = (56)=1
ie. <3>=<5>=77
= Z7 is a cyclic group with generators 3 & 5.
ivy<6>={6":n€eZ}= {6, 1}
~{1,6},{1, 2, 4} are the proper subgroups of Z.
The order of every element of Z7 are

o(1)=1, - 1istheleast positive integer such that 11 = 1

0(6) =2, - 2istheleast positive integer such that 62 =1

0(2)=o0(4) =3 - 3is the least positive integer such that 23 =43 =1

and 0(3)=0(5)=6 » 6 is the least positive integer such that 36 = 56 = 1

L
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Ex. Show that (Z:1' = {1,2,3,4,5,6,7,8,9,10}, X11) is a cyclic group. Find all its

generators, all its proper subgroups and the order of every element.

Proof. : We know that for any group G, if a € G then

<a>={a":n € Z}is asubgroup of G.
D<1>={1n:neZ}={1}
i) <2>={2r:n€eZ}={21,22 23 24 25 26,27,28,29210=1}
={2,4,85 10,9, 7, 3, 6, 1} =711
<2>=<2>=<2">=<29>=174 +(3,10)=(7,10)=(9,10)=1
ie.<2>=<8>=<7>=<6>="711
'Zn' isacyclic group with generators? 8, 7&6.

iv)<5>= {5n'nEZ} {5 349, 1} <9>

v) <10 >={10":n€ Z} = { 10, 1)
~{1,10},{1,3,4,5,9}, are the proper subgroups of Z11'.

The order of every element of Z11" are

o(1)=1, - 1istheleast positive integer such that 11 =1

0(10) = 2, - 2is the least positive integer such that 102 =1

0(3)=0(4)=0(5)=0(9)=5

+ 5 is the least positive integer such that 35 =45=55=95=1

and 0(2)=0(6)=0(7)=0(8)=10

*+ 10 is the least positive integer such that 210 = 610 = 710 = 810=1

Uil Wi
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Ex. Let A, B be subgroups of a finite group G, whose orders are relatively prime.
Showthat AnB={e}
Proof: We have (0o(A), o(B)) = 1.

=~ There exist integers m, n such that
m.o(A) +n.o(B)=1........... (1)
LetxeANB

~X€EAand x eB

=~ 0(X) | o(A) and o(x) | o(B)

=~ 0(X) | m.o(A) + n.o(B)

~o(x) |1 by (1)

~x=e

“X=e

Hence AnB={e}isproved.
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EXx. Let G be a groups of prime order p, then prove that G has no proper subgroup.
Proof: Let G be a groups of prime order p.
~0(G) =p.
Let H be a subgroup of a group G.
By Lagrange’s theorem o(H) | 0(G)
=0(H) I p
= 0(H) =1orp =« pisprime number.
If o(H) =1, then H = {e} is not a proper subgroup.
If o(H) = p, then o(H) = 0(G) = H = G is not a proper subgroup.
Hence G has no proper subgroup is proved.

Ex. Show that every proper subgroup of a group of order 35 is cyclic.
Proof. : Let G be a groups of order 35 and H be a proper subgroup G.

By Lagrange’s theorem o(H) | 35

~0H)=50r7 - Hisaproper subgroup G.

i.e. o(H) is prime and every group of prime order is cyclic.

~ His cyclic.

Hence every proper subgroup of a group of order 35 cyclic is proved.

EX. Show that every proper subgroup of a group of order 77 is cyclic.
Proof.: Let G be a groups of order 77 and H be a proper subgroup G.

By Lagrange’s theorem o(H) | 77

~0(H)=7o0r11 - Hisaproper subgroup G.

i.e. o(H) is prime and every group of prime order is cyclic.

~ His cyclic.

Hence every proper subgroup of a group of order 77 cyclic is proved.

Ex. Find the remainder obtained when 15 is divided by 8.
Sol.: By taking a =15 and n = 8, we have (a, n) = (15,8) =1 and #(n) = ¢(8) =4
~. By Euler’s theorem, a®™ = 1(modn), we get,
159®) = 1(mod3)
I.e. 154= 1(mod8)
~ (15%)° = 1° (mod8)
~ 1524 =1 (mod8)......... (1)
As 15 =7 (mod8)
~ 152 = 7% (mod8)
5 152 =1 (mod8)
s 153 = 7x1 (mod8)
5153 =7 (mod8) ......... (2)
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From (1) and (2), we get,

15%% x 153=1 x 7 (mod8)

=~ 1527 =7 (mod8)

=~ 7 is the remainder when 1527 is divided by 8.

Ex. Find the remainder obtained when 33" is divided by 7.
Sol.: Bytakinga=33andp=7ie.p=7isprimeandpt a.
~ By Fermat’s theorem, ar-1 = 1(modp), we get,

336= 1(mod7)

- (33%)° = 1° (mod7)

~ 3318 =1 (mod?7)

and 33 =5 (mod7)

~ 338 x 33=1 x5 (mod7)

=~ 3319 =5 (mod?7)

=~ 5 is the remainder when 3319 is divided by 7.

Ex. Find the remainder obtained when 3°* is divided by 11.
Sol.: Bytakinga=3andp=1lie.p=11isprimeandp{ a.
~ By Fermat’s theorem, ar-1 = 1(modp), we get,

310=1(modl11)

~ (319° = 1° (mod11)

%350 =1 (modl1)

and 3* =81 =4 (modl11)

% 3% x 3*=1 x 4 (mod11)

~ 3% =4 (modl1)

=~ 4 is the remainder when 3°% is divided by 11.

Normal Subgroup: A subgroup H of a group G is called normal subgroup of G
if ghg'eH forallg €G and all h € H.

Ex. Prove that every subgroup of an abelian group is normal.
Proof: Let G be an abelian group and H be any subgroup of G.
~gh=hg V hgeG........... (1)
Forany heH < G and for any g € G,
ghg’ =hgg*=he=h eH by (1)
~ His a normal subgroup of G is proved.
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EX. Prove that every subgroup of a cyclic group is normal.
Proof: Let G be a cyclic group and H be any subgroup of G.
As every cyclic group is an abelian group.
~gh=hg VhgeG........ (1)
Foranyh eH c G and for any g €G,
ghg’ =hgg*=he=h eH by (1)
~ H is a normal subgroup of G is proved.

Ex. If H is a subgroup of a group G and if the normalize of H, N(H) = {g € G : gHg™ = H},
then prove that a) N(H) is subgroup of G and b) H is a normal subgroup of N(H).
Proof: Let H is a subgroup of a group G and N(H) ={g € G: gHg™ = H}is the normalize of H.
a) AsaHa'=HvaeH
~a€ H=ae N(H)=HCN(H) cG.
Fora, b €N(H) = a,beGwithaHa'=HandbHb™*=H ....... (1)
Nowa,beG=able G
Consider (ab)H(ab™)™ = (ab™®)H(ba™")
= a(b™Hb)a™
= aHa™ vbHb*=H=b'Hb=H
=H
Hence ab! € N(H).
~ N(H) is a subgroup of G is proved.
b) For any a € N(H) = aHa™ = H.
~ H is a normal subgroup of N(H).
Hence proved.

Index: If H is a subgroup of a finite group G, then the number of distinct right (or left) cosets

of Hin G is called index of H in G. Denoted by (G:H) or ig(H) = %

EXx. If G is a group and H is a subgroup of index 2 in G, then prove that H is a normal
subgroup of G.
Proof: Let H be a subgroup of index 2 in G. Then number of distinct right (or left) cosets of H
inGis2.LetgeG=g€eHorg¢H.
If g € H then gHg™ = H.
Andifg¢ HthengH#HandH #Hgie.gHNnH=@andHNHg=0
As there are only two distinct right (or left) cosets of H in G
— G=HeUHgand G=eH U gH
= G=HUHg=HUgH
= Hg =gH
= H = gHg"!
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Thus either case gHg' = H V g € G.
Hence H is a normal subgroup of G is proved.

1) Which of the following is a improper subgroup of a group G?

(A) {e} (B) G (C) every subgroup of G (D) None of the above
2) Which of the following is a trivial subgroup of a group G?

(A) {e} (B) G (C) every subgroup of G (D) None of the above
3) A subgroup H of a group Gis called .... if H # G

(A) trivial  (B) improper (C) proper (D) None of the above

4) Which of the following is a subgroup of a group G = {1, -1, i, -i} under usual
multiplication?
(A) {1, i} B) {-1, -i} © {i, -1} (D) {1, -1}
5) Which of the following is a subgroup of the group (Zs, +s)?
(A) {61 gl g} (B) (Z41 +4)? (C) {61 2; Zl'! 6 } (D) {(_)l Zl‘; 6}
6) Which of the following is a not subgroup of (Z, +)?

(A) The set of all even integers (B) nZ forany n € N
(C) The set of all odd integers (D) {0}
7) Which of the following is a not subgroup of thegroup (R, +)?
(A) (R, +) (B) (Q, +) C) (Z, +) D) None of these

8) Let H, K be subgroups of a group G. Then HUK is a subgroup of G if and only if ......
(AJHCS K (B K<SH (C)HcKorKcH (DDHEcKand K< H
9) The number of generators for the group G = {1, -1, i, -i} under usual multiplication are ...

(A) 1 (B) 2 (C)3 (D)0
10) Which of the following group is not cyclic?

(A)G={1-1i-}  (B)(Ze +e) (C) (Zs Xa) (D) (Z, +)
11) Which of the following group is abelian but not cyclic?

(A)G={L-11i-}  (B)(Ze +e) © Q) (D) (Z,+)

12) If A and B are two subgroups of a group G, then which of the following is
certainly a subgroup of G?

(A)ANB (B)AUB (C) AB (D) None of these
13) The number of proper subgroups of the group (Z, +) are ...

(A) 1 (B) 2 (C)5 (D) infinite
14) Cyclic group of order 10 has ... number of subgroups.

(A1l (B) 2 (C)4 (D) 10
15) Cyclic group of order 15 has ... number of subgroups.

(A1l (B) 2 (C)4 (D) 10
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16) Every cyclic group has at least ..... generators.
(A) 1 (B) 2 (C)3 (D) infinite
17) The number of distinct left cosets of a subgroup H = {1, -1} in the group
G ={1, -1, i, -i} under usual multiplication are

(A)1 (B) 2 (C)3 (D) 4
18) If H is a subgroup of a finite group G, then o(H)|o(G). This is the statement of
...... theorem
(A) Euler’s (B) Fermat’s (C) Lagrange’s (D) Cauchy’s
19) If n € N and a € Z such that (a, n) = 1, then a°™ = 1 (mod n). This is the
statement of ...... theorem.
(A) Euler’s (B) Fermat’s (C) Lagrange’s (D) Cauchy’s
20) If p is prime and a € Z, such that p f a, then a®* = 1 (mod n). This is the
statement of ...... theorem.
(A) Euler’s (B) Fermat’s (C) Lagrange’s (D) Cauchy’s
21) Let G be a finite group and a € G. Thena®® = ...,
(A)e (B)a OFS (D) o(G)
22) Let O(n) be an Euler’s totient function. Then B(10)= .....
(A) 1 (B) 2 (C)4 (D) 9
23) Let O(n) be an Euler’s totient function. Then O(17)= .....
(A) 1 (B) 2 (C) 16 (D) 7
24) The remainder obtained when 3** divided by 11 is .....
(A)5 (B) 3 (C)4 (D) 7
25) The number of subgroups of a group of order 41 = .....
(A0 (B) 1 (C)2 (D) 41
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UNIT-3: HOMOMORPHISM AND ISOMORPHISM OF GROUPS

¢ Homomorphism (or Group homomorphism): Let (G, %) and (G', * ") be any two groups,
then the mapping f: G — G'is said to be homomorphism (or Group homomorphism)
if fa*b) =f(a) * f(b) Va,b €G.

% Trivial Homomorphism: Let (G, %) and (G, *") be any two groups, then the mapping
f: G - G’ defined by f(a) = e’ Va € G is called trivial homomorphism where e’ is an
identity element in G'.

% Remark: A homomorphism f: G — G is called an Endomorphism.

% One-One Function: A function f:G —» G’ is said to be one-one function (or injective
function) if f(a) = f(b) = a =b.

% Onto Function: A function f: G —» G’ is said to be onto function (or surjective function) if
fory e G' = Ix € Gwithf(x) =y.

+ Bijective Map: A one-one and onto map is called the bijective map.

Kernel of homomorphism: Let f: (G, *) —» (G, *") be homomorphism, then the set
Ker(f) = {x € G: f(x) = €', indentity elementin G’} is called kernel of homomorphism.

EX. Let (Z,+)be the group of integers under addition and G = {2" : n € Z } group under
multiplication. Show that f:Z — G defined by f(n) =2",vneZ is onto group
homomorphism.
Proof: Form,n € Z = f(m) = 2™ and f(n) = 2"
Consider, f(m + n) = 2m*n
= 2m2n
= f(m). f(n)
=~ fis group homomorphism.
For2®" € G= 3 n € Z with f(n) = 2"
=~ fis onto.
Hence, f is onto group homomorphism is proved.

Ex. Prove that the mapping f: C — C, such that (z) = ez is a homomorphism of
the additive group of complex numbers onto the multiplicative group of non-zero
complex numbers. What is the kernel of f?
Proof: Let the mapping f: C — C, defined by (z) = ez
For z1, 22 € C = f(z1)= e”* and f(z2)= e*2
Now f(z1 + z2) =e“1* %2 = e%1 e%2 = {(21) {(22)
-~ fis a homomorphism.
For any non zero complex number z in Co = 3 log z € C with f(log z) = elsz =z

-~ fis onto.
Hence f is onto group homomorphism.
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1 € Cois a multiplicative identity.
~Kerf={z€eC:f(z) =1}
={z€(C:er=1}

Ex. Consider (Z, +) the additive group of integersand G = {1, —1, i, —i} the group under
multiplication. Show that f : Z — G, defined by f(n) = i™ Vn € Zis group
homomorphism. Find its Kernel.

Proof: Letm,n€ Z = f(m)=i™ and f(n) = i"

Consider, f(m +n) = ™™
=im "

= f(m). f(n)

=~ f is group homomorphism. 1 € G is an identity element.

~Ker(f)={n € Z:f(n) = 1}
={ne€ezZ:i" = 1}
=47

Ex. Let C* = C — {0}, R* = R — {0} be the groups under multiplication. Show that
f:C* - R* defined by f(z) = |z|, V z € C"isagroup homomorphism. Find its kernel.
Proof: For z;,z, € C*
= f(z1) = |z;| and £ (zz) = |z,
Consider f(z, z,) = |z12,|
=|z4]. 2,
=f(z1).f(22)
=~ f is group homomorphism.
1 € R*is an identity element.
~Ker(f)={zeC: f(z) = 1}
:{ZEC*: |Z| =1}
~ Ker(f) = Set of all complex numbers whose modulus is 1.

Ex. Let G = {a,a? a3, ... ,,a'?(= e)} be a cyclic group of order 12 generated by a. Show
that f: G — G defined by f(x) = x* V x € G is a group homomorphism. Find its Kernel.
Proof: Let G be a cyclic group of order 12 generated by a.
~ G is abelian.
Syt =x"y"Vx,y €EG = - Q)
Forx,y€G = f(x)=x*and f(y)=y*
Consider f(xy) = (xy)*
= xty* by (1)
=fC0).f»)

=~ f is group homomorphism.
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As al? = e is an identity element in G
~Ker(f)={xe€G:f(x)=e}

={x €G:x*=¢}

= {e,a3,ab a’}

Ex. Consider (R, +) a group of reals under usual addition . Show that
1) f: R - Rdefinedby f(x) = 2x V x € R isagroup homomorphism.
Find its Kernel.
2)g: R - Rdefinedby g(x) =x+1 V x € R isnotagroup homomorphism.
Proof: 1) Letx,y € R = f(x) = 2x and f(y) = 2y
Consider, f(x+y) = 2(x+y)
=2xX+2y
=f&)+f()
=~ f is group homomorphism. 0 € R is an identity element.
~Ker(f)={xe R:f(x) = 0}
={x € R: 2x = 0}
= {0}
2)Letx,y € R = gx)=x+1and g(y)=y+1
Consider, g(x) +g(y) = x+1+y+1
=Xty+2 - (1)
And gx+y) = x+y+1 - (2)
~By(1)&(2) = glx+y) # glx) + g()
=~ g is not a group homomorphism is proved.

Ex. Let, G ={[? Z] : a,b,c,d € R,ad —bc # 0} the group of all non-singular

matrices of order 2 over R under matrix multiplication and let R* = R — {0} the group of
non-zero real numbers under multiplication.Define f: G — R* by f(A) = |A| for all
A € G.Show that f is onto group homomorphism and find it’s Kernel.
Proof: ForA,B € G = f(A) = |A| & f(B) = |B|
Consider f(AB) = |AB]|
= |Al|BI
= f(A4).f(B)

=~ f is group homomorphism.
For x e R* = 3 Az[’é g]eG with [A|=x# 0

Such that f(4) = ¥ 2 = x
~ fis ontogroup homomorphism. 1 € R* is an identity element.
~Ker(f)={A €G : f(A)=1}
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={A €G : |A|l =1}
= set of all 2x 2 matrices whose determinant is 1.

Ex. Let G = { A: Aisn X n matrix over R and |A| # 0} the group under non-singular
matrices of order n over R under multiplication and R* = R — {0}, the group of
non-zero real numbers under multiplication. Show that f: G — R* defined by
f(A) = |A| V A € G is onto group homomorphism.

Proof: For A,B € G = f(A) = |A| and f(B) = |B|

Consider, f(AB) = |AB|
= |AllBI
=f(A).f(B)
=~ fis group homomorphism.
For x € R* = xis non-zero real number

x 0 0 - 0
O 1.0 .. O

=>3ImatrixA=[0 0 1 .. 0|eGwithf(A)=|Al=x#0
l() 0 0 - 1J

=~ fisonto.
Hence, f is an onto group homomorphism is proved.

Ex. Let G = (Z, +) the additive group of integersand G’ = { 1, —1} a group under
multiplication. Show that f: G — G’ defined by
f(n) = { 1, i.fn i§ even
-1, if nis odd
Is onto group homomaorphism.
Proof: Form,n € Z
Case i) If m and n both are even, then (m + n ) is even.
~f(m)=1,f(n)=1andf(m+n) =1
Nowf(m+n)=1=1x1=f(m).f(n)
Case ii) If m and n both are odd, then (m + n ) is even.
& f(m) =—-1,f(n) =—-1andf(m+n) =1
Now f(m+n) =1 = (—-1) X (=1) = f(m).f(n)
Case iii) If one is even and other is odd.
Say m is even and n is odd, then (m + n ) is odd.
~f(m)=1,f(n) =—-1andf(m+n) = —1
Now f(m +n) = -1 = (1) X (—1) = f(m).f(n)
=~ By cases (i), (i), (iii) we have,
f(m+n) =f(m).f(n) V m,n €Z
~f is a group homomorphism.
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ForleG' =2 eGwithf(2) =1
And -1 € G =3 € Gwithf(3) = —1
~ fisonto.

Hence, f is onto group homomaorphism is proved.

Ex. Let f: G —» G’ be a group homomorphism. Prove that

1) If e is an identity element of G then f(e) is the identity element of G'.
i) f(a™!) = [f(a)]™!, V a€G.
i) f@™) = [f(a)]™, V aeGandm € Z.

Proof: Let,f: G - G’ be a group homomorphism.

i) Let e is an identity element of G and e’ be an identity element of G'.
Forae G =f(a) e G’

~ f(a)e' = f(a)
= f(ae)
= f(a).f(e) - fis homomorphism.
~ e’ = f(e) by left cancellation law
i.e.f(e) is an identity element of G'.
ii)Forae G >aleG withaal=e
~ f(aa™1) = f(e)
~f(@).f@a™) =¢’
~f@) =f@@)™?.e
s~ fa™) =[f(a)]”? VaedG.
1ii) Case i) If m is positive integer then
f(a™) =f(a.a.a....a)
m times
= f(a).f(a).f(a) ....f(a) =+ fis homomorphism
m times
~ f@@™) = [f(@)]™
Case ii) If m = 0, then f(a%) = f(e) = ¢’ = [f(a)]°
Case iii) If m is negative integer, then m = —n, where n is positive integer,
~ f@™) = f(a™)
= fl(aH"]
= fl(@™H]"
= [f@™]"
=f(@™
=[f(a)]"V a €.
~ By cases (i), (ii) & (iii)) f(@a™) = [f(a)]™,

Hence proved.

Va€Gand m € Z.
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Ex. Prove that homomorphic image of an abelian group is abelian.
Proof: Let f: G — G’ be a group homomorphism, then
f(G) ={f(x):x € G}is homomorphic image of G and G is abelian.
For a’,b' € f(G) = 3 a,b € G withf(a)=a'& f(b)=D".
Consider, a’b’ = f(a).f(b)
= f(ab) ~ f is homomorphism.
= f(ba) ~ G isabelian
= f(b).f(a) ~ f ishomomorphism.
~ a'b'= bd
Hence, homomorphic image of an abelian group is abelian is proved.

Ex. Prove that homomorphic image of cyclic group is cyclic.
Proof: Let, f: G — G’ be a group homomaorphism, then
f(G) ={f(x):x € G}is homomorphic image of G and G is a cyclic group say
G=<a>
Claim: f(G) = < f (a) >
As a € G = f(a) €f(G)
= <f(a)> < f(G).......... (1)
Lety € f(G) = I3 xe€G with f(x) = y
Now,x €EG=>3 m€eZ with x =a™
cy=fx) =f@) =[f@]"e<f(a)>
~f(G) € <f(a)>............ (2)
~By () and (2) f(G) = <f(a)>
Hence, homomorphic image of cyclic group is cyclic.

Ex. Prove that homomorphic image of finite group is finite.

Proof: Let, f: G — G’ be a group homomaorphism, then
f(G) ={ f(x): x € G} ishomomorphic image of G and G is afinite say
G = {x1,%x3, X3, ... ,Xn}
s~ f(G) = {f(x1), f(x2), f(x3),... , f(x,)}which is finite.

Hence, homomorphic image of a finite group is finite is proved.

Ex. Let, f: G — G’ be a group homomorphism, then prove that
1) Ker(f) is a subgroup of G.
if) f is one-one iff Ker(f) = {e} where e is an identity element in G.
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iii) If H' is a subgroup of G’ then Ker(f) € f~1(H").
Proof: Let, f: G — G’ be a group homomorphism, then
i) Ker(f) ={x € G: f(x) =e’, identity elementin G'.}
Ase €G = f(e)=e' = e € Ker(f)
~ Ker(f) is a non-empty subset of G.
For x,y € Ker(f)
=>x,y € Gwithf(x) =e' & f(y)=¢€'
= xy~! € G with
fley™) = fO).fO™)
=f().fo™
=e'.(eN?!
= e’
. xy~ 1 € Ker(f)
Hence, Ker(f) is a subgroup of group G.
) Suppose, f is one-one.
Letx € Ker(f) © f(x)=¢€
e fx)= f(e)
© x = e fisone-one.
& Ker(f) ={e}
Conversely, Suppose Ker(f) = {e}
For x,y € G

Let f(x) = f(¥)
fO).f)™7= ¢
fQ).fy™H= ¢

o fley™H= €
~ (xy™H) € Ker (f) = {e}
"Xy 1=
X=Yy
~ fis one-one.
iii) Let H' be a subgroup of group G'.

For x e Ker(f) = f(x)=¢e €H’

= x € fYH)

~ Ker(f) € f~'(H')

Hence proved.

Ex. Let, f and g be group homomorphism from G — G. Show that
H= {x € G: f(x)=g(x)}isasubgroup of G.
Proof: Let f and g be group homomorphisms from ¢ — G with

H={x € G: f(x)=g(x)}

MTH -302(A): GROUP THEORY
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We observe that f(e) =e and g(e) =e for e€e G .. e€ H
~ H is non-empty subset of G.
Forx,y€H = x,yeG with f(x)=gx) & f(y) =9g)
= xy '€ Gwithf(xy™) = f(x).f&y™")
= f is homomorphism.
ffly™) = FO.fO)T
= gx).g™!
= 9(x).g (™"
o fley™) = g (xy™1) + g is homomorphic.
> xy ! € H
~ H is a subgroup of G is proved.

% Isomorphism : Let, (G ,*) and (G',+") be any two groups then the mapping f : G —» G’ is
said to be an isomorphism if 1) f is group homomorphism, 2) fis one-one & 3) f is onto.

% Remark: An isomorphism f : G — G is called an automorphism.

Ex. Let G be a group of all matrices of the type {[—ab Z]: a,b € Ganda®+b’=1}
under matrix multiplication and G' be a group of non-zero complex numbers under

multiplication. Show that f : G — G' defined by ([—ab 2]) = a + ib, is an isomorphism.

Proof: Let f : G — G defined by (| %, Z]) = a+ib.
)ForA=| % b|.B= <, ‘j] €G = f(A) =a+iband f(B) = c +id
Now AB = | Z] L5, Cci] - —azfc_—bgd —algid++bcic]

—b
ac — bd ad + bc]

le. AB = [—(ad +bc) ac—bd
~ f(AB) = (ac — bd) +i(ad + bc) = (a + ib)(c + id) = f(A).f(B)

=~ fis a homomorphism.

. a b, _ c d
I1) Suppose f([_b a]) = f([_d C])

= a+ib=c+id

= a=candb=d

a bl _[c d
= [—b a] N [—d c]
-~ fis one one.
. . a b . a bl _ .
iii) Fora+ibe G = 3 [—b a]e G with ([—b a]) =a+ib.
By (i), (ii), (iii) fis an isomorphism is proved.

Ex. Let, (R, +) be a group of reals under addition and (R*, x) the group of positive reals
under multiplication. Show that f : R — R* definedby f(x) =2* Vv x € R isan
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isomorphism.
Proof: 1) For x,y e R = f(x)=2* and f(y)=2Y
Consider f(x +y) = 2**¥

= 2*x2Y
~ fxty) = fXfO)
=~ f is group homomorphism.
2)For x,y € R
Let f(x) = f(y)

2% =2V

~ log, 2* = log, 27
X =y
=~ f is one-one.

3) Forx € R* = x isapositive real number Jlog,x € R
Such that f(log, x) = 2!092% = x
~  fis onto.
~ By (1), (2) and (3) f is anisomorphism is proved.

Ex. Consider the group (Zs , +s) and G = { a,a?, a3, a*, a®(= e)} be a cyclic group
generated by a.Show that f:Zs — G defined by f(i7) = a™ V n € Z is an isomorphism.
Proof: 1) Form ,n € Zs = f(m)=amand f(n)=a"
Consider f(m+sn) = f(m + n)
- am+n
=a™. a"
~ fim+sn) = f(m). f(7)
=~ fis a group homomorphism.
2) Form, n € Zs

Suppose f(m) = f(i)

g™ = q"
Tm=n
S m=n

f is one-one.

3)For a® € G = 3 n € Zs with f(n) = a™ -~ f isonto.
~ By (1), (2) and (3) f is an isomorphism is proved.

Ex. Let G be agroup and a € G.Show that f, : G — G defined by f,(x) = axa™1, for all
X € G is an automorphism.
Proof: 1) f, is a group homomorphism:
For x,y € G, we have f,(x) = axa tand f,(y) =aya™?
Consider f,(xy) = a(xy)a™?!
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= (ax) e (ya™)
= (ax) (a™*a) (ya™)
(axa™')(aya™)
fa (). fa(¥)

& fn 1s group homomorphism.
2) f,1s one-one :

Let, fo(x) = fa(y) for x,y € G
. 1 1

axa - = aya~
x =7y by cancellation laws
~ f, 1S one-one.
3) fyisonto :
Forx€ G= 3 alxa € G a€ G with
folaxa) = a(a'xa)a™! = x
. f, 1s onto.

~ By (1), (2) and (3) f, isan automorphism is proved.

Ex. Let G beagroupand f : G — G be amap defined by f(x) = x~Forall x € G.
Prove that a) If G is abelian then f is an isomorphism.
b) If f is group homomorphism then G is abelian.
Proof: a) Let G is abelian.

Lxy =yxVx,yeaG - -mmmeeee- (1)
1)For x,ye€G = f(x) = x 1 and f(y)=y?
Consider f(xy) = f(yx) By (1)
flxy) = @)™
= x "1yt

~ fly) = fOO.f(¥)

=~ fis a group homo-morphism.

2)Forx,y € G
Suppose f(x) = ()
fox =971
EH =™
© x =y
= f is one-one.
3]For xe G =>3x e with f(xH=@GxH1=x
=~ fisonto.

By (1), (2) and (3), f is an isomorphism.
b) Suppose f is a group homomorphism.

For x,y € G

Consider xy = [(xy)™1]?!
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= fOy)™!
= fO'x™)
= fy Hf(x~Y ~ f is homomorphic
= o H7EH™
Xy =YX
Hence G is abelian is proved.

Ex. LetG beagroupand f: G — G be amap defined by f(x) = x~1
Forall x € G.Prove that G is abelian iff f is an automorphism.
Proof: Let G is abelian.

Xy = yx Vx,yeG - (1)
1)For x,y €G> f(x)=x"1 and f(y) =y~1
Consider f(xy) = f(yx) By (1)
fly) = 0™
= x 1yl

s fly) = f0).f()
~ fis agroup homo-morphism.
2) Forx,y € G
Suppose f(x) = f(y)
ooxl = y—1
(x—l)—l — (y—l)—l
2w x =y
=~ f is one-one.
yFor xeG¢G > I x1te ¢ with f(xH= (xH1 =x
=~ fisonto.
By (1), (2) and (3) f is an isomorphism.
Conversely: Suppose f is an automorphism hence f is a group homomorphism.

For x,y € G

Consider xy = [(xy)~1]?
= flGa™]
= fO~x™)

= fO Hf(x™H ~ f is homomorphic
= oY
XY =YX
Hence G is abelian is proved.

EX. Prove that every finite cyclic group of order n is isomorphic to (Z,, , +,,).
Proof: Let, G be a finite cyclic group of order n.

~G={e,a,a?,.,a"} =<a>

Define f: G - Z, by f(a*) =k V a* €G
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For a* &a® € G,wehave f(a*) =kand f(a®) =S.
By division algorithmk +s = nq +r where 0 < r <n
~k+s =71
Consider f(a*.a%) = f(a**)
— f(anq+r)
= fl(@")9.a"]
= fle9.a"]
= f(a")
r

= k+s

= k+,
s f(@h.a®) = f(a¥) +, f(a)
=~ fisagroup homomorphism.
Also for ak& a® € G

Let f(a*) = f(a®)

2]

ok
k
ak
=~ f is one-one.

For keZ, = 3 a*€ G with f(a*) = k.~ fisonto.
Hence f is an isomorphism is proved.

S
S v 0 <k, s<n
aS

EX. Prove that every infinite cyclic group is isomorphic to (Z , +).
Proof: Let G be a infinite cyclic group generated by a.
i.e. G={a": neZ}
Define f:G - Z by f(a")=nVa™* €eaG
1) Fora™ and a™ € G,wehave f(a™)=m and f(a™) =n
Consider, f(a™.a"™) = f(a™™)
= m+ n

f@) + f(a")

=~ fis group homomorphism.
2) Let f(a™)=f(@") Vm,neaG
= m=n
= am™ = a"
=~ fis one-one.
)For n€ Z = Ia™ € G with f(a™) = n.
~ fisonto.
~ By (1), (2) and (3), f is an isomorphism.
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i.e. G = Zisproved.

Ex.Letf : G » G' be agroup homomorphism. If a € G and o(a) is finite then
show that o(f(a))|o(a).
Proof: Let f : G — G' be a group homomorphismand a € G with o(a) is finite say
o(a) = n.
Lat=e
~ f(a") = f(e)
s fla)t = e ~ fis homomorphic.
+o(f(@)|n
= o(f(a)] o(a). Hence proved.

Ex. If f: G — G’ be anisomorphism then show that o(a) = o(f(a)) V a€QG.
Proof: Let, f : G - G’ is an isomorphism.
Casei) If o(a) is finitesay o(a) = n
~at=ce
s f@®) = f(e)
~fla)t = e ~+ f is homomorphism.
»o(f(a) € n
«o(f(@) < o(a) - (1)
Ifo(f(a)) = m then
fl@™=¢
f(@am) = f(e)  f is homomorphism.
~amt=e * f IS one-one.
o(a) < m
o(a) < o(f(a)) - )
~ By (1) and (2) o(a) = o(f(a))
Case ii) If o(a) is infinite then we have to prove o(f(a)) is infinite.
If o(f(a)) is finite say m.
s f(am = e
& f(a@a™) = f(e) ~+ f is homomorphism.
s~ a™=-e fisone-one.
=~ o(a) < m, which contradicts to o(a) is infinite.
~ o(f(a)) is infinite.
~ By cases (i) and (ii) o(a) = o(f(a)) is proved.

Ex. If G = {1,—1,i,—i} is the group under multiplicationand G = {2,4,6,8} isagroup
under multiplication modulo 10 then Show that G and G isomorphic.
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Proof: Let G = {1,—1, i, —i} is a group under multiplication with identity element 1.

We observe that 0o(1) = 1,0(—=1) = 2,0(i) = o(—i) =4

LetG = {2,4,6,8}isagroup with identity element 6.
~0(6)=1,02)=4 =08 +~ 27'=8ando(4) = 2
~Wedefinef:G->Gasf(1)=6, f(-1) =4, f()=2,f(-i)=8

Which is one-one and onto.

For -1,—i € G, Wehave f((-1)(=i)) = f(@i) = 2 and

f(=1) X9 f(=0) = 4%;08 =2

~ f((=D(=D) = f(=1) x40 f(—0) which is true for all element in G.
~  fis group homomorphism. .. f is group isomorphism.

i.e. G = Gisproved.

EXx. Show that the groups ¢ = {1, —1, i, —i} is the group under usual multiplication and
Z's = {1,3,5,7} is a group under multiplication modulo 8 are not isomorphic.

Proof: Suppose G is isomorphic to Z'g.i.e.G = 7'

i.e. f:G — Z'gis an isomorphism.

v o(a) = o(f(a)) YVaeG -------- Q)

We observe that 1 € G is an identity element.

~o(1)=1,0(-1)=2,0(i) = o(—i) = 4and

1 € Z'gis an identity element under xg

o) =1,03)=2,0(5)=2,0(7) =2.

Asi€ G with o() =4 -~ o(f())=1or2

which contradicts to equation (1).

~ G and Z'4 are not isomorphic is proved.
Ex. Show that the set of all automorphisms of a group G forms a group under composition of

mappings.
Proof: Let, A be the set of all automorphisms of a group G.
i.e. A={f|f:G — Gisanautomorphism.}
1) For f, g€eA
= f:G->G & g: G- Gisanautomorphism.
= fog : G — G is an automorphism.
= fog€ A
i.e. Composition of mappings is a binary operation in A.
2) For f, g& h € A, we have
[(fog)oh](x) = (fog) (h(x))
= f [9(h()]
= fo [g(h(x))]
= [(fog)oh](x) = [fo(gomW)](x) V x€ G
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* (fog)oh = fo(goh)
~ Composition of mappings is associate in A.
3) Let I : G — G defined by I(x) = x is an automorphism with

(foD(x) =f(I(x)) = f(x)

= I'[f(x)]
= (Iof)(x) V x € G
~ fol = Iof
~ I € Ais an identity element.

4) Forf e A
= f: G - Gis an automorphism.
= f~1 : G - Gis an automorphism with
(fof D) = fIf '] =x= 1(x)
& (ftof(x) = 7 Hf(x)] = x =1(xX)
~ f71 € A 1i.e.every mapping has inverse in A.

By (1), (2), (3) and (4) set of automorphisms A forms a group under composition of
mappings is proved.

1) Let (G, %) and (G, * ") be any two groups, then the mapping f: G — G'is said to be
homomorphism (or Group homomorphism) if f(a*b) = ---...V a,b € G.
[A] f(a) « f(b) [B] f(a) " f(b) [C]f(a+"b) [D] f(ab)
2) Let (G, ) and (G', = ") be any two groups, then the mapping f: G — G’ defined by
f(a) = e’ V a € G s called trivial homomorphism where e’ is an identity element in G'.
[A] e [B] O [C] € [D] 1
3) A homomorphism f: G = Gis calledan ...... .
[A] Endomorphism  [B] Isomorphism [C] Automorphism [D]None of these
4) A function f: G —» G’ is said to be one-one function if f(a) = f(b) = ......

[Ala=b [Bla#Db [Cla<Db [D]a>Db

5) A function f: G - G’ is said to be ...... function if fory € G’ = 3Ix € Gwithf(x) =y.
[A] many-one [B] one-one [C] onto [D] inverse

6) A one-one and onto map is called the ...... map.

[A] injective  [B] bijective [C] surjective [D] many-one
) If f:G — G is a group homomorphism and f is one-one then Ker(f) = .......

[Al {e} [B] {e'} [C] {0} [D]{1}
8) Homomorphic image of an abelian group is ......

[A] cyclic [B] abelian [C] finite [D] infinite
9) Homomorphic image of a cyclic group is ......

[A] cyclic [B] abelian [C] finite [D] infinite
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10) Homomorphic image of a finite group is ......
[A] cyclic [B] abelian [C] finite [D] infinite

11) Let G = {a,a? a3, ... ,,a'?(= e)} be a cyclic group of order 12 generated by a.
If f:G — G defined by f(x) = x* V x € G is agroup homomorphism,
then Ker(f) = ......

[Al {e} [Bl{e,a’,a%a’} [C]{e,a* a®} [D]1{1,-1}

12) Let (Z, +) the additive group of integersand G = {1, —1, i, —i} the group under
multiplication. If f : Z — G, defined by f(n) = i Vn € Z is homomorphism,
then Ker(f) = ......

[A] {e} [B] Z [C] 4Z [D] {1, -1}

13) An isomorphism f: G — Gis called an ...... .

[A] Endomorphism  [B] Homomorphism [C] Automorphism [D] None of these

14) Let, (G ,*) and (G',*") be any two groups then the mapping f : G — G’ is said to be an
isomorphism if ......

[A] f is group homomorphism [B] fisone-one
[C] f is onto [D] All of these

15) Let G beagroupand f : G — G be a map defined by f(x) = x~* forall x € G,

Is group homomorphism then group Gis ......

[A] cyclic [B] abelian [C] finite [D] infinite
16) Every finite cyclic group of order n is isomorphic to ......

[Al (Zy, +n) [BI(Z,+) [CI(Q +) [DI(R,+)
17) Every infinite cyclic group of order n is isomorphicto ......

[Al (Zy, +) [BI(Z,+) [CI(Q +) [DI(R,+)
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Ring: A non-empty set R with two binary operations + (addition) and - (multiplication)
i.e.(R,+, -)iscalled aring if:
) (R, +) is an abelian group.
Ia-(b-c)=(a-b) -c fora,b €R.
) a(b + c) = ab + ac (left distributive law) and
(a+ b)c = ac + bc (rightdistributive law) V a,b,c € R
Commutative Ring: Aring (R, +, .) is said to be a commutative ring if
a-b=b-aVab R
Ring with unity (or ring with identity): Aring (R, +, .) is said to be a ring with unity
(or ring with identity) if there existsan element1 e Rwitha-1=1-a=a,Va €R.
Ring with zero divisors: Aring (R,+, .) is said to be a ring with zero divisors
if3abeRwitha+0b==0 butab =0.
Ring without zero divisors: Aring (R, 4+, .) is said to be a ring without zero divisors
ifab=0 = eithera=0o0rb=0.
e.g. 1) (Z+, .),@Q+ .), R+, .),(C +, .)arecommutative rings with unity and without
zero divisors.
2) Let R be the set of all 2x2 matrices over reals then (R, 4+, .) is a non-commutative ring
with unity.
3) (:Z,+, .) is a commutative ring without unity.
4) (Zg, +g,Xg) is a commutative ring with unity and with zero divisors.
w2 #0,4+0 but 2xg54=0.
Multiplicative Inverse: An element b € R is said to be multiplicative inverse of an element
a ERifa-b=D>b-a=1where1isan identity/unity in R.
Remark:
1. Additive identity is called zero element.
2. Multiplicative identity is called unity.
3. Those elements have multiplicative inverse are called units.

Theorem: Let (R,+, .) bearing and a, b, c € R then
1) a-0=0-a=0
2) a(—=b)=—(ab) = (—a)b
3) (—a)(—=b) = ab
4) a(b—c)=ab—ac
5) (a—b)c =ac - bc
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Proof: Let, (R,+, .) bearing.
I) 0 € R is an additive identity.

~04+0=0
~a(0+0)=a0
~ a0+ a0 =a0 by left distributive law
~a0+a0=a0+0
a0 =0 by left cancellation law
Similarly 0a = 0
|-. a0 =0 = 0qa|

I)As (=b)+b=0
~a[(=b) +b] = a0
~a(=b)+ab=0 by (1)
a(—b) = —(ab)
Similarly (—a)b = —(ab)
s~ a(—b) = —(ab) = (—a)b
I11) Consider (—a)(—b) = —[a(—b)] = —[—(ab)]

s (—a)(—=b) =ab

IV) Consider a(b —c) = a[b + (—c)] = ab + a(—c) by left distributive law
~a(b—c)=ab—ac by (2)

V) Consider (a — b)c = [a + (=b)]c = ac + (—=b)c by right distributive law
~(a—b)c=ac—bc by (2)

Hence proved.

Theorem: Let (R, +, .) be aring with identity element 1 and a € R, then
D(-1a=—-a 2)(-1)(-1)=1.

Proof: Let, (R,+, .) be aring with identity element 1 anda € R
1) Consider (—1)a = —(1-a)

s~ (=Da=—-a 1 is an identity element.
2) Consider (—1)(-1)=(1-1)
~ (DD =1 Hence proved.

Ex: Show that a ring R is commutative if and only if
(a+b)>=a*+b*+2ab V a,b ER.
Proof: Suppose a ring R is commutative.
~ab=ba Vab€eRrR ---—-- (1)
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Consider,
(a+b)2=(a+b)(a+h)
= (a+b)a+ (a+Db)b by left distributive law

= a’ + ba + ab + b? by right distributive law
= a?+ ab + ab + b? by (1)
= a? + 2ab + b?

~ (a+b)*=a’+b*>+2ab VY a,bER
Conversly: Suppose (a + b)? = a®> + b*+2ab V a,b €R
~(a+b)(a+b) =a?+ 2ab + b?
~(a+b)a+ (a+b)b=a?+2ab + b?
~ a’+ba+ab+b?=a%+ab+ab+ b?
ba = ab by cancellation laws
~ Ring R is commutative ring is proved.

Ex: Let R be a ring with identity element 1 and
(ab)? = a?b? V a,b € R. Show that R is commutative.
Proof: Let R be a ring with identity element 1 and
(ab)? = a’*bh® V a,b ER - (1)
Fora,b + 1 € R,we have
[a(b + 1)]? = a?(b + 1)?
sab+1)-ab+1)=a*(b+1)(b+1)
~(ab+a)(ab+a) =a?*(b>+b+b+1)
~ (ab)? + aba + a’b + a* = a*b? + a’b + a®’b + a?
s~ a?b? + aba + a?b + a® = a?b? + a’b + a?b + a?
~ aba= a’h V a,b €ER ----- (2)
Fora+1,b € R, from (2), we have
(a+ Db(a+1) =(a+1)%b
“(@ab+b)a+1)=(a+1)(a+1)b
~aba+ab+ba+b=(a+1)(ab+Db)
~ a’b+ab+ba+b=a’b+ab+ab+b by(2)
~ ba=ab Vab€ER
Hence R is a commutative ring is proved.

Ex: Show that (Zg, +¢,%X) 1S @ commutative ring with unity and with zero
divisors.
Proof: Let, Z, = {0,1,2,3,4,5}
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We prepare composition tables of +, & X, for Zg as follows

+6 1 2 3 4 5
0/]0 1 2 3 4 5
111 2 3 4 5 0
212 3 4 5 0 1
313 4 5 0 1 2
4[4 5 0 1 2 3
5/!5 0 1 2 3 4

Xe | 0 1 2 3 4 5

0] 0 0 0 0 0 O
110 1 2 3 45
210 2 4 0 2 4
3/ 0 3 0 3 0 3
410 4 2 0 4 2
5|10 5 4 3 2 1

We observe that 4+, and X are binary operations in Z, are also commutative and
associative in Z. Additive inverse of 0,1,2,3,4,5 are 0,5, 4, 3,2, 1 resp. in Z.
0 € Z, is an additive identity and 1 € Z is a multiplicative identity in Z.
As Z¢ € Z - distributive laws hold in Z.

s (Zg, +4,%X) I1s a commutative ring with unity and with zero divisors.

v 2#0,3#0and4=0but2 x,3=0and3 X,4 =0.

Ex: Show that the set R = {0, 2, 4, 6} is a commutative ring under addition and multiplication
modulo 8.
Proof: Let R = {0,2,4,6}
We prepare composition tables of +g and Xxg for R as follows

+s| 0 2 4 6 Xg | O 2 4 6
0|0 2 4 6 00 0 0 O
2 |2 4 6 O 2 |0 4 0 4
4 14 6 0 2 4 10 0 0O O
6 /6 0 2 4 6 | 0 4 0 4

We observe that +g and Xxg are binary operations in R, are also commutative and
associativeinR. ~ R € Z.
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Additive inverse of 0,2,4 & 6 are 0,6,4 & 2 Iin R.
0 € R isan additive identity. ASR < Z.
=~ Distributive laws hold in R.
=~ (R, +g,Xg) Is a commutative ring is proved.

Proof: LetZ, ={0,1,2,3,4,5, 6}
We prepare composition tables of +, & X for Z- as follow

T

NI = Ol O vllf U1

O Ul B W NI R o)
oM Ul B W NI R Ol O
Ol O\ Ul BB W N R| =
= Ol o vl B W NI N
NI = ol o Ul B Wl W
Wl no| POl O Gl |
Bl N R ol o o
o v B W NI R Ol X
ol Ol o o o o ol ol
o v B W NI ROl R
Ul Wl RO AN oI N
BRI g N o Wl o wl
Wl o NI Ul = Ol
N LA O R Wl Ul Ol wl
=N WL Ul oV ol o

=l
ul

We observe that 4+, and X are binary operations in Z-, are also commutative and
associative in Z,. « Z, < Z.

Additive inverse of 0,1,2,3,4,5,6 are 0,6, 5,4, 3,2, 1 respectively in Z,.0 € Z. is an
additive identity and 1 € Z, is a multiplicative identity in Z..

As 7, < Z - distributive laws hold in Z.

Hence, Z, forms a commutative ring under +- and X is proved.

Ex: In the ring (Z,, +10,%10), find all divisors of zero.
Solution: Let, (Zo, +19,X10) b€ aring with zero element 0.
We prepare table for x,, of Z,, as follows

xo| @ 1T 2 3 4 5 & 7 & 9
o] o 0 0 0 o0 0 0 0 0 0
ilo 1 2 3 4 5 & 7 8 9
o 2z 2 & 8§ 0 2z i & 8
3|0 3 & & 2 5 8§ 1 & 7
i|lo 4 8§ 2 & 0 4 8 2 6
s|o 5 © 5 © 5 0 5 0 5
&l o 6 2 8 4 0 & 2 8 4
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Ol Col I
QoI O ol
Wl B
(@)Yl NSl iee]]
ull Ol Ul
1 Col NI
Wl O Ol
NI B ON
=N W

7 0
8 0
9 0

From the table, we observe that 2 # 0,4 = 0,5 # 0,
6#08+0 but 2x,,5=0,4%,;05=0,5%;0 6=0and5 x;, 8=0.

~ 2,4,5,6 & 8 are the zero divisors in a given ring.

Ex: On the set Z of integers, define binary operations @ and © as
a®b=a+b—1landa®b=a+b—ab V ab € Z.
Show that (Z, &, ®) is a commutative ring with identity element 0.

Proof: 1) (Z. @) is an abelian group:-

Let, a,b,c € Z.

Ha®b=a+b—-1 €Z V ab € L.

. @ is a binary operation in Z.

2) Consider,a &(b &c) =a &b +c—1)
=a+b+c—1-1
=(a+b—-1)+c—-1
=(a+b—-1)Bc

a ®b dc)=(ad®b)bc
@ is associative in Z.

3 Asa®l=a+1-1=a=1@a Vacel

~ 1 € Zis an identity element under &

4) Asa € Z = 3 2—a € Zwith

aPR2-a)=a+2-a—-1=1=2—-a) Ba
» 2 —alisaninverse of a in Z.
5 Asa®b=a+b—1=b+a—1=b Ba Vab € L.
~ @ is commutative in Z.
=~ (Z,®) is an abelian group.
Ia ®b=a+b—ab € ZVab € Z
Consider,a ®@(b ®c) =a ©(b + c — bc)
=a+b+c—bc—a(b+c—bc)
=a+b+c—bc—ab—ac+ abc---(1)
& (a®b)®c=(@+b—ab)Oc
=a+b—ab+c—(a+b—ab)c
=a+b—ab+c—ac—bc+abc ---- 2
By (l)and (2) a ©(b ©c)=(a ©b) Oc
» (@© lisassociative in Z.
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3) Consider,a ©®(b &c)=a ©(b+c—-1)
=a+b+c—1—alb+c—1)
=a+b+c—1—ab—ac+a
=2a+b+c—ab—ac—-1 ---- [3]

& (a ©b)B(a ®c)=(a+b—ab) ®&(a+c—ac)
=a+b—ab+a+c—ac—1
=2a+b+c—ab—ac—-1 ----- [4]

By [3]and [4] a®( &©c) = (a®@b)B(a®c)

Similarly (a®b) ©c=(a®c)®dBbOc) V ab,c € Z

i.e. distributive laws hold in Z. . (Z,&®,®) isaring.

4HYAsa®Ob=a+b—ab=b+a—ba=b@®a VYab € L.

-~ © Is commutative in Z.

5 As0€eZwitha®@0=a+0—-a-0=a=00@aVa€eZ

=~ 0 € Z is an identity element in Z.

Hence, (Z, ®, ®) is a commutative ring with identity element O is

proved.

Ex: Prove that a non-zero element m in (Z,, +,,%;,) 1s a zero divisor if and only if m is not
relatively prime to n, where n > 1.
Proof: Suppose a non-zero element m is a zero divisor.
We have to prove (m,n) # 1.
f(mn)=1 - - Q)
Asm isazerodivisor . 3 t € (Z,,+,,X,) Witht # 0 where 0 < t < n with
m X, t=0
~mt =0 ~n|lmt ~ n|t
Which contradictsto0 <t <n. ~ (m,n) #1
i.e. mis not relatively prime to n.
Conversely, Suppose m is not relatively prime to n.
s(mn)=d>1 ~ d|m and d|n.
~ m=drandn =dk forsome0 <r,t <n.
mk=drk=(dk)r=nr -~ mk=mnr=20
~m X, k=0withm=08&k #0
. 1 IS a zero divisor.
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Ex: Show that Z,, = {0,1,2,3, ..., (n — 1)} the set of residue classes of integers modulo n,
forms a commutative ring with identity element underaddition modulo n(+,,) and
multiplication modulo n(X,,) operations.
Proof : 1) (Z,, +,,) is an abelian group:-
1) Asa+,b=a+b € Z, VYa,b € Z,
~ 4, Iisa binary operation in Z,,.
2) Asa+, (b+n,¢)=a+, (b+c)
=a+((+c)
=(a+b)+c
= m +n €
=(a+,b)+,¢ VYV abc €1,
+,, Is associative in Z,,.
3 Asa+,0=a+0=a=0+,a Va € Z,
=~ 0 is an additive identity in Z,,.
4) Fora € Z, = 3 (n—a) € Z,with
a+t,(n—a)=a+(n—a)=0=m—a)+,a
~ m—a Iisan additive inverse in Z,,.
5 Asa+,b=a+b=b+a=b+,a V ab €7z,
~ 4+, Iscommutative in Z,,.
INAs @ X,b=ab € Z, Vab €7,
. X, IS abinary operation in Z,,.
Consider, @ X, (b X, ¢) = a X, bc = a(bc) = (ab)c
=ab x, c=(a X, b) X,
vab,c € 7,

. X, IS associative in Z,,.
1) Fora,b,¢c € Z,
Consider, @ X, (b+,¢) =a X, (b +c¢)
= a(b+o)
= ab + ac
= ab +,ac
=(a@ Xp b) 4, (@ %, ©)
Similarly, (@+, b) X, ¢=(a X, ¢) +p(b X, )
=~ distributive laws holds in Z,,.
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IVYAsa x,b=ab=ba=b x,a V ab € Z,
. X, IS commutative in Z,.
VWAs a x,l=a-1=a=1x,a Va €Z,
1 is the multiplicative identity in Z,,.
Hence, (Z,,, +,,%,,) is a commutative ring with identity element is proved.

Ex: Denote R = ,Z = the set of even integers. For a,b € R we define a + b = usual addition
ofaandbanda ®b = a?b where a, b is the usual product of a and b. Show that (R, +, ©)

IS a commutative ring with identity element 2.
Proof: 1) (R, +) is an abelian group:-
1) As sum of two even integers is even.
~ + is a binary operation in R.
2) Asa+(b+c)=(a+b)+c Vab €R
~ + Is associative in R.
3y Asa+0=a=0+a Vac€ER
~ 0 1s an identity element in R.
4) Fora €ER > 31 —a €eR witha+ (—a)=0=(—a) +a
. —a is an additive inverse of a in R.
5 Asa+b=b+a Vab €ER
Il) Fora,b € R = a & b are even integers
= ab is multiple of 4

ab . .
= —lIseven Integer
=>a ®b ER
i.e. ®isabinary operationin R.
Considera @(b ®c¢) = a G(%)
_a®
T2 2
— (%
B ( 2 ) Oc
=(a ®b)®c Yab,c ER
~ @ is associative in R.
1) Fora,b,c €R
a(b+c)

Consider,a O(b +¢) = —a?b+%=(a Ob)+ (a ©c)

2
Similarly, (@a+b)®Oc=(@®c)+ (bO0)
i.e. distributive laws holds in R.
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V) As a ®b=%=b7a=b ®a Vab ER

. (® Is commutative in R.
a

V)Asa ©@2="2=a=20@a VacR
. 21s an identity element in R.
Hence (R, +, ®) is commutative ring with identity element 2
IS proved.

Integral Domain: A commutative ring without zero divisors is called an
Integral domain.

Field: A commutative ring with identity element and having inverse to all
non-zero elements is called a Field.

Division Ring (or Skew field): A ring with identity element is called a
Division ring or skew field.

Ex. Show that Z[i] = {a + ib : a, b € Z} the set of Gaussian integers,
forms an integral domain under usual addition and multiplication of

complex numbers.
Proof: 1) (Z[i], +) is an abelian group:

1) As(a+ib)+ (c+id) =(a+c)+i(b+d) € ZJi]
Va+ib,c+id € Z[i] -~ + isabinary operation in Z[i].

2) As (a+ib)+ [(c+id) + (e +if)]
=(a+ib)+(c+e)+i(d+f)
=la+(c+e)]+i[b+(d+ /)]
=[(a+c)+e]+i[(b+d)+f]
=(a+c)+i(b+d)+ (e+if)
=[(a+ib)+ (c+id)]|+ (e+if) Ya+ib,c+id,e+if €Z[i]

i.e.+ is associative in Z[i].
3) As(a+ib)+(0+i0)=a+ib=(0+0i)+ (a+ib)
Va+ib € Z[i]
~ 0+ i0 is an identity element in Z[i].
4) As(a+ib)+ (—a—ib) =0+ i0 = (—a —ib) + (a + ib)
~ —a — ibisaninverse of a + ib in Z[i].
5 As(a+ib)+(c+id)=(a+c)+i(b+d)
=(c+a)+i(d+Db)
=(c+id)+ (a+ib)Va+ib,c+id € Zi]
. + is commutative in Z[i].
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1) 1) As (a +ib)(c +id) = (ac —bd) + i(ad + bc) € Z[i] V a + ib,c + id € Z[i]
=~ - is a binary operation in Z[i].
2) For (a +ib), (c + id), (e + if) € ZJi]
Consider (a + ib)[(c + id)(e + if)]
= (a+ib)[(ce — df) + i(cf + de)]
= (ace — adf — bcf — bde) + i( acf + ade + bce — bdf)
= [(ac — bd) + i( ad + bc)](e + if)
= [(a + ib)(c + id)](e + if)
-~ - is a associative operation in Z][i].
) Fora + ib,c+id & e+ if € Z[i]
Consider, (a +ib)[(c +id) + (e + if)]
=(a+ib)[(c+e)+i(d+ )]
= (ac + ae — bd — bf) + i(ad + af + bc + be)
= (ac — bd) +i(ad + bc) + (ae — bf) + i(af + be)
= (a+ib)(c+id) + (a+ib)(e +if)
Similarly [(a + ib) + (c + id)](e + if) = (a +ib)(e + if) + (c + id)(e + if)
i.e. distributive laws holds in Z[i].
IV) As (a + ib)(c + id) = (ac — bd) + i(ad + bc)
= (ca—db) +i(da + cb)
=(c+id)(a+ib) Ya+ib,c+id € ZJi]
-~ - is commutative in Z[i].
V) If (a+ib)(c+id) =0+i0
= eithera+ib=0+4+1i0 or c+id=0+i0
~ (Z[i],+,") is an integral domain is proved.

Ex. Show that R = {a + b2 : a,b € Z} is an integral domain under usual addition and
multiplication of complex numbers.

Proof: I) (R, +) is an abelian group:
1) As(a+bV2)+(c+dV2)=(a+c)+(b+d)V2 € R
Va+bv2,c+dV2 € R - + isabinary operation in R.

2) As (a+bv2) + [(c + dV2) + (e + fV2)]
=(a+bV2)+ (c+e)+ (d+ V2
=[a+(c+e)]+[b+d+ V2
=[(a+c)+e]l+[(b+d)+fIV2
=(@+c)+ (b+dV2+(e+fV2)
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= [(a+bV2) + (c + dV2)] + (e + fV2)
Va+bV2,c+dv2,e+fJ2 € R
i.e.+ Is associative in R.
3) As (a+bV2)+ (04 0vV2) =a+bv2 = (0+0v2) + (a+ bV2)
Va+bV2 €R
=~ 0 4 0v/2 is an identity element in R.
4) As (a+bv2) + (—a—bV2) =0+ 0vV2 = (—a— bV2) + (a + bV2)
~ —a —bvZisaninverse of a + bv2 in R.
5) As (a+bV2) + (c+dv2)
=(a+c)+(b+dV2
=(c+a)+(d+b)V2
=(c+dV2)+ (a+bV2)Va+bV2,c+dvV2 € R
~ 4+ IS commutative in R.
1) 1) As (a + bv2)(c + dV2) = (ac — bd) + (ad + bc)V2 € R
Va+bV2,c+dV2 € R
~ - 1s abinary operation in R.
2) For (a+ bv2),(c +dv2),(e + fV2) eR
Consider (a + bv2)[(c + dv2)(e + fV2)]
= (a + bv2)[(ce + 2df) + (cf + de)V2]
= (ace + 2adf + 2bcf + 2bde) + (acf + ade + bce + 2bdf)V2
= [(ac + 2bd) + (ad + bc)V2](e + fV2)
= [(a + bV2)(c + dVv2)](e + fV2)
~ - IS a associative operation in R.
) Fora+ bv2,c+dvV2 & e+ fV2 € R
Consider (a + bv2)[(c + dV2) + (e + fV2)]
=(a+bV2)[(c+e)+ (d+ V2
= (ac + ae — bd — bf) + (ad + af + bc + be)V2
= (ac — bd) + (ad + bc)V2 + (ae — bf) + (af + be)V2
= (a+bV2)(c +dV2) + (a + bV2)(e + fV2)
similarly [(a + bv2) + (c + dv2)](e + fV2)
= (a+bV2)(e+ fV2) + (c + dV2)(e + fV2)

i.e. distributive laws holds in R.
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IV) As (a + bV2)(c + dv2) = (ac — bd) + (ad + bc)V2
= (ca — db) + (da + cb) V2
=(c+dv2)(a+bV2) Va+bV2,c+dV2 € R
~ - Is commutative in R.
V) If (@ + bv2)(c + dv2) = 0 + 02

= eithera+bvV2 =0+ 0vV2 or c+dv2=0+0v2
i.e. (R,+, -) isacommutative ring without zero divisors.
~ (R, 4+, ) isan integral domain is proved.

Ex: Show that Z[vV—5] = {a + bvV—=5: a,b € Z} is an integral domain under usual addition
and multiplication of complex numbers.

Proof: 1) (Z[v=5],+) is an abelian group:
1) As (a+ bV=5) + (c + dV=5) = (a+ ¢) + (b + d)V-5 € Z[V-5]
V a+ bvV=5,c + dvV—5 € Z[V=5]
- + is a binary operation in Z[v=5].

2) As (a + bV=5) + [(c + dV=5) + (e + fV=5)]
=(a+bV-5)+(c+e)+(d+f)V-5
=[a+(c+e)]+[b+ @+ HV-5
=[(a+c)+e]l+[(b+d)+fIV-5
=(a+c)+ (b+dV-5+ (e + fV=5)
=[(a + bV=5) + (c + dV=5)] + (e + fV=5)

Va+ bV-5,c+dvV-5,e + fV-5 € V-5]
i.e.+ is associative in Z[v=5].

2) As (a + bv=5) + (0 + 0V=5)

= a+bV—5=(0+ 0vV=5) + (a + bV-5)
V a+bV-5 € Z[V-5]
«~ 0 + 0v/=5 is an identity element in Z[v—5].
3) As (a+ bV=5) + (—a — bv=5) = 04+ 0v=5 = (—a — bvV=5) + (a + bV=5)
. —a — bvV=5 is an inverse of a + bv—=5 in Z[v/=5].
4) As (a+bV=5)+ (c+dvV=5) =(a+c)+ (b +d)}V-5
=(c+a)+(d+b)V->5
= (¢ +dvV-5) + (a + bV-5)
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Va+bV=5,c+dV-5¢ Z[\/—_S]
«~ + is commutative in Z[vV=5].
1) 1) As (a + bV=5)(c + dvV=5) = (ac — bd) + (ad + bc)V—5 € Z[V-5]
V a+ bV=5,c+dV—5 € Z[V-5]
- - is a binary operation in Z[vV-5].
2) For (a + bV=5),(c +d — 5), (e + fV=5) € Z[V-5].
Consider (a + bv=5)[(c + dvV—=5)(e + fV=5)]
= (a + bV=5)[(ce — 5df) + (cf + de)V=5]
= (ace — 5adf — 5bcf — 5bde) + (acf + ade + bce — 5bdf)V—5
= [(ac — 5bd) + (ad + bc)V=5](e + fV=5)
=[(a + bvV=5)(c + dv=5)](e + fV=5)
- - is a associative operation in Z[v—5]..
II) For a + bV=5,c + dV—5 & e+ fV=5 € Z[V-5]
Consider, (a + bv=5)[(c + dV=5) + (e + fV-5)]
= (a+bV=5)[(c+e)+ (d + f)IV-5
= (ac + ae — bd — bf) + (ad + af + bc + be)v—=5
= (ac — bd) + (ad + bc)V=5 + (ae — bf) + (af + be)v—5
= (a + bV=5)(c + dV=5) + (a + bV=5)(e + fV-5)
Similarly [(a + bv=5) + (c + dV-5)](e + fvV-5)
= (a 4+ bV=5)(e + fVY=5) + (c + dV-5)(e + fV-5)
i. e. distributive laws holds in Z[v—=5].
IV) As (a + bv/=5)(c + dv=5) = (ac — bd) + (ad + bc)V—5
= (ca — db) + (da + ch) V=5
= (c+dv-5)(a+ bV-5)
Va+bV=5c+dV-5 € Z[V-5]
~ - is commutative in Z[v=5].
V) If (@ + bv=5)(c + dv=5) = 0 + 0v=5
= either a+ bvV=5=0+0vV=5 or c+dv-5=0+0V-5
i.e. (Z[vV=5],+, -) is a commutative ring without zero divisors.
«. (Z[V=5], +, -) is an integral domain is proved.
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Ex. Let R be the set of all real numbers. Show that R x R forms a field under addition and
multiplication defined by (a, b) + (c,d) =(a+c, b + d)
& (a, b) . (c, d) = (ac — bd, ad + bc).
Proof: 1) (R X R, +) is an abelian group:
1) As(a,b)+(c,d)=(a+c,b+d)eERXR V(ab)(c,d) e RXR
~ 4+ is a binary operationin R X R.
2) As (a,b) + [(c,d) + (e, )]
= (a,b) + [(c,d) + (e, f)
=(a,b)+(c+ed+f)
=(a+c+eb+d+f)
=(a+c,b+d)+(ef)
= [(a,b) + (c,d)] + (e, f) V(a,b), (c,d),(e,f) € RXR
i.e.+ is associative in R X R.
3) As(a,b) +(0,0) =(a,b) =(0,0)+ (a,b) V(a,b)eERXR
=~ (0,0) is an identity element in R x R.
4) As (a,b) + (—a,—b) = (0,0) = (—a,—b) + (a, b)
& (—a,—b) isaninverse of (a,b) in R x R.
5) As(a,b) + (c,d)=(a+c, b+d)
=(c+a, d+Db)
= (c,d) + (a,b) V (a,b),(c,d) ERXR
~ + is commutative in R X R.
I1)1) As (a,b).(c,d) = (ac —bd,ad + bc) ERX R V (a,b),(c,d) ERXR
~ - isabinary operation in R X R.
2) For (a,b),(c,d) &(e,f) ERX R
Consider (a, b).[(c,d).(e, )]
= (a,b).[(ce — df,cf + de)]
= (ace — adf — bcf — bde, acf + ade + bce — bde)
= (ac — bd,ad + bc).(e, f)
= [(a,b).(c,d)]. (e, f)
-~ - 1S aassociative operation in R X R.
1) For (a,b),(c,d) & (e,f) ERX R
Consider (a,b).[(c,d) + (e, f)]
=(a,b).(ct+ed+f)
= (ac +ae —bd — bf,ad + af + bc + be)
= (ac — bd, ad + bc) + (ae — bf,af + be)
= (a,b).(c,d) + (a,b).(e, f)
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Similarly [(a, b) + (c,d)]. (e, f) = (a,b)(e, f) + (c,d)(e, f)
i. e. distributive laws holds in R x R.
IV) As (a,b).(c,d) = (ac — bd, ad + bc)
= (ca — db,da + cb)
= (c,d).(a,b) V(a,b),(c,d) ERXR
~ - IS commutative in R X R.
V) As (a,b).(1,0) = (a,b) = (1,0).(a,b) V(a,b) ERXR
~ (1,0) is a multiplicative identity element in R x R.

V1) If (a,b) # (0,0) then (a,b) = (=2, —=)

aZ+b2’ a?+b?

< (@,0). (5, 2) = (o —_b)_(a, b) = (1,0)

a?+b2’ a?+b? a?+b?’ a?+b?
I.e. every non-zero element has inverse in R X R
~ (R X R, 4+, -)isacommutative ring with unity and every non-zero element has

inverse in it.
~ (RX R, 4+, -)isafield.

Ex: For n > 1, Prove that Z,, is an integral domain iff n is prime.
Proof: Suppose Z,, is an integral domain.We have to prove n is prime.
Ifnisnotprimethenn=mtforl<m<n & 1 <t<n.

mt

S{Y

. 0=m x,
~m=0 or t=0 « Z,, is an integral domain
~ n|mandn|twhichcontradictstol<m<n & 1<t<n.
Hence, n is prime.
Conversely, Suppose n is prime.
Fora&b € Z, witha x,, b=0 w ab=0
~nla or n|b ~ mis prime.

i.e.Z, has no zero divisors.
Hence, Z,, is an integral domain is proved.

Ex: Prove that commutative ring (R, +,-) is an integral domain iff cancellation laws holds in R.
Proof: Suppose, a commutative ring (R, +,-) is an integral domain.
Fora,b,c €R
Letab =ac witha+0 ~a(b—c)=0
b—c =0 - Risanl.D
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~b=c
i.e. cancellation laws holds in R.
Conversely, Suppose cancellation laws hold in R.
Letab =0 fora,b €R
If a = 0, then we are through.
Ifa+0,thenab=a0 ~ b=0 bycancellation law
i.e.ab=0 =eithera=0or b=20
~ (R, +,") is an integral domain is proved.

Ex: Prove that a commutative ring (R, +,-) is an integral domain if and only if
a,b €ER,ab=0 = eithera=0 or b=0.
Proof: Suppose, a commutative ring (R, +,-) is an integral domain.
=~ cancellation laws holds in R.
Fora,b € R Suppose, ab =0
If a = 0, then we are through. But if a # 0 then
ab=0 = ab=a0 = b=0 Dby cancellation law
ab=0 = either a=0or b=0
Conversely, Suppose Fora,b € R
~ab=0 = either a=0o0r b=0
i.e. R has no zero divisors.
~ (R, +,) isan integral domain is proved.

Ex: Prove that every field is an integral domain but converse may not be true.
Proof: Let, (F, +,") be any field.
i.e. (F,+,") is a commutative ring with identity element 1 and every
non-zero element has inverse in it.

Fora,b € F Supposeab =0  --—---—-- (1)
If a # 0thena™1isexists. - F is field.
Pre-multiplying by a™! to equation (1), we get
a l(ab) = a0
= (ala)b=0
= 1-b=0
= b=0

~ (F,+,") has no zero divisors.
Hence, (F,+,") is an integral domain.
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Hence every field is an integral domain is proved. But converse may not be true.e. g.
(Z,+,") is an integral domain but not a field.

Ex: Prove that every finite integral domain is a field.
Proof: Let (R, +,-) be any finite integral domain.
i.e. (R,+,") isa commutative ring without zero divisors.
As R isafinite say R = {a4, a,, ..., a,} Where a4, a,, ..., a, are distinct elements of R.
Fora € Rwitha # 0
. aa,,aa,,aas, ..., aa, are the distinct elements of R.
R = {aay,aa,,aas, ...,aa,}
Asa € R - a= aay forsome k.
Claim: a; is an identity element.
For aj€R = a; =a-a, forsomer.
= (a-ax)a,
= (axa)a,
= ai(aay)
aj = ag - q;
a 1s an identity element. Denoted by a; = 1
a,=1€R. =1=a-a,forsomesS.
=~ Every non-zero element has inverse in R.
~ (R, +,") isafield.
Hence every finite integral domain is a field is proved.

Ex: Prove that (Z,+,") is an integral domain but not field.
Proof: Let (Z, +,) is a commutative ring with identity element 1.
For a,b € Z withab=0 = eithera=0or b=0
i.e.Z has no zero divisors. «.  (Z,+,") is an integral domain.

But for any non-zero integer n has multiplicative inverse % ¢ 7
&~ (Z,+,") isnot afield.

EX. If p is prime number, then show that Z,, is an integral domain.
Proof: Let p is prime.
Fora&b € Z, witha x, b =0 ~ ab=0
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~pla or p|b w pis prime.
~a=0 or b=0

i.e.Zy, has no zero divisors.

Hence Z, is an integral domain is proved.

EX. In the ring (Z,, +,%X), find
i) - (4 X7 6), i) 3 X7 (=6), ii) (=5) X7 (=5),
iv) Units in Z-, v) additive inverse of 6, vi) zero divisors.
Is Z, a field or an integral domain? Justify.
Proof: Let (Z, +,,%X,) be aring
We prepare composition tables of 4+, & % for Z, as follows

+ /0 1 2 3 4 5 6 x| 0 1 2 3 4 5 6
0|0 1 2 3 4 5 6 0/0 0 O O O 0 O
111 2 3 4 5 6 0 110 1 2 3 4 5 6
2|12 3 4 5 6 0 1 2|0 2 4 6 1 3 5
3/!3 4 5 6 0 1 2 3/0 3 6 2 5 1 4
4/4 5 6 0 1 2 3 410 4 1 5 2 6 3
5|5 6 0 1 2 3 4 5/0 5 3 1 6 4 2
6|6 0 1 2 3 4 5§ 6|0 6 5 4 3 2 1

In Z,. 0 € Z, is an additive identity and 1 € Z, is a multiplicative identity in Z.
Additive inverse of 0,1,2,3,4,5,6 are 0,6, 5,4, 3, 2, 1 respectively.
)-(4%x,6)=-3)=4
i)3x,(—=6)=3%x,1=3
i) (=5) X, (=5)=2%x,2=4
iVYAS2%x,4=1,3%x,5=1&6X%X,6=1
=~ 2,3,4,5, 6 are the units in Z,.
v) Additive inverse of 6 =-6 = 1. v 6+,1=0
vi) From second table we observe that product of two non-zero
elements is not zero. -~ No zero divisors in Z-.
We observe that (Z,, +,%-) is a commutative ring with unity
and every non-zero element has inverse in it.

% (Z,,+7,%5) is afield and hence an integral domain.

Ex. Which of the following rings are integral domains?
(1) Zg7, (1) Zgy, (111) Zyy, (V) (Z, +, *).
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Solution: By using the result that if p is prime, then Z,, is an integral domain, we have,
1) 187 = 11 x 17 is not prime. . Z,g- IS not an integral domain.
1) 61 is prime. - Z¢, 1s an integral domain.
lii) 22 =2 x 11 is not prime. - Z,, is not an integral domain.
Iv) (Z, +, -) is a commutative ring with unity but has no zero divisors
~ (Z, +, -) is not an integral domain.

Boolean ring: Aring (R, +,) is said to be a Boolean ring if a> = a Va € R.
e.g.(Z, ={0,1},+,,%,) isaBooleanring. 02 =0 x, 0=0 and 12=1 x, 1 =1.

Ex: Prove that every Boolean ring is a commutative ring.
Proof: Let, (R, +,") be any Boolean ring.
a’?=a V a €R.
For a ER = —a € R.

= (—a)’ = —a
= a’= —a
>a=-a V a€R - (1)

Fora, beER = a+b€eR

= (a+b)*>=(a+b)
(a+b)(a+b)=(a+Db)
a(a+ b))+ b(a+b) =(a+Db)
a’+ab+ba+b® =a+b
a+ab+ba+b=a+b
ab = —ba

= ab = ba by (1)

i.e. (R,+,") isa commutative ring.
Hence every Boolean ring is a commutative ring.

R R A

Ex: In a Boolean ring R. Show that i)2x =0 V x €R, ii)xy=yx V x,y €R.
Proof: Let (R, +,-) be any Boolean ring.
~ x’=x Vx €ER
1) For x e R=> —x €R

= (—x)?= —x
= x?= —x
> x=—-Xx - (1)

> x+x= 0
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> 2x =0 Vx €R.
2) Forx,ye R > x+y €R

= (x+y)?=(x+y)
x+y)x+y) =x+y)
x(x+y)+yx+y) =(x+y)
x2+xy+yx+y*=x+y
xX+xy+yx+y=x+y
Xy = —yx
xy=yx V x,y €ER by (1)
Hence proved.

U

U

1) If (R, +, .) is aring with zero element O then for allae Rwitha.0=0.a=......

A)a B)O )1 D) None of these
2) If Z, is finite field thenpis ......
A) composite B) even C) prime D) odd
3) Ring (Zn, +n, Xp) is an integral domain and a field if and only ifn is ......
A) composite B) even C) prime D) odd
4) Ring (Zn, +n, Xy) IS not a field if and only ifnis ......
A) composite B) even C) prime D) odd
5) Ring (Zn, +n, Xn) is a ring with zero divisors if and only if n is ......
A) composite B) even C) prime D) odd
6) Ring (Zn, +n, Xy) IS @ ring without zero divisors if and only ifnis ......
A) composite B) even C) prime D) odd
7) A non-zero element min ring (Z,, +n, Xp) is invertible if and only if ......
A) mand n are even B) mand n are odd
C) m and n are relatively prime D) None of these
8) If pis prime then Z, is .....
A) Not Ring B) Boolean Ring C) Finite Field D) None of these
9) Every field is ......
A) a Boolean ring B) an Integral domain
C) Not aring D) Not Integral domain
10) Every Integral domain is ......
A) Not a ring B) a field C) May notbe afield D) a Boolean ring
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11) Every finite Integral domain is ......

A) Not aring B) a field C) not a field D) Boolean ring
12) Which of the following is a field ?

A)(Z, +,)) B) (Q, +,.) C) (2, +,) D) None of these
13) Which of the following is a field ?

A) Zig B) Zig C) Zsg D) VALY
14) Which of the following is not a field ?

A) Zig B) Zy C) Zy D) VAT
15) (Z, +, .) is an integral domainand ......

A) a field B) not a field C) a Boolean ring D) None of these

16) (Z,+, )is ......
A) an integral domain but not a field B) both an integral domain and a field
C) a field but not an integral domain D) neither an integral domain nor a field
17) (2Z, +, .) the ring of even integers is Integral domain ......

A) with unity B) without unity

C) with zero divisors D) None of these
18) If R is a commutative ring and a, b € R then (a+b)*= ......

A) at+b B) a’+b*+2ab C) a?+b?+ab+ba D) None of these
19) If Ris aring and a, b € R such that (a+b)® = a*+b*+2ab then R is ......

A) Ring with zero divisors B) Field

C) Commutative D) None of these
20) Zero divisors in a ring (Zg, +¢, Xg) are

A2 3 B)1,5 C)0,5 D) None of these
21) If R is a Boolean ring then a° = ... for all a€ R.

A)0 B)1 C)a D) None of these
22) IfRisaBooleanringthenRis ......

A) ring with zero divisors B) a field

C) a commutative ring D) an integral domain
23) If Risa Booleanringthena+a=...... for all ae R.

A)a B)O C)1 D) -a
24) If R is a Boolean ring then fora,b e Rwitha+b=0= ......

A)a B)b C)la=b D) None of these
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