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Learning Outcomes:  

Upon successful completion of this course the student will be able to:  

 a) understand group and their types which is one of the building blocks of  

     pure and applied mathematics.  

 b) understand Lagarnge, Euler and Fermat theorem  

 c) understand concept of automorphism of groups  

 d) understand concepts of homomorphism and isomorphism  

 e) understand basic properties of rings and their types such as integral  

     domain and field. 
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Unit-1: Groups 
================================================================== 

Binary Operation: Let G be a non-empty set. A function * : G x G   G given by 

  * (a, b) = a * b, is called a binary operation on (or in) G. 

Notation: 

1) We use the notation a * b to denote * (a, b). If G is a non-empty set with a binary 

    operations * then we denote this algebraic structure by (G, *) 

2) Throughout this course we use the following notations: 

i) ℕ: The set of all natural numbers. 

ii) ℤ: The set of all integers. 

iii) ℚ: The set of all rational numbers. 

iv) ℝ: The set of all real numbers. 

v) ℂ: The set of all complex numbers. 

Note: A non-empty set G is said to be closed for * if whenever a, b   G implies a*b   G. 

e.g. 1) Usual addition and multiplication are binary operations in ℕ, ℤ, ℚ, ℝ and ℂ. 

       2) Usual subtraction of natural numbers is not a binary operation in ℕ,  

         ∵   2, 3   N but 2 - 3 = -1 ∉ ℕ. 

      3) Division of two integers is not a binary operation in ℤ, ∵  22, 5   ℤ but 
  

 
 ∉ ℤ. 

Group: A non-empty set G with a binary operation * is said to be a group if 

i)  * is associative in G i.e. (a * b) * c  =  a * (b * c), ∀  a, b, c    G. 

ii) G has an identity element e   G with a * e = a = e * a, ∀  a    G. 

iii) Every element of G has an inverse in G w.r.t. *.  

           i.e. for each a   G, there exists b   G such that a * b = e = b * a. 

Note: A group G with a binary operation * is denoted by (G, *) or < G, * > or simply G. 

Examples: 

1) (ℤ, +), (ℚ, +), (ℝ, +), (ℂ, +) are groups w.r.t. usual addition with identity element 

    0 and inverse of any a is -a. 

2) (ℚ   = ℚ -{0},   ),( ℝ ' = ℝ - {0},   ).( ℂ   = ℂ - {0},   ) are groups w.r.t. usual 

multiplication with identity element 1 and inverse of any element a is 
 

 
. 

Ex. Show that G = {1, -1} is a group w.r.t. usual multiplication.  

Sol. Consider a table for the binary operation multiplication. 

  1 -1 

1 1 -1 

-1 -1 1 

We observe that all entries in the table are elements of G. Therefore multiplication is a binary 

operation in G. We know that multiplication operation of numbers is associative.  

Also 1 is an identity of G and from the table 1.1 = (-1).(-1) = 1 i.e. every element has 

multiplicative inverse in G. Hence (G, .) is a group. 
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Ex. Show that G = {1, -1, i, -i}, where i= √   , is a group w.r.t. usual multiplication 

       of complex numbers. 

Sol. Consider a multiplication table for the binary operation multiplication  

  1 -1 i -i 

1 1 -1 i -i 

-1 -1 1 -i i 

I i -i -1 1 

-i -i i 1 -1 

We observe that all entries in the table are elements of G. Therefore multiplication is a binary 

operation in G. We know that multiplication operation of numbers is associative.  

Also 1 is an identity of G and from the table elements 1, -1, i and -i has inverses 1, -1, -i and i 

in G i.e. every element has multiplicative inverse in G. Hence (G, .) is a group. 

================================================================== 

Ex. Let G be the set of all 2X 2 matrices over real numbers. Then G is a group w.r.t. 

      addition of matrices but it is not a group w.r.t. multiplication of matrices.  

Sol. 1) i) Clearly addition of matrices is a binary operation and is associative in G.  

                 *
  
  

+ is the identity element of G. 

         iii) For any *
  
  

+   G,   *
    
    

+  G such that  

       *
  
  

+ + *
    
    

+ = *
  
  

+ = *
    
    

+  + *
  
  

+ 

       
 *
  
  

+
  

= *
    
    

+ 

     Hence (G,+) is a group. 

      2) (G, .) is not group because *
  
  

+ has no multiplicative inverse in G as |
  
  

| = 0 

================================================================== 

Ex.  Let G = {A: A is non-singular matrix of order n over ℝ}. Show that G is a group w.r.t.    

        usual multiplication of matrices. 

Proof: 

i) Let A, B     G. 

      A, B are non-singular matrices of order n.  

      | |   0, | |   0. 

      |  | =  | || |       

      AB   G. 

    Thus multiplication of matrices is a binary operation on G.  

ii) We know that matrix multiplication is associative  

     i.e. (AB) C= A (BC), ∀   A, B, C    G 

i ii) For any A   G, AI = A = IA, where I is the identity matrix of order n in G.  
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      I is the identity element of G. 

iv) Let A   G. 

        | |      

     Then   A
-1

 = B = 
 

| |
adj(A) such that AB = BA = I 

     Thus every element of G has inverse in G. 

       (G, .) is a group is proved. 

================================================================== 

Ex. Let ℚ+
 denote the set of all positive rationals. For a, b   ℚ +

, define a * b = 
  

 
 

       Show that (ℚ +
, *) is a group. 

Proof:i) Clearly a, b   ℚ+
 ⟹ a * b =  

  

 
  ℚ+

. 

   i. e. * is closed in ℚ+
. 

ii) Let a, b, c   ℚ+
. 

    Consider (a * b) * c = 
  

 
 * c = 

(
  

 
) 

 
 = 

   

 
 

    and a * (b * c) = a *  
  

 
 = 

  
  

 
 

 
 = 

   

 
 

      (a * b) * c = a * (b * c). 

    i.e.  * is associative in ℚ+
. 

iii) For a   ℚ+
, we have 

    a * 2 =  
  

 
 = a and 2 * a= 

  

 
 = a. 

     2 is the identity element in ℚ+
. 

iv) For a   ℚ+
   

 

 
   ℚ+

 with 

     a *
   

 
 =  

  
 

 
 

 
 = 2 and (

 

 
) * a =  

(
 

 
) 

 
 = 2 

        a
-1

 = 
 

 
 i.e. every element has inverse in ℚ+

. 

     Hence (ℚ+
, *) is a group. 

================================================================== 

Ex. Prove that 𝐺 = { *
  
  

+ ∶ 𝑥 is a non-zero real number} is a group under matrix 

       multiplication. 

Proof: Let 𝐺 = { *
  
  

+ ∶ 𝑥 is a non-zero real number} with operation multiplication 

            i) For A = *
  
  

+ & B = *
  
  +   G ⟹ AB = [

      
      

]   G  ……(1) 

     ∵ x & y are non zero real numbers ⟹ 2xy is non zero real number. 

                  Multiplication is closed in G. 

 ii) For A = *
  
  

+, B = *
  
  +      *

  
  

+   G we have,  
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    (AB)C = [
      
      

] *
  
  

+ =[
        
        

]  by equation (1) 

& A(BC) = *
  
  

+ [
      
      

]  =[
        
        

]  by equation (1) 

    (AB)C = A(BC) 

    Multiplication is associative in G. 

iii) As  
 

 
 is a non zero real number ⟹   [

 

 

 

 
 

 

 

 

]   G is an identity element 

     ∵ AE = *
  
  

+ [

 

 

 

 
 

 

 

 

]  *
  
  

+ = A  

    & EA = [

 

 

 

 
 

 

 

 

] *
  
  

+ = *
  
  

+ = A ∀  A = *
  
  

+   G. 

      i. e. identity element is exist in G. 

iv) For A = *
  
  

+   G, suppose B = *
  
  + is inverse of A. 

       AB = E = BA i. e. *
  
  

+ *
  
  +   [

 

 

 

 
 

 

 

 

] ⟹ [
      
      

] = [

 

 

 

 
 

 

 

 

] 

        2xy = 
 

 
  ⟹ y = 

 

  
  which is a non zero real number ⟹ B = [

 

  

 

  
 

  

 

   

]   G. 

      i. e. every element has inverse in G. 

             Hence G is a group under matrix multiplication is proved. 

================================================================== 

Properties of Groups: 

Theorem: If G is a group, then i) Identity element of G is unique, 

       ii) Every element of G has unique inverse in G,  

       iii) (a
-1

)
-1

 = a ∀  a   G 

       iv) (ab)
-1

 = b
-1

a
-1

 ∀  a, b    G (Reversal law for the inverse of a product) 

Proof: Let G be a group. 

i)Let e and e' be identity elements of G. 

      ee' = e     ∵  e' is an identity element of G. 

  and  ee' = e'      ∵  e is an identity element of G. 

            e = e'. Hence identity element of G is unique 

ii) For a   G. Suppose b and c are inverses of a in G. 

      ab = e = ba and ac = e = ca 
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    Now b = eb 

      = (ca) b 

      = c(ab) by associative law 

      = ce 

      = c 

    Hence a has unique inverse in G 

iii) Let a   G 

       aa
-1

 = e = a
-1

a     

     By definition of inverse of an element, a is the inverse of a
-1

 

       (a
-1

)
-1

 = a    

v) Let a, b   G 

    Consider (ab)(b
-1

 a
-1

) = a(bb
-1

) a
-1

  by associative law. 

        = aea
-1

 by associative law 

            = aa
-1

 

            = e  ……..(1) 

    Similarly, we have (b
-1

a
-1

) (ab) = e  ………(2) 

    From (1) and (2),   

      (ab)
-1

 = b
-1

 a
-1

 ∀ a, b   G 

================================================================== 

Theorem: Let G be a group and a, b, c   G. Then 

      i) Left cancellation law : ab = ac ⟹ b = c,  

     ii) Right cancellation law: ba = ca ⟹ b = c 

Proof: Let G be a group and a, b, c   G. 

i) ab = ac 

   Pre-multiplying both the sides by a
-1

, we get 

           a
-1

 (ab) = a
-1

 (ac) 

        (a
-1

 a) b = (a
-1

 a))c  by associative law 

        eb = ec 

         b = c 

i) ba = ca 

   Post-multiplying both the sides by a
-1

, we get 

        (ba)a
-1

= (ca)a
-1 

       b(aa
-1

) = c(aa
-1

) by associative law 

      be = ce 

      b = c. 

  Hence proved. 

Theorem: Let G be a group and a, b   G. Then the equations 

       i) ax = b and i) ya = b have unique solutions in G. 

Proof: Let G be a group and a, b   G. 
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i) Consider the equation ax = b. 

   Pre-multiplying both the sides by a
-1

, we get 

           a
-1

 (ax) = a
-1

b 

        (a
-1

a) x = a
-1

b  by associative law 

        ex = a
-1

b 

          x = a
-1

b 

 Hence, x= a
-1

b is a solution of the equation ax = b. 

 Uniqueness: Suppose x1 and x2 are solutions of ax = b. 

    ax1 = b and ax2 = b 

  ax1 = ax2  

  x1 = x2 by left cancellation law. 

Hence ax = b has unique solution in G. 

ii) Similarly, we have y = ba
-1

 is the unique solution of ya = b in G. 

================================================================== 

Abelian groups: A group G is said to be abelian group if ab = ba, ∀ a, b   G. 

e.g. 1) (ℤ, +), (ℚ, +), (ℝ, +), (ℂ, +) are abelian groups. 

       2) Let G = {*
  
  

+: ad-bc   0, a, b, c, d   ℝ }. Then G is a group w.r.t. matrix 

 multiplication. But it is not an abelian group. 

  ∵ For A = *
  
  

+ & B = *
  
  

+ we have  

      AB = *
  
  

+ *
  
  

+  *
      
      

+ = *
   
  

+  

     BA = *
  
  

+ *
  
  

+ = *
       
      

+ = *
   
   

+ 

    AB   BA 

Finite and Infinite Group: A group G is said to be finite if the number of elements in G is 

finite otherwise it is called an infinite group. 

Order of Group: If G is a finite group then the number of elements in G is called order of 

G and it is denoted by o(G). 

Note: (ℤ, +), (ℚ, +), (ℝ, +), (ℂ, +) are infinite abelian groups. 

================================================================== 

Ex.: Let ℤn = { ̅,  ̅,  ̅,…….,    ̅̅ ̅̅ ̅̅ ̅̅  } the set of all residue classes of integers modulo n.   

       Define a binary operation +n in ℤn, as  ̅ +n  ̅ =     ̅̅ ̅̅ ̅̅ ̅̅ =  ̅ where r is the remainder  

       obtained when a + b is divided by n. Show that (ℤn, +n) is a finite abelian group. 

Sol. i) Let a, b   ℤn, and r is the remainder obtained when a + b is divided by n. 

  0   r < n 

Hence  ̅ +n  ̅ =     ̅̅ ̅̅ ̅̅ ̅̅ =  ̅    ℤn 

    ℤn is closed w.r.t. +n 

      ii) Let  ̅,  ̅,  ̅   ℤn, 
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 ( ̅ +n  ̅)+n   ̅= (    ̅̅ ̅̅ ̅̅ ̅)+n  ̅ 

= (       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

=         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

=  ̅ +n (    ̅̅ ̅̅ ̅̅ ̅) 

=  ̅ +n (  ̅ +n  ̅) 

   +n is associative in ℤn. 

     iii) For any  ̅   ℤn, 

 ̅ +n  ̅ =     ̅̅ ̅̅ ̅̅ ̅̅ =  ̅ and  ̅ +n  ̅ =     ̅̅ ̅̅ ̅̅ ̅̅ =   ̅  

    ̅ is the identity of ℤn 

     iv) For  ̅   ℤn,      ̅̅ ̅̅ ̅̅ ̅   ℤn, such that 

 ̅ +n    ̅̅ ̅̅ ̅̅ ̅̅  =       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅=  ̅ =  ̅ and    ̅̅ ̅̅ ̅̅ ̅ +n  ̅ =       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅=  ̅ =  ̅  

Hence every element of ℤn has inverse in ℤn 

      v) For   ̅  ̅   ℤn, 

 ̅ +n  ̅ =     ̅̅ ̅̅ ̅̅ ̅̅  =     ̅̅ ̅̅ ̅̅ ̅̅ =  ̅ +n  ̅  

  +n is commutative in ℤn. 

     vi) ℤn contains n elements and n is finite. 

ℤn is a finite set. 

Thus (ℤn, +n) is a finite abelian group. 

================================================================== 

Ex. Show that G = ℚ – {-1} is an abelian group under the binary operation 

      a * b = a + b + ab, ∀ a, b   G. 

Proof: Let * be a binary operation defined on G = ℚ – {-1} by  

 a * b = a + b + ab, ∀ a, b   G. 

i) Let a, b, c    G 

    Consider (a * b) *c = (a + b + ab)* c  

     = (a + b + ab) + c + (a + b + ab) c 

     = a + b + ab + c + ac + bc + abc 

     = a + b + c+ ab + ac + bc + abc 

     = a + b + c+ bc + ab + ac + abc 

     = a + (b + c+ bc) + a (b + c + bc) 

     = a * (b + c+ bc) 

     = a * (b * c) 

           (a * b) * c = a * (b *c). 

    i.e.  * is associative in G 

ii) For a   G, we have 

    a * 0 =  a + 0 + a0 = a and 0 * a = 0 + a + 0a = a. 

     0 is the identity element of G. 

iii) Let a   G, suppose b is an inverse of a 
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     a *   =    * a = 0  

    a + b + ab = 0 

    b(1+ a) = -a 

    b = 
  

   
   G ∵  

  

   
   -1 

    i.e. every element has inverse in G. 

   Hence (G, *) is a group. 

       iv)  As a * b = a + b + ab = b + a + ba = b * a ∀ a, b   G. 

    * is commutative in G. 

  Hence (G, *) is an abelian group is proved. 

================================================================== 

Ex. Show that G = ℝ – {1} is an abelian group under the binary operation 

       a * b = a + b - ab, ∀ a, b   G. 

Proof: Let * be a binary operation defined on G = ℝ – {1} by  

 a * b = a + b - ab, ∀ a, b   G. 

i) Let a, b, c   G 

   Consider (a * b) * c = (a + b - ab) * c  

     = (a + b - ab) + c - (a + b - ab) c 

     = a + b - ab + c - ac - bc + abc 

     = a + b + c - ab - ac - bc + abc 

     = a + b + c - bc - ab - ac + abc 

     = a + (b + c - bc) - a (b + c - bc) 

     = a * (b + c - bc) 

     = a * (b * c) 

           (a * b) * c = a * (b * c). 

    i.e.  * is associative in G 

ii) For a   G, we have 

     a * 0 =  a + 0 - a0 = a and 0 * a = 0 + a - 0a = a. 

      0 is the identity element of G. 

iii) Let a   G, suppose b is an inverse of a 

     a *   =    * a = 0  

    a + b - ab = 0 

    b(1- a) = -a 

    b = 
  

   
   G ∵  

  

   
   1 

    i.e. every element has inverse in G. 

   Hence (G, *) is a group. 

       iv) As a * b = a + b - ab = b + a - ba = b * a ∀ a, b   G. 

  * is commutative in G. 

Hence (G, *) is an abelian group is proved. 
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================================================================== 

Ex. Let ℚ+
 denote the set of all positive rational numbers and for any a, b   ℚ +

, define 

      a * b =  
  

 
. Show that (ℚ +

, *) is an abelian group. 

Proof:i) Clearly a, b   ℚ+
 ⟹ a * b =  

  

 
  ℚ+

. 

     i. e. * is closed in ℚ+
. 

ii) For a, b, c   ℚ+
. 

    Consider (a * b) *c =  
  

 
  * c = 

(
  

 
) 

 
 = 

   

 
 

    and a * (b * c) = a * ( 
  

 
  = 

  
  

 
 

 
 = 

   

 
 

      (a * b) * c = a * (b * c). 

    i.e.  * is associative in ℚ+
. 

iii) For a   ℚ+
, we have 

    a * 3 =  
  

 
 = a and 3 * a =  

  

 
 = a. 

     3 is the identity element of ℚ+
. 

iv) For a   ℚ+
.   

 

 
   ℚ+

 with 

     a *  
  

 
 =  

  
 

 
 

 
 = 3 and (

 

 
) * a = 

(
 

 
) 

 
 = 3 

        a
-1

 = 
 

 
 i.e. every element has inverse in ℚ+

. 

     Hence (ℚ+
,  *) is a group. 

v) As a * b = 
  

 
 = 

  

 
 = b * a ∀ a, b   ℚ+

. 

      * is commutative in ℚ+
. 

    Hence (ℚ+
,  *) is an abelian group is proved. 

================================================================== 

Ex. Let 𝐺 = {(𝑎, 𝑏): 𝑎, 𝑏   ℝ, 𝑎 ≠ 0}. Show that (G, ʘ) is a non-abelian group, 

      where (𝑎 , 𝑏) ʘ (𝑐 , 𝑑) = (𝑎𝑐 , 𝑎𝑑 + 𝑏). 

Sol. Let 𝐺 = {(𝑎, 𝑏): 𝑎, 𝑏   ℝ, 𝑎 ≠ 0} and operation ʘ is defined by 

       (a, 𝑏) ʘ (𝑐, 𝑑) = (𝑎𝑐, 𝑎𝑑 + 𝑏) ∀  (𝑎, 𝑏), (𝑐, 𝑑)    G 

    i) Let (a, b), (c, d)   G 

         a ≠ 0, c ≠ 0 

         ac ≠ 0 

        (a, b) ʘ (c, d) = (ac, ad + b)   G 

        ʘ is closed in G.  

    ii) Associativity: Let (a, b), (c, d), (e, f   G. 

        [(a, b) ʘ (c, d)] ʘ (e, f ) = (ac, ad +b) ʘ (e, f) 

                = (ace, acf +ad+b)  ……..(1) 

          (a, b) ʘ [(c, d) ʘ (e, f)] = (a, b) ʘ (ce, cf+d ) 
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                = (ace, acf+ad+b ) ……..(2) 

        From (1) and (2) 

        [(a, b) ʘ (e, d)] ʘ (e, f ) = (a , b) ʘ [(c, d) ʘ (e, f)] 

          ʘ is associative. 

   iii) Existence of identity element: As 1 & 0   R ⟹ (1, 0)   G with  

        (a, b) ʘ (1, 0) = (a, b) = (1, 0) ʘ (a, b) = (a, b) ∀ (a, b)   G 

        Thus (1, 0) is the identity of G. 

   iv) Existence of inverse: 

         For (a, b)   G. Suppose (c, d) is inverse of (a, b). 

           (a, b) ʘ (c, d) = (1, 0) 

         i.e. (ac, ad+b) = (1, 0) 

         i.e. ac = 1, ad+b = 0 

            c = 
 

 
  & d =  

  

 
   

          Hence (a, b)
-1

 = ( 
 

 
,  

  

 
 )   G   ∵ 

 

 
    

   G is a group. 

      v) For (1, 2), (3,4)   G. 

          (1, 2) ʘ (3, 4) = (3, 4+2) = (3, 6) 

          and (3, 4) ʘ (1, 2) = (3, 6+4) = (3, 10) 

          (1, 2) ʘ (3, 4)   (3, 4) ʘ (1, 2) 

   ʘ is not commutative in G. 

          Hence G is a non-abelian group is proved. 

================================================================== 

Ex. Let G be a group and for all a, b   G, (ab)
n
 = a

n
 b

n
, for three consecutive integers n.     

      Show that G is an abelian group. 

Proof: Let (ab)
n
 = a

n
b

n
 ……….(1) 

            (ab)
n+1

 = a
n+1

 b
n+1

 ……...(2) 

        & (ab)
n+2

 = a
n+2

 b
n+2

 ……...(3) 

           From (2), a
n+1

 b
n+1

= (ab)
n+1

 

           (a
n
a) (b

n
b) = (ab)

n
 (ab) = (a

n
b

n
) (ab)   by (1) 

         an 
(ab

n 
) b = a

n 
(b

n
a) b 

         ab
n 
 = b

n
a   by cancellation laws. …..(4) 

      Similarly from (2) and (3), we have ab
n+1

 = b
n+1

a 

      Now ab
n+1

 = b
n+1

a 

        a(b
n 
b) = (b

n 
b) a 

        ab
n
)b = b

n 
(ba) 

       (bn
a)b = (b

n 
b) a by (4) 

       bn 
(ab) = b

n 
(ba) 

       ab = ba  by lett cancellation law. 
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     Thus ab = ba, ∀  a, b    G. 

     Hence G is abelian group is proved. 

================================================================== 

Ex. Show that a group G is abelian if and only if (ab)
2
 = a

2
b

2
, ∀  a, b   G. 

Proof: Let G be an abelian group and a, b   G. 

  ab = ba ........ (1) 

Now (ab)
2
 = (ab)(ab) 

       = a(ba)b) 

       = a(ab)b  by (1) 

       = (aa)(bb) 

       = (aa)(bb) 

       = a
2
b

2
 

Conversely, suppose that (ab)
2
 = a

2
b

2
, ∀  a, b   G. 

For  a, b   G. we have (ab)
2
 = a

2
b

2
 

  (ab)(ab) = (aa)(bb) 

  a(ba)b) = a(ab)b) 

  (ba) = (ab)  by cancellation laws 

  ab = ba  ∀  a, b   G. 

Hence G is an abelian group is poved. 

================================================================== 
Ex. If in a group G, every element is its own inverse then prove that G is abelian. 

Proof: Let G be a group in which every element is its own inverse. 

  For a, b   G ⟹ a
-1

= a and b
-1

 = b........ (1) 

Now a, b   G ⟹ ab   G  

     ⟹ (ab)
-1

= ab 

    ⟹ b
-1

a
-1 

= ab 

    ⟹ ba= ab  by (1) 

Hence G is an abelian group is poved. 

Ex. If 𝐺 is a group such that 𝑎2
 = 𝑒, ∀ 𝑎   𝐺, then show that 𝐺 is abelian.  

Proof: Let G be a group such that 𝑎2
 = 𝑒, ∀ 𝑎   𝐺. 

  For a, b   G ⟹ a
2 
= e and b

2
 = e........ (1) 

Now a, b   G ⟹ ab   G  

     ⟹ (ab)
2 
= e 

    ⟹ (ab)
2 
= ee ∵   e is identity in G 

    ⟹ (ab)
2 
= a

2
 b

2
  by (1) 

    ⟹ (ab)(ab) = (aa)(bb) 

    ⟹ a(ba)b = a(ab)b 

    ⟹ (ba) = (ab)  by cancellation laws 

    ⟹ ab = ba  
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Hence G is an abelian group is proved. 

================================================================== 

Euler's Totient Function: The function ∅: ℕ   ℕ defined by 

∅(n) = The number of positive integers less than or equal to n and relatively 

prime to n, is called Euler's totient function. 

e.g. 1) ∅ (8) = 4  ∵ 1, 3, 5, 7 are positive integers   8 and relatively prime to 8. 

       2) ∅ (1) =1 

       3) ∅ (5) = 4 

Note: If p is prime, then ∅(p) = P - 1 

================================================================== 

Ex. Let ℤn  denotes the set of all prime residue classes modulo n i.e. ℤn  = { ̅   Zn  : (a, n) = 1}.     

       Show that ℤn  is an abelian group of order ∅(n) w.r.t.  n. 

Proof: i) Let  ̅,  ̅   ℤn  and r is the remainder obtained when ab is divided by n. 

     Now  ̅,  ̅    ℤn  ⟹ (a, n) = 1 and (b, n) = 1 

                  ⟹ (ab, n) = 1   

                  ⟹ (r, n) = 1  ∵   ab   r (modn) 

                  ⟹  ̅   ℤn  

    Hence  ̅  n  ̅ =   ̅̅ ̅ =  ̅   ℤn   

        xn. is closed in ℤn . 

ii) Clearly   ̅  n  ̅   n  ̅     ̅  n   ̅  n    ∀   ̅,   ̅  ̅   ℤn   

iii) (1, n) =l ⟹  ̅   ℤn , Also  ̅  n  ̅  =  ̅ =  ̅  n  ̅, ∀   ̅   ℤn    

            ̅ is the identity of ℤn   w.r.t.  n 

           iv) Let  ̅   ℤn , 

              (a, n) = 1 

         There exist p, q   Z such that ap + nq = 1. 

          ap -1 = (-q) n 

          ap - 1  0 (modn) 

          ap   1 (modn) 

           ̅̅ ̅ =  ̅ 

           ̅  n  ̅  =  ̅ 

           ̅      ̅    ℤn  

      Hence every element of ℤn   has inverse w.r.t.  n in ℤn  

v) As  ̅  n  ̅ =   ̅̅ ̅ =   ̅̅ ̅ =  ̅  n  ̅ ∀   ̅,  ̅   ℤn  

vi) ℤn   contains exactly ∅(n) elements. 

From (i) to (vi), ℤn   is an abelian group of order ∅(n). 

================================================================== 

Remark: In Z8   = { ̅,  ̅,  ̅,  ̅} i)  ̅ is the identity of ℤ8 . 

ii) ( ̅)
-1

 =  ̅, ( ̅)
-1

=  ̅, ( ̅)
-1

 =  ̅, ( ̅)
-1   ̅ and iii) o(ℤ8 ) = ∅(8) = 4. 
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Integral power of an element in a group: Let G be a group and a   G. For an integer n, we 

define a
n
 as follows: i) a

n
 = aaa...a n-times if n > 0, ii) a

n
 = e if n = 0 and 

   iii) a
n
 = a

-1
 a

-1
 a

-1
 ...a

-1
  -n-times if n <0  

    e.g. 1) In (ℤ, +) i) 2
4
= 2 + 2 + 2 + 2 = 8, ii) 2

0 
= 0,  

                        iii) 2
-4

 = 2
-1

 + 2
-1

 + 2
-1

 + 2
-1

 = (-2) + (-2) + (-2) + (-2) = -8 

2) In (ℤ6, +6) i) ( ̅)
4 
=  ̅ +6  ̅ +6  ̅ +6  ̅  =  ̅   ̅ , ii) ( ̅)

0 
=  ̅,  

                        iii) ( ̅)
-4

 = ( ̅)
-1

 +6 ( ̅)
-1

 +6 ( ̅)
-1

+6 ( ̅)
-1

 =  ̅ +6  ̅ +6  ̅ +6  ̅ =   ̅̅̅̅  =  ̅ 

3) In (ℤ8  = { ̅,  ̅,  ̅,  ̅},  8) i) ( ̅)
4
=  ̅  8  ̅  8  ̅  8  ̅ =   ̅̅̅̅   ̅ , ii) ( ̅)

0 
=  ̅,  

                        iii) ( ̅)
-4

 = ( ̅)
-1

  8 ( ̅)
-1

  8 ( )
-1 8 ( ̅)

-1
 =  ̅  8  ̅  8  ̅  8  ̅ =   ̅̅̅̅   ̅ 

================================================================== 

Ex.: Let G be a group and a   G, n   ℤ, Prove that (a
n
)

-1
 = (a

-1
)

n 

Proof: Case (i) n > 0 

   (a
n
)

-1
 = (a a a….. a)

-1
 n-times = a

-1
 a

-1
 a

-1
 ...a

-1
  n-times = (a

-1
)

n
 

Case (ii) n = 0 

(a
0
)

-1 
= e

-1
 = e = (a

-1
)

0 

Case (iii) n < 0 

(a
n
)

-1
 = (a

-1
 a

-1
 a

-1
 ...a

-1
)

-1
 - n times = (a

-1
)

-1
(a

-1
)

-1
………(a

-1
)

-1
 - n times = (a

-1
)

n
 

Thus (a
n
)

-1
 = (a

-1
)

n
  ∀ n   ℤ is proved. 

================================================================== 

Ex.: Let a   G and n   ℤ, Prove that a
-n

 = (a
-1

)
n 

Proof: Denote –n = m < 0 

   a
-n

 = a
m
 = a

-1
 a

-1
 a

-1
 ...a

-1
 -m-times = a

-1
 a

-1
 a

-1
 ...a

-1
  n-times = (a

-1
)

n
 

Hence proved. 

================================================================== 

Ex.: Let G be a group and a   G. For m, n   ℕ, prove that 

i) a
m
 a

n 
= a

m+n
 and i) (a

m
)

n
 = a

mn
 

Proof: Let m, n   ℕ. 

i ) a
m
 a

n 
= (a a …. a m-times) (a a ..... a n-times) 

    = (a a …. a m+n-times) 

    = a
m+n

 

ii) (a
m
)

n
 = (a a …. a m-times)

n
 

    = (a a …. a m-times) (a a …. a m-times)…… (a a …. a m-times) n-times 

    = a a …. a mn-times 

    = a
mn

 

 Hence proved. 

================================================================== 

Ex.: Let G be a group and a, b   G be such that ab = ba. Prove that (ab)
n
 = a

n
 b

n
, for all n   ℤ. 

Proof: Let n   ℤ and a, b   G be such that ab = ba. 

Case (i) n   ℕ 
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We first prove the result ab
n
 = b

n
a by induction on n. 

For n= 1, ab
l
 = ab = ba = b

l
a. 

Suppose that ab
k
= b

k
a, for k   ℕ 

Now ab
k+1

 = a(b
k
b) 

       = (ab
k
)b 

       = (b
k
a)b  

       = b
k
(ab) 

       = b
k
(ba) 

       = (b
k
b)a 

         = b
k+1

a 

 i. e. result is true for n = k ⟹ result is true for n = k+1        

Hence by induction, ab
n 
= b

n
a, ∀ n   ℕ .. ….(i) 

Now we claim (ab)
n
 = a

n
 b

n
, ∀  n   ℕ. 

For n = 1, (ab)
1
 = ab = a

1
b

1
 

Suppose that (ab)
k
 = a

k 
b

k
. 

Now (ab)
k+1

 = (ab)
k
(ab) 

          = (a
k
 b

k
)(ab) 

= a
k
 (b

k
a)b 

                               = a
k
 (ab

k
)b by (i) 

= (a
k
a)(b

k
b) 

= a
k+1

b
k+1 

Hence by induction (ab)
n
 = a

n
 b

n
, ∀ n   ℕ. 

case (ii) n = 0. Then (ab)
0 
= e = ee = a

0
b

0
. 

case (iii) n < 0 

Let n = -m, where m   ℕ.  

(ab)
n 
= (ab)

-m
 

        = ((ab)
-1

)
m
 

        = ( (ba)
-1

)
m
   ∵  ab = ba 

        = (a
-1

 b
-1

)
m 

        = (a
-1

)
m
 (b

-1
)

m
      by case (i) as m   ℕ 

        = a
-m

 b
-m

 

        = a
n
 b

n
. 

Hence from case (i), (ii) and (iii), (ab)
n
 = a

n
 b

n
, ∀   n   ℤ is proved. 

================================================================== 

Order of an Element in a Group: Let G be a group and a   G. The smallest positive integer  

n (if it exists) such that a
n
 = e, is called order of a and it is denoted by o(a). If no such 

integer exists then a is said to be of infinite order. 

Note:  1) The order of the identity element in any group is 1. 

 2) Let G be a group and a   G. If m   ℕ is such that a
m
 = e then o (a)   m 
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Examples: 

1) Consider the group G = {1, -1, i, -i} under multiplication. Then 

    i) o(1) = 1 ∵   1
1
 = 1. 

   ii) o(-1) = 2 ∵   (-1)
1
 = -1  1, (-1)

2
 = 1. 

   iii) o(i) = 4 ∵   (i)
1
  = i   1, (i)

2
 = -1   1, (i)

3
 = -i   1, (i)

4
 = 1. 

   iv) o(-i) = 4 ∵   (-i)
1
 = -i   1, (-i)

2
 = -1   1, (-i)

3
 = i   1, (-i)

4
 = 1. 

2) Consider the group (Z6, +6) with identity 0. Then 

o (0) = 1, o (1) = 6, o (2) = 3, o (3) = 2, o (4) = 3, o (5) = 6. 

3) In (Z, +), the order of 2 is infinite because there is no n   ℕ such that 2
n
 = 0. 

==================================================================

Theorem: The order of every element in a finite group is finite. 

Proof: Let G be a finite group of order n and a   G.  

Consider a set S = {a
m
: m   ℕ }. Then S ⊆ G. 

Since G is finite, all the elements of S can not be distinct. 

    a
r
 = a

t
 for some r, t   ℕ, r > t 

    a
r-t

 = e   by cancellation law. 

   o(a)   r-t 

    o (a) is finite 

Hence order of every element of a finite group is finite is proved. 

================================================================== 

Ex.: Let G be a group and a, b   G. Prove that 1) o (a
-1

) = o (a) and 2) o (a) = o (b
-1

ab). 

Proof: 

1) Case (i) o(a) is finite say m. 

        a
m 

= e 

        (a
m 

)
-1

 = e
-1

 = e 

        (a
-1 

)
m
 = e 

        o(a
-1

)   m 

    ie. o(a
-1

)   o(a) ….... (1) 

Using (1), o ((a
-1

)
-1

)   o(a
-1

) 

i.e. o(a)   o(a
-1
) ……… (2) 

From (1) and (2) o(a
-1

) = o(a) 

Case (ii) o (a) is infinite. 

Let if possible o (a
-1

) is finite say r. 

         (a
-1

)
r
 = e 

        (a
r 
)

-1
 = e 

        a
r 
 = e

-1
 = e 

        o(a)   r 

Impossible ∵ o(a) is infinite 
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Hence o (a
-1

) is infinite. 

      o(a
-1

) = o(a). 

2) Claim: (b
-1

 ab)
n
 = b

-1
a

n
b, ∀   n   ℕ. 

We prove it by induction on n. 

For n = 1, (b
-1

 ab)
1
 = b

-1
ab = b

-1
a

1
b 

Assume that (b
-1

ab)
k
 = b

-1
a

k
b, where k   ℕ 

Now (b
-1

ab)
k+1

 = (b
-1

ab)
k
(b

-1
ab) 

    = (b
-1

a
k
b)(b

-1
ab) 

    = b
-1

a
k 
(bb

-1
)ab 

   = b
-1

a
k
eab 

   = b
-1

a
k
ab 

   = b
-1

a
k+1

b 

Result is true for k + 1 also. 

Hence by principle of finite induction 

(b
-1

 ab)
n
 = b

-1
a

n
b, ∀ n   ℕ. 

Case (i) o (a) is finite say m. 

    a
m
= e 

Now (b
-1

 ab)
m
 = b

-l
a

m
b 

     = b
-1

eb  ∵ a
m
= e 

     = b
-1

b 

    = e 

   o(b
-1

 ab)   m 

   o(b
-1

 ab)   o(a) ……(1) 

Using (1), we have 

o((b
-1

)
-1 

(b
-1

 ab) (b
-1

))   o(b
-1

 ab) 

    o((b
 
b

-1
)a(bb

-1
))   o(b

-1
 ab) 

    o(eae)   o(b
-1

 ab) 

    o(a)   o(b
-1

 ab) …….(2) 

from (1) and (2), o(a)   o(b
-1

 ab). 

Case (ii) o(a) is infinite. 

Let if possible o(b
-1

ab) is finite say m. 

   (b
-1

ab)
m
 = e 

   b
-1

a
m
b = e 

   a
m
 = beb

-1 

   a
m
 = bb

-1
 

   a
m
 = e 

   o(a)   m 

Impossible ∵ o(a) is infinite. 

Hence o(b
-1

ab) is infinite. 
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   o(a) = o(b
-1

ab). 

================================================================== 

Ex.: Let G be a group and a, b   G. Prove that o(ab) = o(ba) 

Proof: We have ab = e(ab)  = (b
-1

b) (ab) = b
-1

(ba) b 

   o(ab) = o(b
-1

(ba)b) 

   o(ab) = o(ba) ∵ o(b
-1

ab) = o(a)  

Hence proved. 

================================================================== 

Ex. Let G be a group and a   G, n   ℕ. Show that a
n
 = e if and only if o (a)|n. 

Sol.: Let a
n
 = e and o (a) = m. 

By applying division algorithm on m and n, we get 

n = mq + r, where 0   r < m... (1) 

Suppose that r   0 

   r = n - mq 

    a
r
 = a

n-mq
 

    a
r
 = a

n 
a

-mq 

    a
r
 = a

n 
(a

m
)

 -q
 

    a
r
 = e

 
(e)

 –q
  ∵ a

n
 = e & o(a) = m 

    a
r
 = e

 
 

Thus a
r
 = e

 
and r > 0 

    o (a)   r 

    m   r 

Impossible. ∵ o(a) = m 

    r = 0 

Hence by equation (1), n = mq.     m |n i.e. o(a)|n 

Conversely, Suppose that o(a)|n 

     n = o (a)k, for some k   ℕ 

    a
n
 = a

o(a)k
 = (a

o(a)
)

 k
  = e

k
 = e. 

Hence proved. 

================================================================= 

Ex. In the group ( ℤ'7,  7), find (i) (  ̅ 2
 ii) ( ̅ -3

 iii) 𝑜( ̅  iv) 𝑜( ̅  

Sol. Let ℤ'7 = { ̅,  ̅,  ̅,  ,  ̅,  ̅} be a group under  7. 

         i) ( ̅ 2
 =  ̅  7  ̅ =   ̅. 

        ii) ( ̅ -3
 = [( ̅ -1

]
3
 = ( ̅ 3

 =   ̅  7  ̅  7  ̅ =  ̅. ∵ ( ̅ -1
 =  ̅ 

       iii) Here  ̅    ℤ'7 is an identity element. 

   Now ( ̅ 1
 =  ̅    ̅, ( ̅ 2

 =  ̅    ̅, ( ̅ 3
 =  ̅    ̅, ( ̅ 4

 =  ̅    ̅, 

  ( ̅ 5
 =  ̅    ̅, ( ̅ 6

 =  ̅  

      o( ̅  = 6 
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      iv) As ( ̅ 1
 =  ̅    ̅, ( ̅ 2

 =  ̅    ̅, ( ̅ 3
 =  ̅  

      o( ̅  = 3 

================================================================= 

Ex. In the group ( ℤ'11,  11), find (i) (  ̅ 3
 ii) ( ̅ 2

 iii) 𝑜( ̅  iv) 𝑜( ̅  

Sol. Let ℤ'11 = { ̅,  ̅,  ̅,  ,  ̅,   ̅  ̅  ̅  ̅   ̅̅̅̅   be a group under  11 

         i) ( ̅ 3
 =  ̅  11  ̅  11 ̅ =  ̅. 

        ii) ( ̅ 2
 =  ̅  11  ̅ =  ̅. 

       iii) Here  ̅   ℤ11 is an identity element. 

   Now ( ̅ 1
 =  ̅    ̅, ( ̅ 2

 =  ̅    ̅, ( ̅ 3
 =  ̅    ̅,  

( ̅ 4
 =  ̅    ̅, ( ̅ 5

 =  ̅. 

      o( ̅  = 5 

      iv) As ( ̅ 1
 =  ̅    ̅, ( ̅ 2

 =  ̅    ̅, ( ̅ 3
 =  ̅    ̅, ( ̅ 4

 =  ̅    ̅, ( ̅ 5
 =   ̅̅̅̅     ̅, 

  ( ̅ 6
 =  ̅    ̅, ( ̅ 7

 =  ̅    ̅, ( ̅ 8
 =  ̅    ̅, ( ̅ 9

 =  ̅    ̅, ( ̅ 10
 =  ̅, 

    o( ̅  = 10 

================================================================= 

Ex.: If in a group 𝐺, 𝑎5
 = 𝑒 and 𝑎𝑏𝑎−1

 = 𝑏2
, ∀ 𝑎, 𝑏   𝐺, then find order of an element 𝑏. 

Sol.: Let in a group 𝐺, 𝑎5
 = 𝑒 and 𝑎𝑏𝑎−1

 = 𝑏2
, ∀ 𝑎, 𝑏   𝐺 

 As b
2
 = aba

-1 

  (b
2
)

2
 = (aba

-1
) (aba

-1
) = ab(a

-1
a)ba

-1
= abeba

-1
= ab

2
a

-1
 

   b4 = a(aba
-1

)a
-1

 = a
2
ba

-2
 

   (b4)2 = (a
2
ba

-2
) (a

2
ba

-2
) = a

2
b

2
a

-2
= a

2
(aba

-1
)a

-2
 

   b8 = a3
ba

-3
 

   (b8)2 = (a
3
ba

-3
) (a

3
ba

-3
) = a

3
b

2
a

-3
= a

3
(aba

-1
)a

-3
 

   b16 = a4
ba

-4
 

   (b16)2 = (a
4
ba

-4
) (a

4
ba

-4
) = a

4
b

2
a

-4
= a

4
(aba

-1
)a

-4
 

   b32 = a5
ba

-5
 = ebe

-1
 = b 

   b31 = e by cancellation law. 

   o(b) = 31 

==================================================================

Unit-I-Group [MCQ’s] 
================================================================== 
1) Which of the following operations is not binary in ℤ? 

(A) addition   (B) multiplication (C) subtraction  (D)division 

2) Let G be a non-empty set. If a*(b*c) = (a*b)*c for all a, b, c   G, then a binary  

    operation * on G is said to be ……….. 

    (A) associative  (B) closure   (C) commutative  (D) abelian. 

3) What is the identity element in the group (Z, +)? 
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(A) 0    (B) 1    (C) -1    (D) 2 

4) Consider the group (ℚ+
, *) where a * b = 

  

 
 for all a, b   ℚ+

. What is the 

     identity element in ℚ+ 
? 

(A) 0    (B) 1    (C) 2    (D) 3 

5) Consider the group (Q
+
, *) where a * b = 

  

 
 for all a, b   Q

+
. What is the 

     inverse of an element a in Q
+ 

? 

(A) 2    (B) a    (C) 4/a    (D) a/2 

6) Which of the following is not a group? 

(A) (ℤ,  +)   (B) (ℕ,  +)  (C) G = {1, -1, i, -i} under multiplication 

(D) G = ℝ – {1} under operation a*b = a + b - ab for all a, b   G 

7) Which of the following is incorrect? 

(A) Identity element in a group is unique.   (B) Every group is abelian. 

(C) Inverse of every element in a group is unique. (D) None of the above. 

8) In group G = {1, -1, i, -i} under usual multiplication i
-1
=….. 

(A) 1    (B) -1  (C) i    (D) –i  

9) In the group (Z8 ,  8), ( ̅)
-1
= …….. 

(A)  ̅    (B)  ̅    (C)  ̅   (D)  ̅  

10) In a group G, for a   G, (a
-1

)
-1
= …… 

 (A) a    (B) a
-1

  (C) e, identity in G (D) 1 

11) Which of the following is an abelian group? 

(A) G = ℝ – {1}  under operation a*b = a + b - ab for all a, b   G 

(B) G = {1, -1, i, -i, j, -j, k, -k}  the group of quaternions under multiplication 

(C) G = {A : A is a nonsingular matrix of order n over ℝ} under matrix mutl. 

(D) G = {(a, b) : a, b   ℝ , a    under operation (a, b)0(c, d) = (ac, bc+d)  

       for all (a, b),(c, d)   G 

12) Which of the following is a non-abelian group? 

(A) (2ℤ, +) (B) G = {1, -1, i, -i} under usual multiplication 

(C) G = ℚ – {-1}  under operation a*b = a + b + ab for all a, b   G 

(D) G = {(a, b) : a, b   ℝ , a    under operation (a, b)0(c, d) = (ac, bc+d) 

       for all (a, b),(c, d)   G  

13) Which of the following is a non-abelian group? 

(A) (ℝ, +)  (B) (ℤ6, +6),  (C) (ℤ8
'
, +8')  

(D) G = { A : A is a nonsingular matrix of order n over ℝ} under matrix mult. 
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14) Which of the following groups is finite? 

(A) (ℤ, +)  (B) G = {1, -1, i, -i} under usual multiplication 

(C) G = ℚ – {-1}  under operation a*b = a + b + ab for all a, b   G 

(D) (ℚ+
, *) under the operation a * b = 

  

 
for all a, b   ℚ+

.  

15) Which of the following groups is infinite? 

(A) G = {1, -1, i, -i} under usual multiplication (B) (ℤ6, +6) (C) (ℤ8
'
, +8') 

(D) (ℚ+
, *) under the operation a * b = 

  

 
 for all a, b   ℚ+

.  

16) The number of elements present in a finite group G is ….. 

(A) order of group  (B) order of element(C) index of group(D) None of above 

17) The order of the group (ℤ6, +6) is…… 

(A) 2    (B) 3    (C) 5    (D) 6 

18) In the group (ℤ, +), (2)
4
 = ….. 

(A) 0    (B) 2    (C) 8    (D) 16 

19) In the group (ℤ6, +6), ( ̅)
-4

 = ….. 

(A)  ̅    (B)  ̅    (C)  ̅    (D)  ̅ 

20) In the group (ℤ8
'
, +8'), ( ̅)

4
 = ….. 

(A)  ̅    (B)  ̅    (C)  ̅    (D)  ̅ 

21) In the group G = {1, -1, i, -i} under usual multiplication, order of i = … 

(A) 1    (B) 2    (C) 3    (D) 4  

22) Let G be a group and a, b, c   G Then (abc)
-1

 =…. 

(A) a
-1

b
-1

c
-1  

(B) c
-1

a
-1

b
-1  

(C) c
-1

b
-1

a
-1  

(D) a
-1

c
-1

b
-1

 

23) Let G be a group and a, b   G such that ab = ba. Which of the following is incorrect? 

(A) a
k
b = ba

k
    for all k   ℕ.  (B) (ab)

n
 = a

n
b

n
 for all n   ℕ. 

(C) (ab)
-1

 = a
-1

b
-1    

(D) None of the above  

24) A group G is called as … if the number of element in G is finite. 

(A) abelian   (B) finite   (C) infinite   (D) non-abelian 

25) An abelian group is also known as …. group. 

(A) finite   (B) infinite   (C) commutative  (D) ordered 

26) In any group G, o(a
-1
) =…….. 

(A) o(a)  (B) o(G)  (C) 1/o(a)  (D) 1/o(G) 

27) In the group (ℤ, +), o(2) =….. 

(A) 0    (B) 1    (C) 2    (D) infinite  

28) How many elements in the group (ℤ, +) has finite order? 
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(A) 1    (B) 2    (C) 3    (D) infinite 

29) If G is a group and a   G,  m, n   ℕ then a
m
 a

n
 = …. 

(A) a
mn

   (B) a
m+n

   (C) a
m/n

   (D) a
(m, n)

 

30) Order of the identity element in any group is …. 

(A) 0    (B) 1    (C) 2    (D) o(G) 

31) Let G be a group and a, b   G, m   ℕ. Then (b
-1

ab)
m
 = ….. 

(A) b
-1

a
m
 b   (B) b

-m
ab

m
   (C) b

-1
ab   (D) e 

================================================================== 
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Unit-2: Subgroups  
================================================================== 

Subgroup: Let (G, *) be a group. A non-empty subset H of G is said to be a subgroup of G  

        if (H, *) itself forms a group. Denoted by H   G. 

Note: 

1) {e} is a subgroup of group G and is called a trivial subgroup G. 

2)  G is a subgroup of group G and is called an improper subgroup of G. 

3) A subgroup H of group G is called a proper subgroup of G if H   . 

4) If H is a subgroup of group G and K is a subgroup of H then K is a subgroup of group G. 

5) If a is an element of G, then < a > = {a
n
 : n   ℤ } is a subgroup of  

e.g.1) 3ℤ = {3n : n   ℕ} is a subgroup of (ℤ, +). 

      2) (ℚ+
,  ) is a subgroup of (ℝ -{0},  ) 

================================================================== 

Theorem: A non-empty subset H of a group G is subgroup of G if and only if  

     a, b   H ⟹ ab
-1

   H. 

Proof: Suppose H is a subgroup of group G. 

    H itself forms group. 

   For a, b   H ⟹ a, b
-1

   H    by existence of inverse 

       ⟹ ab
-1

   H     by closure property 

 Conversely, Suppose a, b   H ⟹ ab
-1

   H. 

 We have to prove H itself forms a group. 

i) Existence of Identity: As H is a non-empty subset H of G. 

      ⟹        ⟹ aa
-1 

= e   H 

ii) Existence of Inverse: Let     ⟹        ⟹ ea
-1

= a
-1

   H 

iii) Closure Property: Let       ⟹      b-1
   H 

        ⟹    b
-1

)
-1

   H 

          ⟹  ab   H 

iv) Associative law: Let a, b, c   H ⟹ a, b, c   G  ∵ H ⊆ G. 

  (ab)c  =  a(bc) 

    From (i) to (iv), H itself forms a group. 

     H is a subgroup of group G. 

================================================================== 

Theorem: A non-empty subset H of a group G is subgroup of G if and only if  

      i)  a, b   H ⟹ ab   H, ii)  a   H ⟹ a
-1

   H 

Proof: Suppose H is a subgroup of group G. 

    H itself forms group. 

   i) For a, b   H ⟹ ab   H    by closure property 

    ii) a   H ⟹ a
-1

   H by existence of inverse 

 Conversely, Suppose i) a, b   H ⟹ ab   H. 
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      ii) a   H ⟹ a
-1

   H 

 Now for     ⟹ a-1
   H  by (ii) 

      a-1
   H ⟹ aa

-1
   H by (i) 

   ⟹ e   H 

 i.e. identity element exist in H. 

Again for a, b, c   H ⟹ a, b, c   G  ∵ H ⊆ G. 

  (ab)c  =  a(bc) 

   i.e. associative law hold in H. 

     H itself forms group. 

      H is a subgroup of group G. 

==================================================================

Theorem: A non-empty subset H of G is subgroup of a finite group (G, *) if and only if  

      a, b   H ⟹ a*b   H 

Proof: Suppose H is a subgroup of a finite group (G, *) 

    (H, *) itself forms group. 

   For a, b   H ⟹ a*b   H    by closure property 

   Conversely, Suppose a, b   H ⟹ a*b   H …..(i) 

   Let G be a finite group say with n elements and a   H 

   There exists a positive integer m such that a
m
 = e, where 1      n 

 Now      ⟹ a2
=a*a   H  by (i) 

 Again a, a
2    ⟹ a3

=a*a
2
   H 

 In general am
   H ⟹ e   H 

 i.e. identity element exist in H. 

Now e = a
m
 = a*a

m-1
= a

m-1
*a. 

  a
-1

  =  a
m-1  H 

 i. e. every element has inverse in H. 

   Again for a, b, c   H ⟹ a, b, c   G  ∵ H ⊆ G  

   (a * b) * c  =  a * (b * c) 

i.e. associative law hold in H. 

     (H, *) itself forms group. 

      (H, *) is a subgroup of a finite group (G, *). 

================================================================== 

Theorem: Intersection of two subgroups of a group is a subgroup. 

Proof: Suppose H and K be any two subgroups of a group G. 

     e   H and e   K ⟹   e   H∩K 

   H∩K    i.e. H∩K is a non empty subset of G. 

   Now a, b   H∩K ⟹ a, b   H & a, b   K 

    ⟹ ab
-1

   H & ab
-1

   K ∵ H & K are subgroups of G 

    ⟹ ab
-1

   H∩K 

   Hence H∩K is a subgroup of a group G. 
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Remark: 1) Intersection of finite number of subgroups of a group is a subgroup. 

       2) Union of two subgroups may not be a subgroup. 

  e.g. Let 2ℤ & 3ℤ are subgroups of a group (ℤ, +) but (2ℤ ∪ 3ℤ, +) is not a  

       subgroup of  a group (ℤ, +) ∵ 2, 3   2ℤ ∪ 3ℤ but 2 + 3 = 5 ∉ 2ℤ ∪ 3ℤ. 

==================================================================

Theorem: Let H & K be any two subgroups of a group G. Then H ∪ K is a subgroup of group 

G if and only if either H ⊆ K or K ⊆ H. 

Proof: Suppose H ∪ K is a subgroup of group G. To prove either H ⊆  K or K ⊆  H. 

 Let if possible       and K   H.  

   there exist some b    H but b ∉ K and a    K but a ∉ H. 

  Now b    H ⊆  H ∪  K and a    K ⊆  H ∪  K 

⟹a, b    H ∪  K  

⟹ab
-1

    H ∪  K  ∵   H ∪  K is a subgroup. 

⟹ab
-1

    H  and/or ab
-1

     K 

 If  ab
-1

    H then (ab
-1

)b    H ∵    b    H and H is a subgroup. 

   a(b
-1

b)    H ⟹ ae    H ⟹ a    H which contradicts to a ∉ H. 

 Similarly if ab
-1

    K ⟹ b    K which contradicts to b ∉ K. 

   Our supposition is wrong.  

 Hence either H ⊆  K or K ⊆  H. 

Conversely : Suppose either H ⊆  K or K ⊆  H. 

   H ∪  K = K or H ∪  K = H 

   H ∪  K is a subgroup of group G. ∵   H and K are subgroups of a group G. 

===================================================================

Ex. Determine whether H1={  ̅  ̅  ̅ } and H2={  ̅  ̅   ̅̅̅̅  } are subgroups is a group (ℤ12, +12) 

Sol. We prepare composition table for H1={  ̅  ̅  ̅ } and H2={  ̅  ̅   ̅̅̅̅  } with operation +12 

+12  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅ 

 

+12  ̅  ̅   ̅̅̅̅  

  ̅  ̅  ̅   ̅̅̅̅  

 ̅  ̅   ̅̅̅̅   ̅ 

  ̅̅̅̅    ̅̅̅̅   ̅  ̅ 
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As H1 and H2 are non-empty subsets of a finite group (ℤ12, +12). We observe that +12 is 

closed in H1 but not in H2. 

  H1 is a subgroup of a group (ℤ12, +12) but H2 is not a subgroup of a group (ℤ12, +12). 

================================================================== 

Normalizer: Let G be a group and a   G. Then N(a) = {x   G : xa = ax} is called a normalize  

                      of an element a of G. 

Center of a Group: Let G be a group. Then Z(G) = {x   G : xa = ax ∀ a   G } is called a    

                                 center of a group G. 

================================================================== 

Ex: Let G be a group and a   G. Then show that N(a) = {x   G : xa = ax} is a subgroup of G. 

Proof:  Let N(a) = {x    G : xa = ax} 

 For e    G, ea = ae ⟹ e    N(a) 

   N(a) is a non empty subset of G. 

For x, y    N(a) ⟹ xa =ax and ya =ay where x, y    G. 

As G is a group.   x, y    G ⟹ x, y
-1

    G ⟹ xy
-1

    G 

Consider (xy
-1

)a = x(y
-1

a) 

          = x (ay
-1

) ∵   ya =ay ⟹ y
-1

a = ay
-1

 

          = (xa) y
-1

 

          = (ax) y
-1

 

          = a(xy
-1

) 

    xy
-1

    N(a) 

Hence N(a) is a subgroup of group G is proved 

==================================================================

Ex: Let G be a group. Then show that Z(G) = {x   G : xa = ax ∀ a   G } is a subgroup of G. 

Proof:  Let Z(G) = {x    G : xa = ax ∀ a    G } 

   For e    G, ea = ae  ∀ a     G ⟹ e    Z(G) 

    Z(G) is a non empty subset of G. 

 For x, y    Z(G) ⟹ xa =ax and ya =ay ∀ a    G where x, y    G. 

As G is a group.   x, y    G ⟹ x, y
-1

    G ⟹ xy
-1

    G 

Consider (xy
-1

)a = x(y
-1

a) 

          = x (ay
-1

) ∵   ya =ay ⟹ y
-1

a = ay
-1

 ∀ a    G 

          = (xa) y
-1

 

          = (ax) y
-1

 

          = a(xy
-1

) ∀ a    G 

    xy
-1

    Z(G) ∀ a    G 

Hence Z(G) is a subgroup of group G is proved 

================================================================== 

Ex: Let H be a subgroup of a group G and a   G. Then show that Ha = {x   G : xa
-1

   H }. 

Proof:  Let us denote A = {x   G : xa
-1

   H } 
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   Now x   A ⇔ xa
-1

   H 

   ⇔ xa
-1

 = h, for some h   H 

    ⇔ x = ha 

   ⇔ x   Ha 

    Ha = A i.e. Ha = {x    G : xa
-1

   H } 

Hence proved. 

================================================================== 

Ex: Let G be a group of all non-zero complex numbers under multiplication. Show that  

        H = { a + ib : a
2
 + b

2
 = 1} is a subgroup of G. 

Proof:  Let G be a group of all non-zero complex numbers under multiplication and 

             H = { a + ib : a
2
 + b

2
 = 1} 

 As 1 = 1 + i0 is non-zero complex number with 1
2
 + 0

2
 = 1 

   1  H i.e. H is a non empty subset of G. 

For a + ib and c + id   H ⟹ a2
 + b

2
 = 1 and c

2
 + d

2
 = 1 ………(1) 

Consider (a + ib) (c + id)
-1

 = 
    

    
   

    

    
  

      = 
      )        )

       
 

      =       )         )   by (1) 

Where (ac+bd)
2
 + (bc-ad)

2
=a

2
c

2
+2acbd+b

2
d

2
+b

2
c

2
-2bcad+a

2
d

2 

     = a
2
(c

2
 + d

2
) + b

2
(c

2
 + d

2
) 

     = (c
2
 + d

2
) (a

2
 + b

2
) 

     = 1  by (1). 

   (a + ib) (c + id)
-1

   H. 

Hence H is a subgroup of group G is proved. 

================================================================== 

Cyclic Group: A group G is said to be cyclic group if there exists an element a   G such that 

every element of G is expressed in some integral powers of a. 

Note: Here an element a is called generator of G and cyclic group G is denoted by  

G = <a> or (a) = {a
n
 : n   ℤ }.  

e. g. 1) (ℤ, +) is a cyclic group generated by 1. 

        2) (nℤ, +) is a cyclic group generated by n. 

        3) (ℤ n, +n) is a cyclic group generated by  ̅. 

        4)  A group G = {1, -1, i, -i} under multiplication is a cyclic group generated by i. 

 ================================================================== 

Theorem: Every cyclic group is abelian. 

Proof: Let G be any cyclic group G generated by ‘a’. 

  For x, y   G ⟹ x= a
r
 and y = a

t
 for some r, t   ℤ. 

   xy = a
r
 a

t
 = a

r+t
 = a

t+s
 = a

t
 a

r
 = yx 

   G is an abelian group. Hence Proved. 

Note : i) If (m, n) =1 then  ̅ is generator of group (ℤn, +n). 

 ii) If G = < a > with o(G) = n and (m, n) = 1 then G = < a
m
 > for 0 < m < n.  
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iii) Every abelian group may not be cyclic. 

e.g. (ℤ'8={ ̅   ̅  ̅  ̅},  8) is an abelian group but not cyclic because ( ̅)
n
 =  ̅ ∀ n   ℤ, 

( ̅)
n
 = either  ̅     ̅ ∀ n   ℤ, ( ̅)

n
 = either  ̅     ̅ ∀ n   ℤ & ( ̅)

n
 = either  ̅     ̅ ∀ n   ℤ 

    ̅   ̅  ̅    ̅ are not generators of ℤ'8 

================================================================== 
Theorem: If G is a cyclic group generated by a then a

-1
 is also generates G. 

Proof: Let G be any cyclic group generated by ‘a’. 

Hence G = < a > = {a
n
 : n   ℤ }.  

 As a
-1  < a

-1 
> ⟹ a

-1  G ⟹ < a
-1 

> ⊆ G ……(1) 

 For y   G = < a > ⟹ y = a
r
 for some r   ℤ. 

  y = ((a
-1

)
-1

)
r
 = (a

-1
)

-r
   < a

-1 
>  

   G ⊆ < a
-1 

> ……(2) 

From (1) and (2), G = < a
-1 

> 

   a-1
 is also generates G is proved. 

================================================================== 

Ex: If G is be a group and a   G. Then prove that H = {a
n
 : n   ℤ } is the smallest subgroup  

       of G containing a. 

Proof: i) As a = a
1
   H    H    . 

  For x, y   H ⟹ x= a
r
 and y = a

t
 for some r, t   ℤ. 

   xy
-1

 = a
r
 (a

t
)

-1
 = a

r
 a

-t
 =  a

r-t
   H 

   H is a subgroup of group G.  

ii) Let K be any subgroup of group G containing a. 

We have to prove H ⊆ K.  

Let x   H ⟹ x= a
r
 for some r   ℤ. 

       ⟹ x = a
r
   K ∵ a   K and K is a subgroup.  

    ⊆     Hence H is the smallest subgroup of G containing a is proved. 

================================================================== 

Ex: Show that every subgroup of a cyclic group is cyclic. 

Proof: Let G be any cyclic group generated by a. 

   G = < a > = { a
n
 : n   ℤ } 

 Let H be a subgroup of G. 

 If H = {e} then H = < e > and hence H is cyclic. 

 Suppose H   {e}. 

 Let x   H be such that x   e. 

 Now x   G ⟹ x = a
p
 for some p   ℤ, p   0. 

   x
-1

 = (a
p
)

-1
= a

-p
 

 Since either p or –p is positive ⟹H contain at least one element a
n
 such that n   N. 

 Let t be the least positive integer such that a
t    H. 

 Claim H = < a
t
 >  

 As  a
t
   < a

t
 > ⟹ a

t
   H ⟹ < a

t
 > ⊆ H…..(1). 
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 Let y   H ⟹ y   G = < a > 

   y = a
m
 for some m   ℤ. 

 By division algorithm, there exist integers q, r such that  

 m= qt + r, where 0   r < t  ………(2) 

If r   0 then a
r
 = a

m-qt
 = a

m
 a

-qt
 = a

m
(a

t
)

-q
   H  ∵ y = a

m
   H and a

t
   H 

   t   r by choice of t. Which contradicts to r < t . 

 Hence r = 0. 

   by (2) m = qt 

     y = a
m
= a

qt
 = (a

t
)

q
   < a

t
 > 

Hence H ⊆ < a
t
 >……(3) 

From (1) and (3) H = < a
t
 >. 

Hence H is a cyclic is proved. 

================================================================== 
Dihedral Group: Let G = {x

i
y

j
 : i = 0,1; j = 0, 1, 2, ……, n-1, x

2
 = e = y

n
, xy = y

-1
x}, then  

group G is called dihedral group for n   3. 

Note:i) Dihedral group G is also written as  

  G = {y, y
2
, y

3
, ……, y

n-1
,  y

n
 = e = x

2
, x, xy, xy

2
, ……., xy

n-1
, xy = y

-1
x} 

ii) We write G = D2n since o(G) = 2n. 

================================================================== 
Ex. Find composition table for n = 3 i.e. G = D6 = {e = x

2
 = y

3
, x, y, y

2
,  xy, xy

2
}. 

Sol.: Let for n = 3, G = {e = x
2
 = y

n
, x, y, y

2
,  xy, xy

2
}= D6 

 As in dihedral group xy = y
-1

x. 

   i) y(xy) = y(y
-1

x)= (yy
-1

)x = x. 

    ii) yx = (yx)e = (yx)y
3 
= (yxy)y

2
 = xy

2
 

    iii) y(xy
2
) = (yx)y

2
= (xy

2
)y

2
=(xy)y

3
= xy  

    iv) y
2
x = y(yx) = y(xy

2
) = (yxy)y = xy, etc. 

Using this we get, composition table for the elements of G is 

. e x Y y
2 

xy xy
2 

E e x Y y
2 

xy xy
2 

X x e Xy xy
2 

y y
2 

Y y xy
2 

y
2 

e x Xy 

y
2 

y
2 

xy E y xy
2 

X 

xy xy y
2 

xy
2 

x e Y 

xy
2 

xy
2 

y X xy y
2 

E 

We observe that G is finite non-abelian group with o(G)= o(D6)=6. 

==================================================================  

Right coset: Let H be a subgroup of a group G and a   G. Then the set Ha= {ha: h   H} is 

called right coset of H by a in G. 

Left coset: Let H be a subgroup of a group G and a   G. Then the set aH= {ah: h   H} is 

called left coset of H by a in G. 
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Note: Let H be a subgroup of a group G and a, b   G. Then (Ha)b= {(ha)b: h   H}, 

& a(bH)= {a(bh): h   H}. 

==================================================================  

Ex. Let G = {1, -1, i, -i} be a group under multiplication and H = {1, -1} be its subgroup.   

       Then find all right and left cosets of H in G. 

Sol.: Let G = {1, -1, i, -i} be a group under multiplication and H = {1, -1} be its subgroup. 

i) All right cosets of H in G are as follows 

H1= {h1: h   H}= {1.1, (-1).1} = {1, -1} = H 

H-1= {h(-1): h   H}= {1.(-1), (-1).(-1)} = {-1, 1} = H 

Hi= {hi: h   H}= {1.i, (-1).i} = {i, -i}  

H-i= {h(-i): h   H}= {1.(-i), (-1).(-i)} = {-i, i}  

 i.e. {1, -1} & {i, -i} are the right cosets of H in G. 

ii) All left cosets of H in G are as follows 

1H= {1h: h   H}= {1.1, 1.(-1)} = {1, -1} = H 

-1H= {(-1)h: h   H}= {(-1).1, (-1).(-1)} = {-1, 1} = H 

iH= {ih: h   H}= {i.1, i.(-1)} = {i, -i}  

-iH= {(-i)h: h   H}= {(-i).1, (-i).(-1)} = {-i, i}  

 i.e. {1, -1} & {i, -i} are the leftt cosets of H in G. 

================================================================== 

Ex. Let G = {1, -1, i, -i, j, -j, k, -k} be a group under multiplication and H = {1, -1, i, -i}  

       be its subgroup. Find all the left and right cosets of H in G. 

Sol.: Let G = {1, -1, i, -i, j, -j, k, -k} be a group under multiplication and H = {1, -1, i, -i}  

be its subgroup. Here we use i.j = k, j.k = i and k.i = j 

i) All the left cosets of H in G are as follows 

1H= {1h: h   H}= {1.1, 1.(-1), 1.i, 1.(-i)} = {1, -1, i, -i} = H 

-1H= {(-1)h: h   H}= {(-1).1, (-1).(-1), (-1).i, (-1).(-i)} = {-1, 1, -i, i} = H 

iH= {ih: h   H}= {i.1, i.(-1), i.i, i.(-i)} = {i, -i, -1, 1} = H 

-iH= {(-i)h: h   H}= {(-i).1, (-i).(-1), (-i).i, (-i).(-i)} = {-i, i, 1, -1} = H 

jH= {jh: h   H}= {j.1, j.(-1), j.i, j.(-i)} = {j, -j, -k, k}  

-jH= {(-j)h: h   H}= {(-j).1, (-j).(-1), (-j).i, (-j).(-i)} = {-j, j, k, -k}  

kH= {kh: h   H}= {k.1, k.(-1), k.i, k.(-i)} = {k, -k, j, -j}  

-kH= {(-k)h: h   H}= {(-k).1, (-k).(-1), (-k).i, (-k).(-i)} = {-k, k, -j, j}  

 i.e. {1, -1, i, -i} & {j, -j, k, -k} are the leftt cosets of H in G. 

Similarly all the right cosets of H in G are  {1, -1, i, -i} & {j, -j, k, -k}. 

==================================================================  

Theorem: Let G be a group and H a subgroup of G. Then 

i) He = H = eH 

ii) (Ha)b= H(ab) and a(bH)= (ab)H  

iii) If G is abelian then Ha = aH, ∀ a   G 



MTH -302(A): Group Theory 

Department 0f Mathematics, Karm. A. M. Patil Arts, Commerce and Kai. Annasaheb N. K. Patil Science Sr College, Pimpalner. 9 

Proof : i) He = {he: h   H} = {h: h   H} = H 

  and  eH = {eh: h   H} = {h: h   H} = H 

   He = H = eH 

 ii) (Ha)b= {(ha)b: h   H}  

     = {h(ab): h   H}  by associative law. 

     = H(ab) 

 Similarly a(bH)= (ab)H  

 iii) Let G be an abelian group and a   G 

   Ha = {ha: h   H} 

          = {ah: h   H}   ∵ G is abelian. 

          = aH 

 Hence proved. 

================================================================== 

Theorem: Let H be a subgroup of a group G. Then 

i) a   H ⇔ Ha = H  

ii) Ha= Hb ⇔ and ab
-1

   H 

Proof : i) Suppose a   H. Let x   Ha 

                 h   H 

 As h, a   H ⟹ ha   H  ⟹ x   H 

   Ha ⊆ H ………(1) 

 Let y   H 

     ye = y(a
-1

a) = (ya
-1

)a   Ha  ∵ y, a   H and H is a subgroup. 

   H ⊆ Ha ………(2) 

 From (1) and (2) H = Ha 

 Conversely, suppose H = Ha 

 Now a = ea   Ha = H i.e. a   H. 

 Hence proved. 

ii) Ha= Hb ⇔ (Ha)b
-1

= (Hb)b
-1

  
 

        ⇔ H(ab
-1

)= H(bb
-1

)  

        ⇔ H(ab
-1

)= He 

        ⇔ H(ab
-1

)= H 

        ⇔ ab
-1

   H   by (i) 

 Hence proved. 

==================================================================  

Theorem: Let H be a subgroup of a group G. Then 

i) a   H ⇔ aH = H  

ii) aH = bH ⇔ and b
-1

a   H 

Proof : i) Suppose a   H. Let x   aH 

                 h   H 
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 As a, h   H ⟹ ah   H  ⟹ x   H 

   aH ⊆ H ………(1) 

 Let y   H 

     ey = (aa
-1

)y = a(a
-1

y)   aH  ∵ a, y   H and H is a subgroup. 

   H ⊆ aH ………(2) 

 From (1) and (2) H = aH 

 Conversely, suppose H = aH 

 Now a = ae   aH = H i.e. a   H. 

 Hence proved. 

ii) aH = bH ⇔ b
-1

(aH) = b
-1

(bH)  
 

        ⇔ (b
-1

a)H = (b
-1

b)H  

        ⇔ (b
-1

a)H = eH 

        ⇔ (b
-1

a)H = H 

        ⇔ b
-1

a   H   by (i) 

 Hence proved. 

==================================================================  

Theorem: Let H be a subgroup of a group G. Then 

i) Any two right cosets of H are either disjoint or identical. 

ii) Any two left cosets of H are either disjoint or identical. 

Proof : i) Let Ha and Hb be any two right cosets of H in G. 

 We have to prove either Ha ∩ Hb =   or Ha = Hb. 

 If Ha ∩ Hb =   then we are trough. 

 But if Ha ∩ Hb     then there exist some x   Ha ∩ Hb 

    x   Ha and x   Hb 

   x = ha and x = kb for some h, k   H 

   ha = kb for some h, k   H 

   a = h
-1

kb for some h, k   H ………(1) 

   Ha = H(h
-1

kb) by (1) 

  Ha   (H(h
-1

k))b  

   Ha   Hb   ∵ h, k   H and H is a subgroup ⟹ h
-1

k   H  ⟹ H(h
-1

k) = H 

 Hence any two right cosets of H are either disjoint or identical is proved. 

 i) Let aH and bH be any two left cosets of H in G. 

 We have to prove either aH ∩ bH =   or aH = bH. 

 If aH ∩ bH =   then we are trough. 

 But if aH ∩ bH     then there exist some x   aH ∩ bH 

    x   aH and x   bH 

   x = ah and x = bk for some h, k   H 

   ah = bk for some h, k   H 

   a = bkh
-1

 for some h, k   H ………(1) 
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   aH = (bkh
-1

)H by (1) 

   aH = b ((kh
-1

)H)  

   aH = bH  ∵ h, k   H and H is a subgroup ⟹ kh
-1

   H  ⟹ (kh
-1

)H = H 

 Hence any two left cosets of H are either disjoint or identical is proved. 

================================================================== 

Lagranges Theorem: If H is a subgroup of a finite group G then o(H) ∣ o(G). 

Proof : Let H be a subgroup of a finite group G. 

 If H = {e} or H = G then o(H) ∣ o(G). 

 So suppose {e}   H   G i.e. 1 < o(H) < o(G). 

 Let a1   G be such that a1 ∉ H. 

   a1   e ∵  e   H. 

Let o(H) = m and H = {e, h2, h3, ……… hm} 

Consider the right coset Ha1 = {a1, h2a1, h3a1, ……… hma1} 

   a1   Ha1 but a1 ∉ H = He 

   Ha1   H  

    H   Ha1=    

 We observe that Ha1 contain m distinct elements ∵  hi   hj ⟹ hia1   hja1 for all i, j. 

   H ∪  Ha1 contain exactly 2m elements. 

 If H ∪  Ha1 = G then o(G) = 2m = 2.o(H). 

   o(H) ∣ o(G) 

If H ∪  Ha1   G then there exists a2   G be such that a2 ∉ H ∪  Ha1. 

   a2     ∵  e   H ∪  Ha1 

Consider the right coset Ha2 = {a2, h2a2, h3a2, ……… hma2} 

   a2  Ha2 but a2 ∉ H ∪  Ha1 i.e. a2 ∉ H= He and a2 ∉ Ha1 

   He, Ha1 and Ha2 are pair wise disjoint. 

Also Ha2 contain m distinct elements. 

   H ∪  Ha1 ∪  Ha2 contain exactly 3m elements. 

 If H ∪  Ha1 ∪  Ha2 = G then o(G) = 3m = 3.o(H). 

   o(H) ∣ o(G) 

Otherwise we continue the above process. As G is finite, process must stop after a finite 

number of steps. Suppose that we have k pair-wise disjoint right cosets say 

H, Ha1, Ha2, …………Hak-1 such that H ∪  Ha1 ∪  Ha2 ∪   …….. ∪  Hak-1 = G 

   o(G) = km = k.o(H) 

   o(H) ∣ o(G) 

==================================================================  
Ex. Show that every group of prime order is cyclic and hence abelian. 

Proof: Let G be a group of prime order p. 

   There exist a  G such that a   e  ∵  p is prime. 

 Consider a cyclic subgroup H = < a >. 

   o(H) > 1   ∵  a   H and a   e. 

 By Lagrange’s theorem, o(H) ∣ o(G). 

   o(H) ∣ p 

   o(H) = 1 or p  ∵  p is prime 
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   o(H) = p  ∵  o(H) > 1. 

   o(H) = o(G) 

   G = H = < a > 

Hence G is a cyclic group. 

As every cyclic group is abelian. 

  G is an abelian group is proved. 

 ================================================================== 

Ex. Show that order of every element of a finite group is a divisor of order of a group. 

Proof: Let G be a finite group and a  G. 

   o(a) is finite say m.  ∵ order of an element of a finite group is finite. 

   a
m
 = e 

   < a > = { e, a, a
2
, ……. a

m-1
 } i.e. o(< a >) = m 

 By Lagrange’s theorem, o(< a >) ∣ o(G). 

   m ∣ o(G) 

   o(a) ∣ o(G) 

Hence proved. 

 ================================================================== 

Ex. If a is an element of a finite group G, then show that a
o(G)

 = e 

Proof: Let G be a finite group and a   G. 

   o(a) ∣ o(G) 

  o(G) = o(a).r, for some r   N. 

  ao(G)
 = ao(a).r

 = (a
o(a)

)
r
 = e

r
 = e 

Hence proved. 

 ================================================================== 

Euler’s Theorem: If an integer a is relatively prime to a natural number n then  

a (n) 
≡ 1(mod n), where  (n) being the Euler’s totient function. 

Proof: Consider ℤn
'
 = { ̅ : (a, n) = 1}, the group of prime residue classes modulo n. 

 Let (a, n) = 1 

    ̅  ℤn
' 

    ̅ (n)
 =  ̅   ∵  o(ℤn

'
) =  (n) and  ̅   ℤn

'
 is an identity element. 

       n)̅̅ ̅̅ ̅̅ ̅=  ̅ 

   a (n)
≡ 1(mod n) 

Hence proved. 

 ================================================================== 

Fermat’s Theorem: If p is prime number and a is an integer such that p  a then  

a
p-1 

≡ 1(mod n). 

Proof: Let p is a prime number and a  ℤ such that p  a. 

 Let (a, p) = 1 

   By Euler’s theorem 
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   a (p) 
≡ 1(mod p) 

   a
p-1

≡ 1(mod p)  ∵    (p) = p -1 if p is prime. 

Hence proved. 

==================================================================  

Ex. Find all subgroups of (ℤ12,  +12). 

Sol. : We know that for any group G, if a   G then < a > = {an : n   ℤ} is a subgroup of G. 

 Let ℤ12 = {  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅̅̅̅    ̅̅̅̅    

 i) <  ̅ > = { ̅n : n   ℤ} = {  ̅ } 

 ii) <  ̅ > = { ̅n : n   ℤ} = {  ̅ : n   ℤ}  

      = {  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅̅̅̅    ̅̅̅̅     

      <  ̅ > = <  ̅ > = <  ̅ > = <   ̅̅̅̅  > = ℤ12  ∵ (1, 12)=(5, 12)=(7, 12)=(11, 12)= 1 

 iii) <  ̅ > = { ̅n : n   ℤ} = {  ̅   ̅  ̅  ̅  ̅   ̅̅̅̅   = <   ̅̅̅̅  >  ∵  ̅-1 =   ̅̅̅̅  

 iv) <  ̅ > = { ̅n : n   ℤ} = {  ̅  ̅  ̅  ̅  = <  ̅ >  ∵  ̅-1 =  ̅ 

 v) <  ̅ > = { ̅n : n   ℤ} = {  ̅  ̅  ̅  = <  ̅ >  ∵  ̅-1 =  ̅ 

 vi) <  ̅ > = { ̅n : n   ℤ} = {  ̅  ̅   

      Thus {  ̅ }, {  ̅  ̅   {  ̅  ̅  ̅ , {  ̅  ̅  ̅  ̅ , {  ̅   ̅  ̅  ̅  ̅   ̅̅̅̅   & ℤ12 are the subgroups of ℤ12. 

================================================================== 

Ex. Show that (ℤ7’,   7) is a cyclic group. Find all its generators, all its proper subgroups    

        and the order of every element. 

Proof. : Let (ℤ7’ =   ̅  ̅  ̅  ̅  ̅  ̅},   7) is a group of order 6. 

          We know that for any group G, if a   G then < a > = {an : n   ℤ} is a subgroup of G. 

 i) <  ̅ > = { ̅n : n   ℤ} = {  ̅ } 

 ii) <  ̅ > = { ̅n : n   ℤ} = { ̅1,  ̅2,  ̅3 =  ̅ }  

      = {  ̅  ̅  ̅  = <  ̅ >  ∵  ̅-1 =  ̅ 

iii) <  ̅ > = { ̅n : n   ℤ} = { ̅1,  ̅2,  ̅3,  ̅4,  ̅5,  ̅6=  ̅ } 

       = {  ̅    ̅  ̅  ̅   ̅   ̅  = ℤ7’   

       <  ̅ > = <  ̅5 > = ℤ7’  ∵ (5, 6) = 1 

 i.e.  <  ̅ > = <  ̅ > = ℤ7’ 

   ℤ7’ is a cyclic group with generators  ̅ &  ̅  

 iv) <  ̅ > = { ̅n : n   ℤ} =  {  ̅  ̅  

   {  ̅  ̅   {  ̅  ̅  ̅  are the proper subgroups of ℤ7’. 

 The order of every element of ℤ7’  are  

o( ̅)= 1,  ∵ 1 is the least positive integer such that  ̅1 =  ̅ 

o( ̅) = 2, ∵ 2 is the least positive integer such that  ̅2 =  ̅ 

 o( ̅)= o( ̅) = 3  ∵ 3 is the least positive integer such that  ̅3 =  ̅3 =  ̅ 

and o( ̅)= o( )= 6 ∵ 6 is the least positive integer such that  ̅6 =  ̅6 =  ̅ 

==================================================================  
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Ex. Show that (ℤ11’ =   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅̅̅̅ },   11) is a cyclic group. Find all its  

        generators, all its proper subgroups and the order of every element. 

Proof. : We know that for any group G, if a   G then  

< a > = {an : n   ℤ} is a subgroup of G. 

 i) <  ̅ > = { ̅n : n   ℤ} = {  ̅ } 

 ii) <  ̅ > = { ̅n : n   ℤ} = { ̅1,  ̅2,  ̅3,  ̅4,  ̅5,  ̅6,  ̅7,  ̅8,  ̅9,  ̅10=  ̅ }  

      = {  ̅  ̅  ̅   ̅   ̅̅̅̅    ̅    ̅  ̅  ̅  ̅  = ℤ11’ 

      <  ̅ > = <  ̅3 > = <  ̅7 > = <  ̅9 > = ℤ11’  ∵ (3, 10)=(7, 10)=(9, 10)= 1 

 i.e. <  ̅ > = <  ̅ > = <  ̅ > = <  ̅ > = ℤ11’ 

   ℤ11’ is a cyclic group with generators  ̅    ̅,   ̅ &  ̅  

iii) <  ̅ > = { ̅n : n   ℤ} = {  ̅    ̅  ̅  ̅  ̅  = <  ̅ >  ∵  ̅-1 =  ̅ 

 iv) <  ̅ > = { ̅n : n   ℤ} = {  ̅  ̅  ̅  ̅  ̅  = <  ̅ >  ∵  ̅-1 =  ̅ 

 v) <   ̅̅̅̅  > = {  ̅̅̅̅ n : n   ℤ} = {   ̅̅̅̅   ̅  

   {  ̅   ̅̅̅̅    {  ̅  ̅  ̅  ̅  ̅ , are the proper subgroups of ℤ11’. 

 The order of every element of ℤ11’  are  

o( ̅)= 1,  ∵ 1 is the least positive integer such that  ̅1 =  ̅ 

o(  ̅̅̅̅ ) = 2, ∵ 2 is the least positive integer such that   ̅̅̅̅ 2 =  ̅ 

 o( ̅)= o( ̅)= o( ̅)= o( ̅)= 5 

∵ 5 is the least positive integer such that  ̅5 =  ̅5 =  ̅5 =  ̅5 =  ̅ 

and o( ̅)= o( ̅)= o( ̅)= o( ̅)= 10 

∵ 10 is the least positive integer such that  ̅10 =  ̅10 =  ̅10 =  ̅10 =  ̅ 

==================================================================  

Ex. Let A, B be subgroups of a finite group G, whose orders are relatively prime. 

      Show that A   B = { e } 

Proof: We have (o(A), o(B)) = 1. 

   There exist integers m, n such that 

 m.o(A) + n.o(B) = 1………..(1) 

 Let x  A   B 

   x  A and x  B 

   o(x) ∣ o(A) and o(x) ∣ o(B) 

   o(x) ∣ m.o(A) + n.o(B) 

   o(x) ∣ 1  by (1) 

   x
1
 = e 

   x = e 

 Hence A   B = { e } is proved. 

==================================================================  
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Ex. Let G be a groups of prime order p, then prove that G has no proper subgroup. 

Proof: Let G be a groups of prime order p. 

   o(G) = p. 

 Let H be a subgroup of a group G. 

 By Lagrange’s theorem o(H) ∣ o(G) 

  ⟹ o(H) ∣ p 

  ⟹ o(H) = 1 or p ∵ p is prime number. 

 If  o(H) = 1, then H = {e} is not a proper subgroup. 

 If  o(H) = p, then o(H) = o(G) ⟹ H = G is not a proper subgroup. 

Hence G has no proper subgroup is proved. 

==================================================================  

Ex. Show that every proper subgroup of a group of order 35 is cyclic. 

Proof. : Let G be a groups of order 35 and H be a proper subgroup G. 

 By Lagrange’s theorem o(H) ∣ 35 

   o(H) = 5 or 7 ∵ H is a proper subgroup G. 

 i.e. o(H) is prime and every group of prime order is cyclic. 

   H is cyclic. 

Hence every proper subgroup of a group of order 35 cyclic is proved. 

==================================================================  

Ex. Show that every proper subgroup of a group of order 77 is cyclic. 

Proof. : Let G be a groups of order 77 and H be a proper subgroup G. 

 By Lagrange’s theorem o(H) ∣ 77 

   o(H) = 7 or 11 ∵ H is a proper subgroup G. 

 i.e. o(H) is prime and every group of prime order is cyclic. 

   H is cyclic. 

Hence every proper subgroup of a group of order 77 cyclic is proved. 

==================================================================  

Ex. Find the remainder obtained when 15
27

 is divided by 8. 

Sol.: By taking a = 15 and n = 8, we have (a, n) = (15, 8) = 1 and  (n) =  (8) = 4 

    By Euler’s theorem, a (n) 
≡ 1(modn), we get, 

 15 (8) 
≡ 1(mod8) 

 i.e. 154 
≡ 1(mod8) 

       )
6
 ≡ 1

6
 (mod8)  

        ≡ 1 (mod8)………(1) 

 As 15 ≡ 7 (mod8) 

       ≡ 7
2
 (mod8)  

       ≡ 1 (mod8)  

                  ) 

       ≡ 7 (mod8)  ………(2)  
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 From (1) and (2), we get, 

           ≡ 1   7 (mod8) 

        ≡ 7 (mod8) 

   7 is the remainder when      is divided by 8. 

==================================================================  

Ex. Find the remainder obtained when 33
19

 is divided by 7. 

Sol.: By taking a = 33 and p = 7 i.e. p = 7 is prime and p   . 

    By Fermat’s theorem, ap-1 
≡ 1(modp), we get, 

 336 
≡ 1(mod7) 

       )
3
 ≡ 1

3
 (mod7)  

        ≡ 1 (mod7) 

 and 33 ≡ 5 (mod7) 

            ≡ 1   5 (mod7) 

        ≡ 5 (mod7) 

   5 is the remainder when      is divided by 7. 

==================================================================  

Ex. Find the remainder obtained when 3
54

 is divided by 11. 

Sol.: By taking a = 3 and p = 11 i.e. p = 11 is prime and p   . 

    By Fermat’s theorem, ap-1 
≡ 1(modp), we get, 

 310 
≡ 1(mod11) 

       )
5
 ≡ 1

5
 (mod11)  

       ≡ 1 (mod11) 

 and 3
4
 = 81 ≡ 4 (mod11) 

        3
4
 ≡ 1   4 (mod11) 

       ≡ 4 (mod11) 

   4 is the remainder when     is divided by 11. 

==================================================================  

Normal Subgroup: A subgroup H of a group G is called normal subgroup of G  

                       if ghg
-1 H for all g  G and all h  H. 

================================================================== 

Ex. Prove that every subgroup of an abelian group is normal. 

Proof: Let G be an abelian group and H be any subgroup of G.  

 gh  hg   ∀   h, g  G ………..(1) 

For any h  H ⊆ G and for any g  G, 

ghg
-1

 = hgg
-1

 = he = h  H by (1) 

  H is a normal subgroup of G is proved. 

================================================================== 
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Ex. Prove that every subgroup of a cyclic group is normal. 

Proof: Let G be a cyclic group and H be any subgroup of G.  

As every cyclic group is an abelian group. 

 gh  hg   ∀  h, g  G ………..(1) 

For any h  H ⊆ G and for any g  G, 

ghg
-1

 = hgg
-1

 = he = h  H by (1) 

  H is a normal subgroup of G is proved. 

================================================================== 

Ex. If H is a subgroup of a group G and if the normalize of H, N(H) = {g  G : gHg
-1

 = H}, 

then prove that a) N(H) is subgroup of G and b) H is a normal subgroup of N(H). 

Proof: Let H is a subgroup of a group G and N(H) ={g  G: gHg
-1

 = H}is the normalize of H.  

a) As aHa
-1

= H ∀ a   H  

  a   H ⟹ a   N(H) ⟹ H ⊆ N(H) ⊆ G. 

For a, b  N(H) ⟹ a, b  G with aHa
-1

 = H and bHb
-1

 = H …….(1) 

Now a, b  G ⟹ ab-1   G 

Consider (ab
-1

)H(ab
-1

)
-1

 = (ab
-1

)H(ba
-1

) 

           = a(b
-1

Hb)a
-1 

           = aHa
-1

   ∵ bHb
-1

 = H ⟹ b
-1

Hb = H 

           = H 

Hence ab-1  N(H). 

  N(H) is a subgroup of G is proved. 

b) For any a  N(H) ⟹ aHa
-1

 = H. 

  H is a normal subgroup of N(H). 

Hence proved. 

================================================================== 

Index: If H is a subgroup of a finite group G, then the number of distinct right (or left) cosets   

            of H in G is called index of H in G. Denoted by (G:H) or iG(H) = 
   )

   )
 

Ex. If G is a group and H is a subgroup of index 2 in G, then prove that H is a normal  

       subgroup of G. 

Proof: Let H be a subgroup of index 2 in G. Then number of distinct right (or left) cosets of H   

 in G is 2. Let g  G ⟹ g  H or g ∉ H. 

If g  H then gHg
-1

 = H. 

And if g ∉ H then gH   H and H   Hg i.e. gH   H =   and H   Hg =   

As there are only two distinct right (or left) cosets of H in G 

⟹ G = He ∪ Hg and G = eH ∪ gH 

⟹ G = H ∪ Hg = H ∪ gH 

⟹ Hg = gH 

⟹ H = gHg-1 
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Thus either case gHg
-1

 = H ∀ g   G. 

Hence H is a normal subgroup of G is proved. 

==================================================================

Unit-2-subGroup 
==================================================================

1) Which of the following is a improper subgroup of a group G? 

(A) {e} (B) G  (C) every subgroup of G  (D) None of the above 

2) Which of the following is a trivial subgroup of a group G? 

(A) {e} (B) G  (C) every subgroup of G  (D) None of the above 

3) A subgroup H of a group G is called …. if H   G 

(A) trivial (B) improper (C) proper   (D) None of the above 

4) Which of the following is a subgroup of a group G = {1, -1, i, -i} under usual  

     multiplication? 

(A) {1,  i}  (B) {-1, -i}  (C) {i, -i}  (D) {1, -1} 

5) Which of the following is a subgroup of the group (Z8, +8)? 

 (A) { ̅,  ̅   ̅} (B) (Z4, +4)?  (C) { ̅,  ̅   ̅,  ̅ } (D) { ̅,  ̅   ̅} 

6) Which of the following is a not subgroup of (Z, +)? 

(A) The set of all even integers  (B) nZ for any n   N  

(C) The set of all odd integers  (D) {0} 

7) Which of the following is a not subgroup of thegroup (R, +)? 

(A) (R, +)  (B) (Q, +)  (C) (Z, +)   D) None of these 

8) Let H, K be subgroups of a group G. Then H∪K is a subgroup of G if and only if …… 

(A) H ⊆ K     (B) K ⊆ H (C) H ⊆ K or K ⊆ H (D) H ⊆ K and K ⊆ H 

9) The number of generators for the group G = {1, -1, i, -i} under usual multiplication are … 

(A) 1   (B) 2   (C) 3   (D) 0 

10) Which of the following group is not cyclic? 

(A) G = {1, -1, i, -i} (B) (Z6, +6)  (C) (Z
’
8, X8)  (D) (Z, +) 

11) Which of the following group is abelian but not cyclic? 

(A) G = {1, -1, i, -i} (B) (Z6, +6)  (C) (Q, +)  (D) (Z, +) 

12) If A and B are two subgroups of a group G, then which of the following is  

      certainly a subgroup of G? 

(A) A   B  (B) A ∪ B  (C) AB  (D) None of these 

13) The number of proper subgroups of the group (Z, +) are … 

(A) 1    (B) 2    (C) 5    (D) infinite 

14) Cyclic group of order 10 has … number of subgroups. 

(A) 1    (B) 2    (C) 4    (D) 10 

15) Cyclic group of order 15 has … number of subgroups. 

(A) 1    (B) 2    (C) 4    (D) 10 

================================================================== 
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16) Every cyclic group has at least ….. generators. 

(A) 1    (B) 2    (C) 3    (D) infinite 

17) The number of distinct left cosets of a subgroup H = {1, -1} in the group  

       G = {1, -1, i, -i} under usual multiplication are 

(A) 1    (B) 2    (C) 3    (D) 4 

18) If H is a subgroup of a finite group G, then o(H)|o(G). This is the statement of   

      …… theorem. 

(A) Euler’s   (B) Fermat’s  (C) Lagrange’s  (D) Cauchy’s 

19) If n   N  and a   Z such that (a, n) = 1, then a
Ø(n)    (mod n). This is the  

      statement of ……  theorem. 

(A) Euler’s   (B) Fermat’s  (C) Lagrange’s  (D) Cauchy’s 

20) If p is prime  and a   Z, such that p   a, then a
p-1    (mod n). This is the  

       statement of …… theorem. 

(A) Euler’s   (B) Fermat’s  (C) Lagrange’s  (D) Cauchy’s 

21) Let G be a finite group and a   G. Then a
o(G)

  = …. 

(A) e    (B) a    (C) a
2
   (D) o(G) 

22) Let Ø(n) be an Euler’s totient function. Then Ø(10)= ….. 

(A) 1    (B) 2    (C) 4    (D) 9 

23) Let Ø(n) be an Euler’s totient function. Then Ø(17)= ….. 

(A) 1    (B) 2    (C) 16   (D) 7 

24) The remainder obtained when 3
54

  divided by 11 is ….. 

(A) 5    (B) 3   (C) 4    (D) 7 

25) The number of subgroups of a group of order 41 = ….. 

(A) 0    (B) 1    (C) 2    (D) 41 

================================================================== 
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Unit-3: Homomorphism and isomorphism of groups 
========================================================= 
 Homomorphism (or Group homomorphism): Let (G,  ) and (  ,     be any two groups, 

then the mapping       is said to be homomorphism (or Group homomorphism)  

if  (      (     (          . 

 Trivial Homomorphism: Let (G,  ) and (   ,     be any two groups, then the mapping 

       defined by  (            is called trivial homomorphism where    is an 

identity element in   . 

 Remark: A homomorphism       is called an Endomorphism. 

 One-One Function: A function        is said to be one-one function (or injective 

function) if  (    (         

 Onto Function: A function        is said to be onto function (or surjective function) if 

for             with  (      

 Bijective Map: A one-one and onto map is called the bijective map. 

 Kernel of homomorphism: Let f: (G,   )   (  ,     be homomorphism, then the set 

   (   {      (                             } is called kernel of homomorphism. 

========================================================= 
Ex. Let (    be the group of integers under addition and   {       } group under 

multiplication. Show that       defined by  (            is onto group 

homomorphism. 

Proof: For         (      and  (      

 Consider,      (          

          =        

           =  (    (   

     is group homomorphism.  

 For              with  (      

     is onto. 

 Hence,   is onto group homomorphism is proved. 

========================================================= 
Ex. Prove that the mapping 𝑓: 𝐶 → 𝐶0 such that (𝑧) = 𝑒𝑧 is a homomorphism of 

       the additive group of complex numbers onto the multiplicative group of non-zero 

      complex numbers. What is the kernel of 𝑓? 

Proof: Let the mapping 𝑓: 𝐶 → 𝐶0 defined by (𝑧) = 𝑒𝑧 

 For z1, z2   C ⟹ f(z1)= 𝑒   and f(z2)= 𝑒   

Now f(z1 + z2) =𝑒       = 𝑒   𝑒   = f(z1) f(z2) 

   f is a homomorphism. 

 For any non zero complex number z in C0 ⟹   log z   C with f(log z) = 𝑒log z = z 

  f is onto. 
Hence f is onto group homomorphism. 
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1   C0 is a multiplicative identity. 

  Ker f = { z   C : f(z) = 1} 

   = { z   C : ez = 1} 

   = { 0 } 

========================================================= 
Ex. Consider (   ) the additive group of integers and    {     𝑖  𝑖} the group under     

       multiplication. Show that 𝑓        defined by 𝑓(    𝑖           is group   

       homomorphism. Find its Kernel. 

Proof: Let          𝑓(    𝑖   and  𝑓(    𝑖  

Consider,  𝑓(      𝑖    

                                        = 𝑖  𝑖  

                                       = 𝑓(   𝑓(   

  𝑓 is group homomorphism. 1    is an identity element. 

   𝑒 (𝑓  {      𝑓(       } 
                                {      𝑖      } 
                           = 4   

========================================================= 
Ex. Let      { },      { } be the groups under multiplication. Show that  

      𝑓       defined by 𝑓(𝑧  |𝑧|       𝑧     is a group homomorphism. Find its kernel. 

Proof: For 𝑧  𝑧      

    𝑓(𝑧   |𝑧 | and 𝑓(𝑧   |𝑧 | 

    Consider 𝑓(𝑧  𝑧    |𝑧 𝑧 | 

    = |𝑧 | |𝑧 | 

    = 𝑓(𝑧   𝑓(𝑧   

  𝑓 is group homomorphism. 

     is an identity element. 

   𝑒 (𝑓  { 𝑧      𝑓(𝑧   } 

   ={ 𝑧      |𝑧|   } 

   𝑒 (𝑓   Set of all complex numbers whose modulus is 1. 

========================================================= 
Ex. Let   {                ( 𝑒 } be a cyclic group of order 12 generated by    Show      

     that 𝑓      defined by 𝑓(             is a group homomorphism. Find its Kernel. 

Proof: Let   be a cyclic group of order 12 generated by    

                is abelian. 

              (                                 -----------         (1) 

For          𝑓(       and   𝑓(      

Consider 𝑓(    (     

                                     =                               by   (1) 

                                     = 𝑓(   𝑓(   

  𝑓 is group homomorphism. 
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As     𝑒  is an identity element in   

   𝑒 (𝑓  {    𝑓(   𝑒} 

                               {        𝑒} 

                          = {𝑒          }     

========================================================= 
Ex. Consider (   ) a group of reals under usual addition . Show that  

1) 𝑓         defined by 𝑓(                 is a group homomorphism. 

Find its Kernel. 

      2) 𝑔        defined by 𝑔(                   is not a group homomorphism. 

Proof: 1) Let             𝑓(        and  𝑓(       

     Consider,  𝑓(       (     

                                           = 2x + 2y 

                                          = 𝑓(   𝑓(   

       𝑓 is group homomorphism. 0    is an identity element. 

        𝑒 (𝑓  {     𝑓(       } 

                              {              } 

                         = {0} 

2) Let,                𝑔(         and  𝑔(        

    Consider,  𝑔(   𝑔(            

                                   = x+y+2                   ----------           (1) 

    And         𝑔(                ----------           (2) 

              By (1) & (2)   𝑔(        𝑔(      𝑔(   

             𝑔 is not a group homomorphism is proved. 

========================================================= 

Ex. Let,   {[
  
  

]                              }  the group of all non-singular 

matrices of order 2 over    under matrix multiplication and let        { } the group of 

non-zero real numbers under multiplication.Define 𝑓         by 𝑓(    | | for all  

         Show that 𝑓 is onto group homomorphism and find it’s Kernel. 

Proof: For        𝑓(   | |   𝑓(   | | 

Consider  𝑓(    |  | 

                            = | || | 

                            =  𝑓(   𝑓(   

 𝑓 is group homomorphism. 

For               [
  
  

]     with  | |      

Such that  𝑓(     |
  
  

|       

   𝑓 is ontogroup homomorphism.        is an identity element. 

  𝑒 (𝑓  {        𝑓(    } 



MTH -302(A): Group Theory 

Department 0f Mathematics, Karm. A. M. Patil Arts, Commerce and Kai. Annasaheb N. K. Patil Science Sr College, Pimpalner.          

                    {        | |   } 

       =  set of all 2   matrices whose determinant is 1. 

=========================================================

Ex. Let   {     is     matrix over   and | |   }  the group under non-singular                          

       matrices of order   over   under multiplication and      { }, the group of  

       non-zero real numbers under multiplication. Show that        defined by       

         (   | |        is onto group homomorphism.  

Proof: For A, B     (    | | and  (    | | 

  Consider,  (    |  | 

                                      = | || | 

                                     =  (    (   

    is group homomorphism. 

For         is non-zero real number 

    matrix A =

[
 
 
 
 
     
     
     
     
     ]

 
 
 
 

   with  (   | | =     

   f is onto. 

Hence, f is an onto group homomorphism is proved. 

========================================================= 
Ex. Let   (     the additive group of integers and    {      } a group under    

       multiplication. Show that         defined by  

 (   {
                    
               

 

        is onto group homomorphism.  

Proof: For       

Case i) If   and   both are even, then (      is even. 

   (    ,  (     and  (        

Now  (            (    (   

Case ii) If   and   both are odd, then (      is even. 

   (     ,  (      and  (       

Now  (       (    (     (    (   

Case iii) If one is even and other is odd. 

Say   is even and   is odd, then (      is odd.  

   (    ,  (      and  (        

Now  (        (   (     (    (   

  By cases (i), (ii), (iii) we have, 

  (      (    (                   

  f is a group homomorphism. 
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 For           with  (     

And            with  (      

   f is onto. 

Hence,   is onto group homomorphism is proved. 

========================================================= 
Ex. Let        be a group homomorphism. Prove that  

       i) If   is an identity element of   then  (   is the identity element of     

      ii)  (       (                   

     iii)  (      (                 and      

Proof: Let,       be a group homomorphism. 

i) Let   is an identity element of    and    be an identity element of      

       For       (      

      (      (   

                           (    

           (    (         is homomorphism. 

                (   by left cancellation law 

           (   is an identity element of           

ii) For              with        

        (       (   

                    (    (        

  (      (          

   (       (                     

 iii) Case i) If   is positive integer then 

        (      (         ⏟        
       

 

                            =   (    (    (     (  ⏟              
       

   is homomorphism 

    (       (     

 Case ii) If    , then    (     (        (     

 Case iii) If   is negative integer, then        where   is positive integer, 

     𝑓(       𝑓(     

                                 =  𝑓 (       

    =  𝑓 (       

        =   𝑓(       

    = 𝑓(     

                                 =  𝑓(              

   By cases (i), (ii) & (iii)   𝑓(      𝑓(     ,          and        

 Hence proved. 

========================================================= 
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Ex. Prove that homomorphic image of an abelian group is abelian. 

Proof: Let  𝑓      be a group homomorphism, then 

 𝑓(   { 𝑓(       } is homomorphic image  of    and     is abelian. 

For           𝑓(                     with 𝑓(         𝑓(       

 Consider,       𝑓(    𝑓(   

      =  𝑓(             𝑓   is homomorphism. 

                                   =  𝑓(         is abelian 

                    =  𝑓(   𝑓(       𝑓   is homomorphism. 

                      

Hence, homomorphic image of an abelian group is abelian is proved. 

========================================================= 
 NOTE: Converse of above is not true. 

========================================================= 
Ex. Prove that homomorphic image of cyclic group is cyclic. 

Proof: Let,  𝑓      be a group homomorphism, then  

𝑓(   { 𝑓(       } is homomorphic image  of   and   is a cyclic group say        

       

Claim: 𝑓(       𝑓 (    

As             𝑓(    𝑓(   

               𝑓(        𝑓(  ……….(1) 

Let      𝑓(               with  𝑓(        

Now,              with       

                𝑓(    𝑓(     𝑓(       𝑓(    

              𝑓(       𝑓(    …………(2) 

   By (1)  and  (2)   𝑓(       𝑓(    

Hence, homomorphic image of cyclic group is cyclic. 

========================================================= 
Ex. Prove that homomorphic image of finite group is finite. 

Proof: Let,  𝑓      be a group homomorphism, then  

 𝑓(   { 𝑓(       } is homomorphic image  of    and     is  a finite  say   

   {               } 

           𝑓(   {𝑓(    𝑓(    𝑓(        𝑓(   } which is finite. 

    Hence, homomorphic image of a finite group is finite is proved. 

========================================================= 
 NOTE : Converse of above is not is true. 

========================================================= 
Ex. Let,  𝑓      be a group homomorphism, then prove that  

 i)  𝑒 (𝑓  is a subgroup of    

     ii) 𝑓 is one-one iff  𝑒 (𝑓  {𝑒}  where 𝑒 is an identity element in    
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     iii) If    is a subgroup of    then  𝑒 (𝑓   𝑓  (     

Proof: Let,  𝑓      be a group homomorphism, then  

i)  𝑒 (𝑓  {     𝑓(   𝑒    identity element in    } 

As 𝑒     𝑓(𝑒  𝑒     𝑒    𝑒 (𝑓  

  𝑒 (𝑓  is a non-empty subset of   .  

For        𝑒 (𝑓  

          with 𝑓(   𝑒     𝑓(   𝑒  

           with 

𝑓(           𝑓(   𝑓(       

                     𝑓(   𝑓(       

     𝑒 .(𝑒     

                  =  𝑒  

           𝑒 (𝑓  

Hence,   𝑒 (𝑓  is a subgroup of group    

i) Suppose,  𝑓 is one-one. 

Let    𝑒 (𝑓      𝑓(   𝑒  

                              𝑓(     𝑓(𝑒  

                                                            𝑒    𝑓 is one-one. 

                                                   𝑒 (𝑓  {𝑒} 

     Conversely, Suppose  𝑒 (𝑓  {𝑒} 

    For               

    Let  𝑓(     𝑓(   

                        𝑓(   𝑓(        𝑒  

                        𝑓(   𝑓(        𝑒  

                       𝑓(         𝑒  

                        (          𝑒  (𝑓    {𝑒} 

                            =  𝑒 

                              

                       𝑓 is one-one. 

iii) Let    be a subgroup of group     

     For     𝑒 (𝑓      𝑓(    𝑒     

                                           𝑓  (  ) 

                    𝑒 (𝑓   𝑓  (  ) 

                Hence proved. 

========================================================= 

Ex. Let, 𝑓  and  𝑔 be group homomorphism from        Show that  

           {         𝑓(   𝑔(  } is a subgroup of     
Proof: Let 𝑓 and 𝑔 be group homomorphisms from       with 

  {         𝑓(   𝑔(  } 
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We observe that 𝑓(𝑒  𝑒  and  𝑔(𝑒  𝑒  for   e     𝑒     

   is non-empty subset of  . 

For                    with  𝑓(   𝑔(      𝑓(   𝑔(   

        with 𝑓(       𝑓(   𝑓(     

 𝑓 is homomorphism. 

                   𝑓(        𝑓(   𝑓(     

                                 =   𝑔(   𝑔 (     

                                 =   𝑔(   𝑔 (     

  𝑓(      =  𝑔 (      𝑔 is homomorphic.  

                                       

   is a subgroup of   is proved. 

========================================================= 
 Isomorphism : Let, (    ) and (     ) be any two groups then the mapping 𝑓       is 

said to be an isomorphism if 1) 𝑓 is group homomorphism, 2) 𝑓is one-one & 3) 𝑓 is onto. 

 Remark: An isomorphism 𝑓      is called an automorphism. 

========================================================= 

Ex. Let   be a group of all matrices of the type {[
  

   
]   ,       and  2

 +  2
 = 1} 

       under matrix multiplication and  ' be a group of non-zero complex numbers under     

       multiplication. Show that 𝑓     →  ' defined by ([
  

   
]) =   + 𝑖 , is an isomorphism. 

Proof: Let 𝑓     →  ' defined by ([
  

   
]) =   + 𝑖 . 

 i) For A = [
  

   
], B = [

  
   

]     ⟹ f(A) = a + ib and f(B) = c + id 

     Now AB = [
  

   
] [

  
   

] = [
          

            
]  

    i.e. AB = [
          

 (           
] 

      f(AB) = (       i(     ) = (  𝑖  (c + i   = f(A).f(B) 

      f is a homomorphism. 

ii) Suppose f([
  

   
]) = f([

  
   

]) 

 ⟹  a + ib = c + id 

 ⟹  a = c and b = d 

 ⟹ [
  

   
]   [

  
   

] 

     f is one one. 

iii) For a + ib    ' ⟹   [
  

   
]    with ([

  
   

]) =   + 𝑖 . 

       By (i), (ii), (iii) f is an isomorphism is proved. 

========================================================= 
Ex. Let, (    ) be a group of reals under addition and (    ) the group of positive reals      

       under multiplication. Show that 𝑓           defined by 𝑓(                   is an     
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       isomorphism. 

Proof: 1) For                  𝑓(        and    𝑓(      

   Consider 𝑓(                

                                     =         

                   𝑓(          𝑓(   𝑓(   

       𝑓 is group homomorphism. 

2) For           

    Let  𝑓(     (   

                    

       𝑔      𝑔    

                     

      𝑓 is one-one. 

3) For           is a positive real number     𝑔           

      Such that 𝑓(  𝑔                 =    

       𝑓 is onto. 

       By (1), (2) and  (3)  𝑓 is an isomorphism is proved. 

========================================================= 
Ex. Consider the group (      ) and   {              ( 𝑒 } be a cyclic group   

       generated by   Show that 𝑓       defined by 𝑓( ̅         ̅    is an isomorphism. 

Proof: 1) For  ̅   ̅         𝑓( ̅    and   𝑓( ̅     

Consider 𝑓( ̅   ̅  𝑓(   ̅̅ ̅̅ ̅̅ ̅̅   

                                 =      

                                 =       

               𝑓( ̅   ̅  𝑓( ̅  𝑓( ̅  

   𝑓 is a group homomorphism. 

2) For  ̅  ̅     

    Suppose   𝑓( ̅    𝑓( ̅  

                                

                  

                           ̅̅̅    ̅ 

    𝑓 is one-one. 

3) For             ̅     with 𝑓( ̅      𝑓 is onto. 

   By (1), (2) and (3) 𝑓 is an isomorphism is proved. 

========================================================= 
Ex. Let   be a group and      Show that 𝑓  :     defined by 𝑓 (          for all        

            is an automorphism. 

Proof: 1) 𝑓  is a group homomorphism: 

For       , we have 𝑓 (         and   𝑓 (         

Consider  𝑓 (       (       
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                              =  (  ) 𝑒 (      

                              =  (  ) (      (      

                              =  (      (       

                              =   𝑓 (   𝑓 (   

  𝑓  is group homomorphism. 

2) 𝑓 is one-one : 

Let,    𝑓 (    𝑓 (      for              

                   

                by cancellation laws 

  𝑓  is one-one. 

3) 𝑓  is onto : 

For                          with 

         𝑓 (             (           =    

      𝑓  is onto. 

  By (1), (2) and (3)  𝑓   is an automorphism is proved. 

========================================================= 
Ex. Let    be a group and  𝑓      be a map defined by 𝑓(      For all       

      Prove that a) If   is abelian then 𝑓 is an isomorphism. 

                       b) If  𝑓 is group homomorphism then    is abelian. 

Proof: a) Let   is abelian. 

                                               ---------          (1) 

1) For           𝑓(          and  𝑓(       

    Consider  𝑓(    𝑓(                        By   (1) 

𝑓(     (      

                      =        

                    𝑓(     𝑓(   𝑓(   

      𝑓is a group homo-morphism. 

2) For             

    Suppose  𝑓(   𝑓(   

                             

             (       (       

                              

     𝑓 is one-one. 

3] For                 with  𝑓(     (         

       𝑓 is onto. 

    By (1), (2) and (3), 𝑓 is  an isomorphism. 

b) Suppose 𝑓 is a group homomorphism. 

    For             

    Consider       (         
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                          =  𝑓(      

                  𝑓(        

                          =   𝑓(    𝑓(       𝑓  is homomorphic 

                          =   (      (       

                         

       Hence    is abelian is proved. 

========================================================= 
Ex. Let    be a group and  𝑓       be a map defined by 𝑓(       

      For all        Prove that   is abelian iff 𝑓 is an automorphism. 

Proof: Let   is abelian. 

                                                          ---------          (1) 

1) For          𝑓(        and  𝑓(       

    Consider  𝑓(     𝑓(                        By   (1) 

                   𝑓(       (      

                               =           

                   𝑓(    𝑓(   𝑓(   

        𝑓 is a group homo-morphism. 

2) For              
   Suppose 𝑓(   𝑓(   

                              

        (            (       

                           

      𝑓 is one-one. 

3) For                       with     𝑓(       (          

       𝑓 is onto. 

   By (1), (2) and  (3)  𝑓  is  an isomorphism. 

Conversely: Suppose 𝑓  is an automorphism hence f is a group homomorphism. 

   For           

   Consider     (         

                        =    𝑓 (     ] 

                           𝑓(        

                        =   𝑓(    𝑓(       𝑓  is homomorphic 

                        =   (      (       

                 

  Hence   is abelian is proved. 

========================================================= 
Ex. Prove that every finite cyclic group of order n is isomorphic to (      ). 

Proof: Let,   be a finite cyclic group of order    

    {𝑒               }         

Define 𝑓       by  𝑓(     ̅            
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For             , we have  𝑓(     ̅ and 𝑓(     ̅. 

By division algorithm                where              

      ̅̅ ̅̅ ̅̅ ̅      ̅ 

Consider 𝑓(        𝑓(      

     𝑓(       

`       𝑓 (         

     𝑓 𝑒      

    𝑓(    

=     ̅ 

=      ̅̅ ̅̅ ̅̅ ̅ 

=    ̅   ̅ 

  𝑓(          𝑓(         𝑓(     

  𝑓 is a group homomorphism. 

Also for            

Let   𝑓(    𝑓(    

   ̅   ̅ 

                                             

                

  𝑓 is one-one. 

For   ̅                 with   𝑓(     ̅.  𝑓 is onto. 

Hence 𝑓 is an isomorphism is proved. 

========================================================= 
Ex. Prove that every infinite cyclic group is isomorphic to (       

Proof: Let    be a infinite cyclic group generated by    

𝑖 𝑒     {        } 

Define  𝑓         by   𝑓(               

1) For      and           we have 𝑓(       and   𝑓(      

Consider,      𝑓(                    𝑓(      

                                             =            

                                             =    𝑓(        𝑓(    

   𝑓is group homomorphism. 

2) Let   𝑓(    𝑓(                  

             

                

   𝑓 is one-one. 

3) For                with  𝑓(       

   𝑓 is onto. 

   By (1), (2) and (3),  𝑓  is an isomorphism. 
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𝑖 𝑒          is proved. 

========================================================= 
Ex. Let 𝑓         be a group homomorphism. If      and   (   is finite then  

      show that   (𝑓(  )| (    

Proof: Let 𝑓         be a group homomorphism and       with   (    is finite say   

 (      

      𝑒 

 𝑓(    𝑓(𝑒  

 𝑓(     𝑒                                   𝑓is homomorphic. 

  (𝑓(  )|   

  (𝑓(  )|  (                         Hence proved. 

========================================================= 
Ex. If  𝑓        be an isomorphism then show that   (    (𝑓(  )          

Proof: Let, 𝑓        is an isomorphism. 

Case i) If  (   is finite say  (        

         𝑒 

  𝑓(     𝑓(𝑒  

  𝑓(     𝑒              𝑓 is homomorphism. 

    (𝑓(  )      

  (𝑓(  )    (    ---------   (1) 

If  (𝑓(  )        then 

𝑓(    𝑒  

𝑓(       𝑓(𝑒                                 𝑓 is homomorphism. 

     𝑒                                𝑓 is one-one. 

 (      

 (     (𝑓(         ---------- (2)   

    By (1) and (2)  (    (𝑓(    

Case ii) If   (   is infinite then we have to prove  (𝑓(    is infinite. 

If  (𝑓(    is finite say    

  𝑓(     𝑒  

  𝑓(    𝑓(𝑒             𝑓 is homomorphism. 

     𝑒   𝑓 is one-one. 

  (      which contradicts to  (   is infinite. 

   (𝑓(  ) is infinite. 

   By cases (i) and (ii)  (    (𝑓(       is proved. 

========================================================= 
Ex. If    {     𝑖  𝑖} is the group under multiplication and    ̅    { ̅   ̅   ̅   ̅} is a group      

       under multiplication modulo 10 then Show that    and   ̅ isomorphic. 
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Proof: Let   {     𝑖  𝑖} is a group under multiplication with identity element 1.   

We observe that  (       (        (𝑖   ( 𝑖    

  Let   ̅    { ̅   ̅   ̅   ̅} is a group with identity element   ̅  

  ( ̅       ( ̅      ( ̅           ̅     ̅ and  ( ̅         

 We define 𝑓     ̅ as 𝑓(    ̅ 𝑓(      ̅  𝑓(𝑖    ̅  𝑓( 𝑖   ̅ 

    Which is one-one and onto. 

   For   -1 , 𝑖     ,  We have  𝑓((   ( 𝑖 )      𝑓(𝑖        ̅  and 

𝑓(        𝑓( 𝑖        ̅     ̅     ̅ 

   𝑓((   ( 𝑖 )  𝑓(      𝑓( 𝑖  which is true for all element in    

   𝑓 is group homomorphism.    𝑓 is group isomorphism. 

 𝑖 𝑒          ̅is proved. 

========================================================= 
Ex. Show that the groups   {     𝑖  𝑖} is the group under usual multiplication and      

           { ̅   ̅   ̅   ̅} is a group under multiplication modulo 8 are not isomorphic. 

Proof: Suppose   is isomorphic to     𝑖 𝑒       

𝑖 𝑒   𝑓        is an isomorphism.  

   (    (𝑓(  )             --------- (1) 

We observe that      is an identity element. 

   (       (        (𝑖   ( 𝑖    and 

 ̅       is an identity element under     

    ( ̅      ( ̅      ( ̅)      ( ̅     

 As 𝑖     with   (𝑖            ( (𝑖 )         

which contradicts to equation (1). 

   and     are not isomorphic is proved. 

Ex. Show that the set of all automorphisms of a group   forms a group under composition of            

       mappings. 

Proof: Let,     be the set of all automorphisms of a group    

             𝑖 𝑒      {𝑓 | 𝑓      is an automorphism.} 

1) For  𝑓 𝑔    

  𝑓          𝑔      is an automorphism. 

  𝑓 𝑔      is an automorphism. 

  𝑓 𝑔     

𝑖 𝑒  Composition of mappings is a binary operation in    

2) For  𝑓 𝑔    𝑕   , we have  

 (𝑓 𝑔  𝑕 (    (𝑓 𝑔  (𝑕(    

                             𝑓 [𝑔(𝑕(  )]  

     𝑓   𝑔(𝑕(  )  

  (𝑓 𝑔  𝑕 (    𝑓 (𝑔 𝑕  (              
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  (𝑓 𝑔  𝑕   𝑓 (𝑔 𝑕  

   Composition of mappings is associate in    

3) Let        defined by  (       is an automorphism with 

(𝑓   (    𝑓( (  )   𝑓(   

      𝑓(    

                 =  (  𝑓)(                           

 𝑓      𝑓 

      is an identity element. 

4) For 𝑓     

       is an automorphism. 

          is an automorphism with  

(      (         (        (   

& (      (         (         (   

                every mapping has inverse in    

By (1), (2), (3) and (4) set of automorphisms A forms a group under composition of 

mappings is proved. 

========================================================= 

Homomorphism and isomorphism of groups 
========================================================= 
1) Let (G,  ) and (  ,     be any two groups, then the mapping       is said to be  

    homomorphism (or Group homomorphism) if  (              . 

[A]  (    (   [B]   (     (   [C]  (        [D]  (    

2) Let (G,  ) and (   ,     be any two groups, then the mapping        defined by  

     (            is called trivial homomorphism where    is an identity element in   . 

[A] e  [B]  0   [C]      [D] 1 

3) A homomorphism       is called an ……. 

[A] Endomorphism [B]  Isomorphism [C] Automorphism  [D]None of these 

4) A function        is said to be one-one function if  (    (     …… 

[A] a = b  [B] a   b    [C] a   b  [D] a   b 

5) A function        is said to be …… function if for             with  (      

[A] many-one [B]  one-one  [C] onto  [D] inverse 

6) A one-one and onto map is called the …… map. 

[A] injective [B]  bijective [C] surjective [D] many-one 

7) If 𝑓      is a group homomorphism and 𝑓 is one-one then  𝑒 (𝑓    …….  

[A] {𝑒}  [B] {𝑒 }   [C] { }  [D] { } 

8) Homomorphic image of an abelian group is …… 

[A] cyclic [B] abelian   [C] finite  [D] infinite 

9) Homomorphic image of a cyclic group is …… 

[A] cyclic [B] abelian   [C] finite  [D] infinite 
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10) Homomorphic image of a finite group is …… 

[A] cyclic [B] abelian   [C] finite  [D] infinite 

11) Let   {                ( 𝑒 } be a cyclic group of order 12 generated by     

      If 𝑓      defined by 𝑓(             is a group homomorphism, 

      then  𝑒 (𝑓    …… 

[A] {𝑒}  [B] {𝑒          }    [C] {𝑒       }      [D] {    } 

12) Let (   ) the additive group of integers and    {     𝑖  𝑖} the group under     

      multiplication. If 𝑓        defined by 𝑓(    𝑖           is homomorphism,         

      then  𝑒 (𝑓    …… 

[A] {𝑒}  [B]      [C] 4       [D] {    } 

13) An isomorphism       is called an ……. 

[A] Endomorphism [B] Homomorphism [C] Automorphism [D] None of these 

14) Let, (    ) and (     ) be any two groups then the mapping 𝑓       is said to be an  

       isomorphism if …… 

[A] 𝑓 is group homomorphism   [B]  𝑓is one-one  

[C] 𝑓 is onto     [D] All of these  

15) Let    be a group and  𝑓      be a map defined by 𝑓(       for all       

      is group homomorphism then group G is …… 

[A] cyclic [B] abelian   [C] finite  [D] infinite 

16) Every finite cyclic group of order n is isomorphic to …… 

[A] (      ) [B] (    )  [C] (   )  [D] (    ) 

17) Every infinite cyclic group of order n is isomorphic to …… 

[A] (      ) [B] (    )  [C] (   )  [D] (    ) 
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Unit 4: Rings 
=================================================================== 

Ring: A non-empty set   with two binary operations   (addition) and    (multiplication)  

                      is called a ring if: 

         is an abelian group. 

                     for        

                    (left distributive law)  and 

                      (right distributive law)            

Commutative Ring: A ring         is said to be a commutative ring if 

                   

Ring with unity (or ring with identity): A ring         is said to be a ring with unity  

         (or ring with identity) if there exists an element     with                  

Ring with zero divisors: A ring         is said to be a ring with zero divisors  

         if         with          but       

Ring without zero divisors: A ring         is said to be a ring without zero divisors 

        if                         . 

                                                are commutative rings with unity and without   

             zero divisors. 

       2) Let   be the set of all 2 2 matrices over reals then         is a non-commutative ring  

           with unity. 

      3) ( 2       is a commutative ring without unity.  

      4)            is a commutative ring with unity and with zero divisors.  

               ̅    ̅  ̅   ̅  but   ̅    ̅   ̅. 

Multiplicative Inverse: An element     is said to be multiplicative inverse of an element 

               if           where   is an identity/unity in    

Remark: 

1. Additive identity is called zero element. 

2. Multiplicative identity is called unity. 

3. Those elements have multiplicative inverse are called units. 

=================================================================== 

Theorem: Let         be a ring and         then  

1)           

2)                   

3)             

4)              

5)              
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Proof: Let,         be a ring. 

I)     is an additive identity.  

               

             

                           by left distributive law 

             

                                    by left cancellation law 

Similarly      

         

II) As           

    [      ]     

                            by (1) 

                    

Similarly             

                               

    III) Consider           [     ]   [     ]  

                         

   IV) Consider         [      ]                 by left distributive law 

                                  by (2) 

    V) Consider        [      ]                  by right distributive law 

                                     by (2) 

        Hence proved. 

=================================================================== 

Theorem: Let         be a ring with identity element   and      then     

1)             2)             

Proof: Let,         be a ring with identity element   and      

1) Consider              

                                                is an identity element. 

2) Consider                

                                                     Hence proved. 

=================================================================== 

Ex: Show that a ring   is commutative if and only if  

                               

Proof: Suppose a ring   is commutative. 

                                      ------         (1) 
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Consider, 

                       

                                          by left distributive law 

                                          by right distributive law 

                                                 by (1) 

                               

                                   

Conversly: Suppose                             

                          

                            

                             

                 by cancellation laws 

      Ring   is commutative ring is proved. 

=================================================================== 

Ex: Let   be a ring with identity element   and  

                     Show that   is commutative. 

Proof: Let   be a ring with identity element   and 

                                   -------        (1) 

   For            have 

   [      ]           

                               

                               

                                  

                                 

                              -----     (2) 

   For           from (2), we have 

                        

                               

                         

                                 by (2) 

                      

    Hence   is a commutative ring is proved. 

=================================================================== 

Ex: Show that            is a commutative ring with unity and with zero  

       divisors. 

Proof: Let,      ̅  ̅  ̅  ̅  ̅  ̅  
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   We prepare composition tables of          for    as follows 

 6  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

      

 6  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

We observe that    and    are binary operations in    are also commutative and 

associative in     Additive inverse of  ̅  ̅  ̅  ̅  ̅  ̅ are  ̅  ̅  ̅  ̅  ̅  ̅ resp. in     

 ̅       is an additive identity and  ̅       is a multiplicative identity in      

As          distributive laws hold in     

                  is a commutative ring with unity and with zero divisors. 

       ̅     ̅    and  ̅   ̅ but   ̅    ̅   ̅ and  ̅     ̅   ̅  

=================================================================== 

Ex: Show that the set             is a commutative ring under addition and multiplication     

       modulo 8. 

Proof: Let              

We prepare composition tables of    and     for   as follows 

 8 0 2 4 6    8 0 2 4 6 

0 0 2 4 6   0 0 0 0 0 

2 2 4 6 0   2 0 4 0 4 

4 4 6 0 2   4 0 0 0 0 

6 6 0 2 4   6 0 4 0 4 

We observe that     and     are binary operations in  , are also commutative and 

associative in               
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Additive inverse of           are           in  . 

     is an additive identity. As        

   Distributive laws hold in    

             is a commutative ring is proved. 

=================================================================== 

Ex: Show that      ̅  ̅  ̅  ̅  ̅  ̅  ̅  forms a ring under addition and multiplication modulo 7. 

Proof: Let      ̅  ̅  ̅  ̅  ̅  ̅  ̅  

We prepare composition tables of         for    as follows 

 7  ̅  ̅  ̅  ̅  ̅  ̅  ̅   7  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

We observe that     and     are binary operations in   , are also commutative and 

associative in                 

Additive inverse of  ̅  ̅  ̅  ̅  ̅  ̅  ̅ are  ̅  ̅  ̅  ̅  ̅  ̅  ̅ respectively in           is an 

additive identity and  ̅       is a multiplicative identity in      

As             distributive laws hold in     

Hence,    forms a commutative ring under    and    is proved. 

================================================================ 

Ex: In the ring                find all divisors of zero. 

Solution: Let,               be a ring with zero element  ̅  

We prepare table for     of     as follows 

     ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 
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 ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

 ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

From the table, we observe that  ̅   ̅  ̅   ̅  ̅   ̅  

 ̅   ̅  ̅   ̅   but   ̅      ̅   ̅,  ̅      ̅   ̅   ̅      ̅   ̅ and  ̅      ̅   ̅. 

  ̅  ̅  ̅  ̅    ̅ are the zero divisors in a given ring. 

================================================================ 

Ex: On the set   of integers, define binary operations   and   as  

           and                         

Show that         is a commutative ring with identity element 0. 

Proof: I)       is an abelian group:- 

Let,            

                                  

    is a binary operation in    
2) Consider,                      

                                                      

                                                       

                                                     

                                        

          is associative in    

3) As                             

            is an identity element under   

4) As                      with  

                                 

            is an inverse of   in    

5) As                                   

         is commutative in    

           is an abelian group. 

II)                            

Consider,                       

                                                          

                                                         --- (1) 

  &                      

                                                 

                                                    ----        (2) 

   By (1) and (2)                      

         is associative in    
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3) Consider,                      

                                                            

                                                           

                                                             ----  [3] 

      &                                  

                                                           

                                                             -----      [4] 

    By [3] and [4]                         

    Similarly                                              

            distributive laws hold in                is a ring. 

4) As                                   

         is commutative in    

5) As     with                          

        ̅    is an identity element in    

    Hence,         is a commutative ring with identity element 0 is      

            proved. 

=================================================================== 

Ex: Prove that a non-zero element  ̅ in            is a zero divisor if and only if m is not  

      relatively prime to  , where      

Proof: Suppose a non-zero element   is a zero divisor.  

We have to prove            

If                      ---------         (1) 

As  ̅ is a zero divisor       ̅               with  ̅     where       with 

 ̅      ̅    ̅ 

      ̅̅ ̅̅       ̅       |            |    

Which contradicts to                     

        is not relatively prime to    

Conversely, Suppose   is not relatively prime to    

                    |    and    |     

        and       for some          

                             ̅̅ ̅̅     ̅̅ ̅    ̅ 

   ̅      ̅   ̅ with  ̅   ̅    ̅    ̅ 

   ̅ is a zero divisor. 

=================================================================== 
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Ex: Show that      ̅  ̅  ̅  ̅        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    the set of residue classes of integers modulo      

      forms a commutative ring with identity element underaddition modulo       and  

      multiplication modulo       operations. 

Proof : I)         is an abelian group:- 

1) As  ̅     ̅     ̅̅ ̅̅ ̅̅ ̅             ̅  ̅             

          is a binary operation in       

2) As  ̅    ( ̅     ̅)   ̅        ̅̅ ̅̅ ̅̅ ̅   

                                            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

                                            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

                                          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      ̅ 

                                    ( ̅     ̅)     ̅            ̅  ̅  ̅        

            is associative in     

3) As  ̅     ̅     ̅̅ ̅̅ ̅̅ ̅   ̅   ̅    ̅         ̅       

        ̅ is an additive identity in     

4) For  ̅                    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        with 

     ̅         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   ̅       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      ̅ 

        ̅̅ ̅̅ ̅̅ ̅  is an additive inverse in      

5) As  ̅     ̅      ̅̅ ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅̅ ̅   ̅     ̅            ̅  ̅        

         is commutative in      

II) As   ̅     ̅    ̅̅ ̅                ̅  ̅          

           is a binary operation in     

    Consider,  ̅    ( ̅     ̅)    ̅       ̅̅ ̅       ̅̅ ̅̅ ̅̅ ̅̅       ̅̅ ̅̅ ̅̅ ̅ 

                                                   ̅̅ ̅      ̅    ̅     ̅    ̅ 

                                                                            ̅  ̅  ̅             

           is associative in      

III) For  ̅  ̅  ̅              

      Consider,  ̅    ( ̅     ̅)   ̅         ̅̅ ̅̅ ̅̅ ̅  

                                                        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

                                                       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

                                                    ̅̅ ̅     ̅̅ ̅      

                                                 ( ̅      ̅)      ̅    ̅  

      Similarly, ( ̅     ̅)      ̅    ̅      ̅      ̅      ̅  

         distributive laws holds in     
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IV) As  ̅     ̅    ̅̅ ̅    ̅̅ ̅   ̅     ̅        ̅  ̅            

               is commutative in         

V) As   ̅     ̅     ̅̅ ̅̅ ̅̅   ̅   ̅     ̅        ̅             

         ̅ is the multiplicative identity in       

     Hence,            is a commutative ring with identity element is proved. 

=================================================================== 

Ex: Denote    2   the set of even integers. For        we define      usual addition   

      of   and   and      
  

 
   where     is the usual product of   and  . Show that          

      is a commutative ring with identity element 2. 

Proof: I)       is an abelian group:- 

1) As sum of two even integers is even. 

      + is a binary operation in    

2) As                             

        is associative in    

3) As                       

         is an identity element in    

4) For                  with                  

         is an additive inverse of   in    

5) As                        

II) For              are even integers 

                      is multiple of   

                    
  

 
 is even integer 

                            

              is a binary operation in    

      Consider               
  

 
  

                                            
  

  

 
 

 
 

 
  

 
  

 
 

                                           = (
  

 
)     

                                           =                      

          is associative in    

III) For          

      Consider,          
      

 
 

  

 
 

  

 
               

      Similarly,                     

           distributive laws holds in    
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IV) As      
  

 
 

  

 
                   

           is commutative in    

V) As      
    

 
                   

          is an identity element in    

     Hence         is commutative ring with identity element   

     is proved. 

================================================================== 

Integral Domain: A commutative ring without zero divisors is called an  

Integral domain. 

Field: A commutative ring with identity element and having inverse to all  

non-zero elements is called a Field. 

Division Ring (or Skew field): A ring with identity element is called a  

Division ring or skew field. 

================================================================= 

Ex. Show that  [ ]               the set of Gaussian integers,  

    forms an integral domain under usual addition and multiplication of      

    complex numbers. 

Proof: I)   [ ]    is an abelian group: 

1) As                             [ ]    

                         [ ]      is a binary operation in  [ ]  

2) As        [             ] 

                               

          [       ]   [       ] 

          [       ]   [       ] 

                              

          [             ]                              [ ]  

          is associative in  [ ]  

3) As                                  

                                                                                  [ ] 

         is an identity element in  [ ]  

4) As                                    

                      is an inverse of      in  [ ]  

5) As                            

                                                         

                                                                       [ ] 

         is commutative in  [ ]  
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II) 1) As                                [ ]               [ ] 

              is a binary operation in  [ ]  

    2) For                       [ ] 

        Consider        [            ] 

                        [                ] 

                                                        

                  [                 ]       

                  [            ]       

           is a associative operation in  [ ]  

III) For                        [ ] 

   Consider,        [             ] 

                        [            ] 

                                               

                                                    

                                            

 Similarly [             ]                                 

            distributive laws holds in  [ ]  

IV) As                               

                                                           

                                                                         [ ]  

           is commutative in  [ ]  

V) If                    

                                        

       [ ]      is an integral domain is proved. 

================================================================ 

Ex. Show that       √           is an integral domain under usual addition and     

      multiplication of complex numbers. 

Proof: I)       is an abelian group: 

1) As (   √ )  (   √ )             √         

         √     √           is a binary operation in    

2) As (   √ )  [(   √ )      √  ] 

              (   √ )             √  

             [       ]  [       ]√  

             [       ]  [       ]√  

                        √      √   
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             [(   √ )  (   √ )]      √     

                                                         √     √     √        

           is associative in    

3) As (   √ )  (   √ )     √  (   √ )      √   

                   √        

         √  is an identity element in    

4) As (   √ )  (    √ )     √  (    √ )      √   

          √  is an inverse of    √  in    

5) As (   √ )  (   √ ) 

                                    √  

                                     √  

                         (   √ )  (   √ )     √     √     

         is commutative in    

II) 1) As (   √ )(   √ )                 √    

                                                                          √     √      

           is a binary operation in    

    2) For (   √ ) (   √ ) (   √ )    

        Consider  (   √ )[(   √ )(   √ )] 

                  (   √ )[                √ ] 

                                                          √  

                  [                 √ ](   √ ) 

                  [(   √ )(   √ )](   √ ) 

           is a associative operation in    

III) For    √     √         √       

      Consider (   √ )[(   √ )      √  ] 

                  (   √ )[           ]√  

                                             √  

                                 √                 √  

                  (   √ )(   √ )      √      √   

     Similarly [(   √ )  (   √ )](   √ ) 

 (   √ )(   √ )      √      √   

             distributive laws holds in    
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IV) As (   √ )(   √ )                 √  

                                                                 √  

                                                 (   √ )(   √ )        √     √        

             is commutative in    

V) If (   √ )(   √ )     √   

                √     √            √     √  

                 is a commutative ring without zero divisors. 

            is an integral domain is proved. 

================================================================ 

Ex: Show that  [√  ]      √            is an integral domain under usual addition 

and multiplication of complex numbers. 

Proof: I)   [√  ]    is an abelian group: 

1) As (   √  )  (   √  )             √      [√  ]    

           √      √      [√  ]  

         is a binary operation in  [√  ]  

2) As (   √  )  [(   √  )      √   ] 

            (   √  )             √   

           [       ]  [       ]√   

           [       ]  [       ]√   

                      √       √    

           [(   √  )  (   √  )]      √      

                                             √      √      √    √  ]   

              is associative in  [√  ]  

2) As (   √  )  (   √  ) 

    √   (   √  )      √    

                                                                           √        [√  ] 

             √   is an identity element in  [√  ]  

3) As (   √  )  (    √  )     √   (    √  )      √    

           √   is an inverse of    √   in  [√  ]  

4) As (   √  )  (   √  )             √   

                                                                       √   

                                                           (   √  )  (   √  ) 
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     √      √     [√  ] 

          is commutative in  [√  ]  

II) 1) As (   √  )(   √  )                 √      [√  ] 

                                                         √      √       [√  ] 

          is a binary operation in  [√  ]  

   2) For (   √  )         (   √  )   [√  ]  

        Consider  (   √  )[(   √  )(   √  )] 

                  (   √  )[                √  ] 

                                                          √   

                  [                 √  ](   √  ) 

                  [(   √  )(   √  )](   √  ) 

           is a associative operation in  [√  ]   

III) For    √      √          √       [√  ] 

   Consider,  (   √  )[(   √  )      √   ] 

                  (   √  )[           ]√   

                                             √   

                                 √                  √   

                  (   √  )(   √  )      √       √    

Similarly [(   √  )  (   √  )](   √  ) 

 (   √  )(   √  )      √       √    

                 distributive laws holds in  [√  ]  

IV) As (   √  )(   √  )                 √   

                                                                        √   

                                                        (   √  )(   √  )    

               √      √       [√  ]  

           is commutative in  [√  ]  

V) If (   √  )(   √  )     √    

                √      √             √      √   

       [√  ]      is a commutative ring without zero divisors. 

              [√  ]      is an integral domain is proved. 

================================================================ 
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Ex. Let   be the set of all real numbers. Show that   ×   forms a field under addition and   

      multiplication defined by ( ,  ) + ( ,  ) = (  +  ,   +  )  

     & ( ,  ) . ( ,  ) = (   −   ,    +   ). 

Proof: I)         is an abelian group: 

1) As                                                   

    is a binary operation in      

2) As       [           ] 

                 [            

                          

                        

                          

          [           ]                                   

          is associative in      

3) As                                              

          is an identity element in      

4) As                                   

                        is an inverse of       in      

5) As                          

                                                 

                                                                    

         is commutative in      

II) 1) As                                                  

              is a binary operation in      

    2) For                         

        Consider        [           ] 

                        [             ] 

                                                    

                                      

                  [           ]       

           is a associative operation in      

III) For                         

      Consider        [           ] 
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      Similarly [           ]                             

            distributive laws holds in      

        IV) As                           

                                                        

                                                                           

           is commutative in      

        V) As                                              

          is a multiplicative identity element in      

       VI) If             then      -1
= (

 

     
, 

  

     
) 

             (
 

     
 

  

     )  (
 

     
 

  

     )              

       i.e. every non-zero element has inverse in     

               is a commutative ring with unity and every non-zero element has     

       inverse in it. 

              is a field. 

================================================================ 

Ex: For      Prove that    is an integral domain iff   is prime. 

Proof: Suppose    is an integral domain.We have to prove   is prime. 

 If   is not prime then      for                  

    ̅     ̅̅ ̅̅  

                                                         ̅    ̅      ̅ 

                                ̅   ̅         ̅   ̅             is an integral domain 

          |   and   |   which contradicts to                  

 Hence,   is prime. 

Conversely, Suppose   is prime. 

  For  ̅    ̅         with  ̅      ̅   ̅              ̅̅ ̅   ̅ 

         |            |                is prime. 

   ̅   ̅         ̅   ̅ 

                has no zero divisors. 

Hence,    is an integral domain is proved. 

================================================================ 

Ex: Prove that commutative ring         is an integral domain iff cancellation laws holds in    

Proof: Suppose, a commutative ring          is an integral domain. 

  For           

  Let        with                

                                                                 is an I.D 



MTH-302(A): Group Theory 

Department 0f Mathematics, Karm. A. M. Patil Arts, Commerce and Kai. Annasaheb N. K. Patil Science Sr College, Pimpalner.   

                                                       

      cancellation laws holds in    

Conversely, Suppose cancellation laws hold in    

Let       for         

If    , then we are through. 

     If    , then                        by cancellation law 

                                 

              is an integral domain is proved. 

================================================================ 

Ex: Prove that a commutative ring         is an integral domain if and only if  

                                        

Proof: Suppose, a commutative ring         is an integral domain. 

   cancellation laws holds in    

For            Suppose,       

If    , then we are through. But if     then  

                             by cancellation law 

                                 

Conversely, Suppose For         

                               

        has no zero divisors. 

            is an integral domain is proved. 

================================================================ 

Ex: Prove that every field is an integral domain but converse may not be true. 

Proof: Let,         be any field. 

             is a commutative ring with identity element   and every 

non-zero element has inverse in it. 

For        Suppose              -------          (1) 

If     then     is exists.        is field. 

Pre-multiplying by      to equation (1), we get  

             

                                                       

                                                          

                                                        

                          has no zero divisors. 

Hence,         is an integral domain. 
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Hence every field is an integral domain is proved. But converse may not be true.     

        is an integral domain but not a field. 

       
 

 
        

================================================================ 

Ex: Prove that every finite integral domain is a field. 

Proof: Let          be any finite integral domain. 

              is a commutative ring without zero divisors. 

As   is a finite say                 where            are distinct elements of    

For     with     

                    are the distinct elements of    

                          

As                    for some    

Claim:    is an identity element. 

 For                    for some    

                                                  

                                                 

                                                 

                                          

      is an identity element. Denoted by      

                    for some    

  Every non-zero element has inverse in    

         is a field.  

           Hence every finite integral domain is a field is proved. 

================================================================ 

Ex: Prove that           is an integral domain but not field. 

Proof: Let         is a commutative ring with identity element    

        For         with                              

            has no zero divisors.            is an integral domain. 

     But for any non-zero integer   has multiplicative inverse 
 

 
     

                is not a field. 

================================================================ 

Ex. If p is prime number  then show that    is an integral domain. 

Proof: Let   is prime. 

For  ̅    ̅         with  ̅      ̅   ̅              ̅̅ ̅   ̅ 
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    |            |                is prime. 

   ̅   ̅         ̅   ̅ 

       has no zero divisors. 

Hence    is an integral domain is proved. 

================================================================ 

Ex. In the ring (         , find  

    i) -   ̅    ̅ , ii)  ̅      ̅̅ ̅̅  , iii)     ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅ , 

    iv) Units in     v) additive inverse of  ̅, vi) zero divisors.  

    Is    a field or an integral domain? Justify. 

Proof: Let (          be a ring 

We prepare composition tables of         for    as follows 

 7  ̅  ̅  ̅  ̅  ̅  ̅  ̅   7  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

  ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅   ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

In      ̅     is an additive identity and  ̅       is a multiplicative identity in     

Additive inverse of  ̅  ̅  ̅  ̅  ̅  ̅  ̅ are  ̅  ̅  ̅  ̅  ̅  ̅  ̅ respectively. 

i) -   ̅    ̅  = -   ̅  =  ̅   

ii)  ̅      ̅̅ ̅̅   =  ̅    ̅ =  ̅  

iii)     ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅  =  ̅    ̅ =  ̅ 

iv) As  ̅    ̅ =  ̅,  ̅    ̅ =  ̅ &  ̅    ̅ =  ̅ 

       ̅  ̅  ̅  ̅  ̅ are the units in   . 

v) Additive inverse of  ̅ = - ̅ =  ̅.     ̅    ̅ =  ̅ 

vi) From second table we observe that product of two non-zero     

    elements is not zero.   No zero divisors in     

      We observe that (          is a commutative ring with unity  

 and every non-zero element has inverse in it. 

  (          is a field and hence an integral domain. 

================================================================ 

Ex. Which of the following rings are integral domains?  

    (i)  187, (ii)  61, (iii)  22, (iv) ( , +, ∙). 
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Solution: By using the result that if   is prime, then    is an integral domain, we have, 

 i)           is not prime.        is not an integral domain. 

 ii)    is prime.       is an integral domain. 

 iii)          is not prime.       is not an integral domain. 

 iv) ( , +, ∙) is a commutative ring with unity but has no zero divisors 

       ( , +, ∙) is not an integral domain. 

================================================================ 

Boolean ring: A ring         is said to be a Boolean ring if               

           ̅  ̅         is a Boolean ring.    ̅   ̅     ̅   ̅   and    ̅   ̅      ̅    ̅ 

================================================================ 

Ex: Prove that every Boolean ring is a commutative ring. 

Proof: Let,          be any Boolean ring. 

                                

         For                     

                     

                  

                                       -------      (1) 

      For                   

                          

                             

                               

                            

                          

                   

                              by (1) 

                 is a commutative ring. 

  Hence every Boolean ring is a commutative ring. 

================================================================ 

Ex: In a Boolean ring    Show that                                            

Proof: Let         be any Boolean ring. 

                       

1) For            

             

          

                ------     (1) 
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2) For                    

                        

                            

                               

                            

                          

                     

                                              by (1) 

          Hence proved. 

===================================================================

Unit 4: Rings [mcq’s] 
=================================================================== 

1) If (R, +, .) is a ring with zero element 0 then for all a  R with a.0 = 0.a = ……  

  A) a    B) 0   C) 1   D) None of these 

2) If Zp is finite field then p is …… 

  A) composite  B) even  C) prime  D) odd  

3) Ring (Zn, +n,  n) is an integral domain and a field if and only if n is …… 

 A) composite  B) even  C) prime  D) odd  

4) Ring (Zn, +n,  n) is not a field if and only if n is …… 

 A) composite  B) even  C) prime  D) odd  

5) Ring (Zn, +n,  n) is a ring with zero divisors if and only if n is …… 

 A) composite  B) even  C) prime  D) odd  

6) Ring (Zn, +n,  n) is a ring without zero divisors if and only if n is …… 

 A) composite  B) even  C) prime  D) odd  

7) A non-zero element m in ring (Zn, +n,  n) is invertible if and only if …… 

 A) m and n are even    B) m and n are odd  

C) m and n are relatively prime  D) None of these 

8) If p is prime then Zp is ….. 

  A) Not Ring  B) Boolean Ring C) Finite Field D) None of these 

9) Every field is …… 

  A) a Boolean ring    B) an Integral domain  

C) Not a ring    D) Not Integral domain 

10) Every Integral domain is …… 

  A) Not a ring  B) a field  C) May not be a field D) a Boolean ring 
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11) Every finite Integral domain is …… 

  A) Not a ring  B) a field  C) not a field D) Boolean ring 

12) Which of the following is a field ? 

  A) (Z, +, .)  B) (Q, +, .)  C) (2Z, +, .)  D) None of these 

13) Which of the following is a field ? 

  A) Z18   B) Z19   C) Z48   D) Z187 

14) Which of the following is not a field ? 

  A) Z19   B) Z29   C) Z41   D) Z187 

15) (Z, +, .) is an integral domain and …… 

A) a field  B) not a field C) a Boolean ring D) None of these 

16) (Z, +, .) is …… 

A) an integral domain but not a field B) both an integral domain and a field  

C) a field but not an integral domain D) neither an integral domain nor a field 

17) (2Z, +, .) the ring of even integers is Integral domain  …… 

A) with unity    B) without unity   

C) with zero divisors   D) None of these 

18) If R is a commutative ring and a, b   R then (a+b)
2
 = …… 

  A) a+b  B) a
2
+b

2
+2ab C) a

2
+b

2
+ab+ba D) None of these 

19) If R is a ring and a, b   R such that (a+b)
2
 = a

2
+b

2
+2ab then R is …… 

  A) Ring with zero divisors   B) Field   

C) Commutative    D) None of these 

20) Zero divisors in a ring (Z6, +6, x6) are  

  A)  ̅,  ̅  B)  ̅,  ̅  C)  ̅,  ̅  D) None of these 

21) If R is a Boolean ring then a
2
 = … for all a  R.  

  A) 0   B) 1   C) a   D) None of these 

22) If R is a Boolean ring then R is …… 

  A) ring with zero divisors   B) a field   

C) a commutative ring   D) an integral domain 

23) If R is a Boolean ring then a + a = …… for all a  R. 

  A) a    B) 0   C) 1   D) -a 

24) If R is a Boolean ring then for a    R with a + b = 0   ……  

  A) a    B) b   C) a = b  D) None of these 

=================================================================== 

 



 


