

MTH -301: CALCULUS OF SEVERAL VARIABLES Unit- 1: Functions of Two and Three Variables	Marks-15
1.1 Explicit and Implicit Functions	
1.2 Continuity	
1.3 Partial Derivatives	
1.4 Differentiability	
1.5 Necessary and Sufficient Conditions for Differentiability	
1.6 Partial Derivatives of Higher Order	
1.7 Schwarz's Theorem	
1.8 Young's Theorem.	
Unit-2: Jacobian, Composite Functions and Mean Value Theorems	Marks-15
2.1 Jacobian (Only for Two and Three Variable)	
2.2 Composite Functions (Chain Rule)	
2.3 Homogeneous Functions.	
2.4 Euler's Theorem on Homogeneous Functions.	
2.5 Mean Value Theorem for Function of Two Variables.	
Unit -3: Taylor's Theorem and Extreme Values	Marks-15
3.1 Taylor's Theorem for Function of Two Variables.	
3.2 Maclaurin's Theorem for Function of Two Variables.	
3.3 Absolute and Relative Maxima & Minima.	
3.4 Necessary Condition for Extrema.	
3.5 Critical Point, Saddle Point.	
3.6 Sufficient Condition for Extrema.	
Unit -4: Double and Triple Integrals	Marks-15
4.1 Double Integrals by Using Cartesian and Polar Coordinates.	
4.2 Change of Order of Integration.	
4.3 Area by Double Integral.	
4.4 Evaluation of Triple Integral as Repeated Integral.	
4.5 Volume by Triple Integral.	
Recommended Book:	
Mathematical Analysis: S.C. Malik and Savita Arora. Wiley Eastern I	Ltd, New Delhi.
1992 (Chapter 15: Functions of several variables 1, 1.1, 1.2, 1.3, 1.4,	<mark>1.6,2,</mark> 3, 3.1, 3.2, 4
4.1, 5, 5.2, 6, 7.2, 9, 9.1, 10, 10.1, 10.2)	
Reference Books –	
1. Calculus of Several Variables by Schaum's Outline Series.	
 Mathematical Analysis by T. M. Apostol, Narosa Publishing House New Delhi, 1985 	2,
Learning Outcomes:	
Upon successful completion of this course the student will be able to	understand:
a) limit and continuity of functions of several variables	
b) fundamental concepts of multivariable Calculus.	
c) series expansion of functions.	
d) extreme points of function and their maximum, minimum values at	those points.
e) meaning of definite integral as limit as sums.	
f) how to solve double and triple integration and use them to find area	by double
integration and volume by triple integration.	

Жł

UNIT- 1: FUNCTIONS OF TWO AND THREE VARIABLES

Functions of Two Variables:

A relation $f : \mathbb{R}^2 \to \mathbb{R}$ is said to be a function of two variables x and y if every point (x, y) in \mathbb{R}^2 associates a unique real variable z i.e. f(x, y) = z in \mathbb{R} .

Functions of Three Variables:

A relation $f : \mathbb{R}^3 \to \mathbb{R}$ is said to be a function of three variables x, y and z if every point (x, y, z) in \mathbb{R}^3 associates a unique real variable w i.e. f(x, y, z) = w in \mathbb{R} . **Neighbourhood of a point:**

A set $\delta N(a, b) = \{(x, y) / \sqrt{(x - a)^2 + (y - b)^2} < \delta\}$ is called δ neighbourhood of a point (a, b) in xy-plane. Which is circle with centre at point (a, b) and radius δ .

Deleted Neighbourhood of a point:

A set $\delta N'(a, b) = \{(x, y) / 0 < \sqrt{(x - a)^2 + (y - b)^2} < \delta\}$ is called deleted δ neighbourhood of a point (a, b) in xy-plane.

Limit of a function:

If for a arbitrarily small $\varepsilon > 0$, there exist $\delta > 0$ depends on ε such that $|f(x, y) - l| < \varepsilon$ whenever $0 < \sqrt{(x - a)^2 + (y - b)^2} < \delta$ or $0 < |x - a| < \delta$ and $0 < |y - b| < \delta$. Then *l* is said to be limit of f (x, y) as (x, y) \rightarrow (a, b). Denoted by $\lim_{(x,y)\to(a,b)} f(x, y) = l$ or $\lim_{x\to a} f(x, y) = l$.

This limit is also called double limit or simultaneous limit. Algebra of Limits:

If
$$\lim_{(x,y)\to(a,b)} f(x, y) = l$$
 and $\lim_{(x,y)\to(a,b)} g(x, y) = m$ then
i) $\lim_{(x,y)\to(a,b)} [f(x, y) \pm g(x, y)] = l \pm m$
ii) $\lim_{(x,y)\to(a,b)} [f(x, y)g(x, y)] = lm$
iii) $\lim_{(x,y)\to(a,b)} [\frac{f(x,y)}{g(x,y)}] = \frac{l}{m}$ provided $m \neq 0$ for all q for all q
iv) $\lim_{(x,y)\to(a,b)} \sqrt[n]{f(x y)} = \sqrt[n]{l}$

Existence of Limit:

- i) Limit is exists, if along any path limit is same.
- ii) Limit is not exists, if along different paths we get different limits.

Observation:

i) In general if given function contain trigonometric terms or given function is the rational function which is not homogenous of degree 0 and its denominator is in powers of $x^2 + y^2$ then its limit is exist and it is always 0 as $(x, y) \rightarrow (0, 0)$. Which is shown by using ε - δ definition and inequalities

 $|x| < \sqrt{x^2 + y^2}, |y| < \sqrt{x^2 + y^2}.$

ii) To prove limit is not exist, we take two paths, first path is y = 0 and choose second path y = f(x) such that degree of numerator and denominator becomes same and having different limit than path y = 0.

$$= \lim_{x \to 0} \frac{x^{3}[1 + (1 - x^{2})^{3}]}{x^{3}}$$

=
$$\lim_{x \to 0} [1 + (1 - x^{2})^{3}] \quad \because x \neq 0$$

= 2

For two different paths we get two different limits.

 $\therefore \lim_{(x,y)\to(0,0)} f(x,y) \text{ does not exists.}$

Ex. Evaluate
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y)}{x+y}$$

Sol. Let $L = \lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y)}{x+y}$
For the path $y = 0$, we have
 $L = \lim_{x\to 0} \frac{\sin(x^2+0)}{x+0}$
 $= \lim_{x\to 0} x \times (\frac{\sin x^2}{x^2})$
 $= 0 \times 1$
 $= 0$
For the path $x = 0$, we have
 $L = \lim_{y\to 0} \frac{\sin(0+y)}{0+y}$
 $= \lim_{y\to 0} \frac{\sin(0+y)}{0+y}$
 $= 1$
For two different paths we get two different limits.
 $\therefore \lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y)}{x+y}$ does not exists.
Ex. Evaluate $\lim_{(x,y)\to(0,0)} \frac{\tan(x^2+y)}{x+y}$
Sol. Let $L = \lim_{(x,y)\to(0,0)} \frac{\tan(x^2+y)}{x+y}$
For the path $y = 0$, we have
 $L = \lim_{x\to 0} \frac{\tan(x^2+0)}{x+y}$
For the path $y = 0$, we have
 $L = \lim_{x\to 0} \frac{\tan(x^2+0)}{x+y}$
 $z \to 0 \times 1$

_

= 0
For the path x = 0, we have

$$L = \lim_{y \to 0} \frac{\tan(0+y)}{0+y}$$

$$= \lim_{y \to 0} \frac{\tan(y)}{x}$$
= 1
For two different paths we get two different limits.

$$\therefore \lim_{(x,y)\to(0,0)} \frac{\tan(x^2+y^2)}{x+y} \text{ does not exists.}$$
Ex. Evaluate $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x+y}$
Sol. Let $L = \lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x+y}$
For the path y = 0, we have

$$L = \lim_{x\to 0} \frac{\sin(x^2+0)}{x+2}$$

$$= \lim_{x\to 0} \frac{\sin(x^2+0)}{x+2}$$

$$= 0$$
For the path y = x² - x, we have

$$L = \lim_{x\to 0} \frac{\sin(x^2(1+(x-1)^2))}{x+2}$$

$$= \lim_{x\to 0} \frac{\sin(x^2(1+(x-1)^2))}{x^2(1+(x-1)^2)} [1 + (x = 1)^2] \log (1 + 1) \log 1$$

$$= (1) \times [1 + (-1)^2]$$

$$= 2$$
For two different paths we get two different limits.

$$\therefore \lim_{(\mathbf{x},\mathbf{y})\to(0,0)} \frac{\sin(x+y-y)}{x+y} \text{ does not exists.}$$

Ex. Evaluate
$$\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2+y^6}$$

Sol. Let L= $\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2+y^6}$

DEPARTMENT OF MATHEMATICS -KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCHENCE SR. COLLEGE, PIMPALNER

For the path y = 0, we have

$$L = \lim_{x \to 0} \frac{0}{x^2 + 0} = 0$$
For the path y³ = x, we have

$$L = \lim_{x \to 0} \frac{x^2}{2x^2}$$

$$= \lim_{x \to 0} \frac{x^2}{2x^2}$$

$$= \lim_{x \to 0} \frac{1}{2} \quad \because x \neq 0$$

$$= \frac{1}{2}$$
For two different paths we get two different limits.

$$\therefore \lim_{(x,y) \to (0,0)} \frac{xy^3}{x^2 + y^2} \text{ does not exists.}$$
Ex. Evaluate the limit, if it exists, for the following function

$$(x,) = \frac{x^2y}{x^2 + y^{2^3}} \text{ if } x^2 + y^2 \neq 0,$$

$$= 0, \text{ if } x = y = 0.$$
Sol. Let $L = \lim_{(x,y) \to (0,0)} \frac{x^2 + y^2}{x^4 + y^2}$
For the path y = 0, we have

$$L = \lim_{x \to 0} \frac{x^4}{x^4 + x^4} = 0$$
For the path y = x², we have

$$L = \lim_{x \to 0} \frac{x^4}{x^4 + x^4} = \lim_{x \to 0} \frac{x^4}{x^4 + x^4}$$

$$= \lim_{x \to 0} \frac{1}{2} \quad \because x \neq 0$$

$$= \frac{1}{2}$$
For two different paths we get two different limits.

 $\therefore \lim_{(\mathbf{x},\mathbf{y})\to(0,0)} \frac{x^2 y}{x^4 + y^2} \text{ does not exists.}$

Ex. Let
$$f(x, y) = x \sin \frac{1}{x} + y \sin \frac{1}{y}$$
, $xy \neq 0$. Show that $\lim_{(x,y)\to(0,0)} f(x, y) = 0$.
Sol. Let $f(x, y) = x \sin \frac{1}{x} + y \sin \frac{1}{y}$, $xy \neq 0$.

Here we use $\varepsilon - \delta$ definition of limit, to find the limit of given function. Consider

$$\begin{aligned} |f(x,y) - 0| &= \left| x \sin \frac{1}{x} + y \sin \frac{1}{y} \right| \\ &\leq \left| x \sin \frac{1}{x} \right| + \left| y \sin \frac{1}{y} \right| \\ &\leq \left| x \right| \left| \sin \frac{1}{x} \right| + \left| y \right| \left| \sin \frac{1}{y} \right| \\ &\leq \left| x \right| + \left| y \right| \quad \because \quad \left| \sin \frac{1}{x} \right| \leq 1 \text{ and } \left| \sin \frac{1}{y} \right| \leq 1 \\ &\leq 2\sqrt{x^2 + y^2} \quad \because \quad \left| x \right| \leq \sqrt{x^2 + y^2} \text{ and } \left| y \right| \leq \sqrt{x^2 + y^2} \\ \therefore \left| f(x,y) - 0 \right| \leq 2\sqrt{x^2 + y^2} < \varepsilon \\ &\text{Now } 2\sqrt{x^2 + y^2} < \varepsilon \Rightarrow \sqrt{x^2 + y^2} < \frac{\varepsilon}{2} \\ &\text{By taking } \frac{\varepsilon}{2} = \delta, \text{ we get, for } \varepsilon > 0, \exists \delta = \frac{\varepsilon}{2} > 0 \\ &\text{such that } \left| f(x,y) - 0 \right| < \varepsilon \text{ whenever } 0 < \sqrt{x^2 + y^2} < \delta \\ \therefore \text{ By } \varepsilon - \delta \text{ definition of limit, we get} \\ &\lim_{(x,y) \to (0,0)} f(x,y) = 0. \\ &\text{Hence proved.} \end{aligned}$$

Repeated Limits:

Let f (x, y) be any real valued function defined in some deleted neighborhood of point (a, b) then $\lim_{y\to b} [\lim_{x\to a} (x, y)]$ and $\lim_{x\to a} [\lim_{y\to b} (x, y)]$ are called repeated limits or iterated limits.

Remark:

i) Repeated limits of any function may or may not be equal.

ii) If repeated limits of a given function are not equal then simultaneous limit of a function does not exist.

iii) If repeated limits of a given function are equal then simultaneous limit of a function may or may not be exist.

iv) If simultaneous limit of a given function exist then repeated limits are equal.

Ex. Let $f(x, y) = \frac{x^2 y^2}{x^4 + y^4 - x^2 y^2}$, if $(x, y) \neq (0, 0)$. Verify that, both repeated limits exist and are equal but simultaneous limit does not exist as $(x, y) \rightarrow (0, 0)$.

Sol. Let
$$f(x, y) = \frac{x^2 y^2}{x^4 + y^4 - x^2 y^2}$$
, if $(x, y) \neq (0, 0)$.

First we find repeated limits of given function as follows.

$$\begin{split} \lim_{y \to 0} [\lim_{x \to 0} f(x, y)] &= \lim_{y \to 0} [\lim_{x \to 0} \frac{x^2 y^2}{x^4 + y^4 - x^2 y^2}] = \lim_{x \to 0} \frac{0}{y^4} = 0 \\ &\& \lim_{x \to 0} [\lim_{y \to 0} f(x, y)] = \lim_{x \to 0} [\lim_{y \to 0} \frac{x^2 y^2}{x^4 + y^4 - x^2 y^2}] = \lim_{x \to 0} \frac{0}{x^4} = 0 \\ &i.e. both repeated limits exists and are equal. \\ Now to find simultaneous limit, denote \\ & & & \\ I = (x_0)^{-1}(0,0) f(x, y) = (x_0)^{-1}(0,0) \frac{x^2 y^2}{x^4 + y^4 - x^2 y^2} \\ For the path y = 0, we have \\ & I = \lim_{x \to 0} \frac{0}{x^4 + 0} = 0 \\ For the path y = x, we have \\ I = \lim_{x \to 0} \frac{x^4}{x^4 + x^4 - x^4} \\ &= \lim_{x \to 0} \frac{x^4}{x^4 + x^4 - x^4} \\ &= \lim_{x \to 0} \frac{x^4}{x^4 + x^4 - x^4} \\ &= \lim_{x \to 0} \frac{x^2 y^2}{x^4 + x^4 - x^4} \\ &= \lim_{x \to 0} \frac{x^2 y^2}{x^4 + y^4 - x^2 y^2} \\ \text{does not exists.} \\ \text{Hence it is verified that, both repeated limits exist and are equal but simultaneous limit does not exist for f(x, y) = \frac{x^2 - y^2}{x^2 + y^2} \\ \text{Sol. Let } f(x, y) = \frac{x^2 - y^2}{x^2 + y^2} \\ \text{First we find repeated limits of given function as follows. \\ \\ \lim_{y \to 0} [\lim_{x \to 0} f(x, y)] = \lim_{y \to 0} [\lim_{x \to 0} \frac{x^2 - y^2}{x^2 + y^2}] \\ &= \lim_{y \to 0} \frac{0 - y^2}{x^2 + y^2} \\ \lim_{y \to 0} (x, y) = \lim_{x \to 0} \frac{x^2 - y^2}{x^2 + y^2} \\ &= \lim_{x \to 0} \frac{0 - y^2}{x^2 + y^2} \\ \end{bmatrix}$$

i.e. Repeated limits exists.

Now to find simultaneous limit, denote

$$L = \lim_{(x,y)\to(0,0)} f(x, y) = \lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$$

For the path y = 0, we have
$$L = \lim_{x\to 0} \frac{x^2 - 0}{x^2 + 0}$$
$$= \lim_{x\to 0} 1 \quad \because x \neq 0$$
$$= 1$$

For the path x = 0, we have
$$L = \lim_{y\to 0} \frac{0 - y^2}{0 + y^2}$$
$$= \lim_{y\to 0} (-1) \quad \because y \neq 0$$
$$= -1$$

For two different paths we get two different limits.

 $\therefore \lim_{(\mathbf{x}, \mathbf{y}) \to (0, 0)} \frac{x^2 - y^2}{x^2 + y^2} \text{ does not exists.}$

Hence proved that, repeated limits exist but simultaneous limit does not exists.

Continuity of a function:

A function f (x, y) is said to be continuous at point (a, b) if f (a, b) is defined, $\lim_{(x,y)\to(a,b)} f(x, y) \text{ is exist and } \lim_{(x,y)\to(a,b)} f(x, y) = f(a, b).$

Remark:

A function f (x, y) is discontinuous at point (a, b) if f (a, b) is not defined or $\lim_{(x,y)\to(a,b)} f(x, y) \text{ is not exist or } \lim_{(x,y)\to(a,b)} f(x, y) \neq f(a, b).$

Ex. Investigate for continuity the function $f(x, y) = \frac{x^2 y}{x^4 + y^2}, if(x, y) \neq (0, 0)$ f(0, 0) = 0.Sol. Let $f(x, y) = \frac{x^2 y}{x^4 + y^2}, if(x, y) \neq (0, 0)$ f(0, 0) = 0.....(i)Let $L = \lim_{(x,y)\to(0,0)} f(x, y) = \lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^4 + y^2}$ For the path y = 0, we have $L = \lim_{x\to 0} \frac{0}{x^4 + 0} = 0$ For the path $y = x^2$, we have

$$L = \lim_{x \to 0} \frac{x^4}{x^4 + x^4}$$
$$= \lim_{x \to 0} \frac{x^4}{2x^4}$$
$$= \lim_{x \to 0} \frac{1}{2} \quad \because x \neq 0$$
$$= \frac{1}{2}$$

For two different paths we get two different limits.

 $\lim_{(x,y)\to(0,0)} f(x, y) \text{ does not exists.}$

Hence f(x, y) is not continuous at (0, 0).

Ex. Show that the function $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}, if(x, y) \neq (0, 0)$ =0, if(x, y) = (0, 0)is continuous at the origin. **Proof.** Let $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$, if $(x, y) \neq (0, 0)$ = 0, if(x, y) = (0, 0)i.e. f(0, 0) = 0....(i) Consider $|f(x,y) - 0| = \left|\frac{xy}{\sqrt{x^2 + y^2}}\right| = \frac{|xy|}{\sqrt{x^2 + y^2}} = \frac{|x||y|}{\sqrt{x^2 + y^2}}$ $\leq \frac{\sqrt{x^2 + y^2}\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}$: $|\mathbf{x}| \leq \sqrt{x^2 + y^2}$ and $|\mathbf{y}| \leq \sqrt{x^2 + y^2}$ $\therefore |f(x,y) - 0| \le \sqrt{x^2 + y^2} < \varepsilon$ Here $\sqrt{x^2 + y^2} < \varepsilon$ \therefore By taking $\varepsilon = \delta$, we get, for $\varepsilon > 0, \exists \delta = \varepsilon > 0$ such that $|f(x, y) - 0| < \varepsilon$ whenever $0 < \sqrt{x^2 + y^2} < \delta$ \therefore By $\varepsilon - \delta$ definition of limit, we get $\lim_{(x,y)\to(0,0)} f(x, y) = 0 = f(0, 0) \text{ by equation (i).}$ Hence given function is continuous at (0, 0) is proved. **Ex.** Show that the function $f(x, y) = xy \frac{x^2 - y^2}{x^2 + y^2}$, $(x, y) \neq (0, 0)$ and f(0, 0) = 0

is continuous at origin. **Proof.** Let $f(x, y) = xy \frac{x^2 - y^2}{x^2 + y^2}$, $(x, y) \neq (0, 0)$ and f(0, 0) = 0.....(i) Consider

$$\begin{split} |f(x,y) - 0| &= \left| xy \frac{x^2 - y^2}{x^2 + y^2} \right| \\ &= |x||y| \left| \frac{x^2 - y^2}{x^2 + y^2} \right| \\ &\leq \sqrt{x^2 + y^2} \sqrt{x^2 + y^2} \\ &: |x| \leq \sqrt{x^2 + y^2} \sqrt{x^2 + y^2} \\ &: |x| \leq \sqrt{x^2 + y^2} \sqrt{x} \\ &: |x| \leq \sqrt{x^2 + y^2} < \varepsilon \\ &\text{Now } x^2 + y^2 < \varepsilon \Rightarrow \sqrt{x^2 + y^2} < \sqrt{\varepsilon} \\ &: \text{By taking } \sqrt{\varepsilon} = \delta, \text{ we get, for } \varepsilon > 0, \exists \delta = \sqrt{\varepsilon} > 0 \\ &\text{such that } |f(x,y) - 0| < \varepsilon \text{ whenever } 0 < \sqrt{x^2 + y^2} < \delta \\ &: \text{By taking } \sqrt{\varepsilon} = \delta \text{ we get, for } \varepsilon > 0, \exists \delta = \sqrt{\varepsilon} > 0 \\ &\text{such that } |f(x,y) = 0| = f(0,0) \text{ by equation (i).} \\ &\text{My} = -\delta \text{ definition of limit, we get} \\ &\text{lim f } (x,y) = 0 = f(0,0) \text{ by equation (i).} \\ &\text{Hence given function is continuous at origin is proved.} \\ \hline \textbf{Ex. Let } f(x,y) = y + x \sin(\frac{1}{y}), \text{ if } y \neq 0 \text{ and } f(x,0) = 0. \text{ Show that } f \text{ is continuous at (0, 0)} \\ \textbf{Proof. Let } f(x,y) = y + x \sin(\frac{1}{y}), \text{ if } y \neq 0 \text{ and } f(x,0) = 0. \\ &\therefore f(0,0) = 0, \dots, (i) \text{ is defined.} \\ &\text{Consider} \\ &|f(x,y) - 0| = \left| y + x \sin(\frac{1}{y} \right| \\ &\leq |y| + |x| \sin(\frac{1}{y})| \\ &\leq |y| + |x| \sin(\frac{1}{y})| \\ &\leq |x| + |y| \quad \because \ \left| \sin(\frac{1}{y} \right| \leq 1 \\ &\leq 2\sqrt{x^2 + y^2} \quad \because |x| \leq \sqrt{x^2 + y^2} \text{ and } |y| \leq \sqrt{x^2 + y^2} \\ &\therefore \text{ lif}(x,y) - 0| \leq 2\sqrt{x^2 + y^2} < \varepsilon \text{ and } \text{ where } 0 < \sqrt{x^2 + y^2} < \delta \\ &\text{ we } 2\sqrt{x^2 + y^2} < \varepsilon \text{ by taking } \frac{\varepsilon}{2} = \delta, \text{ we get, for } \varepsilon > 0, \exists \delta = \frac{\varepsilon}{2} > 0 \\ \text{ such that } |f(x,y) - 0| < \varepsilon \text{ wheneve } 0 < \sqrt{x^2 + y^2} < \delta \\ &\therefore \text{ By } \varepsilon - \delta \text{ definition of limit, we get} \\ \end{cases}$$

 $\lim_{(x,y)\to(0,0)} f(x, y) = 0 = f(0, 0)$ by equation (i). Hence given function is continuous at (0, 0) is proved.

=== Ex.

Partial Derivative:

If $\lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$ is exist, then it said to be partial derivative of f (x, y) w. r. to x and is denoted by $f_x(x, y)$ or $\frac{\partial f}{\partial x}$. Note: First order partial derivatives of f (x, y) w. r. to x and y at point (a, b) are $\left[\frac{\partial f}{\partial x}\right]_{(a, b)} = f_x(a, b) = \lim_{h \to 0} \frac{f(a+h, b) - f(a, b)}{h} \text{ and } \left[\frac{\partial f}{\partial y}\right]_{(a, b)} = f_y(a, b) = \lim_{k \to 0} \frac{f(a, b+k) - f(a, b)}{k}$ **Ex.** If $u = x^3 z + xy^2 - 2yz$ then find $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$ at point (1, 2, 3) **Sol.** Given $u = x^3z + xy^2 - 2yz$ Differentiating partially w.r. to x, y and z, we get $\frac{\partial u}{\partial x} = 3x^2z + y^2 - 0 = 3x^2z + y^2$ $\frac{\partial u}{\partial y} = 2xy - 2z$ $\& \frac{\partial u}{\partial z} = x^3 - 2y$ At point (1, 2, 3), we have $\left[\frac{\partial u}{\partial r}\right]_{(1,2,3)} = 3(1^2)(3) + 2^2 = 9 + 4 = 13$ $\left[\frac{\partial u}{\partial v}\right]_{(1, 2, 3)} = 2(1)(2) - 2(3) = 4 - 6 = -2$ $\& \left[\frac{\partial u}{\partial z}\right]_{(1,2,3)} = 1^3 - 2(2) = 1 - 4 = -3$ **Ex.** Find the first order partial derivative of $u = e^x \sin xy$ **Sol.** Given $u = e^x \sin xy$ Differentiating partially w. r. to x and y, we get $\frac{\partial u}{\partial x} = e^x \sin xy + ye^x \cos xy$ $\& \frac{\partial u}{\partial y} = xe^x \cos xy$

Ex. Find the first order partial derivative of $u = \tan^{-1} \frac{y}{r}$

Sol. Given $u = \tan^{-1} \frac{y}{x}$

Differentiating partially w. r. to x and y, we get

$$\frac{\partial u}{\partial x} = \frac{1}{1 + \left(\frac{y}{x}\right)^2} \left(\frac{-y}{x^2}\right) = \frac{-y}{x^2 + y^2}$$
$$\& \frac{\partial u}{\partial y} = \frac{1}{1 + \left(\frac{y}{x}\right)^2} \left(\frac{1}{x}\right) = \frac{x}{x^2 + y^2}$$

Ex. Find the first order partial derivative of $u = \log (x^2+y^2+z^2)$

Sol. Given $u = \log (x^2 + y^2 + z^2)$

Differentiating partially w. r. to x, y and z, we get

$$\frac{\partial u}{\partial x} = \frac{1}{x^2 + y^2 + z^2} (2x) = \frac{2x}{x^2 + y^2 + z^2}$$
$$\frac{\partial u}{\partial y} = \frac{1}{x^2 + y^2 + z^2} (2y) = \frac{2y}{x^2 + y^2 + z^2}$$
$$\& \frac{\partial u}{\partial z} = \frac{1}{x^2 + y^2 + z^2} (2z) = \frac{2z}{x^2 + y^2 + z^2}$$

Ex. If
$$u = x^2y + y^2z + z^2x$$
 then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = (x + y + z)^2$

Proof. Given $u = x^2y + y^2z + z^2x$

Differentiating partially w. r. to x, y and z, we get $\frac{\partial u}{\partial x} = 2xy + z^2$

$$\frac{\partial x}{\partial y} = x^2 + 2yz$$
$$\frac{\partial u}{\partial z} = y^2 + 2zx$$

Adding we get,

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 2xy + z^2 + x^2 + 2yz + y^2 + 2zx = (x + y + z)^2$$

Hence proved.

-f Anderi P

Ex. If $u = \log (\tan x + \tan y + \tan z)$, prove that $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = 2$

Proof. Given $u = \log (tanx + tany + tanz)$

Differentiating partially w. r. to x, we get

$$\frac{\partial u}{\partial x} = \frac{1}{\tan x + \tan y + \tan z} (\sec^2 x)$$

$$\therefore \sin 2x \frac{\partial u}{\partial x} = \frac{\sin 2x \cdot \sec^2 x}{\tan x + \tan y + \tan z}$$

$$= \frac{2\sin x \cos x}{\tan x + \tan y + \tan z} (\frac{1}{\cos^2 x})$$

$$\therefore \sin 2x \, \frac{\partial u}{\partial x} = \frac{2tanx}{\tan x + \tan y + \tan z}$$

Similarly

$$\sin 2y \frac{\partial u}{\partial y} = \frac{2tany}{\tan x + \tan y + \tan z} \& \sin 2z \frac{\partial u}{\partial z} = \frac{2tanz}{\tan x + \tan y + \tan z}$$

Adding we get,

$$\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = \frac{2\tan x + 2\tan y + 2\tan z}{\tan x + \tan y + \tan z} = 2$$

Hence proved.

Ex. Let
$$f(x, y) = \frac{xy}{x^2 + y^2}$$
, if $(x, y) \neq (0, 0)$
 $= 0$, if $(x, y) = (0, 0)$
Show that both the first order partial derivatives exist at $(0, 0)$, but the function
is not continuous there at.
Proof. Let $f(x, y) = \frac{xy}{x^2 + y^2}$, if $(x, y) \neq (0, 0)$
 $= 0$, if $(x, y) = (0, 0)$
i.e. $f(0, 0) = 0$(i) is defined.
First we find partial derivatives at point $(0, 0)$
 $f_x(0, 0) = \lim_{h \to 0} \frac{f(0-h, 0)-f(0, 0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0$
i.e. both partial derivatives exist at point $(0, 0)$.
To find limit of a function denote
 $L = \lim_{(x,y) \to (0,0)} f(x, y) = \lim_{(x,y) \to (0,0)} \frac{xy}{x^2 + y^2}$
For the path $y = 0$, we have
 $L = \lim_{x \to 0} \frac{0}{x^2 + 0} = 0$
For the path $y = x$, we have
 $L = \lim_{x \to 0} \frac{x^2}{x^2 + x^2}$
 $= \lim_{x \to 0} \frac{1}{2} \implies x \neq 0$
 $= \frac{1}{2}$

For two different paths we get two different limits.

 $\therefore \lim_{(x,y)\to(0,0)} f(x, y) \text{ does not exists.}$

Hence both the first order partial derivatives exist at (0, 0), but the function is not continuous there at is proved.

Partial Derivative of Higher Order:

Let f_x and f_y are first order partial derivatives of f (x, y) which are again functions of x and y. By taking partial derivatives of f_x and f_y w. r. to x and y again and again we get partial derivatives of second and higher orders.

Which are denoted by f_{xx} , f_{xy} , f_{yx} , f_{yy} , f_{xxx} , f_{xxy} , f_{xyy} , f_{yyy} etc.

Note: i) Second order partial derivatives of f (x, y) at point (a, b) are

$$f_{xx}(a, b) = (f_x)_x(a, b) = \lim_{h \to 0} \frac{f_x(a+h, b) - f_x(a, b)}{h}$$

$$f_{xy}(a, b) = (f_y)_x(a, b) = \lim_{h \to 0} \frac{f_y(a+h, b) - f_y(a, b)}{h}$$

$$f_{yx}(a, b) = (f_x)_y(a, b) = \lim_{k \to 0} \frac{f_x(a, b+k) - f_x(a, b)}{k}$$

$$f_{yy}(a, b) = (f_y)_y(a, b) = \lim_{k \to 0} \frac{f_y(a, b+k) - f_y(a, b)}{k}$$

ii) $f_{xy}(a, b)$ and $f_{yx}(a, b)$ may or may not be equal. Working Rule to find $f_{xy}(0, 0)$ and $f_{yx}(0, 0)$:

i) Find f (0, 0), f (h, 0), f (0, k) and f (h, k).
ii) Find
$$f_x(0, k) = \lim_{h \to 0} \frac{f(0+h, k)-f(0, k)}{h}$$
 and $f_x(0, 0)$
 $f_y(h, 0) = \lim_{k \to 0} \frac{f(h, 0+k)-f(h, 0)}{k}$ and $f_y(0, 0)$
iii) Find $f_{xy}(0, 0) = (f_y)_x(0, 0) = \lim_{h \to 0} \frac{f_y(h, 0)-f_y(0, 0)}{h}$
& $f_{yx}(0, 0) = (f_x)_y(0, 0) = \lim_{k \to 0} \frac{f_x(0, k)-f_x(0, 0)}{k}$

Ex. Let
$$f(x, y) = xy \frac{x^2 - y^2}{x^2 + y^2}$$
, $(x, y) \neq (0, 0)$ and $f(0, 0) = 0$.
Prove that $f_{xy}(0, 0) \neq f_{yx}(0, 0)$.
Proof. Let $f(x, y) = xy \frac{x^2 - y^2}{x^2 + y^2}$, $(x, y) \neq (0, 0)$ and $f(0, 0) = 0$. Here:
 \therefore i) $f(0, 0) = 0$, $f(h, 0) = 0$, $f(0, k) = 0$ and $f(h, k) = hk \frac{h^2 - k^2}{h^2 + k^2}$
ii) $f_x(0, k) = \lim_{h \to 0} \frac{f(0+h, k) - f(0, k)}{h}$
 $= \lim_{h \to 0} \frac{1}{h} \{ hk \frac{h^2 - k^2}{h^2 + k^2} - 0 \}$
 $= \lim_{h \to 0} k \frac{h^2 - k^2}{h^2 + k^2}$
 $i. e. f_x(0, k) = -k$
 $\therefore f_x(0, 0) = 0$

and
$$f_y(h, 0) = \lim_{k \to 0} \frac{f(h, 0+k)-f(h, 0)}{k}$$

$$= \lim_{k \to 0} \frac{h}{h^2 + h^2} - 0 \}$$

$$= \lim_{k \to 0} h^{\frac{h^2 - h^2}{h^2 + h^2}} - 0 \}$$

$$= \lim_{k \to 0} h^{\frac{h^2 - 0}{h^2 + h^2}}$$

$$= h \frac{h^{2 - 0}}{h^{2 - 0}}$$
i. e. $f_y(h, 0) = h$
 $\therefore f_y(0, 0) = 0$
iii) Now $f_{xy}(0, 0) = (f_y)_x(0, 0) = \lim_{h \to 0} \frac{f_y(h, 0) - f_y(0, 0)}{h}$

$$= \lim_{h \to 0} \frac{h - 0}{h}$$

$$= \lim_{h \to 0} \frac{h - 0}{k}$$

$$= \lim_{h \to 0} \frac{h - 0}{h}$$

$$= \lim_{h \to 0} \frac{h - 0}{h^2}$$

$$= \lim_{h \to 0$$

$$\begin{split} &= \lim_{k \to 0} \frac{1}{k} \left\{ \frac{h^2 k^2}{h^2 + k^2} = 0 \right\} \\ &= \lim_{k \to 0} \frac{h^2 k}{h^2 + k^2} \\ &= \frac{0}{h^2 + 0} \\ i.e. f_y(h, 0) = 0 \\ \because f_y(0, 0) = 0 \\ \text{iii) Now } f_{xy}(0, 0) = (f_y)_x(0, 0) = \lim_{h \to 0} \frac{f_y(h, 0) - f_y(0, 0)}{h} \\ &= 0 \\ &= 0 \\ =$$

DEPARTMENT OF MATHEMATICS -KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCHENCE SR. COLLEGE, PIMPALNER

$$\begin{array}{l} \therefore f_{y}(0,0) = 0 \\ \text{iii) Now } f_{xy}(0,0) = (f_{y})_{x}(0,0) = \lim_{h \to 0} \frac{f_{y}(b, 0) - f_{y}(0, 0)}{h} \\ = \lim_{h \to 0} \frac{h - 0}{h} = \lim_{h \to 0} 1 \quad \therefore h \neq 0 \\ = 1, \dots, (i) \\ & \& f_{yx}(0,0) = (f_{x})_{x}(0,0) = \lim_{k \to 0} \frac{f_{x}(0, k) - f_{x}(0, 0)}{k} \\ = \lim_{k \to 0} \frac{-k - 0}{k} = \lim_{h \to 0} (-1) \quad \because k \neq 0 \\ \text{i.e. } f_{yx}(0,0) = -1, \dots, (ii) \\ & By \text{ equation } (i) \text{ and } (ii), f_{xy}(0,0) \neq f_{yx}(0,0) \text{ is proved.} \\ & \text{Ex. Examine the equality of } f_{xy} \text{ and } f_{yx} \text{ where } f(x, y) = x^{3}y + e^{xy^{2}} \\ & \text{Sol. Let } f(x, y) = x^{3}y + e^{xy^{2}} \\ & \text{First differentiating partially w. r. to x and y, we get } \\ & f_{x} = 3x^{2} + y^{2}e^{xy^{2}} + e^{xy^{2}} (2xy), \dots, (2) \\ & \text{Differentiating equation } (2) partially w. r. to x, we get } \\ & f_{xy} = 3x^{2} + 2ye^{xy^{2}} + 2xye^{xy^{2}}(2xy) \\ & = 3x^{2} + 2ye^{xy^{2}} (1 + xy^{2}), \dots, (3) \\ & \text{Differentiating equation } (1) partially w. r. to y, we get } \\ & f_{yx} = 3x^{2} + 2ye^{xy^{2}} (1 + xy^{2}), \dots, (4) \\ & \text{From equation } (3) & \& (4), f_{xy} = f_{yx} \\ & \text{First differentiating partially w. r. to y, we get } \\ & f_{xy} = 3x^{2} + 2ye^{xy^{2}} (1 + xy^{2}), \dots, (4) \\ & \text{From equation } (3) & \& (4), f_{xy} = f_{yx} \\ & \text{First differentiating partially w. r. to y, we get } \\ & f_{xx} = 3x^{2} + 2ye^{xy^{2}} (1 + xy^{2}), \dots, (4) \\ & \text{From equation } (3) & \& (4), f_{xy} = f_{yx} \\ & \text{First differentiating partially w. r. to y, we get } \\ & \frac{\partial^{2}u}{\partial y} = x^{2} \tan^{-1}(\frac{x}{x}) - y^{2} \tan^{-1}(\frac{x}{y}) \\ & \text{First differentiating partially w. r. to y, we get } \\ & \frac{\partial^{2}u}{\partial y} = x^{2} \tan^{-1}(\frac{x}{x}) - y^{2} \tan^{-1}(\frac{x}{y}) - y^{2} \frac{1}{1 + (\frac{x}{y})^{2}} (\frac{-x}{y^{2}}) \\ & = \frac{x^{3} + xy^{2}}{x^{2} + y^{2}} - 2y \tan^{-1}(\frac{x}{y}) + \frac{x^{2}}{x^{2} + y^{2}} \\ & = \frac{x^{3} + xy^{2}}{x^{2} + y^{2}} - 2y \tan^{-1}(\frac{x}{y}) + \frac{x^{2}}{x^{2} + y^{2}} \\ & = x^{2} + xy^{2} - 2y \tan^{-1}(\frac{x}{y}) + \frac{x^{2}}{x^{2} + y^{2}} \\ & = x^{2} + xy^{2} - 2y \tan^{-1}(\frac{x}{y}) \\ & = x - 2y \tan^{-1}(\frac{x}{y}) \\ \end{array}$$

 $= x - 2y \tan^{-1}(\frac{x}{y})$ Now differentiating it partially w. r. to x, we get

$$\frac{\partial^2 u}{\partial x \partial y} = 1 - 2y \frac{1}{1 + (\frac{x}{y})^2} \left(\frac{1}{y}\right)$$

$$= 1 - \frac{2y^2}{x^2 + y^2}$$
$$= \frac{x^2 - y^2}{x^2 + y^2}$$

Hence proved.

Ex. Verify that
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x^*}$$
 if $f = \log(\frac{x^2 + y^2}{xy})$
Sol. Let $f = \log(\frac{x^2 + y^2}{xy}) = \log(x^2 + y^2) - \log x - \log y$
First differentiating partially w. r. to x, we get
 $\frac{\partial f}{\partial x} = \frac{2x}{x^2 + y^2} - \frac{1}{x}$
 $= \frac{2x^2 - x^2 - y^2}{x(x^2 + y^2)}$(i)
Similarly $\frac{\partial f}{\partial y} = \frac{y^2 - x^2}{y(x^2 + y^2)}$(ii)
Now by differentiating equation (ii) partially w. r. to x, we get
 $\frac{\partial^2 f}{\partial x \partial y} = \frac{1}{y} \left\{ \frac{(x^2 + y^2)(-2x) - (y^2 - x^2)(2x)}{(x^2 + y^2)^2} \right\}$
 $= \frac{1}{y} \left\{ \frac{-2x^2 - 2x^2 - 2xy^2 - 2xy^2 + 2x^3}{(x^2 + y^2)^2} \right\}$
 $= \frac{1}{y} \left\{ \frac{-2x^2 - 2xy^2 - 2xy^2 - 2xy^2 + 2x^3}{(x^2 + y^2)^2} \right\}$
Again by differentiating equation (i) partially w. r. to y, we get
 $\frac{\partial^2 f}{\partial y \partial x} = \frac{1}{x} \left\{ \frac{(x^2 + y^2)(-2y) - (x^2 - y^2)(2y)}{(x^2 + y^2)^2} \right\}$
 $= \frac{1}{x} \left\{ \frac{-2x^2 - 2y^2 - 2x^2 - 2x^2 + 2x^3}{(x^2 + y^2)^2} \right\}$
 $= \frac{1}{x} \left\{ \frac{(-2x^2 - 2y^2 - 2x^2 - 2x^2 + 2x^3)}{(x^2 + y^2)^2} \right\}$
 $= \frac{1}{x} \left\{ \frac{-2x^2 - 2y^2 - 2x^2 - 2x^2 + 2x^3}{(x^2 + y^2)^2} \right\}$
Hence $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ is proved.

Ex. If $u = (x^2 + y^2 + z^2)^{-1/2}$, $x^2 + y^2 + z^2 \neq 0$, show that $u_{xx} + u_{yy} + u_{zz} = 0$ Sol. Let $u = (x^2 + y^2 + z^2)^{-1/2}$, $x^2 + y^2 + z^2 \neq 0$ First differentiating partially w. r. to x, we get $u_x = -\frac{1}{2} (x^2 + y^2 + z^2)^{-3/2} (2x)$ $u_x = -x(x^2 + y^2 + z^2)^{-3/2}$ Again differentiating it partially w.r. to x, we get

$$\begin{aligned} u_{xx} &= -(x^2 + y^2 + z^2)^{-3/2} - x(\frac{-3}{2}) (x^2 + y^2 + z^2)^{-5/2} (2x) \\ &= -(x^2 + y^2 + z^2)^{-5/2} (x^2 + y^2 + z^2) + 3x^2 (x^2 + y^2 + z^2)^{-5/2} \\ &= (x^2 + y^2 + z^2)^{-5/2} \{ -(x^2 + y^2 + z^2) + 3x^2 \} \\ u_{xx} &= (x^2 + y^2 + z^2)^{-5/2} (2x^2 - y^2 - z^2) \\ \text{Similarly } u_{yy} &= (x^2 + y^2 + z^2)^{-5/2} (2y^2 - x^2 - z^2) \& u_{zz} = (x^2 + y^2 + z^2)^{-5/2} (2z^2 - x^2 - y^2) \\ \text{Adding we get,} \\ u_{xx} + u_{yy} + u_{zz} &= (x^2 + y^2 + z^2)^{-5/2} (2x^2 - y^2 - z^2 + 2y^2 - x^2 - z^2 + 2z^2 - x^2 - y^2) \\ &= (x^2 + y^2 + z^2)^{-5/2} (0) \\ &= 0 \end{aligned}$$

Differentiable Function:

The function f (x, y) is said to be differentiable at point (a, b) if the change $\delta f = f(a+h, b+k) - f(a, b)$ is expressed in the form $\delta f = Ah + Bk + h\Phi(h, k) + k\Psi(h, k)$, where A and B are constants independent of h, k and $\Phi, \Psi \rightarrow 0$ as (h, k) $\rightarrow (0, 0)$. **Differentials:**

Let u = f(x, y) be a differentiable function of two variables x and y, then the differential of u is denoted by du and is defined as $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$.

Approximate Value by Using Differentials:

Approximate value of a function at point (a+h, b+k) by using differentials is given by f (a+h, b+k) \Rightarrow f (a, b) + hf_x(a, b) + kf_y(a, b)

Necessary Condition For Differentiability:

If a real valued function f(x, y) is differentiable at point (a, b) then

i) f is continuous at point (a, b), ii) $f_x(a, b)$ and $f_y(a, b)$ exists.

Proof: Let a real valued function f(x, y) is differentiable at point (a, b) then for any point (a+h, b+k) in a neighbourhood of point (a, b), we have,

 $\delta f = f(a + h, b + k) - f(a, b) = Ah + Bk + h\Phi(h, k) + k\Psi(h, k) \dots(1)$ where A and B are constants independent of h, k and $\Phi, \Psi \rightarrow 0$ as $(h, k) \rightarrow (0, 0)$. i) By taking limit $(h, k) \rightarrow (0, 0)$ on both sides of equation (1), we get,

$$\lim_{\substack{(h,k)\to(0,0)}} \{f(a+h,b+k) - f(a,b)\} = \lim_{\substack{(h,k)\to(0,0)}} \{Ah + Bk + h\Phi(h,k) + k\Psi(h,k)\}$$
$$\lim_{\substack{(h,k)\to(0,0)}} f(a+h,b+k) - \lim_{\substack{(h,k)\to(0,0)}} f(a,b) = 0$$
i.e.
$$\lim_{\substack{(h,k)\to(0,0)}} f(a+h,b+k) - f(a,b) = 0$$
$$\therefore \lim_{\substack{(h,k)\to(0,0)}} f(a+h,b+k) = f(a,b)$$

 \therefore f (x, y) is continuous at (a, b) is proved. ii) Putting k = 0 in equation (1), we get, $f(a + h, b) - f(a, b) = Ah + h\Phi(h, 0)$ $\frac{f(a+h,b)-f(a,b)}{h} = A + \Phi(h,0)$ Taking limit as $h \to 0$, we get, $\lim_{h \to 0} \{ \frac{f(a+h, b) - f(a, b)}{h} \} = \lim_{h \to 0} \{ A + \Phi(h, 0) \}$ \therefore f_x(a, b) = A Similarly we obtain $f_v(a, b) = B$ Thus $f_x(a, b)$ and $f_y(a, b)$ exists is proved. **Sufficient Condition For Differentiability:** A real valued function f(x, y) is differentiable at point (a, b) if i) f_x is continuous at point (a, b) and ii) f_y exist at (a, b). **Proof:** Let f (x, y) be a function defined in a domain $D \subseteq \mathbb{R}^2$. For any point (a+h, b+k) in a neighbourhood of point (a, b) we have $\delta f = f(a+h,b+k) - f(a,b)$ As $f_x(a, b)$ is exist in a neighbourhood of (a, b). ∴ By Lagrange's Mean Value Theorem, $f(a + h, b + k) - f(a, b + k) = hf_x(a+\theta h, b+k)$(2) where $0 < \theta < 1$. Again $f_x(a, b)$ is continuous at (a, b) $\lim_{(h,k)\to(0,0)} f_x(a+\theta h, b+k) = f_x(a, b)$... \therefore f_x(a+ θ h, b+k) = f_x(a, b) + Φ (h, k) for some function Φ (h, k) $\rightarrow 0$ as (h, k) $\rightarrow (0, 0)$ \therefore Equation (2) is written as $f(a + h, b + k) - f(a, b + k) = hf_x(a, b) + h\Phi(h, k)....(3)$ By condition (ii), $f_v(a, b)$ is exists. $f_y(a, b) = \lim_{k \to 0} \{ \frac{f(a, b+k) - f(a, b)}{k} \} \text{ exists.}$ $\therefore \frac{f(a, b+k) - f(a, b)}{k} = f_y(a, b) + \Psi(0, k)$ for some function $\Psi(0, k) \rightarrow 0$ as $(h, k) \rightarrow (0, 0)$: $f(a, b + k) - f(a, b) = kf_v(a, b) + k \Psi(0, k)$(4) Using equation (3) and (4) equation (1) becomes $\delta f = hf_x(a, b) + h \Phi(h, k) + kf_y(a, b) + k\Psi(0, k)$ $\delta f = hf_x(a, b) + kf_v(a, b) + h\Phi(h, k) + k\Psi(0, k)$

where $\Phi, \Psi \to 0$ as $(h, k) \to (0, 0)$. Hence f (x, y) is differentiable at (a, b) is proved.

Ex. Show that the function

$$f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}, if x^2 + y^2 \neq 0$$

= 0, if x = y = 0

possesses the first order partial derivatives but is not differentiable at the origin.

Proof. Let
$$f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$$
, if $x^2 + y^2 \neq 0$
 $= 0$, if $x = y = 0$
i.e. $f(0, 0) = 0$(i)
Consider
 $f_x(0, 0) = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$
& $f_y(0, 0) = \lim_{k \to 0} \{\frac{f(0, k) - f(0, 0)}{k}\} = \lim_{k \to 0} \frac{0 - 0}{k} = 0$
i. e. first partial derivatives are exists.
Suppose $f(x, y)$ is differentiable at the origin.
 $\delta f = f(h, k) - f(0, 0) = hf_x(0, 0) + kf_y(0, 0) + h\Phi(h, k) + k\Psi(h, k)(1)$
where $\Phi, \Psi \to 0$ as $(h, k) \to (0, 0)$.
From equation (1), we have,
 $\frac{hk}{\sqrt{h^2 + k^2}} - 0 = 0 + 0 + h\Phi(h, k) + k\Psi(h, k)$
i.e. $\frac{hk}{\sqrt{h^2 + k^2}} = h\Phi(h, k) + k\Psi(h, k)$
Putting $k = h$, we get,
 $\frac{h^2}{\sqrt{h^2 + h^2}} = h\Phi(h, h) + h\Psi(h, h)$
 $\frac{1}{\sqrt{2}} = \Phi(h, h) + \Psi(h, h)$ construct for the field for effect uncertaints.
As $h \to 0 \Longrightarrow \Phi$, $\Psi \to 0$ we get,
 $\frac{1}{\sqrt{2}} = 0$ which is absurd.
 $\therefore f(x, y)$ is not differentiable at the origin.

Ex. Show that the function

f
$$(x, y) = \frac{xy}{x^2 + y^2}$$
, if $x^2 + y^2 \neq 0$
= 0, if $x = y = 0$

possesses the first order partial derivatives but is not differentiable at the origin.

Proof. Let $f(x, y) = \frac{xy}{x^2 + y^2}$, *if* $x^2 + y^2 \neq 0$ = 0, if x = y = 0i.e. f(0, 0) = 0....(i) Consider $f_x(0, 0) = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$ & $f_y(0, 0) = \lim_{k \to 0} \left\{ \frac{f(0, k) - f(0, 0)}{k} \right\} = \lim_{k \to 0} \frac{0 - 0}{k} = 0$ i. e. first partial derivatives are exists. Suppose f(x, y) is differentiable at the origin. where $\Phi, \Psi \rightarrow 0$ as $(h, k) \rightarrow (0, 0)$. From equation (1), we have, $\frac{hk}{h^2 + k^2} - 0 = 0 + 0 + h\Phi(h, k) + k\Psi(h, k)$ i.e. $\frac{hk}{h^2+k^2} = h\Phi(h, k) + k\Psi(h, k)$ Putting k = h, we get, $\frac{h^2}{h^2+h^2} = h\Phi(h, h) + h\Psi(h, h)$ $\frac{1}{2} = h\Phi(h, h) + h\Psi(h, h)$ As $h \to 0 \Longrightarrow \Phi, \Psi \to 0$ we get $\frac{1}{2} = 0$ which is absurd. \therefore f (x, y) is not differentiable at the origin.

Ex. Discuss the continuity and differentiability at the origin of the function $f(x, y) = \frac{xy}{x^2 + y^2}, if(x, y) \neq (0, 0)$ = 0, if(x, y) = (0, 0)Sol. Let $f(x, y) = \frac{xy}{x^2 + y^2}, if(x, y) \neq (0, 0)$ = 0, if(x, y) = (0, 0)i. e. f(0, 0) = 0 is defined. Let $L = \lim_{(x,y)\to(0,0)} f(x, y) = \lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}$ For the path y = 0, we have $L = \lim_{x\to 0} \frac{0}{x^2 + 0} = 0$ For the path y = x, we have

$$L = \lim_{x \to 0} \frac{x^2}{x^2 + x^2}$$
$$= \lim_{x \to 0} \frac{x^2}{2x^2}$$
$$= \lim_{x \to 0} \frac{1}{2}$$
$$= \frac{1}{2}$$

For two different paths we get two different limits.

 $: \lim_{(x,y)\to(0,0)} f(x, y) \text{ does not exists.}$

 \therefore the given function f (x, y) is not continuous at (0, 0).

As if function is not continuous then is not differentiable.

Hence the given function f(x, y) is neither continuous nor differentiable at (0, 0).

Ex. Discuss the differentiability of a function at (0, 0).

Where $f(x, y) = \frac{x^4 + y^4}{x^2 + y^2}$, when $x^2 + y^2 \neq 0$ and f(0, 0) = 0

Proof. Let
$$f(x, y) = \frac{x^2 + y^2}{x^2 + y^2}$$
, when $x^2 + y^2 \neq 0$ and $f(0, 0) = 0$

$$\therefore f_{x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{1}{h} \{\frac{h^{4} + 0}{h^{2} + 0} - 0\} = \lim_{h \to 0} \frac{1}{h} = 0$$

$$\& f_{y}(0,0) = \lim_{k \to 0} \{\frac{f(0,-k) - f(0,-0)}{k}\} = \lim_{k \to 0} \frac{1}{k} \{\frac{0+k}{0+k^{2}} - 0\} = \lim_{k \to 0} \frac{1}{k} = 0$$

i. e. first partial derivatives are exists. Now consider

$$\delta f = f(h, k) - f(0, 0) = \frac{h^4 + k^4}{h^2 + k^2} - 0 = h(0) + k(0) + h\{\frac{h^3}{h^2 + k^2}\} + k\{\frac{k^3}{h^2 + k^2}\}$$

= hf_x(0, 0) + kf_y(0, 0) + hΦ(h, k) + kΨ(h, k)
Where $\Phi = \frac{h^3}{h^2 + k^2}$, $\Psi = \frac{k^3}{h^2 + k^2} \rightarrow 0$ as (h, k) \rightarrow (0, 0).
 \therefore f (x, y) is differentiable at (0, 0).

Ex. Using differentials find approximate value of $\sqrt{(1.02)^2 + (1.97)^3}$ Sol. Let $f(x, y) = \sqrt{x^2 + y^3} = (x^2 + y^3)^{1/2}$ $\therefore f_x(x, y) = \frac{1}{2} (x^2 + y^3)^{-1/2} (2x) = \frac{x}{(x^2 + y^3)^{1/2}}$ $f_y(x, y) = \frac{1}{2} (x^2 + y^3)^{-1/2} (3y^2) = \frac{3y^2}{2(x^2 + y^3)^{1/2}}$ Using differentials approximate value is given by

$$f (a+h, b+k) \Rightarrow f (a, b) + hf_x(a, b) + kf_y(a, b)$$

By taking $a = 1, b = 2, h = 0.02$ and $k = -0.03$ we get,

$$f(1.02, 1.97) \doteq f(1, 2) + (0.02)f_x(1, 2) + (-0.03)f_y(1, 2)$$

$$\sqrt{(1.02)^2 + (1.97)^3} \doteq \sqrt{(1)^2 + (2)^3} + (0.02) \left\{ \frac{1}{(1^2 + 2^3)^{1/2}} \right\} - (0.03) \left\{ \frac{3(2)^2}{2(1^2 + 2^3)^{1/2}} \right\}$$

$$\doteq 3 + \frac{0.02}{3} - \frac{0.36}{6}$$

$$\Rightarrow 3 + 0.0067 - 0.06$$

$$\therefore \sqrt{(1.02)^2 + (1.97)^3} \doteq 2.9467$$
Ex. Using differentials find approximate value of $(3.9)^2(2.05) + (2.05)^3$.
Sol. Let f (x, y) = x²y + y³ $\therefore f_x(x, y) = 2xy \& f_y(x, y) = x^2 + 3y^2$
Using differentials approximate value is given by
f (a+h, b+k) \equiv f (a, b) + hf_x(a, b) + kf_y(a, b)
By taking a = 4, b = 2, h = -0.1 and k = 0.05 we get,
f (3.9, 2.05) \equiv f (4, 2) + (-0.1)f_x(4, 2) + (0.05)f_y(4, 2)
(3.9)²(2.05) + (2.05)³ \equiv (4)²(2) + 2³ - (0.1)(2 \times 4 \times 2) + (0.05)[4^2 + 3 \times 2^2]
 $\Rightarrow 40 - 1.60 + 1.40$
(3.9)²(2.05) + (2.05)³ \equiv 39.80
Ex. Find the approximate value of $(5.12)^2(6.85) - 3(6.85)$.
Sol. Let f (x, y) = x²y - 3y $\therefore f_x(x, y) = 2xy \& f_y(x, y) = x^2 - 3$
Using differentials approximate value is given by
f (a+h, b+k) \equiv f (a, b) + hf_x(a, b) + kf_y(a, b)
By taking a = 5, b = 7, h = 0.12 and k = -0.15 we get,
f (5.12, 6.85) \equiv f (5, 7) + (0.12)f_x(5, 7) + (-0.15)f_y(5, 7)

$$(5.12)^{2}(6.85) - 3(6.85) \doteqdot \{(5)^{2}(7) - 3 \times 7\} + (0.12)(2 \times 5 \times 7) - (0.15)\{5^{2} - 3\}$$

 $(5.12)^2(6.85) - 3(6.85) \doteqdot 159.10$

= 154 + 8.40 - 3.30

Schwarz's Theorem:

If f_y exists in a neighbourood of a point (a, b) of a domain of a function f and f_{yx} is continuous at (a, b) then $f_{xy}(a, b)$ exists, and $f_{yx}(a, b) = f_{xy}(a, b)$.

Proof: By the given conditions f_x , f_y and f_{yx} all exists in a neighbourood of a point

(a, b). Let (a+h, b+k) be any point lies in this neighbourood.

Let
$$\Phi(h, k) = f(a + h, b + k) - f(a + h, b) - f(a, b + k) + f(a, b)$$

Write G(x) = f(x, b+k) - f(x, b)

 $\therefore \Phi(h, k) = G(a+h) - G(a)$: f_x exists in a neighbourood of $(a, b) \Rightarrow G(x)$ is differentiable in (a, a+h) with $G'(x) = f_x(x, b+k) - f_x(x, b).$ ∴ By Lagranges M.V.T. we get, $\Phi(h, k) = hG'(a+\theta h)$, where $0 < \theta < 1$ = h{ $f_x(a+\theta h, b+k) - f_x(a+\theta h, b)$ } Again f_{yx} exists in a neighbourood of $(a, b) \Rightarrow f_x$ is differentiable in (b, b+k). \therefore By Lagranges M.V.T. we get, $\Phi(h, k) = hkf_{vx}(a+\theta h, b+\theta' k)$ where $0 < \theta' < 1$ $\therefore \frac{\Phi(h,k)}{hk} = f_{yx}(a + \theta h, b + \theta' k)$ $\therefore \frac{f(a+h,b+k) - f(a+h,b) - f(a,b+k) + f(a,b)}{hk} = f_{yx}(a+\theta h, b+\theta' k)$ $\therefore \frac{1}{h} \left\{ \frac{f(a+h,b+k) - f(a+h,b)}{k} - \frac{f(a,b+k) - f(a,b)}{k} \right\} = f_{yx}(a+\theta h, b+\theta' k)$ By taking limit as $k \rightarrow 0$ on both sides, we get, $\frac{f_y(a+h, b) - f_y(a, b)}{b} = f_{yx}(a+\theta h, b)$: f_y and f_{yx} are exists in a hhd of (a, b) Again taking limit as $h \rightarrow 0$ on both sides, we get, $f_{xy}(a, b) = f_{yx}(a, b)$ Hence proved.

Young's Theorem: स्विकसणी तमस्थन्य सिहिद विन्दति मानवः

If f_x and f_y both are differentiable at a point (a, b) of a domain of a function f, then $f_{yx}(a, b) = f_{xy}(a, b)$.

- **Proof:** By the given conditions f_x and f_y both are differentiable at a point (a, b) of a domain of a function f.
 - \therefore f_{xx}, f_{xy}, f_{yx} and f_{yy} are exists at point (a, b) and its neighbourood.

Let (a+h, b+h) be any point lies in this neighbourood.

Let $\Phi(h, h) = f(a + h, b + h) - f(a + h, b) - f(a, b + h) + f(a, b)$

Write
$$G(x) = f(x, b+h) - f(x, b)$$

 $\therefore \Phi(h, h) = G(a+h) - G(a)$
 $\because f_x exists in a neighbourood of (a, b) \Rightarrow $G(x)$ is differentiable in (a, a+h) with $G'(x) = f_x(x, b+h) - f_x(x, b)$
 \therefore By Lagranges M.V.T. we get,
 $\Phi(h, h) = hG'(a+\theta h)$, where $0 < \theta < 1$
 $= h\{ f_x(a+\theta h, b+h) - f_x(a, e^{-1}) \}$
 $= h\{ [f_x(a+\theta h, b+h) - f_x(a, e^{-1})] - [f_x(a+\theta h, b) - f_x(a, b)] \}$ (1)
As f_x is differentiable at point (a, b) \Rightarrow
 $f_x(a+\theta h, b+h) - f_x(a, b) = \theta h f_{xx}(a, b) + \theta h \Phi_1(h, h) + h \Psi_1(h, h)$
and $f_x(a+\theta h, b) - f_x(a, b) = \theta h f_{xx}(a, b) + \theta h \Phi_2(h, 0)$
Putting these values in equation (1), we get,
 $\Phi(h, h) = h\{ hf_{yx}(a, b) + \theta \Phi_1(h, h) + h \Psi_1(h, h) - \theta h \Phi_2(h, 0) \}$
 $\therefore \frac{\Phi(h,h)}{h^2} = f_{yx}(a, b) + \theta \Phi_1(h, h) + \Psi_1(h, h) - \theta \Phi_2(h, 0)$
By taking limit as $h \rightarrow 0$ on both sides, we get,
 $\lim_{h \to 0} \frac{\Phi(h,h)}{h^2} = f_{yx}(a, b) \because \Phi_1, \Psi_1, \Phi_2 \rightarrow 0$ as $h \rightarrow 0$
Similarly, if we consider $H(y) = f(a+h, y) - f(a, y)$ and proceed as above, we can
obtain $\lim_{h \to 0} \frac{\Phi(h,h)}{h^2} = f_{xy}(a, b)$ Hence proved.$

Note: i) If both f_{xy} and f_{yx} are continuous at (a, b), then $f_{xy}(a, b) = f_{yx}(a, b)$. ii) The conditions in Schwarz's & Young's Theorem are sufficient but they are not necessary.

Ex. Show that for the function

=

$$f(x, y) = \frac{x^2 y^2}{x^2 + y^2}, if(x, y) \neq (0, 0)$$

= 0, if (x, y) = (0, 0)
fxy (0, 0) = fyx (0, 0), even though the conditions of Schwarz's theorem and
Young's theorem are not satisfied.
Proof: We have Let f (x, y) = $\frac{x^2 y^2}{x^2 + y^2}$, (x, y) \neq (0, 0) and f (0, 0) = 0

$$\begin{aligned} \therefore \text{ i) } f(0,0) &= 0, f(h,0) = 0, f(0,k) = 0 \text{ and } f(h,k) = \frac{h^2k^2}{h^2+k^2} \\ \text{ ii) } f_x(0,k) &= \lim_{h\to 0} \frac{f(0+h, k)-f(0, k)}{h} = \lim_{h\to 0} \frac{1}{h} \left\{ \frac{h^2k^2}{h^2+k^2} - 0 \right\} \\ &= \lim_{h\to 0} \frac{hk^2}{h^2+k^2} = \lim_{h\to 0} \frac{0}{0+k^2} = 0 \\ \text{ i. } e_r f_x(0,k) &= 0 \rightarrow f_x(0,0) = 0 \\ \text{ and } f_y(h,0) &= \lim_{k\to 0} \frac{f(h, 0+k)-f(h, 0)}{k} = \lim_{k\to 0} \frac{1}{k} \left\{ \frac{h^2k^2}{h^2+k^2} - 0 \right\} \\ &= \lim_{k\to 0} \frac{h^2k}{h^2+k^2} = \lim_{k\to 0} \frac{0}{h^2+h} = 0 \\ \text{ i. } e_r f_y(h,0) &= 0 \qquad \therefore f_y(0,0) = 0 \\ \text{ iii) Now } f_{xy}(0,0) &= (f_y)_x(0,0) = \lim_{h\to 0} \frac{f_y(h, 0)-f_y(0, 0)}{h} \\ &= \lim_{h\to 0} \frac{0-0}{h} = 0 \dots \dots (i) \\ \& f_{yx}(0,0) &= (f_x)_x(0,0) = \lim_{k\to 0} \frac{f_x(0, k)-f_x(0, 0)}{k} \\ \text{ i. } e_r f_y(h,0) &= 0 \dots \dots (i) \\ By equation (i) and (ii), f_{xy}(0,0) &= f_{yx}(0,0) \text{ is proved.} \\ Now f_x(x, y) &= y^2 \{ \frac{(x^2+y^2)^2(2x)-(x^2)(2x)}{(x^2+y^2)^2} \} = \frac{2xy^4}{(x^2+y^2)^2} \\ & \therefore f_{yx}(x, y) &= 2x \{ \frac{(x^2+y^2)^2(4y^3)-(y^4)(2x^2+y^2)(2y)}{(x^2+y^2)^3} = 2x \{ \frac{(4x^2y^3)}{(x^2+y^2)^3} \} = \frac{8x^3y^3}{(x^2+y^2)^3} \\ For the path y = 0, we have \\ L &= \lim_{x\to 0} \frac{0}{x^k} = 0 \\ \end{aligned}$$

For the path y = x, we have

$$L = \lim_{x \to 0} \frac{8x^6}{8x^6} = \lim_{x \to 0} 1 = 1$$

For two different paths we get two different limits.

 $\therefore \lim_{(x,y)\to(0,0)} f_{yx}(x, y) \text{ does not exists.}$

 \therefore f_{yx}(x, y) is not continuous at (0, 0) i.e. condition of Schwarz's theorem is not satisfied.

Suppose $f_x(x, y)$ is differentiable at (0, 0).

where $\Phi, \Psi \rightarrow 0$ as $(h, k) \rightarrow (0, 0)$.

From equation (1), we have,

$$\frac{2hk^*}{(h^2+k^2)^2} - 0 = 0 + 0 + h\Phi(h, k) + k\Psi(h, k)$$

:
$$f_x(0, 0)$$
 gives $f_{xx}(0, 0) = 0$ & $f_{yx}(0, 0) = 0$

i.e.
$$\frac{2hk^4}{(h^2+k^2)^2} = h\Phi(h, k) + k\Psi(h, k)$$

Putting k = h, we get,

$$\frac{2h^5}{(h^2+h^2)^2} = h\Phi(h, h) + h\Psi(h, h)$$
$$\frac{1}{2} = \Phi(h, h) + \Psi(h, h)$$
As $h \to 0 \implies \Phi, \Psi \to 0$ we get

 $\frac{1}{2} = 0$ which is absurd.

: $f_x(x, y)$ is not differentiable at (0, 0). i.e. condition of Young's theorem is not satisfied. But $f_{xy}(0, 0) = f_{yx}(0, 0)$.

UNIT- 1: FUNCTIONS OF TWO AND THREE VARIABLES [MCQ'S]

1) A set $\delta N(a, b) = \{(x, y)/\sqrt{(x - a)^2 + (y - b)^2} < \delta\}$ is called of a point (a, b) in xy-plane. a) δ neighbourhood b) deleted δ neighbourhood c) None of these 2) A set $\delta N'(a, b) = \{(x, y)/0 < \sqrt{(x - a)^2 + (y - b)^2} < \delta\}$ is called of a point (a, b) in xy-plane. a) δ neighbourhood b) deleted δ neighbourhood c) None of these 3) $\lim_{(x,y)\to(0,0)} \frac{x-a}{y-b}$ along the path y = 0 is a) 0 b) $\frac{a}{b}$ c) $-\frac{a}{b}$ d) None of these 4) $\lim_{(x,y)\to(0,0)} \frac{x-1}{y-1}$ along the path y = 2x is a) 1 b) $\frac{1}{2}$ c) $-\frac{1}{2}$ d) None of these

5) Along the path y = x, $\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$ d) None of these a) 1 c) -1 b) 0 $\frac{\sin(x^2+y)}{x^2+y}$ 6) Along the path x = 0, $\lim_{(x,y)\to(0,0)} \frac{\sin x}{2}$ x+yc) 0 d) None of these a) 1 b) -1 $sin(x^2+y)$ 7) Along the path y = 0, $\lim_{(x,y)\to(0,0)}$ x+yb) -1 a) 1 c) 0 d) None of these 8) Along the path x = 0, $\lim_{(x,y)\to(0,0)} \frac{\tan(x^2+y)}{x+y} =$ c) () a) 1 b) -1 d) None of these 9) Along the path y = 0, $\lim_{(x,y)\to(0,0)} \frac{\tan(x^2+y)}{x+y}$ d) None of these a) 1 b) -1 c) 0 10) Along the path $y^3 = x$, $\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2+y^6} = \dots$ $(c)\frac{1}{2}$ d) None of these b) -1 a) 1 11) Along the path $x^2 = y$, $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2} =$ c) $\frac{1}{2}$ a) 1 d) None of these b) -1 8) $\lim_{y \to 0} \lim_{x \to 0} x \sin \frac{1}{y} = \dots$ a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 9) $\lim_{y \to 0} [\lim_{x \to 0} \frac{x^2 y^2}{x^4 + y^4 - x^2 y^2}] = \dots$ c) $\frac{1}{2}$ b) 0 d) None of these a) 1 10) A function f(x, y) is said to be continuous at point (a, b) if f (a, b) is defined, $\lim_{(x, y)\to(a, b)} f(x, y) \text{ is exist and } \lim_{(x, y)\to(a, b)} f(x, y) \dots f(a, b).$ $c) > d) \neq$ a) = b) < 11) If $\lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$ is exist, then it is denoted by..... a) $f_y(x, y)$ b) $f_x(x, y)$ c) $f_{xx}(x, y)$ d) $f_{vv}(x, y)$ 12) If $\lim_{k \to 0} \frac{f(x, y+k) - f(x, y)}{k}$ is exist, then it is denoted by..... b) $f_x(x, y)$ c) $f_{xx}(x, y)$ d) $f_{yy}(x, y)$ a) $f_v(x, y)$ 13) If $u = x^3z + xy^2 - 2yz$ then $\frac{\partial u}{\partial x}$ at point (1, 2, 3) is.... d) None of these a) 13 b) -2 c) -3

DEPARTMENT OF MATHEMATICS -KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER

UNIT-2: JACOBIAN, COMPOSITE FUNCTIONS AND MEAN VALUE THEOREM

Jacobians:

If u and v are functions of two independent variables x and y, then

$$J(\frac{u,v}{x,y}) = \frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$$
 is called jacobian of u and v w.r.to x and y.

Jacobians:

If u, v and w are functions of three independent variables x, y and z, then $x^{2} = \frac{2}{2} + \frac{2}{2} +$

$$J(\frac{u,v,w}{x,y,z}) = \frac{\partial(u,v,w)}{\partial(x,y,z)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{vmatrix}$$
 is called jacobian of u, v and w w.r.to x, y and z.
Note: i) $J(\frac{u,v}{x,y}) J(\frac{x,y}{u,v}) = 1$ i.e. $J(\frac{x,y}{u,v}) = \frac{1}{J(\frac{u,v}{x,y})}$
ii) $\frac{\partial(u,v)}{\partial(x,y)} \frac{\partial(x,y)}{\partial(r,\theta)} = \frac{\partial(u,v)}{\partial(r,\theta)}$

Functionally Dependent Functions: Functions u, v and w of three independent variables x, y and z are functionally dependent or functionally related if $\frac{\partial(u,v,w)}{\partial(x,v,z)} = 0$

Ex. If
$$u = x^2$$
, $v = y^2$, find $\frac{\partial(u,v)}{\partial(x,y)}$,
Sol. Let $u = x^2$, $v = y^2$
 $\therefore \frac{\partial u}{\partial x} = 2x$, $\frac{\partial u}{\partial y} = 0$
 $\& \frac{\partial v}{\partial x} = 0$, $\frac{\partial v}{\partial y} = 2y$
 $\therefore \frac{\partial(u,v)}{\partial(x,y)} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x & 0 \\ 0 & 2y \end{bmatrix} = 4xy$

Ex. If u = x(1-y), v = xy, then show that $\frac{\partial(u,v)}{\partial(x,y)} = u + v$.

Proof. Let u = x(1-y), v = xy $\therefore \frac{\partial u}{\partial x} = 1-y, \frac{\partial u}{\partial y} = -x$ $\& \frac{\partial v}{\partial x} = y, \frac{\partial v}{\partial y} = x$

$$\therefore \frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$$

$$= \begin{vmatrix} 1 - y & -x \\ y & x \end{vmatrix}$$

$$= x - xy + xy$$

$$= x(1-y) + xy$$

$$\therefore \frac{\partial(u,v)}{\partial(x,y)} = u + v.$$
Hence proved.

Ex. If $x = r\cos\theta$, $y = r\sin\theta$, then evaluate $\frac{\partial(x,y)}{\partial(r,\theta)} \& \frac{\partial(r,\theta)}{\partial(x,y)}$. **Sol.** Let $x = r\cos\theta$, $y = r\sin\theta$

1. Let
$$x = r\cos\theta$$
, $y = r\sin\theta$
 $\therefore \frac{\partial x}{\partial r} = \cos\theta$, $\frac{\partial x}{\partial \theta} = -r\sin\theta$
 $\& \frac{\partial y}{\partial r} = \sin\theta$, $\frac{\partial y}{\partial \theta} = r\cos\theta$
 $\therefore \frac{\partial (x,y)}{\partial (r,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r\cos^2\theta + r\sin^2\theta = r$
Now $\frac{\partial (r,\theta)}{\partial (x,y)} = \frac{1}{\frac{\partial (x,y)}{\partial (r,\theta)}}$ gives $\frac{\partial (r,\theta)}{\partial (x,y)} = \frac{1}{r}$.

Ex. Find the value of the Jacobian $\frac{\partial(u,v)}{\partial(r,\theta)}$,

where
$$\mathbf{u} = x^2 \cdot y^2$$
, $\mathbf{v} = 2xy$ and $\mathbf{x} = \mathbf{r}\cos\theta$, $\mathbf{y} = \mathbf{r}\sin\theta$
Sol. Let $\mathbf{u} = x^2 \cdot y^2$, $\mathbf{v} = 2xy$
 $\therefore \frac{\partial u}{\partial x} = 2x$, $\frac{\partial u}{\partial y} = -2y$
 $\therefore \frac{\partial u}{\partial x} = 2y$, $\frac{\partial v}{\partial y} = 2x$ could define the definition of the defini

DEPARTMENT OF MATHEMATICS -KARM. A. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER

Now
$$\frac{\partial(u,v)}{\partial(r,\theta)} = \frac{\partial(u,v)}{\partial(x,y)} \frac{\partial(x,y)}{\partial(r,\theta)}$$
 gives
 $\frac{\partial(u,v)}{\partial(r,\theta)} = 4r^2 \cdot r = 4r^3$

Ex. If $x = r\cos\theta$, $y = r\sin\theta$, z = z then evaluate $\frac{\partial(x,y,z)}{\partial(r,\theta,z)}$.

Sol. Let
$$x = rcos\theta$$
, $y = rsin\theta$, $z = z$

$$\therefore \frac{\partial x}{\partial r} = cos\theta$$
, $\frac{\partial x}{\partial \theta} = -rsin\theta$, $\frac{\partial x}{\partial z} = 0$

$$\frac{\partial y}{\partial r} = sin\theta$$
, $\frac{\partial y}{\partial \theta} = rcos\theta$, $\frac{\partial y}{\partial z} = 0$

$$\& \frac{\partial z}{\partial r} = 0$$
, $\frac{\partial z}{\partial \theta} = 0$, $\frac{\partial z}{\partial z} = 1$

$$\therefore \frac{\partial (x, y, z)}{\partial (r, \theta, z)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{vmatrix} = \begin{vmatrix} cos\theta & -rsin\theta & 0 \\ sin\theta & rcos\theta & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= rcos^2\theta + rsin^2\theta = r$$

Ex. Verify whether the following functions are functionally dependent, and if so, find the relation between them. $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1}x + \tan^{-1}y$.

Proof. Let
$$u = \frac{x+y}{1-xy}$$
 and $v = \tan^{-1}x + \tan^{-1}y$

$$\therefore \frac{\partial u}{\partial x} = \frac{1-xy-(x+y)(-y)}{(1-xy)^2} = \frac{1+y^2}{(1-xy)^2}, \frac{\partial u}{\partial y} = \frac{1-xy-(x+y)(-x)}{(1-xy)^2} = \frac{1+x^2}{(1-xy)^2}$$

$$\& \frac{\partial v}{\partial x} = \frac{1}{1+x^2}, \frac{\partial v}{\partial y} = \frac{1}{1+y^2},$$

$$\therefore \frac{\partial (u,v)}{\partial (x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{1+y^2}{(1-xy)^2} & \frac{1+x^2}{(1-xy)^2} \\ \frac{1}{1+x^2} & \frac{1}{1+y^2} \end{vmatrix}$$

$$= \frac{1}{(1-xy)^2} - \frac{1}{(1-xy)^2}$$

$$\therefore \frac{\partial (u,v)}{\partial (x,y)} = 0$$
Hence $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1}x + \tan^{-1}y$ are functionally dependent is proved.

Now
$$v = \tan^{-1}x + \tan^{-1}y = = \tan^{-1}(\frac{x+y}{1-xy}) = \tan^{-1}u$$

 \therefore u = tanv be the relation between them.
Ex. Show that u = xy + yz + zx, $v = x^2 + y^2 + z^2$ and w = x + y + z are functionally related.

Proof. Let
$$u = xy + yz + zx$$
, $v = x^2 + y^2 + z^2$ and $w = x + y + z$

$$\therefore \frac{\partial u}{\partial x} = y + z, \frac{\partial u}{\partial y} = x + z, \frac{\partial u}{\partial z} = y + x$$

$$\frac{\partial v}{\partial x} = 2x, \frac{\partial v}{\partial y} = 2y, \frac{\partial v}{\partial z} = 2z$$

$$\begin{cases} \frac{\partial w}{\partial x} = 1, \frac{\partial w}{\partial y} = 1, \frac{\partial w}{\partial z} = 1 \\ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} = \frac{\partial v}{\partial y} = \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} = \frac{\partial v}{\partial y} = \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} = \frac{\partial v}{\partial z} = \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} = \frac{\partial v}{\partial z} = \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} = \frac{\partial v}{\partial z} = \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} = \frac{\partial v}{\partial z} \\ \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial z} \\ \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial z} \\$$

Ex. If
$$u = \cos x$$
, $v = \sin x \cos y$ and $w = \sin x \sin y \cos z$ then show that
 $\frac{\partial(u,v,w)}{\partial(x,y,z)} = (-1)^3 \sin^3 x \sin^2 y \sin z$
Proof. Let $u = \cos x$, $v = \sin x \cos y$ and $w = \sin x \sin y \cos z$
 $\therefore \frac{\partial u}{\partial x} = -\sin x$, $\frac{\partial u}{\partial y} = 0$, $\frac{\partial u}{\partial z} = 0$
 $\frac{\partial v}{\partial x} = \cos x \cos y$, $\frac{\partial v}{\partial y} = -\sin x \sin y$, $\frac{\partial v}{\partial z} = 0$
& $\frac{\partial w}{\partial x} = \cos x \sin y \cos z$, $\frac{\partial w}{\partial y} = \sin x \cos y \cos z$, $\frac{\partial w}{\partial z} = -\sin x \sin y \sin z$

$$\therefore \frac{\partial(u,v,w)}{\partial(x,y,z)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{vmatrix}$$

$$= \begin{vmatrix} -\sin x & 0 & 0 \\ \cos x \cos y & -\sin x \sin y & 0 \\ \cos x \sin y \cos z & \sin x \cos y \cos z & -\sin x \sin y \sin z \end{vmatrix}$$

$$= (-\sin x)(-\sin x \sin y)(-\sin x \sin y \sin z)$$

$$\therefore \frac{\partial(u,v,w)}{\partial(x,y,z)} = (-1)^3 \sin^3 x \sin^2 y \sin z$$
Hence proved.

Composite Function:

If u is a function of two variables x, y and x, y are functions of a real variable t, then u is said to be composite function of variable t.

Composite Function:

If w is a function of two variables u, v and u, v are functions of two variables x, y then w is said to be composite function of variables x, y.

Chain Rule-I: If u = f(x, y) is a differential function of x, y and $x = \emptyset(t)$, $y = \Psi(t)$ are differential functions of t, then composite function $u = f[\emptyset(t), \Psi(t)]$ is differential function of t and $\frac{du}{dt} = \frac{\partial u}{\partial x}\frac{dx}{dt} + \frac{\partial u}{\partial y}\frac{dy}{dt}$

Proof: Let δx , δy and δu are the increments in x, y and u respectively, corresponding to the increment δt in t,

Let
$$u = f(x, y)$$
 is a differential function of x, y.

$$\therefore \delta u = \frac{\partial u}{\partial x} \delta x + \frac{\partial u}{\partial y} \delta y + \alpha \delta x + \beta \delta y = (\frac{\partial u}{\partial x} + \alpha) \delta x + (\frac{\partial u}{\partial y} + \beta) \delta y \dots (1)$$
Where $\alpha, \beta \to 0$ as $(\delta x, \delta y) \to (0, 0)$.
Dividing equation (1) by δt and taking limit as $\delta t \to 0$, we get,

$$\lim_{\delta t \to 0} \frac{\delta u}{\delta t} = \lim_{\delta t \to 0} \left[(\frac{\partial u}{\partial x} + \alpha) \frac{\delta x}{\delta t} + (\frac{\partial u}{\partial y} + \beta) \frac{\delta y}{\delta t} \right]$$
As $x = \emptyset(t), y = \Psi(t)$ are differential functions of t,

$$\therefore \lim_{\delta t \to 0} \frac{\delta x}{\delta t} = \frac{dx}{dt}, \lim_{\delta t \to 0} \frac{\delta y}{\delta t} = \frac{dy}{dt} \text{ and every differentiable function is continuous,}$$

$$\therefore \delta t \to 0 \Longrightarrow \delta x, \delta y \to 0 \text{ and hence } \alpha, \beta \to 0.$$

$$\therefore \lim_{\delta t \to 0} \frac{\delta u}{\delta t} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt}$$

$$\therefore \text{ The composite function } u = f[\emptyset(t), \Psi(t)] \text{ is differential function of t and}$$

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} \text{ is proved.}$$

DEPARTMENT OF MATHEMATICS -KARM. A. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER

- **Chain Rule-II**: If w = f(u, v) is a differential function of u, v and $u = \emptyset(x, y)$, $v = \Psi(x, y)$ are differential functions of x and y, then composite function $w = f[\emptyset(x, y), \Psi(x, y)]$ is differential function of x and y and its partial derivatives are given by $\frac{\partial w}{\partial x} = \frac{\partial w}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial x}$ and $\frac{\partial w}{\partial y} = \frac{\partial w}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial y}$
- Proof: Let δu , δv and δw are the increments in u, v and w respectively, corresponding to the increments δx in x and δy in y,

Let w = f (u, v) is a differential function of two variables u, v.

$$\therefore \delta w = \frac{\partial w}{\partial u} \delta u + \frac{\partial w}{\partial v} \delta v + \alpha_1 \delta u + \beta_1 \delta v$$

$$\therefore \delta w = (\frac{\partial w}{\partial u} + \alpha_1) \delta u + (\frac{\partial w}{\partial v} + \beta_1) \delta v \dots (1)$$
Where $\alpha_1, \beta_1 \to 0$ as $(\delta u, \delta v) \to (0, 0)$.
Again u = $\phi(x, y), v = \Psi(x, y)$ are differential functions of x and y

$$\therefore \delta u = \frac{\partial u}{\partial x} \delta x + \frac{\partial u}{\partial y} \delta y + \alpha_2 \delta x + \beta_2 \delta y$$

$$\& \delta v = \frac{\partial v}{\partial x} \delta x + \frac{\partial v}{\partial y} \delta y + \alpha_3 \delta x + \beta_3 \delta y$$
i.e. $\delta u = (\frac{\partial u}{\partial x} + \alpha_2) \delta x + (\frac{\partial u}{\partial y} + \beta_2) \delta y \dots (2)$

$$\& \delta v = (\frac{\partial v}{\partial x} + \alpha_3) \delta x + (\frac{\partial v}{\partial y} + \beta_3) \delta y \dots (3)$$
Where $\alpha_2, \beta_2, \alpha_3, \beta_3 \to 0$ as $(\delta x, \delta x) \to (0, 0)$.
By using equation (2) and (3) equation (1) becomes

$$\delta w = (\frac{\partial w}{\partial u} + \alpha_1)[(\frac{\partial u}{\partial x} + \alpha_2)\delta x + (\frac{\partial w}{\partial y} + \beta_2)\delta y] + (\frac{\partial w}{\partial v} + \beta_1)[(\frac{\partial v}{\partial x} + \alpha_3)\delta x + (\frac{\partial v}{\partial y} + \beta_3)\delta y]$$

$$\delta w = (\frac{\partial w}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial x} + (\frac{\partial w}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial y}) \delta y + \alpha \delta x + \beta \delta y$$
We observe that each term in α and β contain at least one of $\alpha_1, \beta_1, \alpha_2, \beta_2, \alpha_3, \beta_3$.

$$\therefore \delta x, \delta y \to 0 \Longrightarrow \alpha, \beta \to 0.$$

 $\frac{\partial w}{\partial x} = \frac{\partial w}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial w}{\partial v}\frac{\partial v}{\partial x} \text{ and } \frac{\partial w}{\partial y} = \frac{\partial w}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial w}{\partial v}\frac{\partial v}{\partial y}. \text{ Hence proved.}$

Remark: If u = f(x, y, z) is a differential function of x, y, z and x, y, z are differential functions of t, then composite function u is differential function of t and $\frac{du}{dt} = \frac{\partial u}{\partial x}\frac{dx}{dt} + \frac{\partial u}{\partial y}\frac{dy}{dt} + \frac{\partial u}{\partial z}\frac{dz}{dt}.$

Ex. Find $\frac{dz}{dt}$ when $z = xy^2 + x^2y$, $x = at^2$, y = 2at **Sol.** Let $z = xy^2 + x^2y$, $x = at^2$, y = 2at. $\therefore \frac{\partial z}{\partial x} = y^2 + 2xy$, $\frac{\partial z}{\partial y} = 2xy + x^2$, $\frac{dx}{dt} = 2at \& \frac{dy}{dt} = 2a$

Ex. If
$$z = f(x, y)$$
 where $x = rcos\theta$, $y = rsin\theta$, prove that
 $\frac{\partial z}{\partial r} = cos\theta \frac{\partial z}{\partial x} + sin\theta \frac{\partial z}{\partial y} & \frac{\partial z}{\partial \theta} = -rsin\theta \frac{\partial z}{\partial x} + rcos\theta \frac{\partial z}{\partial y}$
Proof. Let $z = f(x, y)$ where $x = rcos\theta$, $y = rsin\theta$.
 $\therefore \frac{\partial x}{\partial r} = cos\theta$, $\frac{\partial x}{\partial \theta} = -rsin\theta$, $\frac{\partial y}{\partial r} = sin\theta & \frac{\partial y}{\partial \theta} = rcos\theta$.
As z is function of x , y and x , y are functions of r and θ .
 \therefore z is composite function of r and θ .
 \therefore z is composite function of r and θ .
 \therefore z is composite function of r and θ .
 \therefore z is composite function $\theta^2 = \frac{\partial z}{\partial y} \frac{\partial x}{\partial \theta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta}$, we get,
 $\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta}$, we get,
 $\frac{\partial z}{\partial r} = cos\theta \frac{\partial z}{\partial x} + sin\theta \frac{\partial z}{\partial y} & \frac{\partial z}{\partial \theta} = -rsin\theta \frac{\partial x}{\partial x} + rcos\theta \frac{\partial z}{\partial y}$
Hence proved.
Ex. If $z = f(x, y) = tan^{-1} (\frac{x}{y})$ where $x = u + v$, $y = u - v$.
 $\therefore \frac{\partial z}{\partial x} = \frac{1}{1 + (\frac{x}{y})^2} \frac{y}{y^2} = \frac{u - v}{(u - v)^2 + (u + v)^2} = \frac{u - v}{2u^2 + 2v^2}$
 $\frac{\partial z}{\partial u} = \frac{1}{u^2 v} \frac{1}{u^2 v} = \frac{y}{v^{2 + x^2}} = \frac{(-(u + v))}{(u - v)^2 + (u + v)^2} = \frac{-u - v}{2u^2 + 2v^2}$
 $\frac{\partial x}{\partial u} = 1, \frac{\partial x}{\partial v} = 1, \frac{\partial y}{\partial u} = 1, \frac{\partial y}{\partial v} = -1$
As z is function of x , y and x , y are functions of u and v .
 \therefore z is composite function of u and v .
 \therefore z is composite function of u and v .
 \therefore z is composite function of u and v .
 \therefore z is composite function of u and v .
 \therefore z is composite function of u and v .
 \therefore z is composite function of u and v .
 \therefore z is z function of x , y and x , y are functions of u and v .
 \therefore z is z function of x , y and x , y are functions of u and v .
 \therefore z is z function of x , y and y , y $z^2 = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$, we get,
 $\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$

<u>Ex.</u> If z is function of x and y and $x = e^u + e^{-v}$, $y = e^{-u} - e^v$, then show that $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}$

Proof. Let z is function of x and y and $x = e^u + e^{-v}$, $y = e^{-u} - e^v$. $\therefore \frac{\partial x}{\partial u} = e^u$, $\frac{\partial x}{\partial v} = -e^{-v}$, $\frac{\partial y}{\partial u} = -e^{-u} \& \frac{\partial y}{\partial v} = -e^v$ As z is function of x, y and x, y are functions of u and v.

∴ z is composite function of u and v.
∴ By using Chain Rule-II,

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial x}{\partial u} & \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}, \text{ we get,}$$

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} (e^u) + \frac{\partial z}{\partial y} (-e^{-u}) = e^u \frac{\partial z}{\partial x} - e^{-u} \frac{\partial z}{\partial y}$$

$$\& \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} (-e^{-v}) + \frac{\partial z}{\partial y} (-e^v) = -e^{-v} \frac{\partial z}{\partial x} - e^v \frac{\partial z}{\partial y}$$
Consider

$$\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = e^u \frac{\partial z}{\partial x} - e^{-u} \frac{\partial z}{\partial y} + e^{-v} \frac{\partial z}{\partial x} + e^v \frac{\partial z}{\partial y}$$

$$= (e^u + e^{-v}) \frac{\partial z}{\partial x} - (e^{-u} - e^v) \frac{\partial z}{\partial y}$$
Hence proved.
Ex. If $z = f(u, v)$ where $u = 2x - 3y, v = x + 2y$, then show that $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 3 \frac{\partial z}{\partial v} - \frac{\partial z}{\partial u}$
 $\therefore \frac{\partial u}{\partial y} = 2, \frac{\partial u}{\partial y} = -3, \frac{\partial v}{\partial x} = 1 \& \frac{\partial v}{\partial y} = 2$
As z is function of u, v and u, v are functions of x and y.
∴ z is composite function of x and y.
 \therefore By using Chain Rule-II,
 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial z}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial u}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial u}{\partial y}, \text{ we get,}$
 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} (2) + \frac{\partial z}{\partial v} (1) = 2 \frac{\partial z}{\partial u} + \frac{\partial z}{\partial v} = \frac{\partial z}{\partial v}$
Adding, we get,
 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = -\frac{\partial z}{\partial u} + 3 \frac{\partial z}{\partial v} + 3 \frac{\partial z}{\partial v} + \frac{\partial z}{\partial u} = 0$
Hence proved.

Ex. If u = f(y - z, z - x, x - y), then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$ (Oct.2019) **Proof.** Let u = f(y - z, z - x, x - y) = f(p, q, r)where p = y - z, q = z - x & r = x - y $\therefore \frac{\partial p}{\partial x} = 0, \ \frac{\partial p}{\partial y} = 1, \ \frac{\partial p}{\partial z} = -1, \ \frac{\partial q}{\partial x} = -1, \ \frac{\partial q}{\partial y} = 0, \ \frac{\partial q}{\partial z} = 1$ $\& \frac{\partial r}{\partial x} = 1, \ \frac{\partial r}{\partial y} = -1, \ \frac{\partial r}{\partial z} = 0$ As u is function of p, q, r and p, q, r are functions of x, y and z.

 \therefore u is composite function of x, y and z.

∴ By using Chain Rule-II.

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} \frac{\partial x}{\partial y} + \frac{\partial u}{\partial q} \frac{\partial x}{\partial x} + \frac{\partial u}{\partial r} \frac{\partial r}{\partial x}$$

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial y} \frac{\partial y}{\partial y} + \frac{\partial u}{\partial q} \frac{\partial y}{\partial y} + \frac{\partial u}{\partial q} \frac{\partial y}{\partial x} + \frac{\partial u}{\partial r} \frac{\partial r}{\partial x}$$
we get,

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial p} (0) + \frac{\partial u}{\partial q} (-1) + \frac{\partial u}{\partial r} (1) = \frac{\partial u}{\partial r} - \frac{\partial u}{\partial q}$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial p} (0) + \frac{\partial u}{\partial q} (1) + \frac{\partial u}{\partial r} (0) = \frac{\partial u}{\partial q} - \frac{\partial u}{\partial r}$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial p} (0) + \frac{\partial u}{\partial q} (1) + \frac{\partial u}{\partial r} (0) = \frac{\partial u}{\partial q} - \frac{\partial u}{\partial r}$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial p} (-1) + \frac{\partial u}{\partial q} (1) + \frac{\partial u}{\partial r} (0) = \frac{\partial u}{\partial q} - \frac{\partial u}{\partial p}$$
Adding, we get,

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} - \frac{\partial u}{\partial q} + \frac{\partial u}{\partial p} - \frac{\partial u}{\partial r} + \frac{\partial u}{\partial p} = 0$$
Hence proved.
Ex. If $u = f(y^2 \cdot z^2, z^2 \cdot x^2, x^2 \cdot y^2)$ then show that $\frac{1}{x} \frac{\partial u}{\partial x} + \frac{1}{y} \frac{\partial u}{\partial y} + \frac{1}{z} \frac{\partial u}{\partial z} = 0$
Proof. Let $u = f(y^2 - z^2, z^2 \cdot x^2, x^2 - y^2)$ then show that $\frac{1}{x} \frac{\partial u}{\partial x} + \frac{1}{y} \frac{\partial u}{\partial y} + \frac{1}{z} \frac{\partial u}{\partial z} = 0$
Proof. Let $u = f(y^2 - z^2, z^2 - x^2, x^2 - y^2) = f(p, q, r)$
where $p = y^2 - z^2$, $q = z^2 - x^2$, $g = -2x$, $\frac{\partial q}{\partial x} = -2x$, $\frac{\partial q}{\partial y} = 0$, $\frac{\partial q}{\partial z} = 2z$
 $\& \frac{\partial r}{\partial x} = 0$, $\frac{\partial p}{\partial y} = 2y$, $\frac{\partial r}{\partial z} = -2y$, $\frac{\partial r}{\partial z} = 0$
As u is function of p, q, r and p, q, r are functions of x, y and z .
 \therefore By using Chain Rule-II,
 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial p} \frac{\partial p}{\partial y} + \frac{\partial u}{\partial q} \frac{\partial u}{\partial r} \frac{\partial u}{\partial r}$, we get,
 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial p} \frac{\partial p}{\partial x} + \frac{\partial u}{\partial q} \frac{\partial u}{\partial r}$, we get,
 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial p} \frac{\partial p}{\partial x} + \frac{\partial u}{\partial q} \frac{\partial u}{\partial r}$, we get,
 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial p} \frac{\partial p}{\partial x} + \frac{\partial u}{\partial q} \frac{\partial u}{\partial r}$, we get,
 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial p} - \frac{\partial u}{\partial q} \frac{\partial u}{\partial r} + \frac{\partial u}{\partial r} \frac{\partial u}{\partial r}$, we get,
 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial p} (0) + \frac{\partial u}{\partial q} (0) + \frac{\partial u}{\partial r} (-2y) = 2y \frac{\partial u}{\partial p} - 2y \frac{\partial u}{\partial p}$
 $\frac{\partial u}{\partial r} = \frac{\partial u}{\partial p} (2y) + \frac{\partial u}{\partial q} (0) + \frac{\partial u}{\partial r} (-2y) = 2y \frac{\partial u}{\partial p} - 2y \frac{\partial u}{\partial p}$
 $\frac{\partial u}{\partial r} =$

<u>Ex.</u> If $u = f(e^{y-z}, e^{z-x}, e^{x-y})$, then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$ **Proof.** Let $u = f(e^{y-z}, e^{z-x}, e^{x-y}) = f(p, q, r)$ where $p = e^{y-z}$, $q = e^{z-x} \& r = e^{x-y}$ $\therefore \frac{\partial p}{\partial x} = 0, \ \frac{\partial p}{\partial y} = e^{y-z}, \ \frac{\partial p}{\partial z} = -e^{y-z}$ $\frac{\partial q}{\partial x} = -e^{z-x}, \ \frac{\partial q}{\partial x} = 0, \ \frac{\partial q}{\partial z} = e^{z-x}$ $\& \frac{\partial r}{\partial x} = e^{x-y}, \ \frac{\partial r}{\partial y} = -e^{x-y}, \ \frac{\partial r}{\partial z} = 0$ As u is function of p, q, r and p, q, r are functions of x, y and z. \therefore u is composite function of x, y and z. ∴ By using Chain Rule-II $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial p}\frac{\partial p}{\partial x} + \frac{\partial u}{\partial q}\frac{\partial q}{\partial x} + \frac{\partial u}{\partial r}\frac{\partial r}{\partial x}$ $\frac{\partial u}{\partial y} = \frac{\partial u}{\partial p} \frac{\partial p}{\partial y} + \frac{\partial u}{\partial q} \frac{\partial q}{\partial y} + \frac{\partial u}{\partial r} \frac{\partial r}{\partial v}$ & $\frac{\partial u}{\partial z} = \frac{\partial u}{\partial p} \frac{\partial p}{\partial z} + \frac{\partial u}{\partial q} \frac{\partial q}{\partial z} + \frac{\partial u}{\partial r} \frac{\partial r}{\partial z}$, we get, $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial n}(0) + \frac{\partial u}{\partial a}(-e^{z-x}) + \frac{\partial u}{\partial x}(e^{x-y}) = e^{x-y}\frac{\partial u}{\partial x} - e^{z-x}\frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial y} = \frac{\partial u}{\partial p} \left(e^{y-z} \right) + \frac{\partial u}{\partial q} \left(0 \right) + \frac{\partial u}{\partial r} \left(-e^{x-y} \right) = e^{y-z} \frac{\partial u}{\partial p} - e^{x-y} \frac{\partial u}{\partial r}$ $\& \frac{\partial u}{\partial z} = \frac{\partial u}{\partial n} \left(-e^{y-z} \right) + \frac{\partial u}{\partial a} \left(e^{z-x} \right) + \frac{\partial u}{\partial r} \left(0 \right) = e^{z-x} \frac{\partial u}{\partial a} - e^{y-z} \frac{\partial u}{\partial n}$ Adding, we get. $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = e^{x-y} \frac{\partial u}{\partial r} - e^{z-x} \frac{\partial u}{\partial q} + e^{y-z} \frac{\partial u}{\partial p} - e^{x-y} \frac{\partial u}{\partial r} + e^{z-x} \frac{\partial u}{\partial q} - e^{y-z} \frac{\partial u}{\partial p} = 0$ $\therefore \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$ Hence proved.

Homogeneous Function: A function u = f(x, y) is said to be homogeneous function of degree n, if it can be expressed as $u = f(x, y) = x^n \emptyset(\frac{y}{r})$.

Homogeneous Function: A function f(x, y, z) is said to be homogeneous function of degree n, if $f(xt, yt, zt) = t^n f(x, y, z)$.

Euler's Theorem: If f (x, y) is homogeneous function of degree n in two variables x and y having first order partial derivatives then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = \text{nf.}$

Proof: Let f (x, y) is homogeneous function of degree n in two variables x and y $\therefore f(x, y) = x^n \emptyset(\frac{y}{x}) \dots \dots \dots (1)$ Differentiating (1) partially w.r.to x, we get, $\frac{\partial f}{\partial x} = nx^{n-1}\emptyset(\frac{y}{x}) + x^n\emptyset'(\frac{y}{x})(\frac{-y}{x^2})$

$$i.e. \frac{\partial f}{\partial x} = nx^{n-1} \emptyset(\frac{y}{x}) - yx^{n-2} \emptyset'(\frac{y}{x})$$
Multiplying both sides by x, we get,
 $x \frac{\partial f}{\partial x} = nx^n \emptyset(\frac{y}{x}) - yx^{n-1} \vartheta'(\frac{y}{x}) \dots (2)$
Differentiating (1) partially w.r.to y, we get,
 $\frac{\partial f}{\partial y} = x^n \emptyset'(\frac{y}{x}) (\frac{1}{x})$

i.e. $\frac{\partial f}{\partial y} = x^{n-1} \emptyset'(\frac{y}{x}) (\frac{1}{x})$

i.e. $\frac{\partial f}{\partial y} = x^{n-1} \emptyset'(\frac{y}{x})$

Multiplying both sides by y, we get,
 $y \frac{\partial f}{\partial y} = yx^{n-1} \emptyset'(\frac{y}{x}) \dots (3)$

Adding (2) and (3), we get,
 $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = nx^n \emptyset(\frac{y}{x}) - yx^{n-1} \emptyset'(\frac{y}{x}) + yx^{n-1} \emptyset'(\frac{y}{x}) = nx^n \emptyset(\frac{y}{x})$

 $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = nf$. Hence proved.

Corollary: If $u = G^{-1} \{x^{nf}(\frac{y}{x})\}$ and $G'(u) \neq 0$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n \frac{G(u)}{G'(u)}$.
Proof: Let $u = G^{-1} \{x^{nf}(\frac{y}{x})\}$ and $G'(u) \neq 0$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n \frac{G(u)}{G'(u)}$.
Proof: Let $u = G^{-1} \{x^{nf}(\frac{y}{x})\}$ and $G'(u) \neq 0$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n \frac{G(u)}{G'(u)}$.
Proof: Let $u = G^{-1} \{x^{nf}(\frac{y}{x})\}$ and $G'(u) \neq 0$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n \frac{G(u)}{G'(u)}$.
As $z = G(u) : \frac{\partial z}{\partial x} = G'(u) \frac{\partial u}{\partial x} & \frac{\partial z}{\partial y} = G'(u) \frac{\partial u}{\partial y}$
 $\therefore xG'(u) \frac{\partial u}{\partial x} + yG'(u) \frac{\partial u}{\partial y} = nG(u)$.
 $\therefore x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n \frac{G(u)}{G'(u)} \rightarrow G'(u) \neq 0$
Hence proved. For a united with the formation of the formation of the formation of the formation formati

Corollary: If u = f(x, y) is homogeneous function of degree n in two variables x and y having continuous first and second order partial derivatives, then

$$-x^2\frac{\partial^2 u}{\partial x^2} + 2xy\frac{\partial^2 u}{\partial x\partial y} + y^2\frac{\partial^2 u}{\partial y^2} = n(n-1)u.$$

Proof: Let u = f (x, y) is homogeneous function of degree n in two variables x and y∴ By Euler's theorem

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} =$$
nu(1)

Differentiating (1) partially w.r.to x, we get,

$$\frac{\partial u}{\partial x} + x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial x \partial y} = n \frac{\partial u}{\partial x}$$

$$\frac{1}{2} \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial x \partial y} = (n-1) \frac{\partial u}{\partial x}$$
Multiplying both sides by x, we get,
 $x^2 \frac{\partial^2 u}{\partial x^2} + xy \frac{\partial^2 u}{\partial x \partial y} = (n-1)x \frac{\partial u}{\partial x}$(2)
Differentiating (1) partially w.r.to y, we get,
 $x \frac{\partial^2 u}{\partial y \partial x} + \frac{\partial u}{\partial y} + y \frac{\partial^2 u}{\partial y^2} = n \frac{\partial u}{\partial y}$
 $\therefore x \frac{\partial^2 u}{\partial y \partial x} + \frac{\partial u}{\partial y} + y \frac{\partial^2 u}{\partial y^2} = n \frac{\partial u}{\partial y}$
 $\therefore x \frac{\partial^2 u}{\partial y \partial x} + \frac{\partial u}{\partial y^2} + y \frac{\partial^2 u}{\partial y^2} = n \frac{\partial u}{\partial y}$
 $\therefore x \frac{\partial^2 u}{\partial y \partial x} + \frac{\partial u}{\partial y^2} + y \frac{\partial^2 u}{\partial y^2} = n \frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y}$
Multiplying both sides by y, we get,
 $xy \frac{\partial^2 u}{\partial x^2} + y^2 \frac{\partial^2 u}{\partial x^2} = (n-1)y \frac{\partial u}{\partial y} - \cdots (3)$
Adding (2) and (3), we get,
 $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = n(n-1)(x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y})$
i.e. $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = n(n-1)u$. Hence proved.
Ex. Verify Fuler's Theorem for the function $f(x, y) = x^3 + y^3 - 3x^2y$
Proof: Let $f(x, y) = x^3 + y^3 - 3x^2y - \dots \dots (1)$
 $= x^2[1 + (\frac{x}{\lambda})^3 - 3(\frac{x}{\lambda})]$
i.e. $f(x, y) = x^3 (\theta (\frac{x}{x}))$
 $\therefore f(x, y)$ is homogeneous function of degree 3 in two variables x and y
 \therefore By Euler's theorem
 $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = 3f \dots \dots (2)$
Differentiating (1) partially w.r.to x, we get,
 $\frac{\partial f}{\partial x} = 3x^2 - 6xy$
Multiplying both sides by x, we get,
 $\frac{\partial f}{\partial y} = 3y^2 - 3x^2$
Multiplying both sides by y, we get,
 $\frac{\partial f}{\partial y} = 3y^3 - 3x^2y \dots (4)$
Adding (3) and (4), we get,
 $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = 3x^3 - 6x^2y + 3y^3 - 3x^2y = 3(x^3 + y^3 - 3x^2y)$
 $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = 3x^3 - 6x^2y + 3y^3 - 3x^2y = 3(x^3 + y^3 - 3x^2y)$
 $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = 3f$. Hence Euler's theorem is verified.

Ex. Verify Euler's Theorem for the function $f(x, y) = \tan^{-1}(\frac{x}{y})$ (Oct.2019)**Proof:** Let $f(x, y) = \tan^{-1}(\frac{x}{y})$ (1) $= x^{0} \tan^{-1}(\frac{x}{x})$ i.e. $f(x, y) = x^0 \emptyset(\frac{y}{x})$ \therefore f (x, y) is homogeneous function of degree 0 in two variables x and y ∴ By Euler's theorem $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 0$ f = 0(2) Differentiating (1) partially w.r.to x, we get, $\frac{\partial f}{\partial x} = \frac{1}{1 + (\frac{x}{x})^2} \frac{1}{y} = \frac{y}{y^2 + x^2}$ Multiplying both sides by x, we get, $\mathbf{x}\frac{\partial f}{\partial x} = \frac{xy}{x^2 + y^2} \dots \dots (3)$ Differentiating (1) partially w.r.to y, we get, $\frac{\partial f}{\partial y} = \frac{1}{1 + \left(\frac{x}{y}\right)^2} \frac{-x}{y^2} = \frac{-x}{y^2 + x^2}$ Multiplying both sides by y, we get, $y\frac{\partial f}{\partial y} = \frac{-xy}{x^2 + y^2} \dots \dots \dots (4)$ Adding (3) and (4), we get. $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = \frac{xy}{x^2 + y^2} - \frac{xy}{x^2 + y^2} = 0$ $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 0$. Hence Euler's theorem is verified. **Ex.** If $u = \sin^{-1}(\frac{x^2 + y^2}{x + y})$ then find the value of $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ Sol: Let $u = \sin^{-1}(\frac{x^2 + y^2}{x + y})$ appault durated with desired with the second seco $\therefore \sin u = \frac{x^2 + y^2}{x + y} = z$ \therefore z = sinu is homogeneous function of degree 1 in two variables x and y ∴ By Euler's theorem $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 1z = z$ As $z = \sin u$ $\therefore \frac{\partial z}{\partial x} = \cos u \frac{\partial u}{\partial x}$ and $\frac{\partial z}{\partial y} = \cos u \frac{\partial u}{\partial y}$ $\therefore x \cos u \frac{\partial u}{\partial x} + y \cos u \frac{\partial u}{\partial y} = \sin u$ $\therefore x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$

Ex.: If
$$u = \log (x^3 + y^3 - x^2 y - xy^2)$$
, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -3$. (Oct.2019)
Proof: Let $u = \log (x^3 + y^3 - x^2 y - xy^2)$
 $\therefore e^u = x^3 + y^3 - x^2 y - xy^2 = z$
 $\therefore z = e^u$ is homogeneous function of degree 3 in two variables x and y
 \therefore By Euler's theorem
 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 3z$
As $z = e^u \therefore \frac{\partial u}{\partial x} = e^u \frac{\partial u}{\partial x}$ and $\frac{\partial z}{\partial y} = e^u \frac{\partial u}{\partial y}$
 $\therefore xe^u \frac{\partial u}{\partial x} + ye^u \frac{\partial u}{\partial y} = 3e^u$
 $\therefore x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} = 3e^u$
 $\therefore x^2 \frac{\partial u}{\partial x^2} + y \frac{\partial u}{\partial x^2} = 0$
 $\therefore x \frac{\partial u}{\partial x^2} + y \frac{\partial u}{\partial x^2} = -\frac{\partial u}{\partial x}$
Multiplying both sides by x, we get,
 $x^2 \frac{\partial^2 u}{\partial x^2 x} + y^2 \frac{\partial^2 u}{\partial x^2 y} = 0$
 $\therefore x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial x^2 y} = -\frac{\partial u}{\partial x}$
Multiplying both sides by x, we get,
 $x^2 \frac{\partial^2 u}{\partial x^2 x} + y^2 \frac{\partial^2 u}{\partial y^2} = -\frac{\partial u}{\partial y} \because \frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y}$
Multiplying both sides by y, we get,
 $x y \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -y \frac{\partial u}{\partial y}$
 $\dots (3)$
Adding (2) and (3), we get,
 $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -3$ by (1)
Hence proved.
Ex.: If $u = \tan^{-1}(\frac{\sqrt{x^2 + y^2}}{x - y})$ then find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.
Sol: Let $u = \tan^{-1}(\frac{\sqrt{x^2 + y^2}}{x - y}) = \tan^{-1}(\sqrt{\frac{1 + (\frac{x}{2})^2}{1 - \frac{x}{2}})$
 $\therefore u$ is homogeneous function of degree 0 in two variables x and y

 \therefore By Euler's theorem Differentiating (1) partially w.r.to x, we get, $\frac{\partial u}{\partial x} + x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial x \partial y} = 0$ $\therefore x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial x \partial y} = - \frac{\partial u}{\partial x}$ Multiplying both sides by x, we get. $x^{2}\frac{\partial^{2}u}{\partial x^{2}} + xy\frac{\partial^{2}u}{\partial x\partial y} = -x\frac{\partial u}{\partial x}\dots\dots(2)$ Differentiating (1) partially w.r.to y, we get, $x \frac{\partial^2 u}{\partial y \partial x} + \frac{\partial u}{\partial y} + y \frac{\partial^2 u}{\partial y^2} = 0$ $\therefore x \frac{\partial^2 u}{\partial x \partial y} + y \frac{\partial^2 u}{\partial y^2} = - \frac{\partial u}{\partial y} \qquad \because \frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y}$ Multiplying both sides by y, we get, $xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -y \frac{\partial u}{\partial y} \dots \dots \dots (3)$ Adding (2) and (3), we get, $x^{2}\frac{\partial^{2} u}{\partial x^{2}} + 2xy\frac{\partial^{2} u}{\partial x \partial y} + y^{2}\frac{\partial^{2} u}{\partial y^{2}} = -(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y})$ i.e. $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$ by (1) **Ex.:** If $u = \tan^{-1}(\frac{x^3 + y^3}{x - y})$, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$. hence deduce that $x^{2}\frac{\partial^{2} u}{\partial x^{2}} + 2xy\frac{\partial^{2} u}{\partial x \partial y} + y^{2}\frac{\partial^{2} u}{\partial y^{2}} = (1-4\sin^{2}u)\sin^{2}u$ **Proof:** Let $u = \tan^{-1}(\frac{x^3 + y^3}{x - y})$ $\therefore tanu = \frac{x^3 + y^3}{x - y} = z$ \therefore z = tanu is homogeneous function of degree 2 in two variables x and y

∴ By Euler's theorem

$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2z$$

As $z = \tan u$ ∴ $\frac{\partial z}{\partial x} = \sec^2 u \frac{\partial u}{\partial x}$ and $\frac{\partial z}{\partial y} = \sec^2 u \frac{\partial u}{\partial y}$
∴ $x \sec^2 u \frac{\partial u}{\partial x} + y \sec^2 u \frac{\partial u}{\partial y} = 2 \tan u$
∴ $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{2 \tan u}{\sec^2 u} = \frac{2 \sin u}{\cos u} x \cos^2 u = 2 \sin u.cosu$
∴ $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$ (1)

Differentiating (1) partially w.r.to x, we get,

$$\frac{\partial u}{\partial x} + x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial x \partial y} = 2\cos 2u \frac{\partial u}{\partial x}$$

$$\therefore x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial x \partial y} = (2\cos 2u - 1) \frac{\partial u}{\partial x}$$

Multiplying both sides by x, we get,

$$x^2 \frac{\partial^2 u}{\partial x^2} + xy \frac{\partial^2 u}{\partial x \partial y} = (2\cos 2u - 1) x \frac{\partial u}{\partial x} \dots \dots (2)$$

Differentiating (1) partially w.r.to y, we get,

$$x \frac{\partial^2 u}{\partial y \partial x} + \frac{\partial u}{\partial y} + y \frac{\partial^2 u}{\partial y^2} = 2\cos 2u \frac{\partial u}{\partial y}$$

$$\therefore x \frac{\partial^2 u}{\partial x \partial y} + y \frac{\partial^2 u}{\partial y^2} = (2\cos 2u - 1) \frac{\partial u}{\partial y} = \frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y}$$

Multiplying both sides by y, we get,

$$xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (2\cos 2u - 1)y \frac{\partial u}{\partial y} \dots \dots (3)$$

Adding (2) and (3), we get,

$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (2\cos 2u - 1)x \frac{\partial u}{\partial x} + (2\cos 2u - 1)y \frac{\partial u}{\partial y}$$

i.e.
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (2\cos 2u - 1)(x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y})$$

i.e.
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = [2(1 - 2\sin^2 u) - 1]\sin^2 u$$
 by (1)
i.e.
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (1 - 4\sin^2 u)\sin^2 u$$

Hence proved.
Ex.: If $\mathbf{u} = \sin^{-1} [\frac{x^2 + 2xy}{\partial x \partial y}]^{1/5}$, then find the value of $x^2 \frac{\partial^2 u}{\partial y} + 2xy \frac{\partial^2 u}{\partial y} + y^2 \frac{\partial^2 u}{\partial y}$

Ex.: If
$$u = \sin^{-1} \left[\frac{x^2 + 2xy}{\sqrt{x - y}} \right]^{1/5}$$
, then find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$
Sol: Let $u = \sin^{-1} \left[\frac{x^2 + 2xy}{\sqrt{x - y}} \right]^{1/5}$
 $\therefore sinu = \left[\frac{x^2 + 2xy}{\sqrt{x - y}} \right]^{1/5} = z$
 $\therefore z = sinu$ is homogeneous function of degree $\frac{3}{10}$ in two variables x and y
 \therefore By Euler's theorem
 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = \frac{3}{10}z$
As $z = sinu \therefore \frac{\partial z}{\partial x} = \cos u \frac{\partial u}{\partial x}$ and $\frac{\partial z}{\partial y} = \cos u \frac{\partial u}{\partial y}$
 $\therefore x \cos u \frac{\partial u}{\partial x} + y \cos u \frac{\partial u}{\partial y} = \frac{3}{10}sinu$
 $\therefore x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{3}{10}tanu$ (1)
Differentiating (1) partially w.r.to x, we get,

$$\frac{\partial u}{\partial x} + x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial x \partial y} = \frac{3}{10} \sec^2 u \frac{\partial u}{\partial x}$$

DEPARTMENT OF MATHEMATICS -KARM. A. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER

$$\therefore x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial x \partial y} = \left(\frac{3}{10} \sec^2 u - 1\right) \frac{\partial u}{\partial x}$$
Multiplying both sides by x, we get,

$$x^2 \frac{\partial^2 u}{\partial x^2} + xy \frac{\partial^2 u}{\partial x \partial y} = \left(\frac{3}{10} \sec^2 u - 1\right) x \frac{\partial u}{\partial x} \dots \dots (2)$$
Differentiating (1) partially w.r.to y, we get,

$$x \frac{\partial^2 u}{\partial y \partial x} + \frac{\partial u}{\partial y} + y \frac{\partial^2 u}{\partial y^2} = \frac{3}{10} \sec^2 u \frac{\partial u}{\partial y}$$

$$\therefore x \frac{\partial^2 u}{\partial x \partial y} + y \frac{\partial^2 u}{\partial y^2} = \left(\frac{3}{10} \sec^2 u - 1\right) \frac{\partial u}{\partial y} \quad \because \frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y}$$
Multiplying both sides by y, we get,

$$xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \left(\frac{3}{10} \sec^2 u - 1\right) y \frac{\partial u}{\partial y} \dots \dots (3)$$
Adding (2) and (3), we get,

$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \left(\frac{3}{10} \sec^2 u - 1\right) x \frac{\partial u}{\partial x} + \left(\frac{3}{10} \sec^2 u - 1\right) y \frac{\partial u}{\partial y}$$
i.e.
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \left[\frac{3}{10} \sec^2 u - 1\right) (x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y})$$
i.e.
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \left[\frac{3}{10} (1 + \tan^2 u) - 1\right] \left(\frac{3}{10} \tan u\right)$$
by (1)
i.e.
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{3}{10} (3 \tan^2 u - 7) \tan u$$

Mean Value Theorem: Let f (x, y) is continuous in a closed region R and differential in the interior of R. Let P (a, b) and Q (a+h, b+k) be any two points of R such that all points, $(a+\theta h, b+\theta k)$, where $o < \theta < 1$, of the straight line segment joining P and Q belongs to the interior of R.

Then f (a+h, b+k) = f (a, b) + hf_x(a+\theta h, b+\theta k) + kf_y(a+\theta h, b+\theta k).

Proof:We take x = a+ht, y = b+kt

$$\therefore \frac{dx}{dt} = h \& \frac{dy}{dt} = k$$
Let $F(t) = f(x, y) = f(a+ht, b+kt)$ for a first under the second state $F'(t) = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$
i.e. $F'(t) = hf_x(a+ht, b+kt) + kf_y(a+ht, b+kt)$
As $F(t)$ is continuous in [0, 1] and differentiable in (0, 1).
$$\therefore By Lagrange's Mean Value Theorem, we get,$$
 $F(1) - F(0) = F'(\theta)$ for some $0 < \theta < 1$

$$\therefore f(a+h, b+k) - f(a, b) = hf_x(a+h\theta, b+k\theta) + kf_y(a+h\theta, b+k\theta)$$
i.e. $f(a+h, b+k) = f(a, b) + hf_x(a+\theta h, b+\theta k) + kf_y(a+\theta h, b+\theta k)$
where $0 < \theta < 1$ Hence proved.

Ex.: If $f(x, y) = x^2y + 2xy^2$, show that the value of θ used in the expression of the mean value theorem applied to the line segment joining the points (1, 2) and (3, 3) satisfies the equation $12\theta^2 + 30\theta - 19 = 0$.

Proof: Let $f(x, y) = x^2y + 2xy^2$ are proved when $f(x, y) = x^2y + 2y^2 \& f_y(x, y) = x^2 + 4xy$ By Mean Value Theorem, $f(a+h, b+k) = f(a, b) + hf_x(a+h\theta, b+k\theta) + kf_y(a+h\theta, b+k\theta) \dots (1)$ where $0 < \theta < 1$ Given points are (1, 2) and (3, 3) i.e. a = 1, b = 2, a+h = 3 & b+k = 3. $\therefore h = 2 \& k = 1$. \therefore From (1), we get, $f(3, 3) = f(1, 2) + 2f_x(1+2\theta, 2+\theta) + f_y(1+2\theta, 2+\theta)$ i.e. $(3^2 x 3 + 2x3x3^2) = (1^2 x2 + 2x1x2^2) + 2[2(1+2\theta)(2+\theta) + 2(2+\theta)^2]$

$$+ [(1+2\theta)^{2} + 4(1+2\theta)(2+\theta)]$$

i.e. $(27+54) = (2+8) + 2[2(2+\theta + 4\theta + 2\theta^{2}) + 2(4+4\theta + \theta^{2})]$
 $+ [1+4\theta + 4\theta^{2} + 4(2+\theta + 4\theta + 2\theta^{2})]$
i.e. $81 = 10 + 2[4+2\theta + 8\theta + 4\theta^{2} + 8+8\theta + 2\theta^{2}]$
 $+ [1+4\theta + 4\theta^{2} + 8+4\theta + 16\theta + 8\theta^{2}]$
i.e. $71 = 2(12+18\theta + 6\theta^{2}) + (9+24\theta + 12\theta^{2})$
i.e. $24+36\theta + 12\theta^{2} + 9+24\theta + 12\theta^{2} - 71 = 0$
i.e. $24\theta^{2} + 60\theta - 38 = 0$
i.e. $12\theta^{2} + 30\theta - 19 = 0$
Hence proved.

UNIT-2: JACOBIAN, COMPOSITE FUNCTIONS AND MEAN VALUE THEOREMS [MCQ'S]

-

1) If u and v are functions of two independent variables x and y, then jacobian of u and v

w. r. to x and y i.e.
$$J(\frac{u,v}{x,y}) = \frac{\partial(u,v)}{\partial(x,y)} = \dots$$

a) $\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{vmatrix}$ b) $\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$ c) $\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$ d) None of these
2) $J(\frac{u,v}{x,y}) J(\frac{x,y}{u,v}) = \dots$
a) 0 b) -1 c) 1 d) None of these
3) $\frac{\partial(u,v)}{\partial(r,\theta)} \frac{\partial(x,y)}{\partial(r,\theta)} = \dots$
a) $\frac{\partial(u,v)}{\partial(r,\theta)} = \frac{\partial(r,\theta)}{\partial(u,v)}$ c) 1 d) None of these
4) Functions u, v and w of three independent variables x, y and z are functionally related
(or dependent) if and only if $\frac{\partial(u,v,w)}{\partial(x,y)} = \dots$
a) 0 b) -1 c) 1 d) None of these
5) If $u = x^2$ and $v = y^2$, then $\frac{\partial(u,v)}{\partial(x,y)} = \dots$
a) $4xy$ b) $2x$ c) $2y$ d) None of these
6) If $u = x(1-y)$ and $v = xy$, then $\frac{\partial(u,v)}{\partial(x,y)} = \dots$
a) xy b) x c) y d) None of these
7) If $u = f(x, y)$, $x = \emptyset(t)$, $y = \Psi(t)$, then u is a composite function of ...
a) x b) t c) y d) None of these
8) If $z = f(x, y)$, $x = \emptyset(u, v)$, $y = \Psi(u, v)$, then z is a composite function of
a) u and v b) x and y c) u and x d) None of these

9) It	f z = f(u, v)	$, u = \emptyset(x, y)$	$, v = \Psi(x, y),$	then z is a composite	function of	
	a) u and	v b) x and y	c) u and x	d) None of these	
10) If $z = f(x, y)$, $x = rcos\theta$, $y = rsin\theta$, then z is a composite function of						
	a) u and	v b) x and y	c) r and θ	d) None of these	
11)	If $z = \log(x)$	$^{2}+y^{2}), x = u$	+ v, y = u - v	, then z is a composite	function of	
	a) u and y	v b) x and y	c) u and x	d) None of these	
12)	If $u = f(x, y)$	y) is a differ	ential functio	n of x, y and $x = \emptyset(t)$,	$y = \Psi(t)$ are differential	
functions of t, then composite function $u = f [\phi(t), \psi(t)]$ is differential function of t						
	and $\frac{du}{dt} = \dots$					
	a) $\frac{\partial u}{\partial x} \frac{\partial u}{\partial t} \frac{dx}{dt} +$	$\frac{\partial u}{\partial y} \frac{dy}{dt}$ b)	$\frac{\partial u}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial t}$	c) $\frac{du}{dx}\frac{dx}{dt} + \frac{du}{dy}\frac{dy}{dt}$	d) None of these	
13)	If $z = f(x, y)$	$y) = x^2 + y^2 w$	here $x = t^2 + 1$, y = 2t, then $\frac{dz}{dt}$ at t =	1 is	
	a) 0	b) 2	c) 16	d) None of these	- Shot	
14)	If $u = f(v)$	$- \overline{z} - \overline{z} - x$	$(x - y)$ then $\frac{1}{2}$	$\frac{\partial u}{\partial u} + \frac{\partial u}{\partial u} = 0$	A	
11)			(1)	$\partial x = \partial y = \partial z$	8 20	
15)	a) 0	b) 1 2^{2} -3^{3} then	c) -1	d) None of these	and a	
15)	$\prod_{n \in \mathcal{A}} u = x + \frac{1}{2}$	y + z, then	tion b)	non homogonous fu	notion	
	a) noillo	omogenous	k non home	anous function	d) None of these	
16)	$x^2 + xy$	$\pm v^2$ is home	a non- nonc	tion of degree	u) None of these	
10)	u = x + xy a) 3	b) 2	c) 1	d) None of these	픵	
17)	$u = x^3 + xy$	v^2 is homoge	nous function	1 of degree	<u>a</u>	
11)	a) 3	b) 2	c) 1	d) None of these	3	
18)	$x^{4}+y^{4}$;	s homogeno	us function o	fdagraa		
10)	$u = \frac{1}{x+y}$	s nomogeno	us function o	i degree	P2	
	a) 3	b) 2	c) 1	d) None of these		
19)	If $u = \sin^{-1}$	$\frac{x^4+y^4}{x+y}$, then	sinu is homo	genous function of de	gree	
	a) 3	b) 2	c) 1	d) None of these		
20)	If $u = ton^{-1}$	$x^3 + y^3$ then	tonu is home	annous function of de		
20)	If $u = tan$	x+y, then	tanu is nome	sgenous function of de	gree	
	a) 3	b) 2	c) 1	d) None of these		
21)	Let $u = \frac{x^2 + x}{x + x}$	$\frac{-y^2}{-y}$ is a home	ogenous func	tion. What is the degree	ee of u?	
	a) 3	b) 2	c) 1	d) None of these		
22)	Let $u = \frac{x^3 + x^3}{x + x^4}$	$\frac{-y^3}{-y}$ is a home	ogenous func	tion. What is the degree	ee of u?	
	a) 3	b) 2	c) 1	d) None of these		
23) $u = \tan^{-1} \frac{y}{x}$ is homogenous function of degree						
	a) 0	b) 1	c) 2	d) None of these		

24) $u = \tan^{-1}\frac{y}{x} + \sin^{-1}\frac{x}{y}$ is homogenous function of degree					
	a) 0	b) 1	c) 2	d) None of th	iese
25) $f(x, y) = \Phi(\frac{y}{x}) + \Psi(\frac{x}{y})$ is homogenous function of degree					
	a) <i>n</i>	b) 1	c) 0	d) None of th	nese
26) B	y Euler's The	eorem, if f (x	, y) is homog	geneous function	on of degree n in two variables
x	and y having	first order pa	artial derivat	ives then $x \frac{\partial f}{\partial x}$	$+ y \frac{\partial f}{\partial y} = \dots$
	a) <i>nf</i>	b) <i>f</i>	c) 0	d) None of th	iese
27) If	z is homoger	nous function	of degree 2	then $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial x}$	$\frac{z}{x} = \dots$
	a) 2z	b) 2	c) z	d) None of th	nese
28) If	z is homoger	nous function	of degree 3	then $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial x}$	$\frac{z}{x} = \dots$
	a) z	b) 3z	c) 5	d) None of th	nese (A)
29) If	u is homoger	nous functior	n of <mark>degre</mark> e n	then $x \frac{\partial u}{\partial x} + y \frac{\partial}{\partial x}$	$\frac{u}{lx} = \dots$
	a) <mark>nu</mark>	b) n	c) u	d) None of th	iese and a second s
30) If	u is homoger	nous func <mark>tior</mark>	n of degree 0	then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial x}$	$\frac{u}{r} = \dots$
	a) <mark>0</mark>	b) 1	c) 2	d) None of th	iese di
31) If u is homogenous function of degree 7 then $x\frac{\partial u}{\partial u} + y\frac{\partial u}{\partial u} = \dots$					
	a) <mark>7u</mark>	b) 7	c) u	d) None of th	iese 🤇
32) A	function f(x,	y) is said to	be homogen	ous function o	of degree n if it expressed as
	a) $f(x, y) = \Phi$	$\Phi(\frac{x}{y})$ b) f(x)	$(x, y) = \Phi(\frac{y}{x})$	c) $f(x, y) = x$	$a^{n}\Phi(\frac{y}{x})$ d) None of these
33) A	function f(x,	y) is said to	be homogen	ous function o	of degree n if $f(tx, ty) = \dots$
	a) t f(x, y)	b) t ⁿ f	(x, y)	c) $t^2 f(x, y)$	d) None of these
34) A function f(x, y, z) is said to be homogenous function of degree n if					
f(t	tx, ty, tz) =				
	a) $t^n f(x, y, z)$	b) $tf(x)$	x, y, z)	c) f(x, y, z)	d) None of these
35) $u = \tan^{-1} \frac{y}{x}$ is homogenous function of degree					
	a) 0	b) 1	c) 2	d) None of th	nese
36) If $u = G^{-1} \{ x^n f(\frac{y}{x}) \}$ and $G'(u) \neq 0$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \dots$					
	a) nu	b) n $\frac{G(u)}{G'(u)}$	c) nG(u)	d) None of th	iese
37) If u = f(x, y) is homogenous function of degree n, then $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} =$					
	a) n(n-1)u	b) (n-	-1)u	c) nu	d) None of these

DEPARTMENT OF MATHEMATICS -KARM. A. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER

UNIT-3: TAYLOR'S THEOREM AND EXTREME VALUES

✤ Taylor's theorem:

If f(x, y) possesses continuous n^{th} order partial derivatives in the neighborhood of point (a, b) and point (a + h, b + k) lies in the neighbourhood of point (a, b) then there exists θ , $0 < \theta < 1$ such that

$$f(a + h, b + k) = f(a, b) + \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)f(a, b) + \frac{1}{2!}\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^2f(a, b) + \dots + \frac{1}{(n-1)!}\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{n-1}f(a, b) + \frac{1}{n!}\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^nf(a + \theta h, b + \theta k).$$

Proof: Let us write x = a + ht, y = b + kt

$$\therefore \frac{dx}{dt} = h \& \frac{dy}{dt} = k$$

$$\therefore f(x, y) = f(a + ht, b + kt) = \emptyset(t)$$

As f(x, y) possesses continuous n^{th} order partial derivatives in the neighborhood of point (a, b).

 $\therefore \phi(t)$ is continuous [0, t] and derivable in (0, t).

: By Maclaurin's series expansion of $\emptyset(t)$ in [0, t]

$$\therefore \ \phi(t) = \phi(0) + t\phi'(0) + \frac{t^2}{2!}\phi''(0) + \dots + \frac{t^{n-1}}{(n-1)!}\phi^{n-1}(0) + \frac{t^n}{n!}\phi^n(\theta t)$$

Putting
$$t = 1$$
, we get

As
$$\phi(t) = f(x, y) = f(a + ht, b + kt)$$

 $\therefore \quad \phi'(t) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} = h\frac{\partial f}{\partial x} + k\frac{\partial f}{\partial y} = (h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y})f$

Again, differentiating w.r.t. t, we get

$$\emptyset''(t) = \frac{d}{dt} \left[h \frac{\partial f}{\partial x} + k \frac{\partial f}{\partial y} \right] = \frac{\partial}{\partial x} \left[h \frac{\partial f}{\partial x} + k \frac{\partial f}{\partial y} \right] \frac{dx}{dt} + \frac{\partial}{\partial y} \left[h \frac{\partial f}{\partial x} + k \frac{\partial f}{\partial y} \right] \frac{dy}{dt}$$

$$= \left(h \frac{\partial^2 f}{\partial x^2} + k \frac{\partial^2 f}{\partial x \partial y} \right) h + \left(h \frac{\partial^2 f}{\partial y \partial x} + k \frac{\partial^2 f}{\partial y^2} \right) k$$

$$= h^2 \frac{\partial^2 f}{\partial x^2} + hk \frac{\partial^2 f}{\partial x \partial y} + hk \frac{\partial^2 f}{\partial y \partial x} + k^2 \frac{\partial^2 f}{\partial y^2}$$

$$= h^2 \frac{\partial^2 f}{\partial x^2} + 2hk \frac{\partial^2 f}{\partial x \partial y} + k^2 \frac{\partial^2 f}{\partial y^2} \quad \because \quad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

$$\therefore \quad \emptyset''(t) = \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^2 f \text{ and so on.}$$

In general,
$$\emptyset^r(t) = \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^r f(a+ht,b+kt)$$

 \therefore We have, $\emptyset(1) = f(a+h,b+k) \& \emptyset(0) = f(a,b)$
 $\& \emptyset^r(0) = \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^r f(a,b)$ for $1 \le r \le n-1$
 $\therefore \quad \emptyset^n(\theta) = \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^n f(a+\theta h,b+\theta k)$
Putting these values in equation (1), we get

$$f(a + h, b + k) = f(a, b) + \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)f(a, b) + \frac{1}{2!}\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{2}f(a, b) + \dots + \frac{1}{(n-1)!}\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{n-1}f(a, b) + \frac{1}{n!}\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{n}f(a + \theta h, b + \theta k).$$

Hence proved.

Maclaurin's theorem for a function of two variables:-

If f(x, y) possesses continuous n^{th} order partial derivatives in the neighborhood of point (0, 0) and point (x, y) lies in the neighbourhood of point (0, 0) then there exists θ , $0 < \theta < 1$ such that

$$f(x,y) = f(0,0) + \left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)f(0,0) + \frac{1}{2!}\left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)^2f(0,0) + \dots \\ + \frac{1}{(n-1)!}\left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)^{n-1}f(0,0) + \frac{1}{n!}\left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)^n f(\theta x, \theta y).$$

> REMARK:-

1] $f(x,y) = f(a,b) + [(x-a)f_x(a,b) + (y-b)f_y(a,b)] + \frac{1}{2!}[(x-a)^2 f_{xx}(a,b) + 2(x-a)(y-b)f_{xy}(a,b) + (y-b)^2 f_{yy}(a,b)] + \frac{1}{3!}[(x-a)^3 f_{xxx}(a,b) + 3(x-a)^2(y-b)f_{xxy}(a,b) + 3(x-a)(y-b)^2 f_{xyy}(a,b) + (y-b)^3 f_{yyy}(a,b)] + \cdots$ is called Taylor's series expansion of f(x,y) in powers of (x-a)& (y-b) or about point (a,b). 2] $f(x,y) = f(0,0) + [xf_x(0,0) + yf_y(0,0)] + \frac{1}{2!}[x^2 f_{xx}(0,0) + 2xy f_{xy}(0,0) + y^2 f_{yy}(0,0)] + \frac{1}{3!}[x^3 f_{xxx}(0,0) + 3x^2 y f_{xxy}(0,0) + 3xy^2 f_{xyy}(0,0) + y^3 f_{yyy}(0,0)] + \cdots$ is called Maclaurin's series expansion of f(x,y) in powers of x & y or about point (0,0).

Ex. Expand the function $f(x, y) = x^2 + xy - y^2$ by Taylor's theorem in powers of (x - 1) & (y + 2).

Solution: By Taylor's theorem expansion of f(x, y) in powers of (x - 1) & (y + 2)

i.e. about the point (1, -2) is $f(x,y) = f(1,-2) + \left[(x-1)f_x(1,-2) + (y+2)f_y(1,-2) \right] + \frac{1}{2!} \left[(x-1)f_y(1,-2) + (y+2)f_y(1,-2) \right] + \frac{1}{2!} \left[(x-1)f_y(1,-2$ $1)^{2} f_{xx}(1,-2) + 2(x-1)(y+2)f_{xy}(1,-2) + (y+2)^{2} f_{yy}(1,-2) + \cdots + (1)$ Here, $f(x, y) = x^2 + xy - y^2 \therefore f(1, -2) = 1 - 2 - 4 = -5$ $\therefore f_{r}(1,-2) = 2 - 2 = 0$ $f_{x}(x,y) = 2x + y$ $\therefore f_{v}(1,-2) = 1 + 4 = 5$ $f_{\mathcal{V}}(x, y) = x - 2y$ $\therefore f_{rr}(1,-2) = 2$ $f_{xx}(x,y) = 2$ $f_{xy}(x,y) = 1$ $\therefore f_{xy}(1,-2) = 1$ $\therefore f_{\nu\nu}(1,-2) = -2$ $f_{\nu\nu}(x,y) = -2$ And all higher order partial derivatives are 0. Putting these values in equation (1), we get

 $x^{2} + xy - y^{2} = -5 + [0 + 5(y + 2)]$ $+ \frac{1}{2} [2(x - 1)^{2} + 2(x - 1)(y + 2) - 2(y + 2)^{2}] + 0$ $\therefore x^{2} + xy - y^{2} = -5 + 5(y + 2) + (x - 1)^{2} + (x - 1)(y + 2) - (y + 2)^{2}$ be the required expansion.

Ex. Expand the function $f(x, y) = x^3 + y^3 + xy^2$ by Taylor's theorem in powers of (x - 1) & (y - 2).

Solution: By Taylor's theorem expansion of f(x, y) in powers of (x - 1) & (y - 2)

i.e. about the point (1, 2) is $f(x,y) = f(1,2) + \left[(x-1)f_x(1,2) + (y-2)f_y(1,2) \right] + \frac{1}{2!} \left[(x-1)^2 f_{xx}(1,2) + \frac{1}{2!} \right]$ $2(x-1)(y-2)f_{xy}(1,2) + (y-2)^{2}f_{yy}(1,2)] + \frac{1}{3!}[(x-1)^{3}f_{xxx}(1,2) +$ $3(x-1)^{2}(y-2)f_{xxy}(1,2) + 3(x-1)(y-2)^{2}f_{xyy}(1,2) + (y-2)^{3}f_{yyy}(1,2)] +$ Here, $f(x, y) = x^3 + y^3 + xy^2 \therefore f(1, 2) = 1 + 8 + 4 = 13$ $f_x(x, y) = 3x^2 + y^2$ $f_y(x, y) = 3y^2 + 2xy$ $\therefore f_x(1, 2) = 3 + 4 = 7$ $\therefore f_y(1, 2) = 12 + 4 = 16$ $f_x(x, y) = 3x^2 + y^2$ $f_{xx}(x, y) = 6x \qquad \therefore f_{xx}(1, 2) = 6 \\ f_{xy}(x, y) = 2y \qquad \therefore f_{xy}(1, 2) = 4 \\ f_{yy}(x, y) = 6y + 2x \qquad \therefore f_{yy}(1, 2) = 12 + 2 = 14$ $f_{rrr}(1,2) = 6$ $f_{xxx}(x,y) = 6$ $f_{xxy}(x,y) = 0$ $f_{xxy}(1,2) = 0$ $f_{xyy}(x,y) = 2$ $\therefore f_{xyy}(1,2) = 2$ $f_{\nu\nu\nu}(x,y) = 6$ $\therefore f_{\nu\nu\nu}(1,2) = 6$ and all higher order partial derivatives are 0. Putting these values in equation (1), We get $x^{3} + y^{3} + xy^{2} = 13 + [7(x - 1) + 16(y - 2)]$ $+\frac{1}{2}[6(x-1)^2+8(x-1)(y-2)+14(y+2)^2]$ $1 \\ 1 \\ (x - 1)^3 + 0 + ((x - 1)(x - 2)^2 + 6(x - 2)^3] + 0$

$$+\frac{1}{6}[6(x-1)^{3} + 0 + 6(x-1)(y-2)^{2} + 6(y-2)^{3}] + 0$$

∴ $x^{3} + y^{3} + xy^{2} = 13 + [7(x-1) + 16(y-2)]$

 $+3(x-1)^{2} + 4(x-1)(y-2) + 7(y-2)^{2}$

 $+(x-1)^{3} + (x-1)(y-2)^{2} + (y-2)^{3}$

be the required expansion.

Ex. Express x^2y as polynomial in (x - 1) & (y + 2)by using Taylor's theorem. Solution: By Taylor's theorem expansion of f(x, y) in powers of (x - 1)&(y + 2)*i.e.* about the point (1, -2) is

$$f(x,y) = f(1,-2) + \left[(x-1)f_x(1,-2) + (y+2)f_y(1,-2) \right]$$

DEPARTMENT OF MATHEMATICS -KARM. A. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNEI

=

$$+ \frac{1}{2!} [(x-1)^2 f_{xx}(1,-2) + 2(x-1)(y+2) f_{xy}(1,-2) + (y+2)^2 f_{yy}(1,-2)] \\ + \frac{1}{3!} [(x-1)^3 f_{xxx}(1,-2) + \cdots \dots \dots \dots \dots (1)$$
Here, $f(x,y) = x^2y \therefore f(1,-2) = -2$
 $f_x(x,y) = 2xy \qquad \therefore f_x(1,-2) = -4$
 $f_y(x,y) = x^2 \qquad \therefore f_y(1,-2) = 1$
 $f_{xx}(x,y) = 2y \qquad \therefore f_{xx}(1,-2) = -4$
 $f_{xy}(x,y) = 2x \qquad \therefore f_{xy}(1,-2) = 2$
 $f_{yy}(x,y) = 0 \qquad \therefore f_{yy}(1,-2) = 0$
 $f_{xxx}(x,y) = 0 \qquad \therefore f_{xxx}(1,-2) = 2$
 $f_{xyy}(x,y) = 0 \qquad \therefore f_{xxy}(1,-2) = 2$
 $f_{xyy}(x,y) = 0 \qquad \therefore f_{xyy}(1,-2) = 0$
 $f_{xxy}(x,y) = 2 \qquad \therefore f_{xyy}(1,-2) = 0$
and all higher order partial derivatives are 0.Putting these values in equation (1), we get
 $x^2y = -2 + [(x-1)(-4) + (y+2)(1)]$
 $+ \frac{1}{2}[(x-1)^2(-4) + 2(x-1)(y+2)(2) + (y+2)^2(0)]$
 $+ \frac{1}{6}[0 + 3(x-1)^2(y+2)(2) + 0 + 0]$
 $\therefore x^2y = -2 - 4(x-1) + (y+2) - 2(x-1)^2 + 2(x-1)(y+2)$
 $+ (x-1)^2(y+2)$
be the required expansion.

Ex. Show that expansion of
$$\sin(xy)$$
 in powers of $(x - 1) & \left(y - \frac{\pi}{2}\right)$ upto and including
second term is $1 - \frac{\pi^2}{8}(x - 1)^2 - \frac{\pi}{2}(x - 1)\left(y - \frac{\pi}{2}\right) - \frac{1}{2}\left(y - \frac{\pi}{2}\right)^2$.
Proof: Expansion of $f(x, y)$ inpowers of $(x - 1) & \left(y - \frac{\pi}{2}\right)$ upto and including second
degree term is $f(x, y) = f\left(1, \frac{\pi}{2}\right) + (x - 1)f_x\left(1, \frac{\pi}{2}\right) + \left(y - \frac{\pi}{2}\right)f_y\left(1, \frac{\pi}{2}\right)$
 $+ \frac{1}{2!}\left[(x - 1)^2 f_{xx}\left(1, \frac{\pi}{2}\right) + 2(x - 1)\left(y - \frac{\pi}{2}\right)f_{xy}\left(1, \frac{\pi}{2}\right) + \left(y - \frac{\pi}{2}\right)^2 f_{yy}\left(1, \frac{\pi}{2}\right)\right] - \cdots (1)$
Here, $f(x, y) = \sin(xy)$ $\therefore f\left(1, \frac{\pi}{2}\right) = 1$
 $f_x(x, y) = y\cos(xy)$ $\therefore f_x\left(1, \frac{\pi}{2}\right) = 0$
 $f_y(x, y) = x\cos(xy)$ $\therefore f_y\left(1, \frac{\pi}{2}\right) = 0$
 $f_{xx}(x, y) = -y^2\sin(xy)$ $\therefore f_{xx}\left(1, \frac{\pi}{2}\right) = -\frac{\pi^2}{4}$

$$f_{xy}(x, y) = \cos(xy) - xy \sin(xy) \quad \therefore \quad f_{xy}\left(1, \frac{\pi}{2}\right) = -\frac{\pi}{2}$$

$$f_{yy}(x, y) = -x^{2} \sin(xy) \quad \therefore \quad f_{yy}\left(1, \frac{\pi}{2}\right) = -1$$
Putting these values in equation (1), we get
$$\sin(xy) = 1 + [0 + 0] + \frac{1}{2}[(x - 1)^{2}\left(-\frac{\pi^{2}}{4}\right) + 2(x - 1)\left(y - \frac{\pi}{2}\right)\left(-\frac{\pi}{2}\right)$$

$$+ \left(y - \frac{\pi}{2}\right)^{2}(-1)]$$

$$\therefore \sin(xy) = 1 - \frac{\pi^{2}}{8}(x - 1)^{2} - \frac{\pi}{2}(x - 1)\left(y - \frac{\pi}{2}\right) - \frac{1}{2}\left(y - \frac{\pi}{2}\right)^{2}$$
Hence Proved.

Ex. Prove that $\sin(x + y) = (x + y) - \frac{(x + y)^{3}}{3!} + \cdots$
Proof: Maclaurin's series expansion of $f(x, y)$ inpowers of $x \& y$ is
$$f(x, y) = f(0, 0) + [xf_{x}(0, 0) + yf_{y}(0, 0)] + \frac{1}{2!}[x^{2}f_{xx}(0, 0) + 2xyf_{xy}(0, 0) + y^{2}f_{yy}(0, 0)] + \frac{1}{3!}[x^{3}f_{xxx}(0, 0) + 3x^{2}yf_{xxy}(0, 0) + 3xy^{2}f_{xyy}(0, 0) + y^{3}f_{yyy}(0, 0)] + \cdots (1)$$
Herce, $f(x, y) = \sin(x + y) \therefore f(0, 0) = 0$

$$f_{x}(x, y) = \cos(x + y) \qquad \therefore f_{xy}(0, 0) = 1$$

$$f_{xx}(x, y) = -\sin(x + y) \qquad \therefore f_{xy}(0, 0) = 0$$

$$f_{xy}(x, y) = -\sin(x + y) \qquad \therefore f_{xy}(0, 0) = -1$$

$$f_{xyy}(x, y) = -\cos(x + y) \qquad \therefore f_{xyy}(0, 0) = -1$$

$$f_{xyy}(x, y) = -\cos(x + y) \qquad \therefore f_{xxy}(0, 0) = -1$$

$$f_{xyy}(x, y) = -\cos(x + y) \qquad \therefore f_{xyy}(0, 0) = -1$$

$$f_{xyy}(x, y) = -\cos(x + y) \qquad \therefore f_{xyy}(0, 0) = -1$$

$$f_{xyy}(x, y) = -\cos(x + y) \qquad \therefore f_{xyy}(0, 0) = -1$$

$$f_{xyy}(x, y) = -\cos(x + y) \qquad \therefore f_{xyy}(0, 0) = -1$$

==1

Ex. I

And so on. Putting these values in equation (1), we get $sin(x + y) = 0 + [x(1) + y(1)] + \frac{1}{2!}[0 + 0 + 0]$ $+\frac{1}{3!}[x^{3}(-1) + 3x^{2}y(-1) + 3xy^{2}(-1) + y^{3}(-1)] + \cdots$ $\therefore \sin(x + y) = (x + y) - \frac{(x+y)^3}{3!} + \cdots$ Hence proved.

Ex. Show that for $0 < \theta < 1$, $\sin x \sin y = xy - \frac{1}{6}[(x^3 + 3xy^2)(\cos \theta x \sin \theta y) +$ $(y^3 + 3x^2y)(\sin\theta x\cos\theta y)].$

Proof: Maclaurin's series expansion of f(x, y) inpowers of x & y with remainder after third term. $f(x, y) = f(0, 0) + [xf_{y}(0, 0) + yf_{y}(0, 0)]$ $+\frac{1}{2!} \left[x^2 f_{xx}(0,0) + 2xy f_{xy}(0,0) + y^2 f_{yy}(0,0) \right]$ $+ \frac{1}{3!} \left[x^3 f_{xxx}(\theta x, \theta y) + 3x^2 y f_{xxy}(\theta x, \theta y) + 3xy^2 f_{xyy}(\theta x, \theta y) + y^3 f_{yyy}(\theta x, \theta y) \right]$ ---(1) Here, $f(x, y) = \sin x \sin y$ $\therefore f(0, 0) = 0$ $f_x(x, y) = \cos x \sin y$ $\therefore f_{\gamma}(0,0) = 0$ $f_{y}(x, y) = \sin x \cos y$ $\therefore f_{\nu}(0,0) = 0$ $f_{xx}(x, y) = -\sin x \sin y$ $f_{xx}(0,0) = 0$ $f_{xy}(x, y) = \cos x \cos y$ $\therefore f_{x\nu}(0,0) = 1$ $f_{yy}(x, y) = -\sin x \sin y$ $\therefore f_{\nu\nu}(0,0) = 0$ $f_{xxx}(x, y) = -\cos x \sin y$ $\therefore f_{xxx}(\theta x, \theta y) = -\cos \theta x \sin \theta y$ $f_{xxy}(x,y) = -\sin x \cos y$ $\therefore f_{xxy}(\theta x, \theta y) = -\sin \theta x \sin \theta y$ $f_{xyy}(x,y) = -\cos x \sin y$ $\therefore f_{xyy}(\theta x, \theta y) = -\cos \theta x \sin \theta y$ $f_{yyy}(x,y) = -\sin x \cos y$ $\therefore f_{yyy}(\theta x, \theta y) = -\sin \theta x \cos \theta y$ And so on. Putting these values in equation (1), we get, $\sin x \cos y$ $= 0 + 0 + 0 + \frac{1}{2} [0 + 2xy + 0] + \frac{1}{6} [-x^3 \cos \theta x \sin \theta y - 3x^2 y \sin \theta x \cos \theta y]$ $-3xy^2 \cos\theta x \sin\theta y - y^3 \sin\theta x \cos\theta y$ $\therefore \sin x \cos y = xy - \frac{1}{6} \left[(x^3 + 3x^2y) \cos \theta x \sin \theta y + (y^3 + 3x^2y) \sin \theta x \cos \theta y \right]$ Hence proved.

Ex. Expand $e^{2x} \cos y$ as Taylor's series about (0, 0) upto first three terms. Solution: Taylor series expansion for f(x, y) about (0, 0) up to first three terms is

$$f(x,y) = f(0,0) + [xf_x(0,0) + yf_y(0,0)] + \frac{1}{2!} [x^2 f_{xx}(0,0) + 2xyf_{xy}(0,0) + y^2 f_{yy}(0,0)] - \dots (1)$$
Here, $f(x,y) = e^{2x} \cos y$ $\therefore f(0,0) = 1$
 $f_x(x,y) = 2e^{2x} \cos y$ $\therefore f_x(0,0) = 2$
 $f_y(x,y) = -e^{2x} \sin y$ $\therefore f_y(0,0) = 0$
 $f_{xx}(x,y) = 4e^{2x} \cos y$ $\therefore f_{xx}(0,0) = 4$
 $f_{xy}(x,y) = -2e^{2x} \sin y$ $\therefore f_{xy}(0,0) = 0$
 $f_{yy}(x,y) = -e^{2x} \cos y$ $\therefore f_{yy}(0,0) = -1$
Putting these values in equation (1), we get
 $e^{2x} \cos y = 1 + [2x + 0] + \frac{1}{2} [4x^2 + 0 - y^2]$
i.e. $e^{2x} \cos y = 1 + 2x + 2x^2 - \frac{1}{2}y^2$

Ex. Expand e^{x+y} as Taylor's series about (0,0). Solution. Taylor series expansion for f(x, y) about (0, 0) is $f(x, y) = f(0, 0) + \left[x f_x(0, 0) + y f_y(0, 0) \right]$ $+\frac{1}{2!} \left[x^2 f_{xx}(0,0) + 2xy f_{xy}(0,0) + y^2 f_{yy}(0,0) \right]$ $+\frac{1}{3!} \left[x^3 f_{xxx}(0,0) + 3x^2 y f_{xxy}(0,0) + 3x y^2 f_{xyy}(0,0) + y^3 f_{yyy}(0,0) \right] + \cdots$ (1) Here, $f(x, y) = e^{x+y}$: f(0, 0) = 1 $f_x(x, y) = e^{x+y}$ $f_y(x, y) = e^{x+y}$ $f_{xx}(x, y) = e^{x+y}$ $f_{xy}(x, y) = e^{x+y}$ $f_{r}(0,0) = 1$ $f_{\nu}(0,0) = 1$ $f_{rr}(0,0) = 1$ $\therefore f_{xv}(0,0) = 1$ $f_{yy}(x,y) = e^{x+y}$ $\therefore f_{\gamma\gamma}(0,0) = 1$ $f_{xxx}(x,y) = e^{x+y}$ $\therefore f_{xxx}(0,0) = 1$ $f_{xxx}(x, y) = e^{x+y}$ $f_{xxy}(x, y) = e^{x+y}$ $\therefore f_{xxy}(0,0) = 1$ $f_{xyy}(x,y) = e^{x+y}$ $f_{xyy}(0,0) = 1$ $f_{yyy}(x,y) = e^{x+y}$ $\therefore f_{yyy}(0,0) = 1$ And so on. Putting these values in equation (1), we get $e^{x+y} = 1 + [x+y] + \frac{1}{2}[x^2 + 2xy + y^2] + \frac{1}{3!}[x^3 + 3x^2y + 3y^2x + y^3] + \cdots$ *i.e.* $e^{x+y} = 1 + (x+y) + \frac{1}{2!}(x+y)^2 + \frac{1}{3!}(x+y)^3 + \cdots$ be the required expansion. Absolute maximum: A function f(x, y) is said to have absolute maximum at point (a, b) of the region R if $f(x, y) \leq f(a, b) \quad \forall \ (x, y) \in R$. ✤ Absolute minimum: A function f(x, y) is said to have absolute minimum at point (a, b) of the region R if $f(x, y) \ge f(a, b) \quad \forall \ (x, y) \in R$. ✤ Relative maximum: A function f(x, y) is said to have relative maximum at point (a, b)if $f(x, y) \leq f(a, b) \quad \forall \ (x, y) \in N\delta(a, b).$ Relative minimum: A function f(x, y) is said to have relative minimum at point (a, b)if $f(a,b) \leq f(x,y) \quad \forall \ (x,y) \in N\delta(a,b)$. > REMARK: 1] An Absolute maximum or an Absolute minimum is called an Absolute extremum. 2] Relative maximum or Relative minimum is called as Relative extremum.

Critical point or Stationary point:

A point (a, b) is said to be critical point or stationary point of a function f(x, y),

if $f_x(a, b) = 0$ & $f_y(a, b) = 0$ or they does not exists.

Saddle point or Minimax point:

A critical point (a, b) is said to be a saddle point or minimax point if f(x, y) have no extremum at point (a, b).

• NECESSARY CONDITION FOR EXTREMUM:

If a function f(x, y) have an extremum at point (a, b) then

1) $f_x(a, b) = 0$ or it does not exists.

2) $f_{y}(a, b) = 0$ or it does not exists.

Proof: Let, function f(x, y) have an extremum at point (a, b).

By taking y = b, we have a function f(x, b) of one variable x.

 \therefore $f_x(a, b) = 0$ or it does not exists.

Similarly, by taking x = a, we get $f_y(a, b) = 0$ or it does not exists.

Sufficient Condition For Extremum:

If f(x, y) possesses n^{th} order partial derivative in a neighbourhood of point (a, b) of the region R with $f_x(a, b) = 0$, $f_y(a, b) = 0$, $r = f_{xx}(a, b)$, $s = f_{xy}(a, b)$,

 $t = f_{yy}(a, b) \& \Delta = rt - s^2$, then the function f(x, y) is

- i) Minimum at point (a, b) if $\Delta > 0 \& r > 0$.
- ii) Maximum at point (a, b) if $\Delta > 0 \& r < 0$.
- iii) No extremum at point (a, b) if $\Delta < 0$ *i.e.* (a, b) is saddle point if $\Delta < 0$.
- iv) The next investigation is needed if $\Delta = 0$.

Proof: By Taylor's theorem,

$$f(a + h, b + k) = f(a, b) + \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)f(a, b) + \frac{1}{2!}\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{2}f(a, b) + R_{3}.$$

$$\therefore f(a + h, b + k) - f(a, b) = \frac{1}{2!}(h^{2}r + 2hks + k^{2}t) + R_{3}.$$

$$\therefore f(a + h, b + k) - f(a, b) = \frac{1}{2!r}(h^{2}r^{2} + 2hksr + k^{2}s^{2} + k^{2}rt - k^{2}s^{2}) + R_{3}.$$

$$\therefore f(a + h, b + k) - f(a, b) = \frac{1}{2!r}(h^{2}r^{2} + 2hksr + k^{2}s^{2} + k^{2}rt - k^{2}s^{2}) + R_{3}.$$

$$= \frac{1}{2!r}[(hr + ks)^{2} + k^{2}(rt - s^{2})] + R_{3}.$$

For small values of h, k, the sign of RHS is independent of $R_{3}.$

i) If $\Delta = rt - s^2 > 0$ & r > 0 then $f(a + h, b + k) - f(a, b) \ge 0$ *i.e.* $f(a + h, b + k) \ge f(a, b)$. $\therefore f$ is minimum at point (a, b).

ii) If $\Delta = rt - s^2 > 0$ & r < 0 then $f(a + h, b + k) - f(a, b) \le 0$

i.e. $f(a+h,b+k) \leq f(a,b)$. $\therefore f$ is maximum at point (a,b).

iii) If $\Delta = rt - s^2 < 0$ then the function f(x, y) have no extremum at point (a, b). iv) If $\Delta = 0$ then we can't say the function f(x, y) have an extremum.

 \therefore We need further investigation.

♦ Working rule to find the extremum by using second order partial derivatives:-

- 1. Find critical points by solving $f_x(x, y) = 0 \& f_y(x, y) = 0$.
- 2. At these critical points, find $r = f_{xx}$, $s = f_{xy}$ & $t = f_{yy}$ and $\Delta = rt s^2$.
- 3. *f* is minimum if $\Delta > 0 \& r > 0$.
- 4. *f* is maximum if $\Delta > 0 \& r < 0$.
- 5. *f* has no extremum if $\Delta < 0$.

Ex: Discuss the maxima and minima of the function $u = x^2 + y^2 + \frac{z}{r} + \frac{z}{v}$. Solution: Let, $u = x^2 + y^2 + \frac{2}{x} + \frac{2}{y}$ $\therefore u_x = 2x - \frac{2}{x^2} \text{ and } u_y = 2y - \frac{2}{y^2}$ $\therefore u_{xx} = 2 + \frac{4}{x^3}$, $u_{xy} = 0$ and $u_{yy} = 2 + \frac{4}{x^3}$ By solving $u_x = 0$ and $u_y = 0$, We get $\Rightarrow 2x - \frac{2}{x^2} = 0$ and $2y - \frac{2}{x^2} = 0$ *i.e.* $x - \frac{1}{x^2} = 0$ and $y - \frac{1}{y^2} = 0$ *i.e.* $x^3 - 1 = 0$ and $y^3 - 1 = 0$ \therefore x = 1 and y = 1 \therefore Critical point is (1, 1). At the critical point, we get $r = u_{xx}(1,1) = 2 + 4 = 6$ $s = u_{xy}(1,1) = 0$ $t = u_{\nu\nu}(1,1) = 6$ $\therefore \Delta = rt - s^2 = 36 - 0 = 36$ Here $\Delta = 36 > 0$ and r = 6 > 0 \therefore The function u is minimum at point (1, 1) and its minimum value is $u_{min} = u(1, 1) = 1 + 1 + 2 + 2 = 6$

Ex: Find the points (x, y) where the function u = xy(a - x - y) is maximum or minimum. What is the maximum value of function? Solution: Let u = xy(a - x - y)i.e. $u = axy - x^2y - xy^2$ \therefore $u_x = ay - 2xy - y^2$ and $u_y = ax - x^2 - 2xy$ $u_{xx} = -2y, \quad u_{xy} = a - 2x - 2y$ and $u_{yy} = -2x$ Now $u_x = 0$ and $u_y = 0$ gives $ay - 2xy - y^2 = 0$ and $ax - x^2 - 2xy = 0$ i.e. -y(y + 2x - a) = 0 and -x(x + 2y - a) = 0i.e. y = 0 or y + 2x = a ------ (1) x = 0 or x + 2y = a ------ (2) For y = 0, from (2), we get x = a

For x = 0, from (1), we get y = aTo solve equation (1) and (2), Consider equations $2 \times (1) - (2)$, 2y + 4x = 2a-2y - x = -a $3x = a \div x = \frac{a}{3}$ Putting $x = \frac{a}{3}$ in equation (1), we get, $y + \frac{2a}{3} = a \therefore y = a - \frac{2a}{3} = \frac{a}{3}$. \therefore The critical points are (0, 0), (a, 0), (0, a) & $\left(\frac{a}{3}, \frac{a}{3}\right)$. $t = u_{yy}$ $s = u_{xv}$ $r = u_{xx}$ $\Lambda = rt - s^2$ Critical point Remark =a-2x-2y=-2x= -2y $-a^2 < 0$ 0 Saddle point 0 (0, 0)а $-a^2 < 0$ 0 Saddle point (a, 0)-2a-a $-a^2 < 0$ (0, a)-2a0 Saddle point -a $\left(\frac{a}{3},\frac{a}{3}\right)$ а $\frac{a^2}{2} > 0$ 2a2aPoint of 3 3 3 maximum

$$u_{max.} = u\left(\frac{a}{3}, \frac{a}{3}\right) = \frac{a^2}{9}\left(a - \frac{a}{3} - \frac{a}{3}\right) = \frac{a^3}{27}$$

Ex: Find the least value of the function $f(x, y) = xy + \frac{50}{x} + \frac{20}{y}$. Solution: Let, $f(x, y) = xy + \frac{50}{x} + \frac{20}{y}$ $\therefore f_x(x, y) = y - \frac{50}{x^2}$ and $f_y(x, y) = x - \frac{20}{y^2}$ $f_{xx}(x, y) = \frac{100}{x^3}$, $f_{xy}(x, y) = 1$ and $f_{yy}(x, y) = \frac{40}{y^3}$ Now, $f_x(x, y) = 0$ and $f_y(x, y) = 0$

i.e.
$$y - \frac{1}{x^2} = 0$$
 and $x - \frac{1}{y^2} = 0$
i.e. $x^2y - 50 = 0$ and $xy^2 - 20 = 0$
i.e. $x^2y = 50$ ----- (1) and $xy^2 = 20$ ----- (2)
 $x^2y = 50$ ----- (2)

i.e.
$$\frac{x - y}{xy^2} = \frac{30}{20} \implies \frac{x}{y} = \frac{3}{2}i.e. \quad y = \frac{1}{5}x$$

Putting
$$y = \frac{1}{5}x$$
 in equation (1), we get
 $\frac{2}{5}x^3 = 50 \implies x^3 = 125 \implies x = 5 \implies y = \frac{2}{5}(5) = 2$
 \therefore Critical point is (5,2).
 $r = f_{xx}(5,2) = \frac{100}{125} = \frac{4}{5}$
 $s = f_{xy}(5,2) = 1$

 $t = f_{yy}(5,2) = \frac{40}{9} = 5$ $\therefore \ \Delta = rt - s^2 = 4 - 1 = 3$ Here $\Delta = 3 > 0$ and $r = \frac{4}{r} > 0$. \therefore Given function is minimum at point (5, 2) and its minimum value is *i.e.* Least value is $f_{min.} = f(5, 2) = 10 + \frac{50}{5} + \frac{20}{2} = 30$. Ex: Investigate the maximum and minimum values of the function $f(x, y) = 3x^2y - 3x^2 - 3y^2 + y^3 + 2.$ Solution: Let, $f(x, y) = 3x^2y - 3x^2 - 3y^2 + y^3 + 2$ $f_{x}(x,y) = 6xy - 6x$ and $f_{y}(x,y) = 3x^{2} - 6y + 3y^{2}$ $f_{xx}(x,y) = 6y - 6$, $f_{xy}(x,y) = 6x$ and $f_{yy}(x,y) = -6 + 6y$ Now, $f_x(x, y) = 0$ and $f_y(x, y) = 0$ gives 6xy - 6x = 0 and $3x^2 - 6y + 3y^2 = 0$ *i.e.* 6x(y-1) = 0 and $x^2 - 2y + y^2 = 0$ *i.e.* x = 0 or y = 1 and $x^2 - 2y + y^2 = 0$ (1)For x = 0, from equation (1), we get $-2y + y^2 = 0$ i.e.y(y-2) = 0 i.e.y = 0 or y = 2For y = 1, from equation (1), we get $x^2 - 2 + 1 = 0$ *i.e.* $x^2 - 1 = 0$ *i.e.* x = +1: The critical points are (0, 0), (0, 2), (1, 1) & (-1, 1). $r = f_{xx}$ $s = f_{xy} = 6x$ $\Delta = rt - s^2$ Critical point $t = f_{\nu\nu}$ Remark = 6y - 6= -6 + 6y-6 < 0Point of -6 36 > 0(0, 0)0 maximum

Ex: Find the stationary points and determine the nature of the function

0

6

-6

6

0

0

36 > 0

-36 < 0

-36 < 0

Point of

minimum

Saddle point

Saddle point

 $f(x,y) = x^{3} + y^{3} - 3x - 12y + 20.$ Solution: Let, $f(x,y) = x^{3} + y^{3} - 3x - 12y + 20.$ $\therefore f_{x}(x,y) = 3x^{2} - 3$ and $f_{y}(x,y) = 3y^{2} - 12$ $f_{xx}(x,y) = 6x, f_{xy}(x,y) = 0$ and $f_{yy}(x,y) = 6y$ Now, $f_{x}(x,y) = 0$ and $f_{y}(x,y) = 0$ gives

 $f_{min.} = f(0, 2) = 0 - 0 - 12 + 8 + 2 = -2$

6 > 0

0

0

 $f_{max} = f(0,0) = 2$

(0, 2)

(1, 1)

(-1, 1)

DEPARTMENT OF MATHEMATICS -KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNEI

Remark

 $3x^2 - 3 = 0$ and $3y^2 - 12 = 0$

i.e. $x^2 - 1 = 0$ and $y^2 - 4 = 0$ *i.e.* $x = \pm 1$ or $y = \pm 2$

: The critical points are (1, 2), (1, -2), (-1, 2) & (-1, -2).

Nature of the function at these critical points is as follows:-

Critical point	$r = f_{xx} = 6x$	$s = f_{xy} = 0$	$t = f_{yy} =$	$\Delta = \mathbf{rt} - \mathbf{s}^2$	Remark	
			бу			
(1,2)	6 > 0	0	12	72 > 0	Point of minimum	
(1,-2)	6	0	-12	-72 < 0	Saddle Point	
(-1,2)	-6	0	12	-72 < 0	Saddle point	
(-1,-2)	-6 < 0	0 414	-12	72 > 0	Point of maximum	
$f_{max} = f(-1, -2) = -1 - 8 + 3 + 24 + 20 = 38$						
$f_{min.} = f(1,2) = 1 + 8 - 3 - 24 + 20 = 2$						

6. Discuss the extreme value of the function $f(x, y) = 2(x^2 - y^2) - x^4 + y^4$ Solution: Let $f(x, y) = 2(x^2 - y^2) - x^4 + y^4$.

 $\therefore f(x, y) = 4x - 4x^3$ $f_{\rm V}(x,y) = -4y + 4y^3$ $f_{xx}(x,y) = 4 - 12x^2,$ (x, y) = 0and $f_{yy}(x, y) = -4 + 12y^2$ Now $f_x(x, y) = 0$ and $f_y(x, y) = 0$ gives $4x - 4x^3 = 0$ and $-4y + 4y^3 = 0$ *i.e.* $x(x^2-1) = 0$ and $y(y^2-1) = 0$ *i.e.* $x = 0, \pm 1$ or $y = 0, \pm 1$: The critical points are (0, 0), $(0, \pm 1)$, $(\pm 1, 0)$ & $(\pm 1, \pm 1)$. Nature of the function at these critical points is as follows: $\Delta = rt - s^2$ r = fxxs = f x yt = f y yCritical point $= 4 - 12x^2$ = 0 $= -4 + 12y^2$ -4 (0, 0)4 0 -16 < 0Saddle point Point of 4 > 08 32 > 0 $(0, \pm 1)$ 0 minimum -8 < 032 > 0Point of $(\pm 1, 0)$ 0 -4 maximum $(\pm 1, \pm 1)$ -8 < 00 8 -64 < 0Saddle point

 $f_{max} = f(\pm 1, 0) = 2 - 0 - 1 + 0 = 1$ $f_{min} = f(0, \pm 1) = 0 - 2 - 0 + 1 = -1$

UNIT-3: TAYLOR'S THEOREM AND EXTREME VALUES [MCQ'S]

1) $f(x,y) = f(a,b) + [(x-a)f_x(a,b) + (y-b)f_y(a,b)] + \frac{1}{2!}[(x-a)^2f_{xx}(a,b) + (y-b)f_y(a,b)] + \frac{1}{2!}[(x-a)^$						
$2(x-a)(y-b)f_{xy}(a,b) + (y-b)^2 f_{yy}(a,b) + \frac{1}{2!} \left[(x-a)^3 f_{xxx}(a,b) + 3(x-a)^2 f_{yy}(a,b) \right] + \frac{1}{2!} \left[(x-a)^3 f_{xxx}(a,b) + 3(x-a)^2 f_{yy}(a,b) \right]$						
$a)^{2}(y-b)f_{xyy}(a,b) + 3(x-a)(y-b)^{2}f_{yyy}(a,b) + (y-b)^{3}f_{yyy}(a,b)] + \cdots$ is						
calledseries expansion of $f(x, y)$ in powers of $(x - a) \& (y - b)$ or about point (a, b) .						
A) Taylor's B) Maclaurin's C) Laurent's D) None of these						
2) $f(x,y) = f(0,0) + [xf_x(0,0) + yf_y(0,0)] + \frac{1}{2!} [x^2 f_{xx}(0,0) + 2xy f_{xy}(0,0) +$						
$y^{2}f_{yy}(0,0)$] + $\frac{1}{3!}$ [$x^{3}f_{xxx}(0,0)$ + $3x^{2}yf_{xxy}(0,0)$ + $3xy^{2}f_{xyy}(0,0)$ + $y^{3}f_{yyy}(0,0)$] + is						
called series expansion of $f(x, y)$ in powers of x & y or about point (0, 0).						
A) Taylor's B) Maclaurin's C) Laurent's D) None of these						
3) Expression of $x - y + 3$ in powers of (x-1) and (y-1) is						
A) $3 + (x-1) - (y-1)$ B) $(x-1) - (y-1)$ C) $3 + (x-1)$ D) None of these						
4) Expression of $x + y + 3$ in powers of $(x-1)$ and $(y-1)$ is						
A) $5 + (x-1) + (y-1)$ B) $(x-1) - (y-1)$ C) $3 + (x-1)$ D) None of these						
5) Maclaurin's theorem for a function of two variables obtained from Taylor's theorem by						
$A) 3 \qquad B) a = x b = y b = 0 k = 0$						
$\begin{array}{c} A = 0 \\ A = 0 \\$						
$(x + y) + \frac{1}{2}(x + y)^2 + \frac{1}{2}(x + y)^3 + \frac$						
(b) $1 + (x + y) + \frac{1}{2!}(x + y) + \frac{1}{3!}(x + y) + \cdots$ is an expansion of						
A) $\sin(x+y)$ B) $\cos(x+y)$ C) e D) $\tan(x+y)$ 7) $(x + y)^{-1}$ $(x + y)^{-1}$ $(x + y)^{-1}$ is an expansion of						
7) $(x + y) - \frac{1}{3!}(x + y)^2 + \frac{1}{5!}(x + y)^2 - \cdots$ is an expansion of						
A) $\sin(x+y)$ B) $\cos(x+y)$ C) e D) $\tan(x+y)$						
8) $1 - \frac{1}{2!}(x + y)^2 + \frac{1}{4!}(x + y)^2 - \cdots$ is an expansion of						
A) $\sin(x+y)$ B) $\cos(x+y)$ C) e^{x+y} D) $\tan(x+y)$ O) If $f(x, y) = x^2 + y^2$ then f has extreme value at						
(x, y) = x + y then T has extreme value at (A) (1.1) (D) (2.1)						
10) If $f(x, y) = x^2 + y^2 + 3$ then f has extreme value at						
A) (0.0) B) (1.0) C) (0.1) D) (1.1)						
11) If $f(x, y) = 3x^2 + 3y^2 - 2$ then f has extreme value at						
A) (0,0) B) (1,0) C) (0,1) D) (1, 1)						
12) If $f(x, y) = x^2 - 2y^2 + 1$ then f has extreme value at						
A) (1,1) B) (0,0) C) (1,0) D) (0, 1)						
13) If $f(x, y) = 2x^2 - y^2 + 3$ then f has extreme value at						
A) $(1,1)$ B) $(0,0)$ C) $(1,0)$ D) $(0,1)$						
14) If $f(x, y) = x^2 - y^2 + 4$ then f has extreme value at						
A) $(1,1)$ B) $(0,0)$ C) $(1,0)$ D) $(0,1)$						
15) If $u = x^2 + y^2 + \frac{z}{x} + \frac{z}{y}$ then f has extreme value at						

DEPARTMENT OF MATHEMATICS -KARM. A. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER

A) (1,1) B) (0,0)	C) (1,2)	D) (0, 2)			
16) If $f(x, y) = xy + \frac{50}{x} + \frac{20}{y}$ then f has extreme value at					
A) (0,0) B) (0,2)	C) (5,2)	D) (5, 0)			
17) If $f(x, y) = x^3 + y^3 - 3x - 12$	2y + 20 then f has ex	treme value at			
A) (1,1) B) (0,0)	C) (1,2)	D) (2, 1)			
18) If $f(x, y) = 2(x^2 - y^2) - x^4 +$	y^4 then f has extreme	e value at			
A) (0,0) B) (0,1)	C) (1,0)	D) all the above			
19) If $u = xy(a - x - y)$ then u has	extreme value at				
A) (a,a) B) (0,0)	C) (a,0)	D) (0, 1)			
20) Stationary point of the function f	(x, y) are obtained by				
A) $f_x = 0$ B) $f_x = 0$ &	$f_y = 0$ C) $f_y = 0$	D) none of these			
21) Stationary point of the function u	$\mathbf{x}(\mathbf{x}, \mathbf{y})$ are obtained by				
A) $u_x = 0$ B) $u_x = 0$ &	$u_y = 0$ C) $u_y = 0$	D) none of these			
22) A function $f(x, y)$ is said to have	e absolute maximum a	at point (a, b) of the region R			
if $f(x, y) \dots \dots f(a, b) \forall (x, y)$	$\in R$.	1900 30			
$A) \leq B) \geq C$	C) ≠	D) =			
23) A function $f(x, y)$ is said to have	e absolute minimum a	t point (a, b) of the region R			
if $f(x, y) \dots \dots f(a, b) \forall (x, y)$	$\in \mathbb{R}$.	2 3 1 1			
$A) \leq B) \geq$	C) ≠	D) =			
24) A function $f(x, y)$ is said to have	e relative maximum at	t point (a, b)			
If $\forall (x, y) \in \frac{N\delta(a, b)}{\delta(a, b)}$		2 3			
A) $f(a,b) \leq f(x,y)$	B) $f(a,b) \ge f(x,y)$				
C) $f(a,b) \neq f(x,y)$	D) $f(a, b) = f(x, y)$	\mathcal{O} \mathcal{Z}			
25) A function $f(x, y)$ is said to have	e relative minimum at	point (a, b)			
If $\forall (x, y) \in N\delta(a, b)$.					
A) $f(a,b) \leq f(x,y)$	B) $f(a,b) \ge f(x,y)$	1)			
C) $f(a,b) \neq f(x,y)$	D) f(a,b) = f(x,y)				
26) Let $r = f_{xx}(a, b), s = f_{xy}(a, b)$), $t = f_{\gamma\gamma}(a,b) \& \Delta =$	$= rt - s^2$, then the function			
f(x, y) have maximum at point	(<i>a</i> , <i>b</i>) if	दात मानवः।।			
A) $\Delta > 0 a \& r < 0$	B) $\Delta > 0 \& r < 0$				
C) $\Delta < 0$ and $r > 0$	D) none of these				
27) Let $r = f_{xx}(a, b), s = f_{xy}(a, b)$), $t = f_{yy}(a,b) \& \Delta =$	$= rt - s^2$, then the function			
f(x, y) have minimum at point	(<i>a</i> , <i>b</i>) if				
A) $\Delta > 0 \& r < 0$	B) $\Delta > 0 \& r > 0$				
C) $\Delta < 0$ and $r > 0$	D) none of these $f(z, h) \in A$	at a ² then the found in			
20) Let $I = J_{XX}(a, b), S = J_{XY}(a, b)$	$J, \iota = J_{yy}(a, b) \otimes \Delta^{=}$	-ii - s, then the function			
f(x, y) have saddle at point (a, A)	$\frac{U}{U} = \frac{U}{U} = \frac{U}$	dr > 0 D) none of these			
A) $\Delta > 0$ and $1 > 0$ B) $\Delta > 0$	and $1 < 0 < 1$ $\Delta < 0$ and	$\mu T > 0 D$ Hole of these			

UNIT-4: DOUBLE AND TRIPLE INTEGRALS

Double Integration:

If f(x, y) is a function of two variables x and y defined in a region R and R is divided into n subregions $\delta R_1, \delta R_2, ..., \delta R_n$ then for any point (x_r, y_r) in subregion δR_r double integration over R is denoted by $\iint_R^{\cdot} f(x, y) dA$ and defined as

$$\iint_{R}^{\cdot} f(x, y) dA = \lim_{\substack{n \to \infty \\ \delta R_r \to 0}} \sum_{r=1}^{n} f(x_r, y_r) \, \delta R_r$$

Remark:

1) If region *R* is bounded by x = a, x = b, y = c & y = d then

$$\iint_{R} f(x,y)dA = \int_{x=a}^{b} \int_{y=c}^{d} f(x,y) \, dy \, dx$$

2) If region R is bounded by $y = f_1(x), y = f_2(x), x = a \& x = b$ then

$$\iint_R f(x,y)dA = \int_{x=a}^b \int_{y=f_1(x)}^{f_2(x)} f(x,y) \, dy \, dx$$

3) If region R is bounded by $x = g_1(y), x = g_2(y), y = c \& y = d$ then

$$\iint\limits_R f(x,y)dA = \int\limits_{y=c}^d \int\limits_{x=g_1(y)}^{g_2(y)} f(x,y) \, dx \, dy$$

Area of region by Double integration:

The area of the region R by double integration is given by

Area of region
$$R = \iint_R^{\cdot} dx \, dy$$

Ex: Evaluate $\int_{0}^{a} \int_{0}^{b} (x^{2} + y^{2}) dx dy$. Solution: Let $I = \int_{0}^{a} \int_{0}^{b} (x^{2} + y^{2}) dy dx$ $= \int_{0}^{a} \left[x^{2}y + \frac{y^{3}}{3} \right]_{0}^{b} dx$ $= \int_{0}^{a} \left[bx^{2} + \frac{b^{3}}{3} - 0 \right] dx$ $= \left[\frac{bx^{3}}{3} + \frac{b^{3}}{3}x \right]_{0}^{a}$ $= \left[\frac{a^{3}b}{3} + \frac{ab^{3}}{3} - 0 \right]$ $\therefore I = \frac{1}{3} ab (a^{2} + b^{2})$

Ex: Evaluate
$$\int_{0}^{a} \int_{x/a}^{y} \frac{x^{2} + y^{2}}{x^{2} + y^{2}} dx dy$$

Solution: Let, $I = \int_{0}^{a} \int_{x/a}^{x} \frac{x}{x^{2} + y^{2}} dy dx$
 $= \int_{0}^{a} x \left[\frac{1}{x} \tan^{-1} \left(\frac{y}{x} \right) \right]_{x/a}^{x} dx$
 $= \int_{0}^{a} \left[\tan^{-1} 1 - \tan^{-1} \left(\frac{1}{a} \right) \right] dx$
 $= \left[\frac{\pi}{4} - \tan^{-1} \left(\frac{1}{a} \right) \right] [x]_{0}^{a}$
 $= \left[\frac{\pi}{4} - \tan^{-1} \left(\frac{1}{a} \right) \right] (a - 0)$
 $\therefore I = a \left(\frac{\pi}{4} - \tan^{-1} \frac{1}{a} \right)$

Ex: Evaluate $\int_{1}^{2} \int_{0}^{1} (x^{2} + y^{2}) dx dy$ and find a solution: Let, $I = \int_{1}^{2} \int_{0}^{1} (x^{2} + y^{2}) dy dx$

$$= \int_{1}^{2} \left[x^{2}y + \frac{y}{3} \right]_{0} dx$$

$$= \int_{1}^{2} \left[x^{2} + \frac{1}{3} - 0 \right] dx$$

$$= \left[\frac{x^{3}}{3} + \frac{1}{3}x \right]_{1}^{2}$$

$$\therefore I = \frac{8}{3} + \frac{2}{3} - \frac{1}{3} - \frac{1}{3} = \frac{8}{3}$$

DEPARTMENT OF MATHEMATICS -KARM. A. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE,
Ex: Evaluate $\int_0^4 \int_0^{\sqrt{y}} xy \, dx \, dy$

Solution: Let, $I = \int_0^4 \int_0^{\sqrt{y}} xy \, dx \, dy$

$$= \int_0^4 y \left[\frac{x^2}{2}\right]_0^{\sqrt{y}} dy$$

$$= \int_0^4 y \left[\frac{y}{2} - 0\right] dy$$

$$= \frac{1}{2} \int_0^4 y^2 dy$$

$$= \frac{1}{2} \left[\frac{y^3}{3}\right]_0^4$$

$$= \frac{1}{2} \left[\frac{64}{3} - 0\right]$$

$$\therefore I = \frac{32}{3}$$

Ex: Evaluate
$$\int_{0}^{1} \int_{0}^{x^{2}} e^{y/x} dx dy$$

Solution: Let I = $\int_{0}^{1} \int_{0}^{x^{2}} [e^{y/x} dy] dx$

$$= \int_{0}^{1} \left[\frac{e^{y/x}}{1/x} \right]_{0}^{x^{2}} dx$$

$$= \int_{0}^{1} x [e^{x} - 1] dx$$

$$= \int_{0}^{1} x e^{x} dx - \int_{0}^{1} x dx$$

$$= [xe^{x} - \int (1)e^{x} dx]_{0}^{1} - \left[\frac{x^{2}}{2} \right]_{0}^{1}$$

$$= [xe^{x} - e^{x}]_{0}^{1} - \left[\frac{1}{2} - 0 \right]$$

$$= [0 - 0 + 1] - \frac{1}{2}$$

$$\therefore I = \frac{1}{2}$$

Ex: Show that $\int_0^1 \left[\int_0^1 \frac{x-y}{(x+y)^3} \, dy \right] \, dx \neq \int_0^1 \left[\int_0^1 \frac{x-y}{(x+y)^3} \, dx \right] \, dy$

Proof: Consider,

L.H.S.
$$= \int_{0}^{1} \left[\int_{0}^{1} \frac{x - y}{(x + y)^{3}} dy \right] dx$$

$$= \int_{0}^{1} \left[\int_{0}^{1} \frac{2x - (x + y)}{(x + y)^{3}} dy \right] dx$$

$$= \int_{0}^{1} \left[\int_{0}^{1} \left\{ \frac{2x}{(x + y)^{3}} - \frac{1}{(x + y)^{2}} \right\} dy \right] dx$$

$$= \int_{0}^{1} \left[\frac{2x(x + y)^{-2}}{-2} - \frac{(x + y)^{-1}}{-1} \right]_{0}^{1} dx$$

$$= \int_{0}^{1} \left[\frac{1}{x + y} - \frac{x}{(x + y)^{2}} \right]_{0}^{1} dx$$

$$= \int_{0}^{1} \left[\frac{x + y - x}{(x + y)^{2}} \right]_{0}^{1} dx$$

$$= \int_{0}^{1} \left[\frac{x + y - x}{(x + y)^{2}} \right]_{0}^{1} dx$$

$$= \int_{0}^{1} \left[\frac{y}{(x + y)^{2}} \right]_{0}^{1} dx$$

$$= \int_{0}^{1} \left[\frac{1}{(x + y)^{2}} - 0 \right] dx$$

Ex: Evaluate $\iint_{R} xy \, dx \, dy$ over the region in the positive quadrant for which $x + y \leq 1$.

Solution: Let, *R* be the region in the positive quadrant for which $x + y \le 1$ which is shown in figure.

Ex: Evaluate $\iint_R xy(x+y) dx dy$ where *R* is the area between $y = x^2$ & y = x. **Solution:** First we find the point of intersection of

 $y = x^2$ & y = x by solving together as follows $x = x^2$ *i.e.* $x^2 - x = 0$ *i.e.* x(x - 1) = 0 *i.e.* x = 0 & x = 1

For
$$x = 0 \Rightarrow y = 0$$
 & $x = 1 \Rightarrow y = 1$

The point of intersections are O(0,0) & A(1,1). The region between the curves $y = x^2$ & y = x is shown in figure.

Ex: Evaluate $\iint_R^{\cdot} y \, dx \, dy$ over the area bounded by $y = x^2$ and x + y = 2.

Solution: First we find point of intersection of $y = x^2$ & x + y = 2

By solving together as follows

$$-x + 2 = x^2 \quad i.e. x^2 + x - 2 = 0 \quad i.e. (x + 2)(x - 1) = 0$$

i.e. x = -2 & x = 1

For $x = -2 \Rightarrow y = 4 \& x = 1 \Rightarrow y = 1$

The point of intersections are A(-2, 4) & B(1, 1). The region between the curves $y = x^2$ & x + y = 2 as shown in figure.

By taking strip *PQ* parallel to y-axis and moving it from x = -2 to x = 1,

Ex: Using double integral, find the area of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Solution: The area of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is given by Area = 4(Area of region OABO) = 4 $\iint_R^{\cdot} dx dy$

By taking strip PQ parallel to y-axis and moving it from x = 0 to x = a.

- : The limits of region *OABO* are $0 \le x \le a \& 0 \le y \le \sqrt{a^2 x^2}$
- $\therefore \text{ Area of circle} = 4 \int_0^a \int_0^{\sqrt{a^2 x^2}} dy \ dx$

$$= 4 \int_{0}^{a} [y]_{0}^{\sqrt{a^{2} - x^{2}}} dx$$

$$= 4 \int_{0}^{a} \sqrt{a^{2} - x^{2}} dx$$

$$= 4 \left[\frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a} \right]_{0}^{a}$$

$$= 4 \left[0 + \frac{a^{2}}{2} \left(\frac{\pi}{2} \right) - 0 \right]$$

$$= a^{2} \pi \text{ Square units.}$$

Ex: By using double integral, Find the area of the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.

Solution: First we find point of intersection of the parabolas $y^2 = 4x$ and $x^2 = 4y$ by solving

together as follows

By taking strip PQ parallel to y-axis and moving it from x = 0 and x = 4.

We get the limits of region as $0 \le x \le 4$ & $\frac{x^2}{4} \le y \le 2\sqrt{x}$.

$$\therefore \text{ Area of region} = \int_0^4 \int_{x^2/4}^{2\sqrt{x}} dy \, dx$$

$$= \int_{0}^{4} [y]_{x^{2}/4}^{2(x)^{\frac{1}{2}}} dx$$

$$= \int_{0}^{4} \left[2x^{\frac{1}{2}} - \frac{x^{2}}{4} \right] dx$$

$$= \left[2\frac{x^{\frac{3}{2}}}{\frac{x^{2}}{2}} - \frac{x^{3}}{12} \right]_{0}^{4}$$

$$= \left[\frac{4}{3} (4)^{\frac{3}{2}} - \frac{4^{3}}{12} \right]$$

$$= \frac{32}{3} - \frac{16}{3}$$

$$= \frac{16}{3} \text{ square units.}$$

Ex: By using double integral, Find the area of the region bounded by the parabolas $y^2 = 2x$ and $x^2 = 2y$.

Solution: First we find point of intersection of the parabolas $y^2 = 2x$ and $x^2 = 2y$

by solving together as follows

$$\left(\frac{x^2}{2}\right)^2 = 2x$$
 i.e. $x^4 = 8x$ i.e. $x(x^3 - 8) = 0$

 $\Rightarrow x = 0 \text{ or } x = 2$

For
$$x = 0 \Rightarrow y = 0$$
 & $x = 2 \Rightarrow y = 2$.

: The point of intersections are O(0,0) & A(2,2).

The required region is shown in figure.

By taking strip *PQ* parallel to y-axis and moving it from x = 0 and x = 2.

We get the limits of region as $0 \le x \le 2$ & $\frac{x^2}{2} \le y \le \sqrt{2x}$.

$$\therefore \text{ Area of region} = \int_0^2 \int_{x^2/2}^{\sqrt{2x}} dy \, dx$$

$$= \int_{0}^{2} [y]_{x^{2}/2}^{(2x)^{\frac{1}{2}}} dx$$

$$= \int_{0}^{2} \left[(2x)^{\frac{1}{2}} - \frac{x^{2}}{2} \right] dx$$

$$= \left[2^{\frac{1}{2}} \frac{x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{x^{3}}{6} \right]_{0}^{2}$$

$$= \left[\frac{2^{\frac{3}{2}}}{\frac{3}{2}} (2)^{\frac{3}{2}} - \frac{2^{3}}{6} \right]$$

$$= \frac{8}{3} - \frac{4}{3}$$

$$= \frac{4}{3} \text{ square units.}$$

Ex: By using double integral, Find the area of the region bounded by the parabolas $y^2 = x$ and $x^2 = y$.

Solution: First we find point of intersection of the parabolas $y^2 = x$ and $x^2 = y$

By taking strip PQ parallel to y-axis and moving it from x = 0 and x = 1.

We get the limits of region as $0 \le x \le 1$ & $x^2 \le y \le \sqrt{x}$.

$$\therefore \text{ Area of region} = \int_0^1 \int_{x^2}^{\sqrt{x}} dy \, dx$$

$$= \int_{0}^{1} [v]_{x^{2}}^{(x)^{\frac{1}{2}}} dx$$

$$= \int_{0}^{1} [(x)^{\frac{1}{2}} - x^{2}] dx$$

$$= \left[\frac{x^{\frac{3}{2}}}{\frac{1}{2}} - \frac{x^{3}}{3}\right]_{0}^{1}$$

$$= \left[\frac{x^{\frac{3}{2}}}{\frac{1}{2}} - \frac{x^{3}}{3}\right]_{0}^{1}$$

$$= \left[\frac{x^{\frac{3}{2}}}{\frac{1}{2}} - \frac{x^{3}}{3}\right]$$

$$= \frac{2}{3} - \frac{1}{3}$$

$$= \frac{1}{3} \text{ square units.}$$
Ex: Calculate $\int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r^{3} \sin\theta \cdot \cos\theta \ d\theta \ dr.$
Solution: Let, $I = \int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r^{3} \sin\theta \cdot \cos\theta \ d\theta \ dr.$
Solution: Let, $I = \int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r^{3} \sin\theta \cdot \cos\theta \ dr \ d\theta$

$$= \int_{0}^{\pi} \sin\theta \cdot \cos\theta \ \left[\frac{r^{4}}{4}\right]_{0}^{a(1+\cos\theta)} \ d\theta$$

$$= \frac{1}{4} \int_{0}^{\pi} \sin\theta \cdot \cos\theta \ \left[a^{4}(1+\cos\theta)^{4}-0\right]d\theta$$

$$= \frac{4}{4} \int_{0}^{\pi} (1+\cos\theta)^{4} \cos\theta \cdot \sin\theta \ d\theta$$
Put $1 + \cos\theta = t \quad \therefore -\sin\theta \ d\theta = dt \quad \therefore \sin\theta \ d\theta = -dt$
When $\theta = 0 \Rightarrow t = 2 \ \& \ \theta = \pi \Rightarrow t = 0$

$$= \frac{a^{4}}{4} \int_{0}^{2} (t^{5} - t^{4}) \ dt$$

$$= \frac{a^{4}}{4} \left[\frac{t^{6}}{6} - \frac{t^{8}}{5}\right]_{0}^{2}$$

$$= \frac{a^{4}}{4} \left[\frac{t^{6}}{6} - \frac{t^{8}}{5}\right]_{0}^{2}$$

$$= \frac{a^{4}}{4} \left[\frac{t^{6}}{3} - \frac{t^{8}}{5}\right]_{0}^{2}$$

$$= \frac{a^{4}}{4} \left[\frac{t^{6}}{3} - \frac{t^{8}}{5}\right]_{0}^{2}$$

$$= \frac{32}{4} \frac{a^{4}}{4} \left[\frac{t^{3}}{3} - \frac{3^{2}}{5}\right]$$

$$= 8 a^{4} \left[\frac{2}{15}\right] \\ = \frac{16}{15} a^{4}$$

15
$\therefore \int_{0}^{\pi a(1+\cos\theta)} \int_{0}^{\pi a(1+\cos\theta)} r^{3}\sin\theta \cdot \cos\theta dr \ d\theta = \frac{16}{15}$

Ex: Evaluate $\iint r^3 dr d\theta$ over area included between the circles $r = 2 \sin \theta$ and $r = 4 \sin \theta$. **Solution**: Let, region *R* is the area between the circles $r = 2 \sin \theta$ and $r = 4 \sin \theta$.

By taking the strip PQ from $\theta = 0$ to $\theta = \pi$ then r lies between $2\sin\theta$ to $4\sin\theta$.

Ex: Draw a sketch of the region of integration $\int_0^4 dx \int_0^{\sqrt{25-x^2}} f(x, y) dy$.

Solution: From given integration, the region bounded by y = 0 and $y = \sqrt{25 - x^2}$

i.e. $x^2 + y^2 = 25$ between the lines x = 0 & x = 4 as shown in figure.

Ex: Evaluate $\iint_R e^{-x^2} dx dy$, where *R* is the region bounded by the lines y = 0, x = 1 & y = xSolution: Let region *R* is bounded by the lines y = 0, x = 1 & y = x as shown in figure.

$$= \frac{-1}{2} \int_0^1 e^{-x^2} (-2x \, dx)$$
$$= \frac{-1}{2} \left[e^{-x^2} \right]_0^1$$
$$= \frac{-1}{2} \left[e^{-1} - 1 \right]$$
$$= \frac{1}{2} \left(1 - \frac{1}{e} \right)$$

Change the order of Integration:

1) If given integration is $\int_a^b \int_{f_1(x)}^{f_2(x)} f(x, y) dx dy$, then the region is bounded by the curves $y = f_1(x)$ to $y = f_2(x)$ between the lines x = a and x = b. We sketch this region first and then take strip *PQ* parallel to the x-axis and find the limits which give the change of order of integration.

2) If given integration is $\int_{c}^{d} \int_{g_{1}(y)}^{g_{2}(y)} f(x, y) dx dy$, then the region is bounded by the curves $x = g_{1}(y)$ to $x = g_{2}(y)$ between the lines y = c and y = d. We sketch this region first and then take strip *PQ* parallel to the y-axis and find the limits which give the change of order of integration.

Ex: Change the order of integration $\int_0^1 \int_{x^2}^{2-x} f(x, y) dx dy$.

Solution: From given integration the region is bounded by $y = x^2$ and y = 2 - x

i.e. x + y = 2 between the lines x = 0 and x = 1 as shown in the figure.

To change the order of integration, we take strip *PQ* parallel to the x-axis. We observe that *Q* lies on curve $y = x^2$ up to *A* and on x + y = 2 from point *A*.

: We divide region into two sub-regions $R_1 \& R_2$. For R_1 by taking strip *PQ* parallel to x-axis and moving it from y = 0 to y = 1. We get limit as $0 \le y \le 1$ and $0 \le x \le \sqrt{y}$. For R_2 by taking strip *LM* parallel to the x-axis and moving it from y = 1 to y = 2. We get limit as $1 \le y \le 2$ and $0 \le x \le 2 - y$

 \therefore Change of order of integration is

$$\therefore \int_{0}^{1} \int_{x^{2}}^{2-x} f(x,y) \, dx \, dy = \int_{0}^{1} \int_{0}^{\sqrt{y}} f(x,y) \, dx \, dy + \int_{1}^{2} \int_{0}^{2-y} f(x,y) \, dx \, dy$$

Ex: Change the order of integration $\int_0^3 \int_1^{\sqrt{4-y}} f(x, y) dx dy$.

Solution: From given integration the region is bounded by x = 1 and $x = \sqrt{4 - y}$

i.e. $x^2 = 4 - y$ between the lines y = 0 and y = 3 as shown in the figure.

To change the order of integration, we have to integrate first w.r.t. y.

: We take strip PQ parallel to the y-axis and moving it from x = 1 to x = 2.

We get limits as $1 \le x \le 2$ and $0 \le y \le 4 - x^2$.

∴ Change of order of integration is

$$\therefore \int_0^3 \int_1^{\sqrt{4-y}} f(x,y) \, dx \, dy = \int_1^2 \int_0^{4-x^2} f(x,y) \, dy \, dx.$$

Ex: Change the order of integration $\int_{-a}^{a} \int_{0}^{\sqrt{a^2 - x^2}} f(x, y) dx dy$. **Solution**: From given integration the region is bounded by y = 0 and $y = \sqrt{a^2 - x^2}$ *i.e.* $x^2 + y^2 = a^2$ between the lines x = -a and x = a as shown in the figure.

$$= \frac{\pi}{4} [x]_0^a$$
$$= \frac{\pi a}{4}$$

Ex: Change the order of integration $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dx dy$ and hence evaluate it.

Solution: From given integration the region is bounded by y = x and $y \to \infty$ between the

Ex: Change the order of integration $\int_0^1 \int_{x^2}^{2-x} xy \, dx \, dy$ and hence evaluate it. **Solution**: From given integration the region is bounded by $y = x^2$ and y = 2 - x i.e.x + y = 2 between the lines x = 0 and x = 1 as shown in the figure.

Ex: Change the order of integration $\int_0^4 \int_0^{\sqrt{4x-x^2}} f(x,y) dx dy$. **Solution**: From given integration the region is bounded by

$$y = 0 \text{ and } y = \sqrt{4x - x^2} \text{ i.e. } x^2 + y^2 - 4x = 0$$

i.e. $(x - 2)^2 + (y - 0)^2 = 2^2$ i.e. circle with centre at (2, 0) and radius 2
between the lines $x = 0$ and $x = 4$ as shown in the figure.
$$\mathbf{v} = \mathbf{v} = \mathbf{v}$$

Ex: Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \frac{1}{(1+e^y)\sqrt{1-x^2-y^2}} \, dx \, dy.$

Solution: We observe that, integration first w.r.t. *y* is not possible.

- \therefore We change the order of integration first then evaluate it.
- : From given integration, the region is bounded by $y = 0 \& y = \sqrt{1 x^2}$

i.e. $x^2 + y^2 = 1$ circle with centre at origin and radius 1 between the lines x = 0 and x = 1 as shown in figure.

Triple Integral: If f(x, y, z) is continuous in a region V in three dimensional space with V is divided into *n*-sub regions $\Delta V_1, \Delta V_2, ..., \Delta V_r$ then for (x_r, y_r, z_r) lies in ΔV_{r_1} triple integral is denoted by $\iiint_V f(x, y, z) dv$ and defined as

$$\iiint_{V}^{\cdot} f(x, y, z) \ dv = \lim_{\substack{n \to \infty \\ \Delta V_r \to 0}} \sum_{r=1}^{n} f(x_r, y_r, z_r) \Delta V_r$$

Volume by triple integration:

Volume of the region V in a three dimensional space is given by Volume of $V = \iiint_V dv = \iiint_V dxdydz$

Ex: Evaluate
$$\int_{x=0}^{1} \int_{y=0}^{2} \int_{z=1}^{2} x^2 yz \, dz \, dy \, dx$$
.
Solution: Let, $I = \int_{x=0}^{1} \int_{y=0}^{2} \int_{z=1}^{2} x^2 yz \, dz \, dy \, dx$
 $= \int_{x=0}^{1} \int_{y=0}^{2} x^2 y \left[\frac{z^2}{2}\right]_{1}^{2} \, dy \, dx$
 $= \int_{x=0}^{1} \int_{y=0}^{2} x^2 y \left[2 - \frac{1}{2}\right] \, dy \, dx$
 $= \frac{3}{2} \int_{x=0}^{1} x^2 \left[\frac{y^2}{2}\right]_{0}^{2} \, dx$
 $= \frac{3}{2} \int_{x=0}^{2} x^2 [2 - 0] \, dx$
 $= 3 \left[\frac{x^3}{3}\right]_{0}^{1}$
 $\therefore I = 1$

Ex: Evaluate
$$\int_{y=0}^{3} \int_{x=0}^{2} \int_{z=0}^{1} (x + y + z) dz dy dx$$
.
Solution: Let $I = \int_{y=0}^{3} \int_{x=0}^{2} \int_{z=0}^{1} (x + y + z) dz dy dx$
 $= \int_{y=0}^{3} \int_{x=0}^{2} [(x + y)z + \frac{z^{2}}{2}]_{1}^{2} dx dy$
 $= \int_{y=0}^{3} \int_{x=0}^{2} [x + y + \frac{1}{2} - 0] dx dy$
 $= \int_{y=0}^{3} \left[\frac{x^{2}}{2} + \left(y + \frac{1}{2} \right) x \right]_{0}^{2} dy$ Finite formula (14)
 $= \int_{y=0}^{3} [2 + 2y + 1 - 0] dy$
 $= \int_{y=0}^{3} [2y + 3] dy$
 $= [y^{2} + 3y]_{0}^{3}$
 $= 9 + 9 - 0$
 $\therefore I = 18$

Ex: Evaluate $\int_0^a \int_0^x \int_0^{x+y} e^{x+y+z} dx dy dz$.

Solution: Let
$$I = \int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} dz dy dx$$

$$= \int_{0}^{a} \int_{0}^{x} [e^{x+y+z}]_{0}^{x+y} dy dx$$

$$= \int_{0}^{a} \int_{0}^{z} [e^{2x+2y} - e^{x+y}] dy dx$$

$$= \int_{0}^{a} \left[\frac{1}{2} e^{2x+2y} - e^{x+y} \right]_{0}^{x} dx$$

$$= \int_{0}^{a} \left[\frac{1}{2} e^{4x} - e^{2x} - \frac{1}{2} e^{2x} + e^{x} \right] dx$$

$$= \int_{0}^{a} \left[\frac{1}{2} e^{4x} - \frac{3}{2} e^{2x} + e^{x} \right] dx$$

$$= \left[\frac{1}{8} e^{4a} - \frac{3}{4} e^{2a} + e^{a} \right] - \left[\frac{1}{8} - \frac{3}{4} + 1 \right]$$

$$= \frac{1}{8} \left[e^{4a} - 6e^{2a} + 8e^{a} - 3 \right]$$
Ex: Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{1}{\sqrt{1-x^{2}-y^{2}-y^{2}}} dx dy dx$.
Solution: Let $I = \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{1}{\sqrt{1-x^{2}-y^{2}-y^{2}-y^{2}}} dy dx$

$$= \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \left[\sin^{-1} \frac{x}{\sqrt{1-x^{2}-y^{2}-y^{2}}} dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \left[\frac{x}{\sqrt{1-x^{2}}} + \frac{1}{2} \sin^{+1}x \right]_{0}^{1}$$
Here A and A an

Ex: Evaluate $\iiint (x + y + z) dx dy dz$ over the tetrahedron x = 0, y = 0, z = 0and x + y + z = 1.

Solution: The region over tetrahedron x = 0, y = 0, z = 0 and x + y + z = 1 is expressed as $0 \le x \le 1$, $0 \le y \le 1 - x$ and $0 \le z \le 1 - x - y$.

$$: \iint_{V} (x + y + z) \, dx \, dy \, dz = \iint_{0}^{1} \iint_{0}^{1-x} (x + y + z) \, dz \, dy \, dx$$

$$= \int_{0}^{1} \int_{0}^{1-x} \left[(x + y)(1 - x - y) + \frac{(1 - x - y)^{2}}{2} - 0 \right] \, dy \, dx$$

$$= \int_{0}^{1} \int_{0}^{1-x} \left[(x + y)(1 - x - y) + \frac{(1 - x - y)^{2}}{2} - 0 \right] \, dy \, dx$$

$$= \iint_{0}^{1} \int_{0}^{1-x} \left[(x + y) - (x + y)^{2} + \frac{1}{2} - (x + y) + \frac{1}{2} (x + y)^{2} \right] \, dy \, dx$$

$$= \iint_{0}^{1} \int_{0}^{1-x} \left[1 - (x + y)^{2} \right] \, dy \, dx$$

$$= \frac{1}{2} \int_{0}^{1} \int_{0}^{1-x} \left[1 - (x + y)^{2} \right] \, dy \, dx$$

$$= \frac{1}{2} \int_{0}^{1} \int_{0}^{1-x} \left[1 - x - \frac{1}{3} (1)^{3} - 0 + \frac{1}{3} x^{3} \right] \, dx$$

$$= \frac{1}{2} \int_{0}^{1} \left[\frac{2}{3} - x + \frac{1}{3} x^{3} \right] \, dx$$

$$= \frac{1}{2} \left[\frac{2}{3} x - \frac{1}{2} x^{2} + \frac{1}{12} x^{4} \right]_{0}^{1}$$

$$= \frac{1}{2} \left[\frac{3 - 6 + 1}{12} \right]$$

$$: \iint_{V} (x + y + z) \, dx \, dy \, dz = \frac{1}{8}$$

Ex: Evaluate $\iint \frac{1}{(x+y+z+1)^3} dx dy dz$ over the region $x \ge 0, y \ge 0, z \ge 0$ and $x + y + z \le 1$. Solution: The given region $x \ge 0, y \ge 0, z \ge 0$ and $x + y + z \le 1$

is expressed as
$$0 \le x \le 1, 0 \le y \le 1 - x$$
 and $0 \le z \le 1 - x - y$.

$$\therefore \iiint \frac{1}{(x+y+z+1)^3} dx dy dz = \int_0^1 \int_0^{1-x} \int_0^{1-x-y} (x+y+z+1)^{-3} dz dy dx$$

$$= \int_0^1 \int_0^1 \left[\frac{(x+y+z+1)^{-2}}{-2} \right]_0^{1-x-y} dy dx$$

$$= \frac{-1}{2} \int_0^1 \int_0^{1-x} [2^{-2} - (x+y+1)^{-2}] dy dx$$

$$= \frac{-1}{2} \int_0^1 \left[\frac{1}{4} y - \frac{(x+y+1)^{-1}}{-1} \right]_0^{1-x} dx$$

$$= \frac{-1}{2} \int_0^1 \left[\frac{1}{4} (1-x) + (2)^{-1} - 0 - (x+1)^{-1} \right] dx$$

$$= \frac{-1}{2} \int_0^1 \left[\frac{1}{4} - \frac{1}{4} x + \frac{1}{2} - \frac{1}{(x+1)} \right] dx$$

DEPARTMENT OF MATHEMATICS -KARM. A. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE,

$$= \frac{-1}{2} \int_{0}^{1} \left[\frac{3}{4} - \frac{1}{4}x - \frac{1}{(x+1)} \right] dx$$

$$= \frac{-1}{2} \left[\frac{3}{4}x - \frac{1}{6}x^{2} - \log(x+1) \right]_{0}^{1}$$

$$= \frac{-1}{2} \left[\frac{3}{4} - \frac{1}{6} - \log 2 - 0 \right]$$

$$= \frac{-1}{2} \left[\frac{3}{4} - \frac{1}{6} - \log 2 - 0 \right]$$

$$= \frac{-1}{2} \left[\frac{1}{5} - \log 2 \right]$$

$$\therefore \iiint \frac{dxdydz}{(x+y+z+1)^{3}} = \frac{1}{2} \left[\log 2 - \frac{5}{8} \right]$$
Ex: Using triple integration find the volume of a sphere of radius *a*.
Solution: The equation of sphere of radius *a* is $x^{2} + y^{2} + z^{2} = a^{2}$.
The region of volume *V* of a sphere is expressed as

$$-a \le x \le a, -\sqrt{a^{2} - x^{2}} \le y \le \sqrt{a^{2} - x^{2}} \text{ and } -\sqrt{a^{2} - x^{2} - y^{2}} \le z \le \sqrt{a^{2} - x^{2} - y^{2}}$$

$$\therefore Volume of sphere = \iiint_{V} dx dy dz$$

$$= \int_{a}^{a} \int_{\sqrt{a^{2} - x^{2}}}^{\sqrt{a^{2} - x^{2}}} \int_{\sqrt{a^{2} - x^{2} - y^{2}}}^{\sqrt{a^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= 8 \int_{0}^{a} \int_{0}^{\sqrt{a^{2} - x^{2}}} \int_{\sqrt{a^{2} - x^{2} - y^{2}}}^{\sqrt{a^{2} - x^{2} - y^{2}}} dy dx$$

$$= 8 \int_{0}^{a} \int_{0}^{\sqrt{a^{2} - x^{2}}} \sqrt{a^{2} - x^{2} - y^{2}} dy dx$$

$$= 8 \int_{0}^{a} \int_{0}^{\sqrt{a^{2} - x^{2}}} \sqrt{a^{2} - x^{2} - y^{2}} dy dx$$

$$= 8 \int_{0}^{a} \left[\frac{y}{2} \sqrt{a^{2} - x^{2} - y^{2}} + \frac{(a^{2} - x^{2})}{2} \sin^{-1} \frac{y}{\sqrt{a^{2} - x^{2}}} \right]_{0}^{\sqrt{a^{2} - x^{2}}} dx$$

$$= 8 \int_{0}^{a} \left[0 + \frac{(a^{2} - x^{2})}{2} \right] dx$$

$$= 2\pi \left[a^{2}x - \frac{1}{3}x^{3} \right]_{0}^{a}$$

Ex: Find the volume of the region bounded by the co-ordinate planes (*i. e.* x = 0, y = 0, z = 0) and x + y + z = 1.

Solution: The volume of the region bounded by the co-ordinates planes x = 0, y = 0, z = 0and x + y + z = 1.

The region of volume *V* of is expressed as

$$0 \le x \le 1, 0 \le y \le 1 - x \text{ and } 0 \le z \le 1 - x - y$$

$$\therefore V = \iiint_V dx dy dz = \int_0^1 \int_0^{1-x} \int_0^{1-x-y} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{1-x} [z]_{0}^{1-x-y} dy dx$$

$$= \int_{0}^{1} \int_{0}^{1-x} [(1-x-y)] dy dx$$

$$= \int_{0}^{1} \left[(1-x)y - \frac{1}{2}y^{2} \right]_{0}^{1-x} dx$$

$$= \int_{0}^{1} \left[(1-x)^{2} - \frac{1}{2}(1-x)^{2} - 0 \right] dx$$

$$= \frac{1}{2} \int_{0}^{1} [(1-x)^{2}] dx$$

$$= \frac{1}{2} \left[\frac{(1-x)^{3}}{-3} \right]_{0}^{1}$$

$$= \frac{-1}{6} [(1-x)^{3}]_{0}^{1}$$

$$= \frac{-1}{6} [0-1]$$

$$\therefore V = \frac{1}{6} \text{ cubic unit.}$$

Ex: Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 3, z = 0. Solution: The region *V* bounded by cylinder $x^2 + y^2 = 4$ and the planes y + z = 3, z = 0

is expressed as
$$-2 \le x \le 2$$
, $-\sqrt{4-x^2} \le y \le \sqrt{4-x^2}$ and $0 \le z \le 3-y$.
∴ Volume = $\iiint_V dx dy dz$
= $\int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_0^{3-y} dz dy dx$
= $\int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} [z]_0^{3-y} dy dx$
= $\int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} (3-y) dy dx$
= $4 \int_0^2 \int_0^{\sqrt{4-x^2}} 3 dy dx$
∴ $\int_{-a}^a f(x) dx = \begin{cases} 2 \int_0^a f(x) dx \text{ if } f(x) \text{ is even function} \\ 0 & \text{ if } f(x) \text{ is odd function} \end{cases}$
= $12 \int_0^2 \int_0^{\sqrt{4-x^2}} dy dx$
= $12 \int_0^2 [y]_0^{\sqrt{4-x^2}} dx$
= $12 \int_0^2 \sqrt{4-x^2} dx$
= $12 \int_0^2 \sqrt{4-x^2} dx$
= $12 \left[\frac{x}{2} \sqrt{4-x^2} + \frac{4}{2} \sin^{-1} \left(\frac{x}{2} \right) \right]_0^2$
= $12 \left[0 + 2 \left(\frac{\pi}{2} \right) - 0 \right]$
∴ Volume = 12π cubic unit.

॥ अंतरी पेटवू ज्ञानज्योत ॥

विद्यापीठ गीत

मंत्र असो हा एकच हृदयी 'जीवन म्हणजे ज्ञान' ज्ञानामधूनी मिळो मुक्ती अन मुक्तीमधूनी ज्ञान ॥धृ ॥ कला, ज्ञान, विज्ञान, संस्कृती साधू पुरूषार्थ साफल्यास्तव सदा 'अंतरी पेटवू ज्ञानज्योत' मंगल पावन चराचरातून स्त्रवते अक्षय ज्ञान ॥१ ॥ उत्तम विद्या, परम शक्ति ही आमुची ध्येयासकी शील, एकता, चारित्र्यावर सदैव आमुची भक्ती सत्य शिवाचे मंदिर सुंदर, विद्यापीठ महान ॥२ ॥ समता, ममता, स्वातंत्र्याचे नांदो जगी नाते, आत्मबलाने होऊ आम्ही आमुचे भाग्यविधाते, ज्ञानप्रभुची लाभो करूणा आणि पायसदान ॥३ ॥ – कै.प्रा. राजा महाजन

THE NATIONAL INTERGRATION PLEDGE

"I solemnly pledge to work with dedication to preserve and strengthen the freedom and integrity of the nation.

I further affirm that I shall never resort to violence and that all differences and disputes relating to religion, language, region or other political or economic grievance should be settled by peaceful and constitutional means."