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MTH -301: CALCULUS OF SEVERAL VARIABLES

Unit- 1: Functions of Two and Three Variables Marks-15
1.1 Explicit and Implicit Functions
1.2 Continuity
1.3 Partial Derivatives
1.4 Differentiability
1.5 Necessary and Sufficient Conditions for Differentiability
1.6 Partial Derivatives of Higher Order
1.7 Schwarz’s Theorem
1.8 Young’s Theorem.

Unit-2: Jacobian, Composite Functions and Mean Value Theorems Marks-15
2.1 Jacobian (Only for Two and Three Variable)
2.2 Composite Functions (Chain Rule)
2.3 Homogeneous Functions.
2.4 Euler’s Theorem on Homogeneous Functions.
2.5 Mean Value Theorem for Function of Two Variables.

Unit -3: Taylor’s Theorem and Extreme Values Marks-15
3.1 Taylor’s Theorem for Function of Two Variables.
3.2 Maclaurin’s Theorem for Function of Two Variables.
3.3 Absolute and Relative Maxima & Minima.
3.4 Necessary Condition for Extrema.
3.5 Critical Point, Saddle Point.
3.6 Sufficient Condition for Extrema.

Unit -4: Double and Triple Integrals Marks-15
4.1 Double Integrals by Using Cartesian and Polar Coordinates.
4.2 Change of Order of Integration.
4.3 Area by Double Integral.
4.4 Evaluation of Triple Integral as Repeated Integral.
4.5 Volume by Triple Integral.

Recommended Book:
Mathematical Analysis: S.C. Malik and Savita Arora. Wiley Eastern Ltd, New Delhi.
1992 (Chapter 15: Functions of several variables 1, 1.1, 1.2, 1.3,1.4,1.6,2, 3, 3.1, 3.2, 4,
4.1,5,5.2,6,7.2,9,9.1, 10, 10.1, 10.2)

Reference Books —
1. Calculus of Several Variables by Schaum’s Outline Series.
2. Mathematical Analysis by T. M. Apostol, Narosa Publishing House,

New Delhi, 1985

Learning Outcomes:
Upon successful completion of this course the student will be able to understand:
a) limit and continuity of functions of several variables
b) fundamental concepts of multivariable Calculus.
C) series expansion of functions.
d) extreme points of function and their maximum, minimum values at those points.
e) meaning of definite integral as limit as sums.
) how to solve double and triple integration and use them to find area by double
integration and volume by triple integration.
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UNIT- 1: FUNCTIONS OF TWO AND THREE VARIABLES

Functions of Two Variables:
A relation f : R*— R is said to be a function of two variables x and y if every point
(x, y) in R? associates a unique real variable z i.e. f (x,y) =z in R.
Functions of Three Variables:
A relation f : R®*— R is said to be a function of three variables x, y and z if every point
(x, y, z) in R® associates a unique real variable wi.e. f (X, y,z) =winR.
Neighbourhood of a point:

A set 6N(a, b) = {(x, y) //(x — a)? + (y — b)2 < &} is called & neighbourhood of
a point (a, b) in xy-plane. Which is circle with centre at point (a, b) and radius 6.
Deleted Neighbourhood of a point:

Aset 6N'(a, b) = {(x,y) /0 < \/(x — @)% + (y — b)2 < &} is called deleted &
neighbourhood of a point (a, b) in xy-plane.
Limit of a function:

If for a arbitrarily small € > 0, there exist § > 0 depends on € such that
If(x,y) — 1] < Ewhenever0<\/(x—a)2 +(y—-b)’<dor0<|x—al<é
and 0 < |y — b| < 6. Then | is said to be limit of f (x, y) as (x, y) — (&, b).
Denoted by 11m f(x y) = lorlimf(x,y) = L.

y—>b

This limit is also called double limit or simultaneous limit.
Algebra of Limits:

If (Xyl)lir(lab f(x,y)=Iland l)iir(la’b)g(x, y) = m then

) LR [f(x,y) £ 8(X, y)]=1+m

ii) (X’yl)igr(la,b)[f (X, y)g(x y)]=

iy lim [Z&2)=
(x y)—>(a b)~ 9(x,y)

iv) Vixy) =¥V

(%, y)—>(ab)
Existence of Limit:
) Limit is exists, if along any path limit is same.
i) Limitis not exists, if along different paths we get different limits.
Observation:
i) In general if given function contain trigonometric terms or given function is the
rational function which is not homogenous of degree 0 and its denominator is in
powers of x* + y* then its limit is exist and it is always 0 as (x, y) —(0, 0).
Which is shown by using e- § definition and inequalities

x| < /xZ+y2, |yl < /x% + y2
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MTH:301:CALCULUS OF SEVERAL VARIABLES
i)  To prove limit is not exist, we take two paths, first path is y = 0 and choose

second path y = f (x) such that degree of numerator and denominator becomes
same and having different limit than path y = 0.

Ex. Evaluate lim =<
xy)—(b) y— y—b

Sol. LetL= lim ==

(xy)—(ab)y—b
For the path x = a, we have

But we observed that for the path y = b,
L = lim=— does not exists.

x—ab-

Hence lim =2 does not exists.
(x,y)—(ab) y—b

Ex. Letf(x,y) = 2L lim f
X. Letf(x,y) = 55 im (x,y)
— - . x?-y?
Sol. LetL = - llrr(l0 )f( X,y) = (Xy)_r)r(lo 0 xP1y?
For the path y 0, we have
L =lim 2_ =liml=1+ x#0
x—0 xX“+0 x50
For the path x = 0, we have
L =lim 0=y~
y—0 0+y?
=lim(-1) =~ y=+#0
y—0
=-1

For two different paths we get two different limits.

~ lim f(x v) does not exists.
(xy)—(0,0) (%)

Ex. Letf(x,y) = x;fy3,

Evaluate - lim f (X,y)

3 3
Sol. LetL= lim f(xy)= Xy

—(0,0) (x, y)—>(0 0) x-y
For the path y =0, we have

. x3+40
L =1lim

=limx*=0
x-0 x-0 x—0

For the path y= Xx—x°, we have
x3+(x—x3)3
L= !(1—>0 x—(x—x3)
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MTH:301:CALCULUS OF SEVERAL VARIABLES

~ lim x3[1+(1-x2)3]
x—0 x3
=lim [1+(1-x%)*] = x#0
X—>
=2
For two different paths we get two different limits.

~ lim f(x,y) does not exists.
(x,y)—(0,0) (%y)

L2
Ex. Evaluate lim SR+
(xy)—(0,0) x+y

: 2
Sol. LetL= lim 32+
(xy)—(0,0) x+Y¥
For the path y = 0, we have
_ .. sin(x?+0)
L= !{l_r% x+0

sinx?

)

=limx x
x—0 ( x2

=0x1
=0
For the path x = 0, we have

L = lim sin(0+y)
y—0 0+y
siny

For two different paths we get two different limits.

)
SIN7+Y) 4oes not exists.
(xy)—(0,0) x+y

2

Ex. Evaluate lim tan("+y)
(x,y)—(0,0) x+y
2

Sol. LetL= lim 2nC+y)

(xy)—(00) Xty
For the path y = 0, we have

. tan(x?40
L =lim tan(x”+0)
x—0 x+0

tanx?2
)

=limxx
x—0 ( x?

=0x1
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MTH:301:CALCULUS OF SEVERAL VARIABLES

=0
For the path x = 0, we have
L = lim tan(0+y)
y—0 0+y
= lim 22
y—=0 ¥
=1

For two different paths we get two different limits.

tan(x?+ i
o i fant+Y) oes not exists.
(xy)—(0,0) xty

: 2 2
Ex. Evaluate lim Sn&+9)
(x,y)—(0,0) x+ty

Sol. LetL= lim SnGTYD)
' xy)=(00)  x+y
For the path y = 0, we have

; 2

. sin(x“+0

L =lim Sin(x”+0)
x—0 x+0

xsinx?

=lim —;
x—0 X

=0x1
=0
For the path y = x? — x, we have
sin[x?+ (x%2-x)?]
x—0 x+(x2 -x)
m sin{x?[1+ (x—1)2]}

Xx—0 x?

a2 —1)2
- lim sin{x*[1+ (x—1)°]} [1 n (X _ 1)2]

x>0  x%[1+ (x—-1)?]
= (1) x [1+(-1)°]
=2
For two different paths we get two different limits.

in(x24+v2 .
SIN@+Y7) does not exists.
(xy)—(0,0) xty

Ex. Evaluate lim
(xy)—(0,0) x*+y°®

3
Sol. LetL= lim —X
(xy)—(0,0) x*+y°®
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For the path y = 0, we have

For two different paths we get two different limits.

does not exists.

" )00 x2+ 6

Ex. Evaluate the limit, if it exists, for the following function
X’y .o o4, 2
(x’) = x4+y2’ lfx +y ¢07
=0,if x=y=0.
2
Sol. LetL= lim ——=

(x,y)—(0,0) X*+y?
For the path y = 0, we have

For two different paths we get two different limits.

o lim = 2does not exists.
(Xy)—>(00)x +y

Ex. Letf (x, y):xsin§+ysin%,xy¢0. Showthat( lm(loof(x y) =0.

Sol. Letf(x,y)=x sini +y sini , xy #0.
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MTH:301:CALCULUS OF SEVERAL VARIABLES

Here we use € — § definition of limit, to find the limit of given function.
Consider

o 1 1
|f(x,y) — 0] = |xsmx + ysmy|

IA

.1 1
|x sm—| + |y sm—|
x y

IA

.1 o1
|x| |51n;| + |yl |sm;|

IA

x| + |yl = |sin§| < 1and |sin§| <1

2yx2+y? v x| < {x2+y?and|y| < x? +y?
~fxy) =0l < 2x2+y?<e
2 2 2 2<€
Now 2,/x? +y?2<e=,/x*+y <
By taking ~ = &, we get, fore > 0,36 =-> 0
such that |f(x,y) — 0] <ewhenever0<./x2+y2<§
~ By € — § definition of limit, we get

li f(x,y)=0.
(X,y)l—r>r(10,0) ( y)

Hence proved.

IA

Repeated Limits:
Let f (x, y) be any real valued function defined in some deleted neighborhood of
point (a, b) then lirrg [limf (x, y)] and lim[lir%f (x, y)] are called repeated limits or iterated
y—b x—a X—a y—

limits.

Remark:
1) Repeated limits of any function may or may not be equal.
i) If repeated limits of a given function are not equal then simultaneous limit of a
function does not exist.
i) If repeated limits of a given function are equal then simultaneous limit of a
function may or may not be exist.
iv) If simultaneous limit of a given function exist then repeated limits are equal.

. x2y? . . . i
Ex. Letf(x,y) = Tty iIf (X, y)# (0, 0). Verify that, both repeated limits exist
and are equal but simultaneous limit does not exist as (x, y) — (0, 0).
. x2y? .
Sol. Letf (x,y) = a7y if (x, y)# (0, 0).
First we find repeated limits of given function as follows.
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MTH:301:CALCULUS OF SEVERAL VARIABLES

il ()] = byl o220 = i =0
x2y? .. 0 _
& }(g)r&[llm f(x,y)] = llm[y_r)% m] = }(1_r)r&x—4 =0

I.e. both repeated limits exists and are equal.
Now to find simultaneous limit, denote

— . x2y?
L= o OOV = N ) 3=y
For the path y = 0, we have

For the path y = x, we have

L=lim ———
x—0 X*+xt—x*

=lim1l <+« x#0

For two different paths we get two different limits.

. x2y2
' (xyl)—r}go 0) x*+yt—x2y?
Hence it is verified that, both repeated limits exist and are equal but

simultaneous limit does not exist as (X, y) — (0, 0).

does not exists.

Ex. Show that, both repeated limits exists but simultaneous limit does
2 y2
x2+y2

not exist for f (X, y) =

Sol. Letf (x,y) = ;32

First we find repeated limits of given function as follows.

y2
lll_rg[hm f(x,y)]= hrr&[}(l_t}%x Try? -]
- ifli% 0+y2 ;135( D= A
2
& limlim  (x, y)] = }gg[;lg%x )

2=liml=1 + x#0

X—0 X2+0 Xx—0

I.e. Repeated limits exists.
Now to find simultaneous limit, denote
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MTH:301:CALCULUS OF SEVERAL VARIABLES
2

_ : x2-y
L= (x,yl)lir(lo,O) Flxy)= *, y)a(o 0) x2+y?

For the path y = 0, we have

x%2-0

= lim (-1) v y+0

For two different paths we get two different limits.
. x2—y?
" (xy)00) Y2
Hence proved that, repeated limits exist but simultaneous limit does not exists.

does not exists.

Continuity of a function:
A function f (x, y) is said to be continuous at point (a, b) if f (a, b) is defined,
lim f (X, y) is exist and 1)1rr(1 b)f (x,y)=f(a, b).
-(a,

(xy)—(ab)
Remark:
A function f (x, y) is discontinuous at point (a, b) if f (a, b) is not defined or

li f(x,y)isnotexistor li f(x,y) #f(a b).
(x y)lgga b) xy) (.y)lir(la.b) x.y) (a,b)

Ex. Investigate for continuity the function
o ox*y .
f (x’ y) - x4.+y2 ) "f (X’ y)¢ (0’ O)

£(0,0) = 0.
Sol. Let f (x, y) = xffii _if (x,y)# (0, 0)
£(0,0)=0......... Q)

— 1 _ x%y
LetL= iy T ) = i, oy w2

For the pathy = O, we have

For the path y = x%, we have
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4

L =lim
x—0 x*+x*

For two different paths we get two different limits.

- x l)mr(l00 f (X, y) does not exists.

Hence f (X, y) is not continuous at (0, 0).

Ex. Show that the function
. xy .
f (x’ Y) - \/W, lf (Xa Y) 7& (Oa 0)
=0,if (x,y)=(0,0)
IS continuous at the origin.
_xy .
Proof. Let f (x, y) = N if (x,y)#(0,0)

=0,if (x,y)=(0,0)

1.e.£(0,0)=0........... (1)
Consider

. Ixyl _ _Ixllyl
|f(x 3’) Ol \/x2+y \/x2+y - \/x2+y2

; }%w x| < Yx2+y?and [y| < /x* +y?

~fxy) =0 < (Jx2+y?<e
Here /x? + y?<e¢

~ Bytakinge=46,weqget,fore >0,36d=¢>0
such that |f(x,y) — 0] <ewhenever0<./x2+y2<§
~ By € — 6 definition of limit, we get

( l)lH(lO 0)f (x,y) =0=1(0, 0) by equation (i).
Xy)—
Hence given function is continuous at (0, 0) is proved.

Ex. Show that the function f (x, ) = xy z;z  (x,y) # (0, 0) and £ (0, 0) = 0
IS continuous at origin
Proof. Let f (x, y) = xy = o 2, (X y) # (0, 0)

and £(0,0)=0........... (1)
Consider
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MTH:301:CALCULUS OF SEVERAL VARIABLES

f G y) = 0] =[xy 22

_l ”yl x2+y2
S\/x2+y2\/xz+y2

2_

x| < VX2 +y?, |yl < X2+y2&x Y

x?+y?
L lfxy) — 0] < x%+y2 <e

Now x2 + y2 <& = /x2 + y2 <+fe

-~ By taking Ve = §, we get, fore > 0,36 =/e>0
such that |f(x,y) — 0| <& whenever0<,/x2+y2<§
=~ By € — § definition of limit, we get

: l)ln’(lo 0)f (x,y) =0=1(0, 0) by equation (i).
X el
Hence given function is continuous at origin is proved.

x2+ 2

2
<1

Ex. Letf(x,y)=y+x sin(i), if y #0 and f(x, 0) = 0. Show that f is continuous at (0, 0)

Proof. Letf (x,y)=y+x sin(i), if y #0and f(x, 0) = 0.

~£(0,0)=0........ (1) 1s defined.
Consider

|f(x,y) — 0] = |y+ xsinﬂ

1
<lyl+ |x sin—|
Iyl "
< ly| +|x]| |sin§|
< x|+ |yl = |sin§| <1
< 2yx%24y? v x| < (x24y?and |y| < /x% +y?

~f(xy) — 0] < 2x%2+y?<e
2 2 2 2<&
Now 2{/x? +y?<e = /x*+y <

By taking == &, we get, fore > 0,36 =-> 0
2 2

such that |f(x,y) — 0| <ewhenever0<,/x2+y2<§
~ By € — § definition of limit, we get

- )1rr(10 0)f (x,y) =0=1(0, 0) by equation (i).
Hence given function is continuous at (0, 0) is proved.

I
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Partial Derivative:

If lim fxth, Y)h_f(x' Y)_js exist, then it said to be partial derivative of  (x, )
of

a.
Note: First order partial derivatives of f (x, y) w. r. to x and y at point (a, b) are

af _ _ .. f(a+h, b)—f(a, b) f(a, b+k)—f(a, b)
[a] @b =@, b)= Ll_r)r(l) Kk

w. r. to x and is denoted by f,(x, y) or

of .
and |3+] .y =f,(a, b) = lim

Ex. If u = x%2 + xy” — 2yz then find Z—’; , Z—’; , Z—Z at point (1, 2, 3)

Sol. Given u = x°z + xy? — 2yz
Differentiating partially w. r. to x, y and z, we get

Z—z:3xzz+y2—023xzz+y2
ou _
5—2xy—22
ou _ _3
&E_X -2y

At point (1, 2, 3), we have

poi
2]029=309@) + =9+ 4=13
o
% w23=21)2)-2B)=4-6=-2
oy

& [Xuon=10-202)=1-4=-3

Ex. Find the first order partial derivative of u = e*sinxy
Sol. Given u = e*sinxy
Differentiating partially w. r. to x and y, we get

9 .
% = e*sinxy + ye*cosxy
u _ X

& 3y Xe"COoSsXy

Ex. Find the first order partial derivative of u = tan'li

Sol. Given u = tan‘%

Differentiating partially w. r. to x and y, we get
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MTH:301:CALCULUS OF SEVERAL VARIABLES

ax 1+( )2 ( ) xz+y2
u__ 1 (2)= ==
ay 1+(%)2 x’  x2+y?

Ex. Find the first order partial derivative of u = log (x*+y*+z%)
Sol. Given u = log (X*+y?+z%)
Differentiating partially w. r. to X, y and z, we get

ou _ ( ) _

S xz+y2+z2 x? +y2+z2
e ) =
oy x2+y2+z2 y X2+y2+z2
ou _ 1 _ 2z

9z x2+y2+z2 (22) X2 +y?+2z2

ou
Ex. If u = x% + y?z + z°x then show that —+£+—:(X+y+z)

Proof. Given u = X%y + y*z + z2°X
Differentiating partially w. r. to x, y and z, we get

ou _

P =2xy + Z°

u 2

a——x + 2yz

Z——y + 27X

Adding we get,

ou , ou , du _ 2 2 2 - 2
a+£+£—2xy+z +X +2y2+Yy +22X=(X+Yy +2)

Hence proved.

Ex. If u = log (tanx + tany + tanz), prove that sin2x ‘;—Z + sin2y % + sin2z Z—Z =2

Proof. Given u = log (tanx + tany + tanz)
Differentiating partially w. r. to x, we get

ou _ 2

—= (secx)

Ox tanx + tany + tanz
sin2x.sec®x

o sin2x 2
ax tanx + tany + tanz

2sinxcosx 1
(—=2)

tanx + tany + tanz ‘cos?x
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2tanx
« sin2x 2%
ax tanx + tany + tanz
Similarly
. ou 2tan . ou 2tanz
sin2y — = 4 & sin2z = =
Jy tanx + tany + tanz dz tanx + tany + tanz

Adding we get

ou 2tanx + 2tany + 2tanz
sm2x—+sm2y—+sm22— Y =2
tanx + tany + tanz

Hence proved.

Ex. Letf (¥, ) = o, if (%,Y) # (0, 0)

- O’ lf (x1 y) (O! O)
Show that both the first order partial derivatives exist at (0, 0), but the function
IS not continuous there at.

Proof. Let f (x, y)— 2,zf (x,y)#(0,0)
= 0, lf (x,¥)=(0,0)
1e. £(0,0)=0....... (1) is defined.
First we find partial derivatives at point (0, 0)

_ f(0+h, 0)-f(0, 0) _,.  0-0 _
(0, 0) = l_)0 - = }lll_r,% =0
& 1,(0, 0) = ,ljng f0, 0+0=f(0, O _ . 0-0 _ 0

k-0
I.e. both partial derivatives exist at point (0, 0).

To find limit of a function denote

- Xy
o LU R Al L e
For the path y =0, we have
L=lim —=—=0

x—0 x4+0
For the path y = x, we have
2
L= LI_I)I& x24x2
=lim= « X#0
x-0 2

For two different paths we get two different limits.

s~ lim f(x y) does not exists.
(x,y)—(0,0)

Hence both the first order partial derivatives exist at (0, 0), but the function
IS not continuous there at is proved.
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Partial Derivative of Higher Order:

Let f, and f, are first order partial derivatives of f (X, y) which are again functions
of x and y. By taking partial derivatives of fy and f, w. r. to x and y again and again we
get partial derivatives of second and higher orders.

Which are denoted by fy fyy, Tyx, Ty, Fxx, Fxxy, Txyy, fyyy E1C.

Note: i) Second order partial derivatives of f (X, y) at point (a, b) are
_ _ 1. fy(a+h, b)—fy(a, b)
fx(@, b) = (F)«(@, b) = lim -

fxy(a, b) = (fy)x(a, b) = Llr% fy(a+h, bil—fy(a, b)

. fx(a, b+k)—fx(a, b
fyx(a, b) = (fy),(a, b) :LIL% (a, b+ i{ (a_b)

fla ) = (52 b) = iy 0200 D
i) fy,(a, b) and fy(a, b) may or may not be equal.
Working Rule to find f,,(0, 0) and f,(0, 0):

i) Find f (0, 0),  (h, 0), f (0, k) and f (h, k).
f(0+h, K)—f (0, k)

ii) Find (0, k) = }llirré and f,(0, 0)
_ 1. f(h, 0+K)—f(h, 0)

fy(h, 0) = lim . and f,(0, 0)

III) Find fxy(O, 0) = (fy)x(o, 0) — Lln’(l) fy(h, O)Lfy(O, 0)

& f4(0, 0) = (fu),(0, 0) = ng fx (0, k)—kfx(o, 0)

Ex. Let f (x, y) = xy ﬁ;iz (x, y) # (0, 0) and £ (0, 0) = 0.

Prove that f,y(0, 0) # fyX(O 0).
= (X, y) #(0, 0) and £ (0, 0) 0

Proof. Let f (x, y) = xy =

x2+

f(0+h, kK)—f(0, k)

i) f,(0, k) = l' h

= 11m {hkh2 P -O}

= lim k =
h-0 h4+k

_, 0-k2

— T 0+k?

i.e. (0, k) = —k
~1,(0,0)=0
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f(h, o+k)—f(h, 0)

and fy(h, 0) = 1'

k
—ll(l_r)% {hkh2 = —0}

. h2—k?

B 1l<1_r>% h h2+k?2

_, h?-0

=h h2+0

i.e.fy(h,0)=h
~,(0,0)=0
. fy(h, 0)—f,(0, 0)
iii) Now f,,(0, 0) = (f,)x(0, 0) = L1_r)r(1) > hy
= Jim =2
" h-0 h
=lim1l <+~ h=#0
h-0
=1l.iine. (1)
& f(0, 0) = (F)y(0, 0) = lim 220D
= lim —~X=¢
ko0 k
= }111% (-1) v K# 0
ie. fx(0,0)=—1.......... (i)

Ex. Let f (x, ) = 225, (x,y) # (0, 0) and £ (0, 0) = 0.
Show that f,,(0, 0) = f,(0, 0).
Proof. Let f (x, ) = 225, (x,y) # (0, 0) and £ (0, 0) = 0

~i)f(0,0)=0,f(h,0)=0,f(0,k) =0and f (h, k):hf; k
.. .. f(0+h, K)—f(0, k)
i) £,(0, k) = hm .

_ 1 h2k2
Ll_m Al hzyrz }

hk?
= lim
h—>0 h2+k?2
_ 0
T 0+k2
i.e.f(0,k) =0
= f,0,0)=0

fth, 0+k)—f(h, 0)
k

and fy(h, 0) = 1l(irré
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. 1, h?%k?
- 11<1_r>% kUhzsr2 0}
.t h2k
~ M ke
0
"~ h2+0
i.e.f(h,0)=0
~1,(0,0)=0
III) Now ny(O, O) = (fy)x(o, 0) — Llr% fy(h, O)Lfy(O, 0)
= lim &=° ;
a h-0 h
=0 (1)
& (0, 0) = (f(0, 0) = lim X722
= lim 2=2
k-0 Kk
i f(0,0)=0.......... (ii)

By equation (i) and (ii), f,y(0, 0) = f,«(0, 0) is proved.

EMLmﬂmw:fwﬁﬁa—fwfﬁaiﬂmmiwﬂ)
=0,if (x,y)#(0,0)
Show that fxy (0, 0) % fyx (0, 0).
Sol. Let f (x, y) = x° tan"}( g ) -y tan (f), if (x,v)# (0, 0)
=0,if (x,¥)#(0,0)
~1)f(0,0)=0,f(h,0)=0,f(0,k)=0and f (h, k) =h*tan'(3) — K’ tan* ()

i) £,(0, k) = 1lli_r>r(l) f(0+h, k)h_f(o' K

—Tlim Lrh2 fan-105Y _ 2tan-1 0 _
= lim h{h tan (h) k“ tan (k) 0}

h—-0
_1.h
=lim htan1(¥) — limk 22_®
h—-0 h h-0 (3
=0—k (1)
i.e.£(0,K) =—k
-+ £(0,0)=0

and fy(h, 0) = 1l(irré fh, °+k)k_f(h' 0)

—tim L2 pan-1cK8Y _ L2 4an-1 M _
—llg%k{h tan (h) k< tan (k) 0}

tan~1(5) h
=lim h —— — limktan™! (-)
k—0 ) k—0 k
=h(1)-0
i.e.f(h,0)=h
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~1(0,0) =0
iii) Now f,,(0, 0) = (f,)«(0, 0) =1 fy(h, 0);fy(0, 0)
= lim h_O_hml o hio
h-0 h >0
=1......... (1)

; fx (0, K)—fx(0, 0
& (0, 0) = (£(0, 0) = lim 222 2

k-0 .
—}(ILI(I)T—LILI(I)( 1) =~ k#0

ie. f(0,0)=—1.......... (i1)
By equation (i) and (ii), f,y(0, 0) # fx(0, 0) is proved.

Ex. Examine the equality of f,,and f,x where f (X, y) = Xy + exv’
Sol. Let f (x, y) = X%y + e*”
First differentiating partially w. r. to x and y, we get
fo=3x%y +y%e™* ... (1)
f,=x*+ e’ (2xy) ......... )
Differentiating equation (2) partially w. r. to x, we get
fy = 3% + 2ye™ +2xye*" (y?)
= 3%% + 2y’ (1+xy?)......(3)
Differentiating equation (1) partially w. r. to y, we get
f = 3X2 + 2ye ™"+ y? eV (2xy)
= 3x% + 2y (1+xy?) ....... (4)
From equation (3) & (4), fx, = fyx

Ex. Ifu=x’tan"}( % )—y*tan™ (; :
Sol. Let u = x? tan ( % )—y*tan? (%)
First differentiating partially w.r.toy, We get

ou _ 2 1 X —x
5—x1+(y)2() 2y tan- () Y’ (33)

3

1+( )2

—2ytan (—)+

x2+
_x 34xy?
x2+ 2

=x—2ytan’ (;)

Now differentiating it partially w. r. to x, we get
%u _ 1 1
oxdy 1- 2y1+(§)2 ( y )

x2+y

—2ytan™ (—)

I
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2

_ 2y
=1 x2+y?
xz_yz
T x2+y2?
Hence proved.

) 0%f _ 0%f ... _ x%+y?
Ex. Verify that w0y~ Tyor' If f =log ( > )
x%+y?

Sol. Let f =1log ( )=log (x? + y?) — logx — logy
xy

First differentiating partially w. r. to x, we get
6_f - 2x 1

ox x2+y?2  x

_ 2x2-xZ-y?
T x(x2+y?)
9 2_y2 :
S (1)
ox  x(x2+y?)
. of _ y?—x?
Similarly 3y Yoy (i)

Now by differentiating equation (ii) partially w. r. to x, we get
f _ 1 ((xP+y*)(—2x)-(r*-x*)(2x)
oy YV Gnrr . J
1 —2x3-2xy?-2xy?+2x3
S e
1 . —4xy?
=y Gt
_ _ —Axy
- (x2+y2)2
Again by differentiating equation (i) partially w. r. to y, we get
9% _ 1 (x2+y2)(—2y)—(x2—yz)(Zy)}

dydx  x (x2+y2)2
_ 1 —2x%y-2y3-2x%y+2y3
T x { (x2+y2)? }
_ 1 . —4x?%y
= W)
_ _ TAxy
- (x2+y2)2
9%f _ 0%f .
Hence w0y~ yox is proved.

Ex. If u= (x*+y*+2%) "%, x*+y*+2°# 0, show that U+ Uyy+ U, = 0
Sol. Let u = (x*+y*+29) ™2, x*+y*+7°% 0
First differentiating partially w. r. to x, we get
Uy = _% (x2+y2+22)_3/2(2x)

Uy = _X(x2+y2+22)-3/2
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Again differentiating it partially w. r. to x, we get
U = -4y 2°) 2 X(5) (P yP42) *H(2x)
(x +y +7 )-5/2(x2+y2+22) + 3X2(X2+y2+22)
= (x +y +2°) 2L (x +y2+22) +3x%}
U = (X*+y*+2 ) 5/2(2x .79
Similarly uyy = (x*+y*+z )5’2(2y2 X2-7%) & Uy, = (xXP+y*+70) Y4222 X2-yP)
Adding we get,
Upct Uyy+ Uz = (&% +y +2°) (20 yP- 2P 2y -XP- 2P+ 225 XP-yP)
= (¢+y*+2°)*(0)
=0
Hence proved.

-5/2

-512

Differentiable Function:

The function f (x, y) is said to be differentiable at point (a, b) if the change
6f=1 (ath, b+k) —f (a, b) is expressed in the form 6= Ah + Bk + h@(h, k) + k¥(h, k),
where A and B are constants independent of h, kand @, ¥ — 0 as (h, k) — (0, 0).
Differentials:

Let u =f (X, y) be a differentiable function of two variables x and y, then

the differential of u is denoted by du and is defined as du = == dx + g—;‘ dy.

Approximate Value by Using Differentials:
Approximate value of a function at point (a+h, b+k) by using differentials is given
by f (a+h, b+k) = f (a, b) + hfy(a, b) + kfy(a, b)

Necessary Condition For Differentiability:
If a real valued function f (x, y) is differentiable at point (a, b) then
i) fis continuous at point (a, b), ii) f(a, b) and f,(a, b) exists.
Proof: Let a real valued function f (X, y) is differentiable at point (a, b) then for any
point (a+h, b+k) in a neighbourhood of point (a, b), we have,
6f = f(a+hb+k)-f(ab)=Ah+Bk+hd(h k) +k¥(h Kk)....... (1)
where A and B are constants independent of h, kand @, ¥ — 0 as (h, k) = (0, 0).
) By taking limit (h, k) = (0, 0) on both sides of equation (1), we get,
{fa+hb+k) - f(a b)}— lm {Ah + Bk + h@(h, k) + k¥ (h,k)}

(hk) (00) (h k)~
lim f(a+hb+k)— hm f(a, b)—O

(h,k)—(0,0) k)—(0,0)

ie. i f(a+hb+k —f b)=0
wdm f TS

. (hk)B%o )f(a+h b+ k) =f(ab)
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~ T (X, y) is continuous at (a, b) is proved.
1) Putting k = 0 in equation (1), we get,
f(a+h,b) - f(a,b) = Ah+ ho(h, 0)

f (a+h,b)-f (a,b) — A+ (p(h 0)
h )

Taking limitas h — 0, we get,

. f(a+h, b)-f(a, b) y_ ;.
lim { }= lim{A+o(h, 0)}

~f(a, b) = A
Similarly we obtain
fy(a, b)=B
Thus fy(a, b) and f,(a, b) exists is proved.

Sufficient Condition For Differentiability:
A real valued function f (X, y) is differentiable at point (a, b) if
) fy is continuous at point (a, b) and ii) f, exist at (a, b).

Proof: Let f (X, y) be a function defined in a domain D € R?.

For any point (a+h, b+k) in a neighbourhood of point (a, b) we have

6f = f(a+hb+Kk)-f(ab)

=f(@a+hb+k)-f(a,b+k)+f(a,b+k)-f(ab)....... (1)

As f,(a, b) is exist in a neighbourhood of (a, b).

=~ By Lagrange’s Mean Value Theorem,

f(a+h,b+k)- f(ab+k)=nhf,(at+tbh, b+k) ........ (2) where 0 <0 < 1.

Again fx(a b) IS continuous at (a, b)

o (h k) (a+9h b+k) = fy(a, b)

(a+6h b+k) f«(a, b) + @(h, k) for some function @(h, k) = 0 as (h, k) — (0, 0)
Equation (2) is written as
f(a+hb+k)-f(ab+k)=hf,(a b) + he(h k)...... (3)
By condition (ii), fy(a, b) is exists.
Y f(a, b+k)-f(a, b)
fy(a, b) = Jim (===

L@ DHOT@ D) _ g (e, b) +W(0,K)

for some function ¥ (0,k) — 0 as (h, k) - (0, 0)
~f(a, b+k)-f(a b)=kfya b)+k¥(0,Kk)......... 4)
Using equation (3) and (4) equation (1) becomes

Sf = hfy(a, b) + h @(h, k) + kf,(a, b) + k¥ (0,k)

Sf = hfy(a, b) + kf,(a, b) + he@(h, k) + k¥ (0, k)

} exists.

I
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where @, ¥ — 0 as (h, k) = (0, 0).
Hence f (X, y) is differentiable at (a, b) is proved.

Ex. Show that the function

f(x,y)= \/72, if x24+y%2+0
=0,if x=y=0
possesses the first order partial derivatives but is not differentiable at the origin.
Proof. Let f (x, y) = \/_2, if x> +y2+0
=0,if x=y=0
i.e.f(0,0)=0........... (1)
Consider
0, 0) = Jim I 970 9) - 1, 0=
h- h-0 h
o f(o K)- (0, 0) 0-0 _
&fy(0,0)—ll<1 { p 1= 11(1_rr(1)T—O

I. e. first partial derivatives are exists.
Suppose f (X, y) is differentiable at the origin.

of = f(h, k) - f(0, 0) =hf(0, 0) + kfy(0, 0) + h@(h, k) + k¥ (h,k) ....... (1)
where @, ¥ — 0 as (h, k) — (0, 0).
From equation (1), we have,

W-o 0+0+hae(h, k)+ k¥(hKk)
.e. \/7— he(h, k) + k¥ (h, k)

Puttmg k =h, we get,

W =ho(h, h) + h¥(h,h)

\/_E =@(h,h)+¥(h,h)

Ash—- 0= &, ¥ — 0 we get,

1 _ L

5- 0 which is absurd.

=~ T (x, y) is not differentiable at the origin.

Ex. Show that the function
f(xy)— 2,fo +y2 40

= O, lf x=y=0
possesses the first order partial derivatives but is not differentiable at the origin.
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Proof. Let f (x, y)— 2,lfx +y2 40
:0, lfx y=0
i.e.f(0,0)=0........... (1)
Consider

£(0, 0)=}11i f(h, 0)-f(0, 0) _ -0

h h-0 h
& 1,0, 0) = lim m ({2 D= Jim 2=
I. e. first partial derivatives are exists.
Suppose f (X, y) is differentiable at the origin.

of = f(h, k) - f(0, 0) =hf(0, 0) + kfy(0, 0) + he(h, k) + k¥ (h,k) ....... (1)
where @, ¥ — 0 as (h, k) — (0, 0).
From equation (1), we have,

-0 0+0+hao(h, k) + k¥ (h k)
k2 = ho(h, k)+ k¥ (h, k)

Putting k =h, we get,

h2 = ho(h, h)+ h¥(h, h)

5 = hCD(h, h)+hW¥ (h, h)
Ash- 0= @, ¥ — 0we get,

h2

% = 0 which is absurd.
~ T (X, y) is not differentiable at the origin.

Ex. Discuss the continuity and differentiability at the origin of the function
f(6y) = 55 if () £(0,0)
=0, if (x, ¥)=(0,0)
Sol. Let f (v, ) = 777 if (%, y) #(0.0)

=0,if (x,¥)=(0,0)
I.e. (0, 0) =0 is defined.

Xy
Letl = ey oY) = (W vy
For the path y = 0, we have
L =1lim 20 =
x—-0 x40

For the path y = x, we have
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2

L =lim
x—0 X2+x2

For two different paths we get two different limits.

~ lim  f(X,y) does not exists.
(xy)—(0,0)

=~ the given function f (X, y) is not continuous at (0, 0).
As if function is not continuous then is not differentiable.
Hence the given function f (x, y) is neither continuous nor differentiable at (0, 0).

Ex. Discuss the differentiability of a function at (0, 0).
Where f (x, y) = "4”4

Proof. Let f (x, y)— whenx +y2+#0andf(0,0)=0
L f(h o) £(0, 0) _ 1. 1 h*+0 _
(0, O)—Illlm - oﬁ{hz 0—0} llmh—O
_ . £(0, K)- f(o 0) 0+k* _ _
&fy(0,0)—ll<1 { }—k 1 0+k2-0}—ll(1_r>r%)k—0

1. e. first partial derivatives are exists.
Now consider
5f =f(h, k) - £(0, 0):“
= hf(0, 0) + kf,(0, 0) + hcp(h k) + k¥ (h, k)
Where d = —*_ p = K — - 0as (h, k) - (0,0).

h2+Kk2’ h2+
~ T (X, y) is differentiable at (O, 0).

h2 k2} {h2+k2}

Ex. Using differentials find approximate value of /(1.02)2 + (1.97)3
Sol. Let f (x,y) = w/x2 Fy3=(x2+y3) 2
Y =5 (2 4y 2(20) =
3y?

fy(x y) =5 (2 +y%) V2(3y%) = NN
Using differentials approximate value is given by
f (a+h, b+k) = f (a,b) + hfy(a, b) + kf,(a, b)
By takinga=1,b=2,h=0.02 and k = — 0.03 we get,

(x2+y3)1/2
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f(1.02,1.97) = £ (1,2) + (0.02)f,(1, 2) + (— 0.03)f,(1, 2)

2 3 2 3 5 _ 3@
\/(102) + (197) : \/(1) + (2) + (002){ (12+23)1/2} (003){ 2(12+23)1/2}

= 3 +0.0067 — 0.06
+J(1.02)2 + (1.97)3 = 2.9467

Ex. Using differentials find approximate value of (3.9)%(2.05) + (2.05)°.
Sol. Let f (x,y) = X%y +y° a B, y) = 2xy & Ty(X, y) = X° + 3y
Using differentials approximate value is given by
f (a+h, b+k) = f (a,b) + hf,(a,b) + kf,(a, b)
By takinga=4,b=2,h=-0.1and k = 0.05 we get,
f(3.9, 2.05) = f (4, 2) + (- 0.1)f,(4,2) + (0.05)f,(4,2)
(3.9)%(2.05) + (2.05)° = {(4)*(2) + 2°} - (0.1)(2x 4 x 2) + (0.05){4°+3x2°}
=40-1.60 + 1.40
(3.9)%(2.05) + (2.05)° = 39.80

Ex. Find the approximate value of (5.12)*(6.85) — 3(6.85).
Sol. Let f (x, y) = X%y — 3y w (X, y) = 2xy & fy(x, y) =x*- 3
Using differentials approximate value is given by
f (a+h, b+k) = f (a,b) + hf,(a,b) + kf,(a, b)
By takinga=5,b=7,h=0.12 and k = — 0.15 we get,
f (5.12,6.85) = £ (5,7) + (0.12)f,(5,7) + (- 0.15)f,(5, 7)
(5.12)%(6.85) — 3(6.85) = {(5)*(7) - 3x 7} + (0.12)(2x 5 x 7) — (0.15){5*-3}
=154 +8.40 - 3.30
(5.12)%(6.85) — 3(6.85) = 159.10

Schwarz’s Theorem:

If f, exists in a neighbourood of a point (a, b) of a domain of a function f and f,y is
continuous at (a, b) then f,(a, b) exists, and fy(a, b) = fy,(a, b).
Proof: By the given conditions f, f, and f,, all exists in a neighbourood of a point

(a, b). Let (a+h, b+k) be any point lies in this neighbourood.

Let &(h,k)=f(a+hb+k)-f(a+hb)—f(a,b+k)+ f(ab)

Write G(x) = f (x, b+k) — f (x, b)
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=~ @(h, k) = G(ath) - G(a)
- f, exists in a neighbourood of (a, b) = G(x) is differentiable in (a, a+h) with
G'(x) = fu(x, b+Kk) — fi(x, b).
~ By Lagranges M.V.T. we get,
@(h, k) =hG'(a+8h), where 0 <6 <1
= h{ f(a+6h, b+k) — f,(a+6h, b)}
Adgain fy, exists in a neighbourood of (a, b) = f is differentiable in (b, b+k).
~ By Lagranges M.V.T. we get,

®(h, k) = hkf,x(a+6h, b+6'k) where 0 < §'< 1

2 288 = (a+6h, b+6'k)
. f(athb+k) - f(a+hb)-f(ab+k) +f(ab) _

hk T

(a+6h, b+0'k)

1 {f(a+h,b+k)—f(a+h,b) _ f(ab+k)-f(ab)
) k k

By taking limit as k — 0 on both sides, we get,

= f,y(a+6h, b+6'K)

fy (a+h, b)-fy (a, b)
h

Again taking limit as h — 0 on both sides, we get,
fu(a, b) = fix(a, b)

Hence proved.

= fyx(a+6h, b) ~ fy and fy, are exists in a nhd of (a, b)

Young’s Theorem:
If fx and f, both are differentiable at a point (a, b) of a domain of a function f,
then fy(a, b) = f,y(a, b).

Proof: By the given conditions f, and f, both are differentiable at a point (a, b) of a
domain of a function f.
=~ Txys fyxand £y, are exists at point (a, b) and its neighbourood.
Let (at+h, b+h) be any point lies in this neighbourood.

Let &(h,h)=f(a+hb+h)-f(a+hb)—f(a,b+h)+ f(ab)
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~ @(h, h) = G(a+h) - G(a)
- f, exists in a neighbourood of (a, b) = G(x) is differentiable in (a, a+h) with
G'(x) = fu(x, b+h) — fi(x, b)
~ By Lagranges M.V.T. we get,
@(h, h) =hG'(a+8h), where0 <6 <1

= h{ f(a+6h, b+h) — f,(a+6h, b)}

= h{ [f«(a+Bh, b+h) —f,(a, b)] — [ fx(a+8h, b) — fi(a, b)]} ....(1)
As T, is differentiable at point (a, b) =
fu(a+60h, b+h) —fy(a, b) = 6h fi(a, b) + hfyk(a, b) + 8hd,(h, h)+hW; (h, h)
and f,(a+6h, b) — f,(a, b) = 8h fi,(a, b) + 6hd,(h, 0)
Putting these values in equation (1), we get,

®(h, h) = h{ hf,(a, b) + 8hdb; (h, h) + hw, (h, h) — Bha,(h, 0)}
2 208 = £,(a, b) + 0D, (h, h)+¥,(h, h) - 6d,(h, 0)

By taking limit as h—0 on both sides, we get,

. h,h
Illlir})(p(hz L = (@ b) =~ @, W, Py—0 as h—0
Similarly, if we consider H(y) = f (a+h, y) — f (a, y) and proceed as above, we can

obtain lim 20D = fy(a, b)

=~ fy(a, b) = fix(a, b) Hence proved.

Note: i) If both f,, and f,, are continuous at (a, b), then f,,(a, b) = f,x(a, b).
I1) The conditions in Schwarz’s & Young’s Theorem are sufficient but they are
not necessary.

Ex. Show that for the function

f(x,y) = =2 if (x,y) # (0, 0)

x24 y2'

=0, if (x, ) =(0,0)
fxy (0,0) = fyx (0, 0), even though the conditions of Schwarz’s theorem and

Young’s theorem are not satisfied.
24,2
Proof: We have Let f (x, y) = ==

(x,y) % (0, 0) and £ (0, 0) =0

x2+y2’

I
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~1)f(0,0)=0,f(h,0)=0,f(0,k)=0and f (h, k)‘thrk2

f(o+h, k)-f (0, k) = i l{ h2K2 _0}

i) £,(0, K) = Jim : lim (2
—lim 2 = lim—>-=0

h—>0 h2+k? h—>0 0+k2

i.e.f,(0,k)=0 ~f(0,0)=0

_ 4. f(h, 0+k)—f(h, 0) h?k?
and fy(h, 0) = lim : = lim {3~ 0}

Zk 0

= lim = lim
k>0 h2+k2 k>0 h2+0

i.e.f(n,0)=0 ~f0,0)=0
fy(h, 0)-fy(0, 0)

if) Now f,(0, 0) = (£)(0, 0) = lim -
= lim =0 (i)
_ _ (0, k)—fx(0, 0)
& fx(0, 0) = (f,),(0,0) =1 m
= lim 2=2
T k=0 k
e, fx(0,0)=0 ......... (ii)

By equation (i) and (ii), f,y(0, 0) = f,«(0, 0) is proved.
2 (x2+y2)(2x)—(x2)(2x)} _ 2xy*

Now fx(Xv y) =y { (x2+y2)2 - (x2+y2)2
. — s @2+y2 4y -2+ (2Y) _ oy f&2+y2) 4y -(4y°)
* fyX(X7 y) - 2X{ (x2+y2)4- 2 { x2+y2)3 }

_ {(4x2y3)} 8x3y3
T T a2yt T (x24y2)3

8x3y?

L= (x,yl)l—r>r(10,0) fpd%,y) = (%, y)—>(0 0) (x2+y2)3

For the path y = 0, we have

L—llmi—O

x—0 x°©

For the path y = x, we have

6
L=1lim X =lim1=1
x—-0 8x x—0
For two different paths we get two different limits.
o - yl)l_r)r(lo 0)fyx(x y) does not exists.
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~ fyx(X, y) is not continuous at (0, 0) i.e. condition of Schwarz’s theorem is not
satisfied.
Suppose f,(x, y) is differentiable at (0, 0).
df=f(0+h, 0+k) - (0, 0) = hf«(0, 0) + kfyx(0, 0) + h@(h, k) + k¥ (h,k) ....... (1)
where @, ¥ — 0 as (h, k) — (0, 0).
From equation (1), we have,

2hk*
(h2+K2)2

£(0, 0) gives fu(0, 0) = 0 & f,,(0, 0) = 0

2hk*
(h2+k2)2 - h(p(h! k) + klp(h, k)

-0=0+0 +hd(h, k) + k¥ (h, k)

.e.
Putting k = h, we get,

(hjhhz)z =ha(h, h) + h¥(h, h)

E =@(h,h) +¥(h,h)
Ash- 0= @, ¥ - 0we get,

% = 0 which is absurd.

~ Tx(X, y) is not differentiable at (0, 0). i.e. condition of Young’s theorem is not
satisfied. But f,,(0, 0) = f(0, 0).

1) Aset SN(a, b) = {(x, y)/ /(x — @)2 + (y — b)2 < §}is called ... ... ..
of a point (a, b) in xy-plane.
a) 6 neighbourhood b) deleted 6 neighbourhood c) None of these
2) Aset SN'(a, b) = {(x,y)/ 0 < \/(x —a)? + (y —b)2 < &}iscalled ............
of a point (a, b) in xy-plane.
a) 6 neighbourhood b) deleted 6 neighbourhood c) None of these

3) - yl)ﬁ(0 . y—b 2 along the pathy =0is ......

a)0 b) — c) - — d) None of these
4) « yl)l_} 10 yT along the pathy = 2X 1S ......

a) 1l b) 3 C) - 5 d) None of these
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_ : x?-y? _
5) Along the path y = x, (X'yl)l_r)r(lo'o) Ty
a) 1l b) 0 c)-1 d) None of these
sin(x2+y) _

6) Alongthe pathx=0, lim
(xy)—(0,0) x+y

a)l b) -1 c)0 d) None of these

_ . sin(x?+y)

7) Along the pathy =0, (X'yl)l_r)r(lo'o) ey
a)l b) -1 c)0 d) None of these

8) Alongthe pathx =0, lim M;. ..
(xy)—(00) Xty
a)l b) -1 c)0 d) None of these
_ . tan(x®+y)_
9) Along the pathy =0, (X,yl)lll(lolo) e
a)l b) -1 c)0 d) None of these
3 _ : xy® _
10) Along the path y’ = x, (X,y1)1_r>r(10,0) Ay
a)l b) -1 C) % d) None of these
2 _ xy _
11) Along the path x° =y, (X,y1)1_r>r(10,0) TR
a)l b) -1 C) % d) None of these
T .1
8) lyl_r>r01 }(1_r)r(} Xsins=.....
a)l b) 0 C)= d) None of these

. . x2y? _
) I ] =
a)l b) 0 C) % d) None of these
10) A function f(x, y) is said to be continuous at point (a, b) if f (a, b) is defined,

lim )f (x,y)isexistand  lim )f X, y)....f(a, b).

(x, y)—(a, b (x, y)-(a, b

a) = b) < c) > d) #
11) If Lirrg fxth, Y)h_f(x' y) IS exist, then it is denoted by......

a) fy(x, y) b) fu(X, y) c) fulX, y) d) fyy(x, y)
12) If }{in& i Y+k)k_f(x' Y s exist, then it is denoted by......

a) fy(x, y) b) fx(x, y) ¢) (X, Y) d) fyy(X, y)
13) If u = X%z + xy* — 2yz then g—;‘ at point (1, 2, 3) is...........

a) 13 b) -2 c) -3 d) None of these

I
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14) If u = X’z + xy* — 2yz then Z—; at point (1,2, 3) is ..........

a) 13 b) -2 c) -3 d) None of these
15) If u = xz + xy* - 2yz then 2% at point (1, 2, 3) is ..........
a) 13 b) -2 c) -3 d) None of these
16) If u = e”sinxy then Z—Z at point (0, 0)is ...........
a)0 b) 1 c) 2 d) None of these
17) If u = e”sinxy then Z—;‘ at point (0, 0)is ............
a)0 b) 1 C) 2 d) None of these
18) If u=tan™2 then Z—z = el
a) xziyz b) =~ — c) x;j; - d) None of these

19) Ifu=tanZ then &= ...
X dy

a) xziyz b) > — c) x:; - d) None of these
20) If u = log (x*+y*+2%) then 22 = .__.....
a) ﬁ b) ﬁ c) ﬁ d) None of these
21) If u = X% + y?z + z°x then Z—;‘ at(1,0,-1) ..........
a)0 b) 1 c)-1 d) None of these
22) If u = log(tanx + tany + tanz) then Z—Z = e
a) sec’z b) sec’y c) sec’x d) None of these
tanx + tany + tanz tanx + tany + tanz / tanx + tany + tanz
23) lim 2@t D&K@ b _
h—-0 h
a) f.(a, b) b) (@, b) ¢) £,4(a, b) d) f,,(a, b)
24) lim Y@ DK@ D
h—0 h
a) fx(a, b) b) f,y(a, b) c) fx(a, b) d) fyy(a, b)
. fy(a, b+k)—fx(a, b) _
25) }gr& T T
a) fxx(a, b) b) (2, b) c) fyx(a, b) d) fyy(a, b)
26) lim Y& PHOh@ )
k—=0 k
2) f.(a, b) b) (2, b) ¢) £,4(a, b) d) f,,(a, b)
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27) If u = (x, y) is a differentiable function of two variables x and y, then

SO
du = o dx + ™ dyis called ......... of u.

a) differential b) derivative c) partial derivative d) None of these
28) By differentials approximate value f(a+h, b+k) is given by

a) f (a,b)+hfy(a, b) +kfy(a,b) b)f(a b)+hfi(a, b) +kfy(a,b)

c) f (a,b)+hfy(a,b) +kfy(a,b) d) f(a, b)+hfy(a,b) +kfy(a,b)
29) Every continuous function f (x, y) is .......

a) always differentiable b) always not differentiable

b) may or may not be differentiable d) None of these
30) If f, exists in a neighbourood of a point (a, b) of a domain of a function f and f,y is

continuous at (a, b) then f,y(a, b) exists, and ..........
a) f,.(a, b) = f(a, b) b) fix(a, b) = fy(a, b)
) (@, b) = fyy(a, b) d) fu(@, b) = f,,(a, b)

I
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UNIT-2: JACOBIAN, COMPOSITE FUNCTIONS AND MEAN VALUE THEOREM

Jacobians:
If uand v are functions of two independent variables x and y, then

du OJdu

vy _ 0(wv) _ ax 5

(E) T oy |ov v

Is called jacobian of u and v w.r.to x and y.

ox 9y
Jacobians:
If u, v and w are functions of three independent variables x, y and z, then
dou Jdu Ju
ax 9y oz

(u,v,w)_ o(uyw) _[ov  dv  dv

X,¥,Z - 0(x,y,2) “|ox dy 0z
ow ow ow

is called jacobian of u, v and w w.r.to x, y and z.

ox 9y az
Note: |)J(—)J( ) 1|eJ( )‘ uv)

) a(u,v) a(x,y) _ 0(uw)
a(x,y) (r,0) a(r.0)
Functionally Dependent Functions: Functions u, v and w of three independent

variables x, y and z are functionally dependent or functionally related if a(i';vzv)) =0

Ex. If u=x2,v=y?2 find
Sol. Letu=x2,v=y2

ou _ 6_u_
a—zx 3y =0
ov _ o Ov

Ex. If u=x(1-y), v =xy,
Proof. Letu = x(l y), V=xy

. a—l-ya -X
ov
&a yay X
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du OJu
L o0(uy) _ E 5
oy |ov ov
ox Ody
1=y —x
= y x
=x —xy+Xy
= x(1-y) +xy
. o(uw) _ —U+V.
a(xy)

Hence proved.

I(xy) o 9(1,6)
Ex. If x =rcos@, y = rsiné, then evaluate 30.8) & i)
Sol. Let x = rcos8, y =rsiné
Z—x = cosB = -rsin@
&Y= sme = rcos6
or
ax ax
.0y _ |ar a6| _ |cos@ —rsinf| _ 2 o
‘200 |2v ov| " lsing  rcosgl €% O+ rsin®0 =T
or 06
a(re) _ 1 a(r,0) _
Now = Ives =2
oy) - 2= I oy Tr
e ey
Ex. Find the value of the Jacobian 300"
where u = x2-y?, v = 2xy and X = rcosé, y = rsin@
Sol. Letu = 2-y2 v = 2xy
6u
ax 2x —=-2y
&2 5 = 2y, 5 = 2X
ou ou
Cowy) _|ox ay| _|12x  =2y|_ . , 2 _ y ) 20in20) = A2
Sy v av| T |2y |—4x +4y* = 4(r°cos*0 + r-sin“0) = 4r
ox Jdy
Again x = rcose y =rsinf
L cos@ = -rsind
6r
&%= sme = rcosé
or
ax ax
.0y _ |ar a6| _ |cos@ —rsinf| _ 2 o
“awe [ 9| T lsing  rcosal T "€%° O+ rsin® =T
ar 96
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o(uwv) _ d(uv) 0(x,y)
ar0) a(xy) a(r0)

a(u,v) _ 2 _ 3
R Adrer =4r

Now gives

Ex. If x =rcosé, y = rsinf, z = z then evaluate

Sol. Letx =rcosf,y =rsing,z=z

ox _ ox _ . ox _
..E—cose, Vi rsing, 62_0
9y _ ion 9y _ ay _
Pl sing, 59 = rcosd, = 0
0z _ 0z _ ~ 0z _
&Z_O’ae_o’az_l
dx 0dx Ox

9(x,y,2) or 96 021 Jcos® —rsind 0
Loey) oy oy ay|_ |
T a6z |or a6 oz sin@ rcosf O
0z 0z 0z 0 0 1
or 00 0z
=rcos?0 + rsin’=r

Ex. Verify whether the following functions are functionally dependent, and if so, find

the relation between them. u = % and v = tan~'x + tan~ly.

Proof. Let u =2 and v = tan"!x + tan"ly

1-xy
C0u _ 1-xy—(x+y)(-y) _  1+y? ou _ 1-xy—(x+y)(-x) _  1+x2
" ox (1-xy)2  (1-x)* dy (1-xy)2  (1-xy)?
ov _ 1 ov_ 1
x  1+x2' dy  1+y?

ou ou
L o(uww) _|ox ay
oy |ov v

dx 0y
1+y? 1+x2
— |@=x»)?  (1-xy)?
- 1 1
1+x2 1+y?
1 1

- (1-xy)?  (1-xy)?
. a(u,v) —
T a(xy)

Hence u = % and v = tan~1x + tan'y are functionally dependent is proved.

Now Vv =tan !x + tan"ly == tan‘l(%) =tan"lu
~ U = tanv be the relation between them.
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Ex. Show that u = xy + yz + zx, v=x2 + y? + z? and w = x + y + z are functionally

related.

Proof. Letu=xy+yz+zx,v=x?+y? +zZandw=x+y+z
u ou ou
n—=ZVy+7 —=X+7Z, —=V+
ox y Z’ay X Z’az yTX
ov _ ov _ ov _
a—Zx,ay—Zy,aZ—Zz
ow _ , ow _ ., Ow _
&5_1’ay_1’az_1

ou ou ou
dx Oy 0z

L o(uwvw) _ v v ov
Coyz |ox oy oz
ow ow ow
ox 9y 0z
y+z X+y y+X
=| 2x 2y 2z
1 1 1

y+z X+z y+X
=2 x y z
1 1 1
y+z+x x+z+y y+x+z
=2 X y Z by R]_ + Rz
1 1 1
1 1 1
=2x+y+2)[x y =z
1 1 1
=2(x+y+2)(0) “R1=R3
L o(uyw) _
Ca(yz)

Hence u=Xxy +yz +zx,v=x% + y? + z? and w = X + y + z are functionally
related is proved.

Ex. If u = cosx, v = sinxcosy and w = sinxsinycosz then show that
a(u,v,w) — 3 .:..3 . 2 .
Ay 2) = (—1)°sin°xsin“ysinz
Proof. Let u = cosx, v = sinxcosy and w = sinxsinycosz
2= sinx, =0, 2 =0
Toax "ay  'dz

w - COSXCOS 9w sinxsin w 0
ax Y dy Y 9z

ow . ow . ow . . .
& E = COSXsInycosz, E = SINXCOSYCO0sz, a_z = -SInxsinysinz
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du Jdu OJu
dx 5 E
L o(uvw) _ v a_v a_v
T axyz) |9x 9y oz
ow ow oJow

ox 3y oz
—sinx 0 0
=| COSXCOSy —sinxsiny 0

COSXSINycoSzZ SIiNXCOSycoSZ —sinxsinysinz
= (-sinx)(-sinxsiny)(-sinxsinysinz)
. a(u,v,w)_ _ 3 .+ .3 . 2 .
D) = (—1)°sin°xsin“ysinz

Hence proved.

Composite Function:

If u is a function of two variables x, y and X, y are functions of a real variable t,
then u is said to be composite function of variable t.

Composite Function:

If w is a function of two variables u, v and u, v are functions of two variables X, y
then w is said to be composite function of variables X, y.

Chain Rule-1: If u =f (x, y) is a differential function of x, y and x = @(t), y = w(t) are

differential functions of t, then composite function u = f [@(t), w(t)] is differential

- du OJudx Odud
functionof tand = =222 4 222
dt OJdxdt 0dydt

Proof: Let 6x, 8y and du are the increments in X, y and u respectively, corresponding to
the increment 6t in t,
Let u =T (X, y) is a differential function of x, y.

0 ) d 0
6u=£6x+£6y+a6x+,85y=(£+a)5x+(£+ﬁ)6y ........ (1)

Where a, f = 0 as (6x,6y) —(0, 0).
Dividing equation (1) by 6t and taking limit as §t — 0, we get,
. ou _ . Jdu 6x u oy
Jim 5= im (G4 ) T+ G AT
As x = @(t), y = w(t) are differential functions of t,
~ lim ox _ d—x, im oy _ and every differentiable function is continuous,
St—0 ot dt * §t—0 Ot dt
~ 0t - 0= 6x,6y —»0and hence o, — 0.
Su _ dudx  oudy
st St axdr | oy dt
=~ The composite function u = f [@(t), w(t)] is differential function of t and
du _Oudx , dudy

= +—==
dt 0dxdt 9y dt IS proved.
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Chain Rule-I1: If w = f (u, v) is a differential function of u, vand u = 8(x,y), v=w¥(x,y)
are differential functions of x and y, then composite function w = f [@(X%, y), w(X, ¥)]

is differential function of x and y and its partial derivatives are given by
6w_6w6u+6w6v 6w_6w6u+6w6v

ox  oudx  ov dx dy oudy ovay

Proof: Let du, v and éw are the increments in u, v and w respectively, corresponding
to the increments dx in x and 6y in 'y,
Let w =f (u, v) is a differential function of two variables u, v.

) ]
s Ow = %511 + a—:}6v + a,0u + f16v
d d
28w = (5ot a)du+ (5o + BV ... (1)

Where a; f1— 0 as (6u, dv) —(0, 0).
Againu = @(x,y), vV =w(x,y) are differential functions of x and y

d d
o ou= £6x + %63/ + ay0x + B0y

0 d
& 6v=£5x +£6y+ az0x + [30y
. ] d
ie. du= (o +a)dx + (ﬁ +B)EY ... )

& §v=(S2+a)ox + (j—; + B)EY e, 3)

Where a, £, a3 Bz — 0as (6x,6x) = (0,0).
By using equation (2) and (3) equation (1) becomes

6w = (G + a)[GE + @)ox + G+ BSY] + G + BI(5o+as)x + G2 + B2)5Y]

8w = (Gogt + 5o 2ty 6x + (Gogt+ 5128y + adx + Boy

We observe that each term in a and 3 contain at least one of ay, f1, @y, B2, @3, 3.
~0x,0y—->0=aqa,pf - 0.

=~ By definition of differentiability, the composite function w = f [@(x, y), w(X, y)] IS

differential function of x and y with

ow _owodu , dw dv ow _ dwou , dw dv

=——+——and —= ——+——. _
ox ~auox  avox ond 3y  oudy ovdy Hence proved

Remark: If u =f (X, y, z) is a differential function of x, y, z and x, y, z are differential
functions of t, then composite function u is differential function of t and
du _ Qudx  dudy  dudz
dt  dxdt dydt dzdt

Ex. Find % when z = xy2 + x2y, X = at?, y = 2at
Sol. Let z = xy*+ X%y, x = at?, y = 2at.

..ax—y+2xy,ay 2xy+x,dt 2at&dt 2a
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As z is function of X, y and X, y are functions of t.
=~ Z i1s composite function of t.
~ By using Chain Rule-I, we get,
dz az dx ax . 6_zd_y
dt 6x dt dy dt
=(y* + 2xy)(2at) + (2xy + X*)(22)
= (4a’t? + 4a°t%) (2at) + (4a°t’ + a’t")(2a)
= 83’ + 8a’t’ + 8a’t’ + 2a’t’
= 16a°t*+ 10a’t*
= 2a%%(8 + 5t)

Ex. If z=f (X, y) = X*+y* where x = t*+1, y = 2t, find % att=1. (Oct.2019)
Sol. Letz = f (x, y) X2+ y2 x =241,y = 2t.

. az 0z d_x - d_y —

e 2x 3y =2y, 2t & 2

As z is function of x y and X, y are functions of t.
z is composite function of t.

=~ By using Chain Rule-I, we get,
dz _ 0z dx+az dy

E Ox dt 0dy dt

= (2x)(21)+(2y)(2)

=4(xt +y)

= 4[(t° +1)t+2t]
£ = 4(8 + 31)
Att=1,

Ex. Find Z—z iIf u=x34y3, X = acost, y = bsint
Sol. Let u =x34 y3, X = acost, y = bsint.

W 2= 3y a—“—3y2 dx—-asint&d—y:bcost

0x
As uis functlon of X,y and X,y are functlons of t.
=~ U Is composite function of t.
=~ By using Chain Rule-1, we get,
du _dudx  Odudy
dt OJdxdt O0dydt
= (3x%)( -asint) + (3y*)( bcost)
= (3a’cos’t)(-asint) + (3b’sin’t)(bcost)
2—1: = 3sintcost(b’sint - a’cost)
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Ex. Ifz=f(x, y) where x = rcos@ y = rsiné, prove that

0z _ . 0z 0z
= = _+ /R ==_ =+ =
. = cosf ™ 51n9 & 69 rsiné " rcosé@ 3y
Proof. Let z =f (x, y) where X = rcosH y = rsin9
ax
~Z=co 0s0, = —rsind, =sind & =rcosf.
“or Py

As z is function of x, y and x, y are functlons of rand 6.
=~ Z i1s composite function of r and 6.

=~ By using Chain Rule-II,
0z _ 62 6x E)z ay 0z _ E)z dx 0z dy

= = == Z 4222

ar  ox 6r ay or 30~ ox 06 0y 96 ' we get,
0z 0z 0z 0z 0z
—= cos@—+ sinf == & Z£ = — rsinf = + rcosf —
or ox dy 06 dx dy

Hence proved.

0z _

Ex. Ifz=f(x y)= tan_l(g) where X =U +V,y =u - v, then show thata—i +— 9

Proof. Let z =f (x, y)= tan—l(g) wherex=u+v,y=u-v.

L0z _ 1 1 y u-v . u-v

Tox 1+(§)2; T oy24x2 T (u-v)2+(uiv)2 2u2+2v2

0z 1 -x __  -x _ —(u+v) _ ~u-v
ay 1+(§)2 y2  y24x? (u-v)2+utv)?  2u?+2v2
ox ox dy dy

g, o, D182 =

ou * v ’ ou v

As z is function of X, y and X, y are functions of u and v.
z is composite function of u and v.
~ By using Chain Rule-1I,

0z 0z dx 0z0 0z 0z0ox 0za0
_=__+__y _=__+__y ,Weget,
du ax 6u dy ou 617 dxov OJdyodv
6_2 _ ( ) ( ) u-v-u-v _ -v
6u 2u2+2v2 2uz+2v2 2u2+2v2  u2+4p?

u—-v —u—-v u—-v+u+v u
& L= (-1) = =
ov 2u2+2v2( ) 2u2+2p2 " ) 2u2+42p2 uz+v?

Adding, we get,
0z + 0z _ -v u  _ u-v
ou v u+v?  uZ+v?  u?+v?

Hence proved.

EXx. If zis functionof xandyand x =e* + eV, y = e™* - e¥, then show that
oz 92 _ 0z 0z
Ju OJv ax yay
Proof. Let z is functionof xandyand x =e* +e ¥,y =e™" - ¢e".
LOx oy 0x .y a_y e~ U dy v
Hau_e'av_ € *ou &617 €

As z is function of x, y and x, y are functions of u and v.
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=~ Z 1s composite function of u and v.

=~ By using Chain Rule-II,
0z 6za_x dz 0y 0z _ aza_x 0z dy

au axou ayou < av axov  ayav Ve 9EL
Z_i: Z_i eu)_l_z_;(_e—u) _ ol Z_i_e—u Z_;
& Z—iz Z—JZC —e‘”)+2—§(—e”)=—e‘” Z—i—e” Z—;
Consider
g—z-g—i=eu2—i—e‘”g—;+e‘vg—i+e"g—;
:(eu+e‘”)g—i—(e‘”—e” Z—)Z/

0z 0z _ 0z 0z

ou v XE -y ady
Hence proved.

_ _ _ 0z 02 _ g0z 0z
iIfZ—f(u,v)whereu—2X—3y,v—x+2y,thenshowthatax+ay—36v P

Proof. Let z=f (u,v) where u =2x - 3y,v=x+ 2y
u_, g g v _
for=2 5= =3, 2=18& =2

As z is function of u, v and u, v are functions of x and y.
=~ z is composite function of x and y.
=~ By using Chain Rule-II,

Q—a_za_u %a_vanda_z—ga_u %a_v we qget
dx oQudx Ovox dy odudy ovay' get,
02 _ 97 gy L 0% 1y Z 907 0
a_au(2)+6v(1)_26u+6v
02 0z gy 02 oy _ 507 502
&5_6u( 3)+6v(2) 36u+28v
Adding, we get,
0z 0z _ 0z 507 _ 40z _ 0
dx 0y ou ov dv Jdu
Hence proved.
Ex. If u=f(y —z z—x,x — ), then show that = + Z—;‘ +22=0 (Oct.2019)
Proof. Letu=f(y—z, z—x,x—y) =f(p,q,1)
wherep=y—z,q=z—x&r=x—y
o_og % _ 1% _ 4 %__q % _( % _
"ax_o’ ay_l’ 9z 1, dx 1’6 =0, 62_1
or_q o _q or_
&5_1’ 3y 1, 62_0

As u is function of p, g, r and p, g, r are functions of x, y and z.
=~ U is composite function of x, y and z.
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=~ By using Chain Rule-II,
ou _ dudp + du dq +6u6r
ax dpdx 0qox Or dx
ou _ Oudp , dudq , oudr
dy dpdy 0qody Ordy
ou _ 6u6p+6uaq ou ar

%z opoz  aqoz  oraz V€ get,

Ou_ gy O gy 0% gy du_u
E‘ap(0)+aq( 1)+6r(1)_6r dq
Ou _ 0 gy 3 0y 4 0% gy 4 _ 0w
5_ dp (1)+6q (0)+6r( 1) ap or
Ou_ 0wy gy B gy 2 0u _du
&E_ ap( 1)+6q (1)+6r (0) dq Op

Adding, we get,
Ju 6u+6u_ du Jdu , Ju 6u+6u ou _

—t et —= =

dx 0Oy 9z  or aq dp or 0q Odp
Hence proved.

10u 10u 1du

= 2.72 7232 w2_y2 4 4=
Ex. If u=f(y?-z2, z2-x2, X y)thenshowthatxax +y 3y - — 0
Proof. Let u = f (y2-z2, z2-x2, x2-y2) = f(p, q, 1)
where p = y2-z2, q = z22-x% & r = x2-y?
LW W oy W, %4 o 24 _ 29 _
"ax_o’ ay_zy’ 2z = 2% 5T T2 ay_o’ oz = 22
O g I gy T
&a—Zx, 3y = Zy, Py

As u is function of p, g, r and p, g, r are functions of x, y and z.
=~ U is composite function of x, y and z.

=~ By using Chain Rule-II,

du_ dudp  dudq  dudr

ax dpdx 0dqox Or dx

du _ dudp | dudq , dudr

dy _ opdy 0qdy orady

ou_ oudp , 0udq  dudr

= Y
0z 0pdz 0qdz Or oz € get,

O Uy U o B o BU o 0u
E_ap(o)-'_aq( 2x)+ar(2x)— 2xar Zxaq
Ou_ Qo) B U oo Bu O
3y~ ap V) 5 (0) +50(=2y) =2y - =2y -
O _ O on O U OU B
& = ap( 22)+6q (ZZ)+6r (0) Zzaq ZZap

10u 10u 10u du ou ou ou
DR el L L, R Sy
x0x yoy zoz or aq ap or
10u 10u  10du
& —— +——+-— =0. Hence proved.
x0x yoy zoz

ou ou
= _922=
aq ap
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ou , 0
Ex. If u=f(e¥™%,e?7%,e*), thenshowthat—x+—u+ ==

dy 9z
Proof. Letu=f(e¥"% e**,e*¥)=f(p,q,r)
wherep=e’ %, q=e**&r=e*"”

op dp —_, Op -
.'.—=O _:eyz —:_eyz
ox "y ' 0z
a_qz_Z—x,a_qz(),a_q:ez—x
6x dy 0z
or ar
&— -y = —ex_y - = 0
" 9y 0z

As u is function of p, g, r and p, g, r are functions of x, y and z.
=~ U is composite function of x, y and z.

=~ By using Chain Rule-II,
du_ dudp  dudq  dudr
ax dpdx 0qox Or dx
ou _ dudp  Ouodq  dudr
dy B dpdy 0qody Orady
ou _ 6u6p+6u6_q+6u6r

—+— W

&3, 0z opdz dqdz Ordz € get

du u u u u ou

ou_ou + & _oz=xy L ox-yy = px-y ¥ _,z—x 7%

0x ap (0) aq € ) or (e ) € or € aq

ou _ du ou ou ou ou

=2 (pYVZ i Z(—pX VY= p¥YZ = _ XY =

= e + 0 + e —e e

= (e ) ( ) + 5% (—e* ) = -

du au au du

gv _ eV~ Z + zZ—Xx + —eZ X — y—z __
&5, =% ) ( ) (0) % pm
Adding, we get,
Ou 0w 0u_ oy o 0U | yp Ou oy Ou g Uy g 0u_
dx Jdy 0z aor aq ap or aq ap
du  Jdu  OJu
—+—+—== Hence prov
ox Ty T3 0 Hence proved

Homogeneous Function: A function u = f (x, y) is said to be homogeneous function of
degree n, if it can be expressed asu =f (X, y) = x”(z)(g).

Homogeneous Function: A function f (X, y, z) is said to be homogeneous function of
degree n, if f (xt, yt, zt) =t"f (X, y, 2).

Euler’s Theorem: If f (X, y) is homogeneous function of degree n in two variables
x and y having first order partial derivatives then xg—i + yg—f/ =nf.

Proof: Let f (X, y) is homogeneous function of degree n in two variables x and y

“EOGY) =X0E) (1)
Differentiating (1) partially w.r.to x, we get,

T=m"0Q) + X0 A
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. af _ n-1~+ /Y n-2 117y
i.e.——=nx Q)(;) -yx'"Q (;)
Multiplying both sides by x, we get,

xg—i =nx"Q (%) - yx”'lw'(i) ......... (2)

Differentiating (1) partially w.r.to y, we get,
=X ()

ie. = =x"'¢' ( )

Multlplylng both sides by y, we get,

yZ—£ = yx”'l(Z)'(%) ......... (3)

Adding (2) and (3), we get,
xoL+y 2L =m0) - ') + yxo' Q) = nx'0 )

af of _
- + -
ax Yy 9y nf. Hence pI’OVGd.

Corollary: If u= G{xf ()} and G'(u)# 0, then x 3 + y 5 =
Proof: Letu =G {xf %)}
~ G(u) = x"'f (%) =z
Is homogeneous function of degree n in two variables x and y
= By Euler’s theorem

62 0z nz
6x yay_
Asz—G(u)..—:G'( )a—”&%:c;'(u)g—;‘

o xG' (u) + yG' (u) — =nG(u).
du 6u G(u)
a"‘ 5— &' G(U)#:O

Hence proved.

Corollary: If u =f (x, y) is homogeneous function of degree n in two variables x and y

having continuous first and second order partial derivatives, then
w2 L%y nyaz_u + y? o%u _ n(n-1)u.
0x2 0x0y dy?
Proof: Let u = f (X, y) is homogeneous function of degree n in two variables x and y

= By Euler’s theorem

Ju ou _
% + ya =nu.......... (1)
Differentiating (1) partially w.r.to x, we get,
ou 0%u o%u _ _ou

— 4+ X — - n==
0x 6x2+y6x6y 0x

DEPARTMENT OF MATHEMATICS -KARM. &. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER



MTH:301:CALCULUS OF SEVERAL VARIABLES

0%u o%u _ ou
Ko Ty - D 5
Multiplying both sides by x, we get,
2 9%u u _ ou
Gy (n—1)x FRTRRERE (2)

X ﬁ + Xy

Differentiating (1) partially w.r.to y, we get,
OPu | ou o _ o

dydx 0y y ayz ay

9%u %u _ ou  0*u _ 0%u
..X6x6y+ya_yz_(n_1) @ ) ayax_axay
Multiplying both sides by y, we get,
a2 a2 )
Xy axa”y + y? # = (n—1)y£ ......... (3)
Adding (2) and (3), we get,
2 0%u w2 e B2
X% — +2xyxy+y = (n 1)(xax+yay)

. %u %u %u
29 % il 29 % __ _
le.x“—— + 2xy 3%y +y i n(n — 1)u. Hence proved.

X

Ex. Verify Euler’s Theorem for the function f (x, y) = x>+ y*- 3x%y
Proof: Letf (X, y) = X3+ V*-3X%Y «eovvennn... (1)

=X’ 1+ ()* - 30)]
ie f(xy)= x3¢(§)
~ T (X,y) is homogeneous function of degree 3 in two variables x and y
= By Euler’s theorem

of of _
xa+y£—3f .......... (2)

Differentiating (1) partially w.r.to x, we get,
Z—Z = 3x*- Bxy
Multiplying both sides by x, we get,

Of _ a3 a2
Xa—BX-BXy ......... 3)

Differentiating (1) partially w.r.to y, we get,

Of _ a2 2
5 = 3y - 3X
Multiplying both sides by y, we get,
9
yé =3y’-3x%y ......... 4)

Adding (3) and (4), we get,
x Z—Z +y Z—; = 3x%- 6x%y+3y>-3x%y = 3(X°+y*-3x%)

xX—+y v 3f. Hence Euler’s theorem is verified.
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Ex. Verify Euler’s Theorem for the function f (x, y) = tan'l(g) (Oct.2019)
Proof: Let f (X, y) = tan'l(g) ............ (1)

=x° tan'l(g)
ie f(x,y)= XO(Z)(%)

~ f(X,y) is homogeneous function of degree O in two variables x and y
= By Euler’s theorem

of of _ ~¢ —
xa+y£—0f—0 .......... (2)
Differentiating (1) partially w.r.to x, we get,
of _ 1 1_ 'y

ox 1+(§)2 ; T yZ4x?

Multiplying both sides by x, we get,

of _ xy
Xa = FEFRICLLLLLLERE (3)
Differentiating (1) partially w.r.to y, we get,
a_f _ 1 @ -x_ -x

ay 1+(§)2 y2  yZix?

Multiplying both sides by y, we get,

of _ —xy
By g (4)
Adding (3) and (4), we get,
o, O L v _x
dx dy  x2+y2  x24y2
of of _ , : :
xX—+y v 0. Hence Euler’s theorem is verified.

of
ay

x%+y?

Ex. If u=sin™( ) then find the value of xZ—i +y

x+y

. 2+ 2

Sol: Let u = sin (=)
x+y

2+y2

. x
< SINU =
x+y

=z
~ z=sinu is homogeneous function of degree 1 in two variables x and y

-~ By Euler’s theorem

0z 0z
x—+ty—=1z=z2
0x yay

. 0z u 0z ou
As z =sinu .. —=cosu— and — = cosu —
ox ox ady dy

. xCOSU ou cosu ou _ sinu
o 0x y ay -

ou ou
CX—+y—=
x—+y 3y tanu
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: - 3\ B2y 2 0%u 0%u ?u _
X.: If u =log (x*+y -x“y-xy°), prove that x 6x2+2xy6x6y+y 3y 2— 3. (Oct.2019)

Proof: Let u=log (3 + y*- X%y - xy?)
e =x2+y - Xy -xy’=1z
=e" is homogeneous function of degree 3 in two variables x and y

~ By Euler’s theorem
0z 0z
—+y—=
X5=7Y5 3z

0z
—_ u . - u - —_—
Asz=e% . Lot o and 3 3y

du du
. xet v yet 3y et

ou ou _
X I +y @ =3 ... (1)
Differentiating (1) partially W.I.10 X, we get,
au 62 _
E 6x2 + y dxdy =0
9%u *u _  du
- X ﬁ Ty c’)xay ax
Multiplying both sides by x, we get,
2 0%u ’u _ _du
X T+xy6x6y_ Xax ......... (2)

6y6x
0%u i au . 0%u _ 9%u
0x0y y6y2 - ay " 9ydx  9xdy
Multiplying both sides by y, we get,
xy 24 20U, 0u 3
Yoo F Y s = Y g s (3)
Adding (2) and (3), we get,
200 _ o ou ou
+2y66+y6y xax yay
62 9%u 20%u _
Iexa—2+2y%+y ?— 3 by(l)

Hence proved.

1/ X2+y2 9“u
Ex.: Ifu=tan ( ) then find the value of x? P =+ 2xy 370y +y PEL

(212 /1"'(%)2
Sol: Letu = tan'l(%)z tan™ (——)
Lou = XO@(%)
~ U Is homogeneous function of degree 0 in two variables x and y
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= By Euler’s theorem
ou ou

X e + ya =0.......... (1)
Differentiating (1) partially W.I.t0 X, we get,
au 62 _
E ax2 T y 0xdy =0
a2u %u _  ou
Xt Vomy™ o
Multiplying both sides by x, we get,
2 0%u ’u _ _odu
X ﬁ-l_xyaxay_ X (2)

Diﬁerentlatmg Q) partially W.I.to y, we get,
0%u

dyox + y =0
0%u 62 au . 0%u _ 9%u
0xdy ya_yz a ay ) dyodx - dxdy
Multiplying both sides by y, we get,
02u 20%u _  du 3
Xy 373y +y 37 yay ......... (3)
Adding (2) and (3) we get,

2 0%u 97u
xax2+2y +y

23+
Ex.: If u=tan™(==

3
) , then show that xa_u + yZ—’; = sin2u. hence deduce that

2
X % nyﬁ + y? = (1-4sin“u)sin2u
Proof: Let u = tan"(*- +z )
« tanu == Yoy
x=y

. Z = tanu is homogeneous function of degree 2 in two variables x and y
=~ By Euler’s theorem

0z 0z
— 4+ _—
0x y dy 2z
9z ]
Asz =tanu . 2 =sec? u and o seciuy =
ox dy
. x sec’ u + y sec’ u = 2tanu
u 6u 2tanu Zsmu
— —= Xcos?u = 2sinu.cosu
0x 6y sec2u  cosu
x4y 2~ sindu (1)
ax y .........

Differentlatmg (1) partially w.r.to x, we get,
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ou 0%u 0%u
X —
0x d0x? T yaxay
0%u 0%u ou
SX——+ Y xay - (2cos2u—1) ——

P
= 2c0S2U—
dox

0x2

Multiplying both sides by x, we get,
2

o“u _ du
xay (2cos2u—1) X i (2)

Differentiating (1) partially w.r.to y, we get,
0%u  ou 0%u _ ou
2y9x + e + yﬁ = 2C082U$
0%u

- X 0xdy
Multiplying both sides by y, we get,
GE a2 d
Xy axauy + y? ﬁ = (2cos2u — 1)y£ ......... (3)
Adding (2) and (3), we get,
2u 4 y2 0%u

0%u 0
29 % 2 il
x 0x? t xyaxay

2 0%u
X Ix2 + xy

ou  0*u _ 9%u
dy ) dyodx - dxdy

2
+ yg—ylé = (2cos2u—1)

du ou
= (2cos2u—1) X——+ (2cos2u — 1)y@

. 9%u %u
207U o’u
le. x"—— + nyaxay+y

ay?
29%u _ 24 2
= (2cos2u—1)(x P yay)

e x2 2% 4 2y 2V 4 = [2(1 — 2sin?u) — 1]sin2u by (1)
e x?—— Y 3555 TV = inu sin2u by

= (1 — 4sin®u)sin2u

dy?
262u
dy?
. 0%u 0%u 0%u
2 2
l.e. x“— + 2x
0x2 T y6x6y+y dy?

Hence proved.

2 2 2 2
Ex. Ifu= sin'l[%]l/s , then find the value of x?2 3712‘ + Zacy(,i—auJv + y? Z—yl;
. _apx?+2xy 1y
Sol: Letu =sin [—m IRE
x2+2xy]

~osinu =
=
. . . 3 . .
~ Z = sinu is homogeneous function of degree -5 intwo variables x and y

1/522

~ By Euler’s theorem
0z, 02 _3
0x yay T 10
. 0z u 0z u
AS z = sinu .. — = cosu — and — = cosu —
ox dox ady dy
3

. xCOSU ou cosu ou _ —sinu
o dx y ay " 10

Ju Ju 3
xa+y£—1—0tanu ......... (1)
Differentiating (1) partially w.r.to x, we get,
Uy Oy y A A
0x 0x? dxdy 10 0x
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0%u 0%u
X ﬁ T y 0xdy
Multiplying both sides by x, we get,
2 9%u o?u _ .3 2 ou
X o= + xy axay (Esec (2)
Differentiating (1) partially w.r.to y, we get,
0%u  ou 2%u _ 3 u
X 20 + % + yﬁ— 1—Osec ua
o x 0%u 62_u ou 0%u 0%u
0x0y dy? ay dydx  0xdy
Multiplying both sides by y, we get,

0%u 20%u_ 3 o du
XY 3ray TV 552~ (psectu =Dy, 3)

Adding (2) and (3), we get,
2 9%u Q% | 20%u_ 03,2, U 3 o2y — 1)y
x“— + 2xy 3x3y +y = (10 sec*u —1) X——+ (10 sec‘u—1)y 3y

= (Zsecty—1) &
—(wsecu 1) -

— 3 2., _
= (ggsectu—1)

dy?
0%u 0%u 0%u 3 ou ou
1. XZE-F Xyﬁﬁ' Zﬁ=(1—058C2u—1)(Xa+y$)
. 2 az_u 0%u 20%u 3 2 ) _ 3
le. x*—— + 2xy 370y +y 372 = |10 (1 + tan‘u 1](10tanu) by (1)
e x2 2% 4 2xy 4y > (3tan?u — 7)tanu
dx? 0x0 0y? 100

Mean Value Theorem: Let f (x, y) is continuous in a closed region R and differential in
the interior of R. Let P (a, b) and Q (a+h, b+k) be any two points of R such that all
points, (a+6h, b+0k), where 0 < 8 < 1, of the straight line segment joining P and Q
belongs to the interior of R.

Then f (a+h, b+k) = f (a, b) + hfy(a+6h, b+6k) + kf,(a+6h, b+0k).

Proof:We take x = a+ht, y = b+kt

nEone ok
dt dt
Let F(t) = f (x, y) = f (a+ht, b+kt)
_O0fdx ,  of dy

oo F (t) —aa‘l‘az

l.e. F'(t) = hfy(a+ht, b+kt) + kf,(a+ht, b+kt)

As F(t) is continuous in [0, 1] and differentiable in (0, 1).

~ By Lagrange’s Mean Value Theorem, we get,
F(1)-F(@)=F(8)forsome0<f <1

=~ f (a+h, b+k) —f (a, b) = hfy(a+h8, b+k8) + kf,(a+h8, b+k6)

l.e. f (a+h, b+k) = f (a, b) + hf,(a+0h, b+0k) + kf,(a+6h, b+6k)

where 0 <8 <1 Hence proved.
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Ex.: If f(x, y) = x°- xy*, show that 8 used in the mean value theorem applied to the
points (2, 1) and (4, 1) satisfies the quadratic equation 360+ 66 - 4 = 0.
Proof: Let f (x, y) = x*- xy?
= f(x, y) = 3x°-y* & fy(x, y) = -2xy
By Mean Value Theorem,
f (a+h, b+k) = f (a, b) + hfy(a+h@, b+k8) + kf,(a+h8, b+k0) ...... (1)
where0<6 <1
Given points are (2, 1) and (4, 1)
l.e.a=2,b=1,ath=4 & b+k=1.
~h=2&k=0.
~ From (1), we get,
f(4,1)=f(2,1)+ 2 (2+20, 1)
i.e. [4%- 4x1%] = [2%- 2x1%] + 2[3(2+20)°-17]
i.e. [64- 4] = [8 - 2] + 2[3(4+86 + 46?)-1]
i.e. 60 = 6 + 2[12+240 +126°-1]
i.e. 60 = 6 + 24 +480 +246°-2
i.e. 240° + 480 +28 -60 = 0
i.e. 240°+ 480 -32 =0
i.e.30°+60-4=0
Hence proved.

Ex.: If f(x, y) = x?y +2xy?, show that the value of 8 used in the expression of the mean
value theorem applied to the line segment joining the points (1, 2) and (3, 3) satisfies the
equation 126%+ 306 - 19 = 0.
Proof: Let f (x, y) = X’y + 2xy?

w (X, y) = 2xy + 2y & fy(X, y) = X* + 4xy

By Mean Value Theorem,

f (a+h, b+k) = f (a, b) + hfy(a+h6, b+k8) + kf,(a+hb, b+kd) ...... (1)

where0<6 <1

Given points are (1, 2) and (3, 3)

le.a=1,b=2,ath=3&b+k=3.

~h=2&k=1.

=~ From (1), we get,

f(3,3)=1(1,2) + 2f,(1+26, 2+0) + f,(1+26, 2+0)
i.e. (3°x 3 + 2x3x3%) = (12x2 + 2x1x2°) + 2[2(1+26)(2+6) + 2(2+6)%]
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+ [(1+20)° + 4(1+260)(2+6)]
i.e. (27+54) = (2 + 8) + 2[2(2+6 + 40+267) + 2(4+46+67)]
+ [1+40+46° + 4(2+0 + 40+26°)]
i.e. 81 =10 + 2[4+20 + 80+46°+8+80+267]
+ [1+460+460° + 8+460 + 160+867]
i.e. 71 = 2(12+186+60%) +(9+246+126?)
i.e. 24+360+126°+9+246+126%71=0
i.e. 2460°+600-38=0
i.e. 126%+300-19=0
Hence proved.

1) If u and v are functions of two independent variables x and y, then jacobian of u and v

. wyy _ d(u,v) _
w.r.toxandyi.e. J(x,y) 30iy)
dx Ay du Jdu Ju  du
du  ou dx 0y ox 0x
a) |ax oy b) 15, av ©) oy av d) None of these
aw  ov ox oy ay ay
u,v X,V
2) J(E) J(ﬁ =...
a)0 b) -1 c)1 d) None of these
) Q) 26sy) _
d(x,y) a(r.0)
a(u,v) a(r,6)
a) D b) @) c)1 d) None of these
4) Functions u, v and w of three independent variables x, y and z are functionally related
. e O(uv,w)
(or dependent) if and only if TN
a) 0 b) -1 01 d) None of these
— 2 —\2 o(uy) _
5 Ifu=x“and v =y, then Sy
a) 4xy b) 2x C) 2y d) None of these
_ ) - o(wy) _
6) If u = x(1-y) and v = xy, then Sy
a) Xy b) X c)y d) None of these
7) Ifu="F(x,y),x=0(t),y =¥(t), then u is a composite function of ...
a) X b) t c)y d) None of these

8)Ifz=1(x,y),x=0(u,V),y=¥(u, V), then z is a composite function of
a)uandv b) x and y c) uand x d) None of these
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9) Ifz="1(u,v),u=0(x,Y), v=¥(x,Y), then z is a composite function of

a)uandv b) x and y c) uand x d) None of these
10) If z=1(X, y) , X =rcos6, y =rsiné, then z is a composite function of

a)uandv b) xand y c)rand @ d) None of these
11) If z = log(x*+y?), x = u + v, y = u - v, then z is a composite function of

a)uandv b) xand y ) uand x d) None of these

12) If u =1 (x, y) is a differential function of x, y and x = @(t), y = w(t) are differential
functions of t, then composite function u = f [@(t), w(t)] is differential function of t

dudx Odud dudx Oud dudx dud
Q) ——+—=2  p) =T o) DY ) None of these
Ox dt 0y dt dx 0t 0y ot dx dt dy dt

13) If z = f (x, y) = x*+y” where x = t*+1, y = 2t, then % att=11s ...

a) 0 b) 2 c) 16 d) None of these
ou , Ou , Ju

1) Ifu="Ff(y—z z—x,x—y),then£+£+5=...

a) 0 b) 1 c)-1 d) None of these
15) fu=x®+y*+7°  thenuis.......

a) Homogenous function b) non- homogenous function

¢) both homogenous & non- homogenous function d) None of these
16) u = x* + xy + y* is homogenous function of degree. ......

a) 3 b) 2 c)1 d) None of these
17) u = x>+ xy? is homogenous function of degree.......

a)3 b) 2 c)1 d) None of these
18) u= x iyt is homogenous function of degree.......
a)3 b) 2 c)1 d) None of these

x+y
19) Ifu = sint X
x+y
a)3 b) 2 c)1 d) None of these
20 Ifu = tant XY
x+y
a) 3 b) 2 01 d) None of these
2 2
21) Letu= xxii Is a homogenous function. What is the degree of u?
a) 3 b) 2 01 d) None of these
3 3
22) Letu= xxii Is a homogenous function. What is the degree of u?
a) 3 b) 2 01 d) None of these
23)u = tan'l% 1s homogenous function of degree.......

a) 0 b) 1 C) 2 d) None of these

, then sinu 1s homogenous function of degree.......

X

, then tanu is homogenous function of degree.......
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24) u = tan'% + Sin'% is homogenous function of degree.......
a)0 b) 1 Cc) 2 d) None of these
25) f(x,y) = CD(%) +¥ (%)is homogenous function of degree.......

an b) 1 c)0 d) None of these

26) By Euler’s Theorem, if f (x, y) is homogeneous function of degree n in two variables

x and y having first order partial derivatives then x Z—i + yZ—i =...

a) nf b) f c)0 d) None of these
27) If z is homogenous function of degree 2 then xZ—i + yg—i =...
a) 2z b) 2 C)z d) None of these
28) If z is homogenous function of degree 3 then xZ—i + yg—i = ...
a) z b) 3z c)5 d) None of these
29) If u is homogenous function of degree n then xZ—z + yg—z =...
a) nu b) n c)u d) None of these

30) If u is homogenous function of degree 0 then xZ—Z + yg—z = ...

a)0 b) 1 C) 2 d) None of these
31) If u is homogenous function of degree 7 then xZ—Z + yz—z = ...
a) 7u b) 7 c)u d) None of these

32) A function f(x, y) is said to be homogenous function of degree n if it expressed as
a) f(x, y) = cb(g) b) fix, y) = d)(%) c) f(x, y) = x”d)(%) d) None of these

33) A function f(x, y) is said to be homogenous function of degree n if f(tx, ty) = ...

a) tf(x,y) b) t"f(X, y) c) 2 f(x, y) d) None of these

34) A function f(X, vy, z) is said to be homogenous function of degree n if
f(tx, ty, tz) = ...

a) t"f(x, y, 2) b) tf(x, y, 2) c) f(x,y, 2) d) None of these
35)u= tan'% is homogenous function of degree.......

a) 0 b) 1 C) 2 d) None of these

- n . 0 0

36) If u= G™{xf (%)} and G'(u)# 0, then x£+y£=

a) nu b) n :,((11‘3) c) nG(u)  d) None of these

— . - 2 9%u 9%u | 2 0%u _

37) If u =1f(x, y) is homogenous function of degree n, then x il 2Xy 3x0y +y 37

a) n(n-1)u b) (n-L)u C) nu d) None of these

DEPARTMENT OF MATHEMATICS -KARM. &. M. PATIL ARTS, COMMERCE AND KAI. ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER



MTH:301:CALCULUS OF SEVERAL VARIABLES

38) If u = f(x, y) is homogenous function of degree 0, then x* 2xy ™ ay 2 3277: =
a) 3 b) 2 c)0 d) None of these

39) If u = f(x, y) is homogenous function of degree 1, then x* gi + 2xy axauy 2 3277; = ...
a)0 b) u C) 2u d) None of these

40) If u = f(x, y) is homogenous function of degree 2, then x* + 2Xy ax;; 2 g;
a) 3u b) 2u c)u d) None of these
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UNIT-3: TAYLOR’S THEOREM AND EXTREME VALUES

% Taylor’s theorem:
If £(x,y) possesses continuous nt™ order partial derivatives in the neighborhood of point

(a,b) and point (a + h, b + k) lies in the neighbourhood of point (a, b) then there
exists 8, 0 < 6 < 1 such that

2
fa+h,b+k) =f(a,b) + (h;—x+kaiy)f(a,b) +%(h%+k%) f(a,b) + - +

— (h— + k= ) f(a,b) + %(h%+k:—y)nf(a + 6h,b + 6Kk).

(n—1)!
Proof: Letuswrite x =a+ ht, y =b + kt
o dx . dy
e & i =k
~ f(x,y) = f(a+ht,b+kt) = @(t)
As f(x,y) possesses continuous nt" order partial derivatives in the neighborhood of
point (a,b) .
~ @(t) is continuous [0, t] and derivable in (0, t).
=~ By Maclaurin’s series expansion of @(t) in [0, t]
2 tn—l

. te .
~ @(t) = 0(0) +t0(0) + TR (0)+..... + oD
Putting t = 1, we get
8(1) = B(0) +0'(0) + ~8"(0) + ...

Asp(t) = f(x,y) = f(a+ht, b+kt)

ofdx _ofdy _ of of o 9
O =gra Yayar ~Maxtka = Gaptka)f

Again, differentiating w.r.t. t, we get

n—-1 t" n
1) (0) + ﬁ@ (6t)

8 (0) + —@"(0).......... (1)

1)'

_dy of of of _ ofydx a7 df _  9fdy
20 [hax k&‘y] 6x[hax +kay ac T aylhex Y oyl ar
= (h—+k )h+(h —)k
:hzaf+hk +hkaf+k26f
_ za_f a_f za_f Ty,
= h 0x2 + 2hk 6x6y+k dy? " 9xdy  0yox

") = (W2 1122
0 (t) = (hax+k6y) f and so on.

In general,  @7(t) = (h=+ k%) fa+ht,b + kt)
- We have, (1) = f(a + h,b + k) & 9(0) = f(a,b)
&@T(O)=(h:—x+k%) f(a,b) for 1 <r <n-1

n

o 0
. 9"(6) = (ha—+k ) fa+6h b+ 0k)

Putting these values in equation (1), we get
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2
f(a+h,b +k) = f(a,b) + (h%+ kaiy)f(a,b) +%(h%+ kaiy) f(a,b) + .. +

1 n-t 1(, 0 9 \"

Hence proved

¢ Maclaurin’s theorem for a function of two variables:-
If £(x,y) possesses continuous n'™ order partial derivatives in the neighborhood of
point (0, 0) and point (x, y) lies in the neighbourhood of point (0, 0) then there

exists 8, 0 < @ < 1 such that
2

o 9 1,9 o
f(x, y)—f(00)+(xa—+ya )f(00)+ (Xa—+ya> £0,0) + ..

1 a+ a)n_lf00)+ 1( a+ a)nf(ﬁ Oy)
(n—l)( yay ©, nt " ox yay x5y

> REMARK:-
11 f(x,y) = f(a,b) + [(x — &) f,(a,b) + (y — b)fy(a b)] + = [(x — @)?fr(a, b) +

2(x — )y = b)fiy(a,b) + (y = b)*f (@, b)] + = [(x - a)gfxxx(a b) +

3(x —a)’(y = b) fixy(@,b) +3(x —a) (y — b)zfxyy(a' b) + (v = b)*fyyy(a, b)] +
--+is called Taylor’s series expansion of f(x,y) in powers of (x — a)& (y — b)or about
point (a, b).

21f (x,) = £(0,0) + [x£(0,0) + y£,(0,0)] + = [x? £ (0,0) + 2xy,, (0,0) +

Y2y (0,0)] + = [% frxx (0,0) + 322 £, (0,0) + 3xy? £y, (0,0) + Y3, (0,0)] +
-+ is called Maclaurin’s series expansion of f(x,y) in powers of x & y or about point
(0, 0).

Ex. Expand the function f (x,y) = x? + xy — y? by Taylor’s theorem in powers of
(x—1) &y +2).
Solution: By Taylor’s theorem expansion of f(x,y) in powers of (x — 1) & (y + 2)
i.e. about the point (1,—-2) is
fy) = £(1,=2) + [(c = DAL =2) + & + 2f, (1, —2)] + 2 [(x -
1)2fxx(1' _2) + Z(X - 1)(y + Z)fxy(lf _2) + (y + Z)nyy(lt _2)] + - (1)
Here, f(x,y) = x*+xy—y? =~ f(1,-2)=1—-2—-4=-5

(y) =2x+y ~f(1,=2)=2-2=0

f(x,y) =x—2y “fy(1L,-2)=1+4=5

f;cx(x» y) = 2 fxx(li_z) =2

fey(,y) =1 “fy(1,-2) =1

fyy(x'y) = —2 fyy(li_z) = -

And all higher order partial derivatives are 0. Putting these values in equation (1),
we get
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x2+xy—y?= =5+[0+5( +2)]
+%[2(x —1)24+2(x—1D(y+2)—2(y +2)?]+0

ax?4xy—y*P= -5+5(+2)+(x—-1D*+(x-Dy+2)—-(y+2)>?
be the required expansion.

Ex. Expand the function f(x,y) = x3 + y3 + xy? by Taylor’s theorem in powers of
(x—1) &y —2).
Solution: By Taylor’s theorem expansion of f(x,y) in powers of (x — 1) & (y — 2)
i.e. about the point (1,2) is
foy) = £(1,2) + [ = DAEA,2) + 0 = 2,1 2D] + 2 [(x — 1) (1,2) +
202 = D~ Dfiy (1.2) + ¥ = 223, (L,2)] + 2 [ — D forn(1,2) +
3(X - 1)2(y - Z)fxxy(lr 2) + 3(x - 1)()’ - Z)foyy(L 2) + (y - 2)3fyyy(1» 2)] +

____________ (1)
Here, f(x,y) = x3+y3 +xy? = f(1,2) =1+ 8+ 4 =13

fe(x,y) = 3x% + y? ff(1,2)=3+4=7

fy(x,y) = 3y? + 2xy ~fy(1,2) =124+ 4 =16

fxx(x: y) = 6bx fxx(lrz) =6

fxy(x' y) =2y fxy(lr 2)=4

fyy(X,¥) = 6y + 2x “fyy(1,2) =12+ 2 =14

fxxx(xt y) =6 fxxx(l' 2)=6

fxxy(x:Y) =0 fxxy(]-: 2)=0

fxyy(x: y) =2 fxyy(L 2)=2

fyyy(x» y) =06 fyyy(L 2)=6

and all higher order partial derivatives are 0. Putting these values in equation (1),

We get
x3+y3 +xy?=13 +[7(x — 1) + 16(y — 2)]
+2[6(x — 1)? + 8(x — 1)(y — 2) + 14 (y + 2)?]

+%[6(x— 1D3+0+6(x—D(y—2)2+6(y—2)°1+0

S X+ Y3+ ay?=13+[7(x— 1) + 16(y — 2)]
+3(x—1)2+4(x -1y —2)+7(y — 2)?
+x -1+ x-D-2)*+(y—-2)°

be the required expansion.

Ex. Express x?y as polynomial in (x — 1) & (y + 2)by using Taylor’s theorem.
Solution: By Taylor’s theorem expansion of f(x,y) in powers of (x — 1)&(y + 2)
i.e. about the point (1,—2) is
fCoy) =f(1,-2) + [(x - Dfe(1,-2) + 7 + 2)£,(1, -2)]
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1
5 [ D2 (1,-2) + 20 = DO +2)foy (1,-2) + 0 + 20 (1,-2)]

P = D L =D+ e (D)
Here, f(x,y) = x%y ~ f(1,-2) = =2
fx(x,y) = 2xy ~ (1, —-2) = —4
fy(,y) = x? “ f(1L,-2) =1
fxx(xi y) = 2y fxx(l,—Z) = —4
fxy(xr)/) = 2x fxy(l,—Z) =2
fryey)=10  « f,(1,-2)=0
fxxx(x; y) =0 fxxx(]-r_z) =0
fxxy(xfy) =2 fxxy(l,—Z) =2
fxyy(x: y) =0 fxyy(l,—Z) =0
fryy@y) =0 = f,,,(1,-2) =0
and all higher order partial derivatives are 0.Putting these values in equation (1),
we get
x?y= -2+ [(1x —1)(=4) + &+ 2)(D)]

+ 5[0 = D=4 + 20 = D +2)(2) + v +2)%(0)]

+%[0 +3(x - D*(y+2)(2)+0+0]

Lxly= —2—-4(x-D+@y+2)-2x—-1)?+2(x— 1Dy +2)
+(x — 1)%(y + 2)
be the required expansion.

Ex. Show that expansion of sin(xy) in powers of (x — 1) & (y — %) upto and including

is1 T (= 12 =T (x — _m\_1(y 7
second termis 1 . (x—1) > (x—1) (y 2) . (y 2) :
Proof: Expansion of f(x,y) inpowers of (x — 1)& (y — g) upto and including second
s

st s 0= (1.9 6= 0 )+ (-2 (0.2
P = D% (L D) 4 26- D (v = D) iy (1. D)+ (= 5) iy (1 D)1

Here, £(x,7) = sin(xy) F(1 D) =1
fx(x,¥) =y cos(xy) o f (12) =0
£, (x,y) = x cos(xy) ~ f, (1%) =0
fx(y) = —y? sin(xy) - (13) = _%2
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A A
fuy (6, ¥) = cos(xy) — xysin(xy) = fy (1,5) =3
A
fyy(X, y) = —x? sin(xy) fyy (1,5) = -1
Putting these values in equation (1), we get
sin(xy)

2

e Bt {2) -5
- (y —%)2 (—=D)]

2 T Ty 1 1T\ 2
o _a N2 T I W S
~ sin(xy) =1 5 (x—1) > (x—1) (y 2) (y )
Hence Proved.

3
Ex. Prove that sin(x + y) = (x +y) — (":’) + oo

Proof: Maclaurin’s series expansion of f (x,ly) inpowers of x & y is
f@y) = £(0,0) + [x£(0,0) + ¥£,(0,0)] + - [x2 £ (0,0) + 2xy £, (0,0) +
Y2 £y(0,0)] + = 2% £12x(0,0) + 3x2Y fry (0, 0) + 3xy2 (0, 0) +

ygfyyy (0, 0)] + - (D)

Here, f(x,y) =sin(x+y) -~ f(0,0)=0
fx(x,y) = cos(x +y) ~ f:(0,0) =1
fy(x,¥) = cos(x +y) ~ £,(0,0) =1
frx(x,y) = —sin(x + y) “ fxx(0,0) =0
fxy(x: y) = —sin(x +y) fxy(o' 0)=0
fyy(x'y) = —sin(x +y) fyy(or 0)=0
frxx(X,y) = —cos(x +y) “ frexx(0,0) = —1
fxxy(x: y) = —cos(x +y) fxxy(oro) =-1
fxyy(x; y) = —cos(x +y) fxyy(o'o) =-1
fyyy(x: y) = —cos(x + y) fyyy(oro) =-1

And so on. Putting these values in equation (1), we get
1
sin(x+y) =0+ [x(1) +y(1)] + 5[0 + 0+ 0]
+% [%3(—1) 4+ 3x%y(—1) + 3xy?(—1) + y3 (-] + -~

3
~sinx+y)=(x+y) — (x?’) + e
Hence proved.

Ex. Show that for 0 < 6 < 1,sinxsiny = xy — % [(x3 + 3xy?)(cos Ox sin By) +
(y3 + 3x2y)(sin Bx cos 6y)].
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Proof: Maclaurin’s series expansion of f(x, y) inpowers of x & y with remainder after third
term. £ (x, %) = £(0,0) + [x£(0,0) +¥£,(0,0)]

1
+55 [¥2 e (0,0) + 2x7£y (0,0) + y2£3, (0, 0)]

1
+ 2 [% frxx (6%, 8) + 3x%Y iy (6%, 8) + 3xY?fry, (0x,6Y) + ¥ £, (6, 6Y)]

—(1)
Here, f(x,y) = sinx siny ~ f(0,0)=0
f(x,y) = cosx siny ~ £,(0,0) =0
fy(x,¥) =sinxcosy ~ f,(0,0) =0
frex(X,¥) = — sinxsiny “ fxx(0,0) =0
fry(x,¥) = cosx cosy “ fxy(0,0) =1
fyy(x,y) = —sinxsiny “ fyy (0, 0)=0
frxx(X,¥) = —cosxsiny s foxx(0X,0y) = — cos Ox sin Oy
frxy(X,¥) = —sinx cosy * frxy(0x,0y) = —sin 0x sin Oy
fryy(X,¥) = —cosxsiny * fxyy(0x,0y) = — cos Ox sin Oy
fyyy(x,y) = —sinx cosy “ fyyy(0x,0y) = —sin x cos Oy
And so on. Putting these values in equation (1), we get,
SInX CoSYy

1 1
= 0+O+O+§[O+2xy+0]+8[—x3c059xsin9y—3x2ysin9xc059y

— 3xy? cos Ox sin 8y — y3 sin Ox cos 6]
s sinx cosy = xy — % [(x3 + 3x2y) cos Ox sin By + (y3 + 3x2y) sin Ox cos O]
Hence proved.

Ex. Expand e2* cosy as Taylor’s series about (0, 0) upto first three terms.
Solution: Taylor series expansion for f(x,y) about (0, 0) up to first three terms is

f(x, ) = £(0,0) + [x£(0,0) + ¥£, (0, 0)]

T % [x2f2(0,0) + 2xy£,,,(0,0) + y2£,,,(0,0)] --------- 1)
Here, f(x,y) =e**cosy  ~f(0,0)=1

fe(x,y) = 2e** cosy « £:(0,0) = 2

fy(x: y) = —ezxsiny fy(O, 0)=0

frex(x,y) = 4e**cosy o £, (0,0) = 4

fxy(x» y) = —2e**siny fxy((), 0)=0

fyy(x,¥) = —e** cosy o £5,(0,0) = —1

Putting these values in equation (1), we get
1
e cosy =1+ [2x + 0] +E[4x2 +0—y?]
1
i.e. e?*cosy =1+ 2x + 2x? —Eyz
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Ex. Expand e**Y as Taylor’s series about (0, 0).
Solution. Taylor series expansion for f(x,y) about (0,0) is

f(x,y) = £(0,0) + [x£(0,0) + ¥£,(0,0)]
1
+ 57 [ £ (0,0) + 2y (0, 0) + ¥2£,,,,(0,0)]

+%[x3fxxx(o, 0) + 3x2Yfrxy (0,0) + 3xy%f4,,,(0,0) + ¥3£,,,,(0,0)] + - (1)
Here, f(x,y) =e** - f(0,0)=1

fx(x,y) = ety ~ fx(0,0) =1
fy(x:y) =e*y fy(O: 0)=1
frx (x,¥) = e**y “ fxx(0,0) =1
fxy(xf y) = ety fxy(O; 0)=1
fyy(x,y) = ¥ “ fyy(0,0) =1
froxx (X, y) = X “ frexx(0,0) =1
fxxy(xr y) = e*"y fxxy(or 0) =1
feyy () = X% * fryy(0,0) =1
fyyy(x: y) = e*ty fyyy((): 0)=1

And so on. Putting these values in equation (1), we get

1 1
eXty = 1+[x+y]+§[x2+2xy+y2]+§[x3+3x2y+3y2x+y3]+---

1 1
b e =14 (k) o (k)b glet )T
be the required expansion. ' '

¢ Absolute maximum:
A function f (x, y) is said to have absolute maximum at point (a, b) of the region R
if f(x,y) <f(a,b) V (x,y) €ER.
¢ Absolute minimum:
A function f (x, y) is said to have absolute minimum at point (a, b) of the region R
if f(x,y) =f(a,b) V (x,y) €ER.
¢ Relative maximum:
A function f(x, y) is said to have relative maximum at point (a, b)
if f(x,y) <f(a,b) V (x,y) € N6(a,b).
¢ Relative minimum:
A function f (x, y) is said to have relative minimum at point (a, b)
if f(a,b) <f(x,y) V (x,y) € N6(a,b).
» REMARK:
1] An Absolute maximum or an Absolute minimum is called an Absolute extremum.
2] Relative maximum or Relative minimum is called as Relative extremum.
+» Critical point or Stationary point:
A point (a, b) is said to be critical point or stationary point of a function f(x, y),
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if f,(a,b) =0 &f,(a,b) = 0 or they does not exists.
++ Saddle point or Minimax point:

A critical point (a, b) is said to be a saddle point or minimax point if f(x, y) have no
extremum at point (a, b).

e NECESSARY CONDITION FOR EXTREMUM:
If a function f(x, y) have an extremum at point (a, b) then
1) f,(a,b) = 0 or it does not exists.
2) fy(a,b) = 0 or it does not exists.
Proof: Let, function f(x, y) have an extremum at point (a, b).
By taking y = b, we have a function f (x, b) of one variable x.
~ fi(a,b) = 0 or it does not exists.
Similarly, by taking x = a, we get £, (a, b) = 0 or it does not exists.

e Sufficient Condition For Extremum:
If £(x,y) possesses nt" order partial derivative in a neighbourhood of point (a, b)
of the region R with f,(a,b) = 0, f,(a,b) = 0,7 = fix(a,b),s = fyy(a,b),
t = f,y(a,b) & A= rt — s?, then the function f(x, y) is
1) Minimum at point (a,b) ifA>0 & r > 0.
1) Maximum at point (a,b) ifA>0 & r < 0.
1ii) No extremum at point (a,b) if A< 0 i.e. (a,b) issaddle pointif A < 0.
Iv) The next investigation is needed if A= 0.
Proof: By Taylor’s theorem,

f(a+hb+k) = f(ab)+ (h:—x+k%)f(a,b) +%(h;—x+k%)zf(a,b) +Rs.
~fla+hb+k)—f(ab)= %(h2r+ 2hks + k?t) + R

s fla+hb+k) = f(ab) == (h?r? + 2hksr + k*rt) + Ry
~fla+hb+k)—f(ab)= % (h?r? + 2hksr + k?s? + k*rt — k?s?) + R;.

= % [(hr + ks)? + k2(rt —s?)] + R;

For small values of h, k, the sign of RHS is independent of R;.
i) IfA=7rt—s?>0 & r >0thenf(a+h,b+k)—f(a,b) =0

i.e. fla+hb+k) = f(a,b). ~ fisminimum at point (a, b).
i)ifA=rt—s2>0 & r <O0thenf(a+hb+k)—f(ab) <0

i.e. f(a+hb+k) < f(a,b). - fismaximum at point (a, b).
i) If A = rt — s < 0 then the function f(x, y) have no extremum at point (a, b).
iv) If A = 0 then we can’t say the function f(x,y) have an extremum.
~ We need further investigation.
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s Working rule to find the extremum by using second order partial derivatives:-
1. Find critical points by solving £, (x,y) = 0 & f,,(x,y) = 0.
2. Atthese critical points, findr = f,, , s =f,,, & t = f,, and A = rt — s2.
3. fisminimumifA>0 & r > 0.

4. fismaximumifA>0 & r < 0.
5. f has no extremum if A < 0.

Ex: Discuss the maxima and minima of the function u = x2 + y% + % + %

Solution: Let, u = x? + y? +§+§

2

y?

. _ 4 _ q _ 4
..uxx—2+; , Uyxy = 0an uyy_2+;

S Uy = 2x—xz—zanduy =2y —

By solving u,, = 0 and u,, = 0, We get

= 2x—%=0and2y—%=0

i.e.x—xiz=0andy—y—12=0

i.e.x3—1=0andy3>—-1=0
x=1landy =1

=~ Critical pointis (1, 1). At the critical point, we get

r=uU,(11)=2+4=6

S = Uy (1,1) =0

t=1u,,(1,1) =6

wA=rt—s*=36—-0=36

HereA=36>0andr=6 >0

=~ The function u is minimum at point (1,1) and its minimum value is
Unpin. =u(1,1)=1+1+24+2=6.

Ex: Find the points (x, y) where the function u = xy(a — x — y) is maximum or
minimum. What is the maximum value of function?

Solution: Letu = xy(a —x — y)i.e. u = axy — x*y — xy?
v U, = ay — 2xy —y*andu, = ax — x* — 2xy
Upy = —2Y, Uy =a—2x—2y and u,, = —2x
Now u, =0 and u, =0 gives
ay —2xy —y?=0andax —x?> —2xy =0
l.e.—y(y+2x—a)=0and —x(x+2y—a)=0
i.e. y=0o0ory+2x=a - 1)
x=00orx+2y=a ----- (2)
Fory =0, from(2),wegetx =a
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Forx =0, from(1l),wegety =a
To solve equation (1) and (2), Consider equations 2 X (1) - (2),

2y + 4x = 2a

—2y —x=-a
3Ix=a- = -
Xx=as x = 3

Putting x = =

~ The critical points are (0,0), (a, 0), (0,a)

in equation (1), we get, y + 2—“ =a-

s . sSs=Uu
Critical point Xy

—2y =a—2x-2y

yy

t
= —-2x

.

Remark

(0,0) 0 a

0

Saddle point

(a,0) 0 —a

—2a

Saddle point

(0,a) —2a —a

Saddle point

aa
(3'3 3

Point of
maximum

Ex: Find the least value of the function f(x,y) = xy + % + zy—o .

Solution: Let, f(x,y) = xy + % + Zy_o
0

s Ry) =y —%andfy(x,y) = x _%

100 40
fxx(x;y) = Fv fxy(x:y) =1 and fyy(xJY) = ;
Now, f,.(x,y) =0 and f,(x,y) =0

i.e. y—i—(Z):Oandx—;—g:O

i.e. x>y —50=0andxy?—-20=0
i.e. x>y =50 ----- (1) andxy? =20 ----- (2)
x%y 50 x 5 2

l.e. x—yz=% = ;=El.e. y=§x

Putting y = Ex in equation (1), we get

2 2
§x3=50 > x3=125 + x=5= y= E(S)=2
=~ Critical point is (5, 2).

100 4

T = f2x(5,2) = 125 g

S = fiy(5,2) =1
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40
t = fy,(5,2) = i 5
“A=rt—s?=4-1=3
Here A=3 >0 and r=§>0.
=~ Given function is minimum at point (5, 2) and its minimum value is

i.e.Leastvalueis f,in,, = f(5,2) =10 + 5?0 + ? = 30.

Ex: Investigate the maximum and minimum values of the function
f(x,y) = 3x%y —3x2 = 3y% + y3 + 2.

Solution: Let, f(x,y) = 3x%y —3x%2 — 3y% + y3 + 2
~ fr(x,y) = 6xy — 6x and f, (x,y) = 3x* — 6y + 3y?
fxx(x:y) = 6y — 6, fxy(x'y) = 6x and fyy(x:y) =—6+ 6y
Now, f,(x,¥) =0 and f,(x,y) =0 gives
6xy —6x =0and3x%2 -6y +3y2=0
i.e.6x(y—1)=0andx?—-2y+y?>=0
i.,e. x=0ory=1and x2 -2y +y2=0  ------ (1)
Forx = 0, fromequation (1), we get —2y + y% =0
l.eey(y—2)=0ieey=00ry=2
Fory =1, fromequation (1), wegetx?—2+1=0
i.e. x2—1=0ie x= +1
=~ The critical points are (0,0),(0,2),(1,1) & (—1,1).

Critical point = fix S=fyw=6x t=f, A=rt —s* Remark
=6y —6 =—6+ 6y
(0,0) —6<0 0 —6 36 >0  Pointof
maximum
0,2) 6> 0 0 6 36 >0  Pointof
minimum
(1,1) 0 6 0 —36 <0  Saddle point
(-1,1) 0 —6 0 —36 <0  Saddle point

fmax. = f(0,0) = 2
fmin. = f(0,2)=0—-0—-12+8+2=-2

Ex: Find the stationary points and determine the nature of the function
flx,y) =x3+y3—3x— 12y + 20.
Solution: Let, f(x,y) = x> + y3 — 3x — 12y + 20.
~ fe(x,y) =3x*=3and f,(x,y) = 3y* — 12
fex (X, y) = 6x, f;cy(xry) =0 and fyy(x'y) = 6y
Now, f,(x,y) =0 and f,(x,y) =0 gives
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3x2—3=0and3y?—-12=0
i.e.x?—1=0andy?—4=0
l.e. x=*xlory==2
~ The critical points are (1,2),(1,-2),(—-1,2) & (—1,-2).
Nature of the function at these critical points is as follows:-
Critical point | r=f,=6x s=f,=0 t=f,= A=rt—s* Remark

6y
(1,2) 6>0 0 12 72 >0 | Point of minimum
(1,-2) 6 0 —-12 —72 < 0  Saddle Point
(-1,2) —6 0 12 —72 < 0 | Saddle point
(-1,-2) —6<0 0 —12 72 >0 | Point of maximum

fnax = f(=1,-2) = —=1—-8+3+ 24+ 20 = 38
fmin. = f(1,2) =1+8—-3—-24+20=2

Solution: Let f (x, ¥) = 2(x*— y°) — x* + y*,
~f(x, y) =4x - 4x3
fy(x, y) = -4y + 4y°
frx(x,y) =4-12x2,
(x,y)=0
and fyy(x,y) =-4 + 12y2
Now fx(x,y) = 0and fy(x, y) = 0 gives
4x - 4x3= 0 and -4y + 4y3=0
l.e.x(x?>=1)=0and y(y?>—1) =0
il.e.x=0,+1ory=0,+1
=~ The critical points are (0, 0), (0, £1), (£1,0) & (1, £1).
Nature of the function at these critical points is as follows:

Critical point | 7= fxx s = fxy t=fyy A=rt—s? Remark
=4 -12x? =0 =-4+ 12y?
(0, 0) 4 0 -4 -16 <0 | Saddle point
(0,£+1) 4>0 0 8 32>0 |Point of
minimum
(£1,0) -8<0 0 -4 32>0 |Point of
maximum
(£1,£1) —-8<0 0 8 -64 <0 | Saddle point
fmax. = f (il, 0) = 2 = 0 = 1 + O = 1
fmin. = f (0, il) = O = 2 = O + 1 = _1
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UNIT-3: TAYLOR’S THEOREM AND EXTREME VALUES [MCQ’S]

1) f(x» Y) = f(a; b) + [(x - a)fx(a, b) + (y - b)fy(a: b)] + % [(x - a)zfxx(a: b) +
2(x = &) (y = D) fry (@ b) + v — b)Y fyy (@, 0)] + = [(x — @) fran(a, b) +3(x —

a)z (y - b)fxxy(a: b) + 3()6 - a)(y - b)zfxyy(af b) + (y - b)gfyyy(a: b)] + s
called ...... series expansion of f(x,y) in powers of (x — a)& (y — b)or about point (a, b).
A) Taylor’s B) Maclaurin’s  C) Laurent’s D) None of these

2) f(x,y) = £(0,0) + [x£(0,0) + y£,(0,0)] + 5 [x£x(0,0) + 2xy,, (0,0) +
Y2 £y (0,0)] + = [ fixx (0,0) + 332 £, (0,0) + 3xy? £, (0,0) + ¥ £y, (0,0)] + -+ is

called ....... series expansion of f(x,y) in powers of x & y or about point (0, 0).
A) Taylor’s B) Maclaurin’s  C) Laurent’s D) None of these
3) Expression of x —y + 3 in powers of (x-1) and (y-1)is...................
A) 3+ (x-1) - (y-1) B) (x-1) - (y-1) C)3+(x-1) D) None of these
4) Expression of x +y + 3 in powers of (x-1) and (y-1)is...................
A) 5+ (x-1) + (y-1) B) (x-1) - (y-1) C)3+(x-1) D) None of these

5) Maclaurin’s theorem for a function of two variables obtained from Taylor’s theorem by
putting.......

A)3 B)a=x,b=y,h=0,k=0

C)a=0,b=x,h=y, k=0 D)a=0,b=0,h=0,k=0
6) 1+ (x+y) +%(x + y)? +%(x + y)3 + -++ is an expansion of ....

A) sin(x+y) B) cos(x+Y) C)e” D) tan(x+y)
7 (x+y) —%(x + y)3 +%(x + y)® — --- is an expansion of ....

A) sin(x+y) B) cos(x+Y) C) e D) tan(x+y)
8) 1 —%(x + y)? +%(x + y)* — -+ is an expansion of ....

A)sin(x+y)  B) cos(x+y) C) e D) tan(x+y)
9) If f(x, y) = X* + y* then f has extreme value at.......

A) (1,1) B) (0,0) C) (1,2) D) (2,1)
10) If f(x, y) = x* + y* + 3 then f has extreme value at.......

A) (0,0) B) (1,0) C) (0,1) D) (1,1)
11) If f(x, y) = 3x* +3 y* - 2 then f has extreme value at.......

A) (0,0) B) (1,0) C) (0,1) D) (1, 1)
12) If f(x, y) = X* - 2y* + 1 then f has extreme value at.......

A) (1,1) B) (0,0) C) (1,0) D) (0, 1)
13) If f(x, y) = 2x* - y* + 3 then f has extreme value at.......

A) (1.1) B) (0,0) C) (1,0) D) (0, 1)
14) If f(x, y) = X* - y* + 4 then f has extreme value at.......

A) (1,1) B) (0,0) C) (1,0) D) (0, 1)

15) Ifu =x2 +y%2 + z + % then f has extreme value at.......
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A) (1,1) B) (0,0) C) (1,2) D) (0, 2)
16) If f(x,y) = xy + sx_o + zy_o then f has extreme value at.......
A) (0,0) B) (0,2) C) (5,2 D) (5, 0)
17) If f(x,y) = x3+ y3 —3x — 12y + 20 then f has extreme value at.......
A) (1,1) B) (0,0) C) (1,2 D) (2,1)
18) If f(x,y) = 2(x* —y?) — x* + y* then f has extreme value at.......
A) (0,0) B) (0,1) C) (1,0 D) all the above
19) If u = xy(a — x — y) then u has extreme value at.......
A) (a,a) B) (0,0) C) (a,0) D) (0, 1)
20) Stationary point of the function f(x, y) are obtained by.....
A)f,=0 B)fk=0&f,=0 C)f,=0 D) none of these
21) Stationary point of the function u(Xx, y) are obtained by.....
A)uc=0 B)ux=0&uy,=0C)u,=0 D) none of these

22) A function f(x, y) is said to have absolute maximum at point (a, b) of the region R
if f(x,y).... f(a,b) V (x,y) €ER.
A) < B) > C) # D) =
23) A function f(x, y) is said to have absolute minimum at point (a, b) of the region R
it f(x,y).... f(a,b) V (x,y) €ER.
A) < B) > C) # D) =
24) A function f(x, y) is said to have relative maximum at point (a, b)
If......... V (x,y) € N6(a,b).
A) fla,b) < f(xy) B) f(a,b) = f(x,y)
C) f(a,b) # f(x,y) D) f(a,b) = f(x,y)
25) A function f(x, y) is said to have relative minimum at point (a, b)
If......... V (x,y) € N6(a,b).
A) f(a,b) <f(x,y) B) f(a,b) = f(x,y)
C) f(ab) #f(xy) D) f(a,b) = f(x,y)
26) Letr = fix(a,b),s = f,(a,b), t = f,,(a,b) & A=rt — s?, then the function
f (x,y) have maximum at point (a, b) if ........
A) A>0a& r<o0 B) A>0&r<0
C) A<Qandr>0 D) none of these
27) Letr = fix(a,b),s = f,(a,b), t = f,,(a,b) & A=rt — s?, then the function
f(x,y) have minimum at point (a,b) if ........
A A>0&r<0 B) A>0&r>0
C) A<Qandr>0 D) none of these
28) Letr = fyy(a,b),s = fyy(a,b), t = f,,(a,b) & A=rt — s?, then the function
f(x,y) have saddle at point (a, b) if ........
A) A>0andr>0 B) A>0andr<0C) A<Oandr>0D) none of these
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UNIT-4: DOUBLE AND TRIPLE INTEGRALS

Double Integration:
If f(x,y) is a function of two variables x and y defined in a region R and R is divided

into n subregions 6R,, 6R,, ..., 6R,, then for any point (x,, y,.) in subregion §R,. double
integration over R is denoted by [J f(x,y)dA and defined as

ffRf(x» y)dA = limg};}fo Yir=1f(xr, yr) 6R,

Remark:

1) If region R is bounded by x = a,x = b,y = c &y = d then

f Fx,y)dA = fb fd fxy) dy dx
R

x=a y=c
2) If region R is bounded by y = f;(x),y = f,(x),x = a & x = b then
. b f2(x)
[[ranaa= | [ rendva
R x=ay=f1(x)
3) If region R is bounded by x = g, (y),x = g,(y),y = ¢ & y = d then
d 9200

jjf(xy)dA—j | ooy axay

y=cx=9g1(y)

Area of region by Double integration:
The area of the region R by double integration is given by
Area of region R = [, dx dy

L
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Ex: Evaluate foa fob(x2 + y?%) dx dy.
. . _ a b 2 2
Solution: Let I = [~ [ "(x* + y?) dy dx
_ (a y*1»
= J, [x2y+ ?]0 dx

= fa[bx2+b?3—0] dx

_[px* | b® la
N [3 t 3 ]0
a*b | ab3
REE

Ex: Evaluate [ fx/ 2+y dx dy
Solution: Let, I —f fx/ m dy dx

= fo X [;tan‘1 (%)E/a dx

Ex: Evaluate ff fol(x2 + y?) dx dy
Solution: Let, I = flz fol(x2 + y?%) dy dx
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Ex: Evaluate f: foﬁxy dx dy
Solution: Let, I = f04 foﬁxy dx dy
4 [21VY
= )’[7]0 dy
hiy-of a
1 4
= [yt dy

-1 15,
2 31p

= 5[5 —0]
] = 2
3

1

Ex: Evaluate [ [ 7 dxdy
Solution: Let I = [ [ xziyz dx dy

= [ 7 [ dyl dx

x24 y2
_ 2]1 _ y x
= i [pan ()], @
21[n
= i Z[Z_ ] dx
= I [logx1}
=% [log 2 — 0]
I = % log 2
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2
Ex: Evaluate fol fox e’/x dx dy

Solution: Let I = flfxz[ey/x dy] dx

L,

= fo [eX —1] dx

= folxexdx—flx dx

= [xe* — [(De* dx] H

Ex: Show that ' | f, e dy| dx = [}|f} =% dx| dy
Proof: Consider,
LHS. = [ [fo (x+y)3

_ 1[ r12x—(x+y)
= Jolh T dy] =

dy] dx

= sy dx

(x+y)3 (x+y)2

[2x(x+y) ™2 () 1] do
-2

Il
S

1 1
o fo _m_(xﬂ/)z] dx
_ 1[x+y—x
= o -(x+y)2] dx

.
N fO -(x+y)2] dx

- fOl [(x+1)2 N 0] dx
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e

_111

= |7,

S

- [2 t 1]
~ LHS. = % ________ [1]
Consider,

11 x-y
RHS. = 7|/, P dx] dy

1t (xty)-2y
= [y [y e dx| dy

= [y [fo 1+ 972 = 29(Ce + )73} dx| dy

_ et 2yt
- fo = —2 ]0 dy

10 1
= b lomm |

_ [(1+y)-11
1 1

= |,

=1_1
2

1

N A [2]
By equations [1] and [2]

1 1 - 1 1 -
ISR e dy| dx = [}, e dx| dy  Hence proved.
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Ex: Evaluate ffR xy dx dy over the region in the positive quadrant for which x + y < 1.

Solution: Let, R be the region in the positive quadrant for which x + y < 1 which is shown in

figure.

By taking strip PQ parallel to the y-axis and moving it from

x=0tox=1wegetlmits0<x<1&0<y<1l-x

1-x

dx dy = [y dy] d
[ axa = [ [ xtvaie
= folx[y;]:_x dx

— %folx[(l—x)z—()] dx

== folx(1—2x+x2) dx

Ex: Evaluate [f, xy(x +y) dx dy where R is the area between y = x* & y = x.
Solution: First we find the point of intersection of

y =x? & y =x by solving together as follows

x=x% iex?—x=0ie x(x—1)=0iex=0&x=1
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Forx=0 =»y=0 & x=1 = y=1
The point of intersections are 0(0,0) & A(1,1). The region between the curves

y =x%* & y =x isshown in figure.

Y

P A1)

< e > x
0(0,0)

By taking strip PQ parallel to y-axis and moving it from x = 0 to x = 1. We get limit

as0<x<1 & x?<y<x

. 1 x
ﬂxy (x +7vy) dx dy ffx(xy+y2) dy dx
R 0 x2

X
folx Exy2 + %yg’]xz dx

— x5 —2x5] dx

—_ (t.l.3,1. 3
—fox[2x+x2 -

2 3
1

1 1 1
— [_xs _ L7 __xs]

6 14 247 |

101 1
iz o

6 14 24

. [28—12—7] 9
o 168

| 3
jfxy(x+y) dxdyz%
R

Ex: Evaluate [f,y dx dy over the area bounded by y = x* and x +y = 2.

Solution: First we find point of intersectionof y = x? & x+y = 2

By solving together as follows

—x+2=x*iex?+x—-2=0ie(x+2)x—-1)=0

l.e.x=-2 & x=1
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For x=-2 = y=4&x=1 > y=1
The point of intersections are A(—2,4) & B(1,1). The region between the curves
y =x? & x+y = 2 as shown in figure.
By taking strip PQ parallel to y-axis and moving it fromx = —2to x = 1,

We getlimitsas -2 <x <1 & x?<y<2-—x

: 12-x
" ﬂydxdyz ff y dy dx
R -2 x2

— f_lz [y;];x dx

=2 [LI@-2)? - @??] dx

:§ f_12[4—4x+x2—x4] dx
1

= l[4x —2x% 423 —le]
2 3 57 1,

- 1[(a-243-) - (-0-0-342)
- iferi-tereei-

- tfis+s-2

- 1[r1-2]- 1)

2 2
Ex: Using double integral, find the area of an ellipse Z—Z + Z—Z = 1.

L
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2 2
Solution: The area of an ellipse = + % = 1 is given by

a2

Area = 4(Area of region 0ABO) =4 [[, dx dy

By taking strip PQ parallel to y-axis and moving it fromx =0tox = a
= The limits of region 0OABO are 0 <x<a &0<y < %\/az — x?

b
~ Areaof ellipse = 4 [ [a = dy dx

bvaz=x2
=4 [V dx

ab
=4 [/ -Va*—x? dx
4b [x — >, a® . P
= ;E\/a — X+ s

0
= o+ () -0

= mab squre units.

Ex: Using double integral, find the area of a circle of radius a.
Solution: The area of a circle of radius x? + y? = a? is given by
Area = 4 (Area of region 0ABO) = 4 [[, dx dy

By taking strip PQ parallel to y-axis and moving it fromx =0 to x = a.

= The limits of region OABO are0 < x <a & 0 <y <Va? —x?

= Areaof circle = 4 [ [ “dy dx
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_ a aZ_xZ
=4 [ IvIo dx
a
= 4 [Va? —x? dx
x a? x1¢
= 4 [—\/a2 —x2 + —sin‘l—]
2 2 algp
a? (m
=40+ (%) -0
2 \2

= a’m Square units.

Ex: By using double integral, Find the area of the region bounded by the parabolas y? = 4x

and x? = 4vy.

Solution: First we find point of intersection of the parabolas y? = 4x and x2 = 4y by solving
together as follows

x2\°
(Z) =4x ie x*=64x ie. x(x3-64)=0

= x=0o0r x=4
For x=0 = y=0 & x=4 = y=4.
~ The point of intersections are 0(0,0) & A(4,4).

The required region is shown in figure.

By taking strip PQ parallel to y-axis and moving it from x = 0 and x = 4.

2
We get the limits of regionas0 < x <4 & =<y < 2Vx.

= Area of region = f: f,fz‘;z dy dx
4
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Ex: By using double integral, Find the area of the region bounded by the parabolas y? = 2x
and x? = 2y.
Solution: First we find point of intersection of the parabolas y? = 2x and x? = 2y

by solving together as follows

2 2
X
<7> =2x i.e x*=8x ie x(x*-8)=0

> x=0o0r x=2

For x=0 = y=0 & x=2 = y=2.

~ The point of intersections are 0(0,0) & A(2,2).
The required region is shown in figure.

Y

By taking strip PQ parallel to y-axis and moving it from x = 0 and x = 2.

2
We get the limits of regionas0 < x <2 & =<y <+V2x.

= Area of region = foz f,z/zz/_x dy dx
2
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Ex: By using double integral, Find the area of the region bounded by the parabolas y? = x and
x? =y.
Solution: First we find point of intersection of the parabolas y? = x and x%2 =y

by solving together as follows

(x)2=x ie x*—x=0 ie x(x3-1)=0
> x=0o0rx=1

For x=0 » y=0 & x=1 = y=1.

=~ The point of intersections are 0(0,0) & A(1,1).

The required region is shown in figure.
Y

p \A(D

N

By taking strip PQ parallel to y-axis and moving it from x = 0 and x = 1.

We get the limits of regionas0 < x <1 & x2<y<+/x.

= Area of region = fol ff dy dx
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fa(1+cos 0)
0

Ex: Calculate [ r3sin@.cosf do dr.

Solution: Let, I = fonfoa(1+cose)r3 sinf.cos6 dr db
T - a(1+cos6)
= J, sinf.cos 6 [:]0 de

— % fon sin@.cos @ [a*(1+ cosB)* —0]do

a* (m 4 .
= Tfo (1 + cos6)*cosh.sinf db

Put 14+ cos@ =t +~ —sinf d@ =dt . sinf dO = —dt
When =0 = t=2 & 0= = t=0

= e - 1(=d)
— “:4 INGEERY

. a4[t6 t51%
= - .

6 5
S ESY
4 6 5
= TE-3
= 32563
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= 8a* [i
15
_ 16 4
15
m a(l4+cos )
16
. j f r3sinf.cos@ dr dezﬁa4

Ex: Evaluate [[ r3 dr d6 over area included between the circles r = 2sin6 and r = 4sin6.
Solution: Let, region R is the area between the circles r = 2sin8 and r = 4 sin 6.

By taking the strip PQ from 8 = 0 to 8 = m then r lies between 2sinf to 4siné.

< >0
. T 4sinf
fjr3dr d9=f f r3dr.de
R 2sin @

4sin 0

=f [ ]Zsme

_ 4
= 5 fo [256 sin* 8 — 16 sin* 8]dO
=60 [, sin*6 do

=60 x2 [>sin*6 df

=120 Ex=xZ] by reduction formula
4 2 2

V25-x2

Ex: Draw a sketch of the region ofmtegratlonf dx |, f(x,y) dy.
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Solution: From given integration, the region bounded by y = 0 and y = V25 — x?

i.e.x? + y? = 25 between the lines x = 0 & x = 4 as shown in figure.

Y
A

x=0
X=

Be the sketch of the given region.

Ex: Evaluate [f, e~*% dx dy, where R is the region bounded by the linesy = 0,x =1 &y = x

Solution: Let region R is bounded by the linesy = 0,x =1 & y = x as shown in figure.

Y
A

By taking strip PQ parallel to y-axis and moving it fromx = 0 tox = 1, We get limits

ofregionRas0<x <1 & 0<y<x.

: 1 x
jf e dx dy = er_xz dy dx
R 00

[ e~ [yl§ dx

0

= fole_xz x dx

L
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Change the order of Integration:

1) If given integration is ff ffz(gf))
1

curvesy = f;(x) to y = f,(x) between the lines x = a and x = b. We sketch this

f(x,y) dx dy, then the region is bounded by the

region first and then take strip PQ parallel to the x-axis and find the limits which give the

change of order of integration.

g2(y)

2) If given integration is fcd fgl o f6y) dx dy, then the region is bounded by the

curves x = g,(y) to x = g,(y) between the lines y = c and y = d. We sketch this
region first and then take strip PQ parallel to the y-axis and find the limits which give the

change of order of integration.

Ex: Change the order of integration [ 01 fxzz_x f(x,y) dx dy.

Solution: From given integration the region is bounded by y = x?and y = 2 — x

i.e.x +y = 2 between the linesx = 0 and x = 1 as shown in the figure.

To change the order of integration, we take strip PQ parallel to the x-axis. We observe that Q

liesoncurve y = x?upto Aand onx +y = 2 from point A.
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- We divide region into two sub-regions R, & R,. For R, by taking strip PQ parallel to x-axis
and moving itfromy =0toy =1.Wegetlimitas0 <y <1 and 0 <x < ﬁ

For R, by taking strip LM parallel to the x-axis and moving itfromy =1 to y = 2.
Wegetlimtasl1<y<2and 0<x<2-y

=~ Change of order of integration is

12-x 1 VY 52
jzf fCxy) dxdy = Jff(xy) dxdy+jfyf(xy)dxdy
0 x?

Ex: Change the order of integration f03 ) 1V4_y f(x,v) dx dy.
Solution: From given integration the region is bounded by x =1 and x =.,/4 —y

i.e. x2 =4 —y between the lines y = 0 and y = 3 as shown in the figure.

To change the order of integration, we have to integrate first w.r.t. y.
~ We take strip PQ parallel to the y-axis and moving it from x = 1 to x = 2.
We get limitsas1 <x <2 and 0 <y <4 —x2

=~ Change of order of integration is

2 P Fy) dedy = 717 Fay) dy da.

Ex: Change the order of integration [ [ G £ (x,y) dx dy.

Solution: From given integration the region is bounded by y = 0 and y = va? — x2

L
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i.e. x* +y?% = a’* between the lines x = —a and x = a as shown in the figure.

-a,0) y=0 (a0

To change the order of integration, we have to integrate first w.r.t. x.

~We take strip PQ parallel to the x-axis and moving it fromy = 0to y = a.

We getlimitas0 <y <a and —/a? —y? < x <,/a?—y2.

- Change of order of integration is

T Fey) dy dx = ) fwf(xy) dx dy.

Ex: Change the order of integration f f - dx dy and hence evaluate it.

Solution: From given integration the reglon |s bounded byx=y and x =a
between the lines y = 0 and y = a as shown in the figure.

To change the order of integration, we have to integrate first w.r.t. y.
~ We take strip PQ parallel to the y-axis and moving it from x = 0 to x = a.
Wegetlimitsas0 <x <a and 0 <y <x.

=~ Change of order of integration IS

IS drdy = [T

X
= fax[ltan‘lz] dx
0 x xlg

= [ E — O]dx

dy dx

x+y
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Ex: Change the order of integration f0°° fxoo ey;y dx dy and hence evaluate it.

Solution: From given integration the region is bounded by y = x and y — oo between the

lines x = 0 and x — oo as shown in the figure.

Y

To change the order of integration, we have to integrate first w.r.t. x.

~We take strip PQ parallel to the x-axis and moving it fromy = 0 to y — oo,
We get limits of regionas0 <y < oo and 0 <x <y.

=~ Change of order of integration is

o rooe Y o0 -y
f o Je S dyde = [ [T 5 dxdy

[o'e) -y
= J, 5 [l dy

= fooo e dy

Ex: Change the order of integration [ 01 fxzz_x xy dx dy and hence evaluate it.

Solution: From given integration the region is bounded by y = x? and y =2 — x
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i.e.x +y = 2 between the linesx = 0and x = 1 as shown in the figure.

Y

To change the order of integration, we take strip PQ parallel to the x-axis. We observe
that Q lies on curve y = x% upto 4 and x + y = 2 from point A.

= We divide region into two sub-regions R; & R,.

For R, by taking strip PQ parallel to x-axis and moving it fromy =0toy = 1.

We get limitof regionas0 <y <1 and 0 <x < \/}

For R, by taking strip LM parallel to the x-axis and moving itfromy = 1toy = 2.
Wegetlimtas1<y<2 & 0<x<2—y.

=~ Change of order of integration is

L2 1 22—
A fy) dedy = [P Fxy) dxdy + 277 f(xy) dxdy.
1 02— 1 2 2
S I “xy dx dy = Js foﬁxy dxdy+ [ ] Yxy dx dy
. rt x? vy 2 X2 2=y
=, y[;]o dy + |, y[;]o dy
—1)2
= [iy[E-o]dy+ [[y[F2E-0| dy
2
= %folyz dy + % J{y(4 -4y +y?) dy

1 [y31* 1 (2
= ;[y;]o+ S [ 4y —4y* +y3)dy

1]1

- 1o+ 22t
s
1

1

- feifo-2-

— _+ [120 112—- 3]
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[E=N
u1

2 12]

mlwgloc\h—xc\h—x
+ +
NI

Ex: Change the order of integration f f f (x,y) dxdy.
Solution: From given integration the region is bounded by

y=0and y=V4x —x2 i.e. x> +y? —4x =0
i.e.(x —2)%+ (y — 0)2 = 22 i.e.circle with centre at (2, 0) and radius 2

between the lines x = 0 and x = 4 as shown in the figure.

To change the order of integration, we have to integrate first w.r.t. x and then w.r.t. y.

For that we take strip PQ parallel to the x-axis and moving it fromy = 0toy = 2.

We get limitas0 <y <2 and 2—/4—y2<x<2+.4-—y2
~ Change of order of integration is

2+,/4-y?

IR ey dydx = [T fny) dxdy,

dx dy.

) 1 V1-x? 1
Ex: Evaluate [ [ RIS e
Solution: We observe that, integration first w.r.t. y is not possible.
=~ We change the order of integration first then evaluate it.

= From given integration, the region is bounded by y = 0 & y = V1 — x?2
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i.e.x? +y?% = 1 circle with centre at origin and radius 1 between the lines x = 0 and
x =1 as shown in figure.

To change the order of integration we have to integrate first w.r.t. x and then w.r.t. y. For
that we take strip PQ parallel to the x-axis and moving itfromy =0toy = 1.

~ The limits of regionare 0 < y <1 & 0 < x < /1 —y2

~ Change of order of integration is

1V1-x2 1 1V1-y? " .
f f dx dy=] ] dx dy
;o (1+eY)y1—x2—y2 s (1 +e¥) /(1 —y2) — x2
-1 X 1_y2
= s [ , Y
1 1 [n
- fo (1+eY) [E_ 0] dy
w1 —eY d
2 70 e7V+1 y

= —Z [log(e™ + 1)1}
= -z [log(l+ 1) —logZ]

il

Triple Integral: If f(x,y, z) is continuous in a region V in three dimensional space with V is
divided into n-sub regions AV, AV,, ..., AV, then for (x,, y;, z,) lies in AV, triple integral is
denoted by [[f, f(x,y,2) dv and defined as

L
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IS, £ Gy 2) dv = lim poss S f (X, Yy 2)AV,

Volume by triple integration:
Volume of the region V in a three dimensional space is given by
Volume of V = [ff dv = [ff dxdydz

Ex: Evaluate fxl=0 fyZ:O fzzzlxzyz dz dy dx.
Solution: Let, I = fxl=0 fyzzo fzzzlxzyz dz dy dx
1 2 22]%
N [7]1 dy dx
2, 1
= fx=ofy=ox y [Z_E] dy dx
_ 3t o )
= 2 Jx=0* [2]0 dx

=2 [2 x*[2-0] dx

2 Jx=
341
=3 [5],

Ex: Evaluate [ [ [ ((x+y +2) dzdy dx.
Solution: Let I = [°_ [* [" (x+y+2) dzdydx
= S+ z+ SR dxdy

= f;=o fxzzo[x +y+ % — 0] dx dy

= L[5+ (D), ar

= [ [2+2y+1-0] dy

= [ [2y+3] dy

= [y* +3yI5

=9+9-0

Ex: Evaluate [* [ [ e*+7*7 dx dy dz.
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Solution: Let] = [* [* [*" eX*¥+Z dz dy dx
foa J'x x+y+z x+y dy dx

fa x e2Xx+2y _ ex+y] dy dx

o

0 Jol
_ fa 182x+2y x+y]x dx
0 |2 0
_ (2|1 ax 2x _ 1 ox x
= [, |;e"* —e** —-e +e]dx
2 2
— J-Oa le4x_362x+ex] dx
2 2
— [le4x _ 362x + ex]a
8 4 0
= [le‘“‘ —Ze2ay e“] - [l—é—k 1]
8 4 8 4
= g [e*? — 6e2® + 8e%] — [1_Z+8]
Ll = % [e*® — 6e2% + 8e® — 3]
. 1 V1-x2 J1-x2-y2
Ex: Evaluate [ [, Jy —— dx dy dz

Solution: Let I = flfVI_xz f‘/l_xz_wﬁ dz dy dx

1x2

- o] T

= fo fol x: (E_O) dy dx

1, Ji%2
= Z [[IyIet™ dx
f01\/1—x2 dx

1
[f\/1—x2 +lsin‘1x]
2 2 0

o+3G) -0l

N[N

ool*:]NNI;l N

Ex: Evaluate [[[(x + vy + z) dx dy dz over the tetrahedron x = 0,y = 0,z = 0
and x+y+z=1.
Solution: The region over tetrahedron x =0,y =0,z=0andx+y+z =1
isexpressedas 0 <x<1,0<y<1-xand0<z<1l-—-x-y.
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. 1
" jf (x+y+2) dxdydz=6[

= [ e+ wz+ ]
[+ -x-y)+

X

1-x

=f0101
|

10
Js

1

1-

0 x[———(x+y) ] dy dx

=2 [0 - (x +¥)?] dy dx

o
= %fol _1—x—§(1)3—0+§x3] dx
i ppocr i
2t
- ifi-ted-o

1 [8—6+1]

2l 12

1
ﬂ (x+y+2) dxdydzzg

RO\’T

x1-

-y

(1xy)

MTH:301:CALCULUS OF SEVER AL VARIABLES
x=y
f (x+y+2z)dzdydx
0
dy dx

] dy dx

N 1
j [(x+y)—(x+y)2+§—(x+y)+§(x+y)2] dy dx
0

Ex: Evaluate [[[

(x+y+z +1)3

dx dy dz overtheregionx >0,y >0,z>0andx+y+z<1.

Solution: The givenregionx >0,y > 0,z>0andx+y+z<1
isexpressedas 0 <x<1,0<y<l1l—-xand 0<z<1-—x-—y.

1- 1-
- fffmd“iydz—ff A xy(x+y+z+1)3dzdydx

11—x ( 1)
X+y+z+
fj [ 24 ] dy dx
—1 1 01— x
=7f0 N Z—(x+y+1)?]dydx
-1 (11 (x+y+1)~171 7%
bl ‘—]O dx
== [Ea-0+@7 -0-(c+ 1D ax
2 J0 l4
-1 11 1 1 1
= S bl el
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MTH:301:CALCULUS OF SEVERAL VARIABLES

_ —_1f1 3_1,_
=2 bz (x+1)
T3, 12 '
= 5 37X X log(x+1)]0
-1 [3 1
=5 ;-5 g2 -0
-1 [s
= 5 [-1og2]

. ﬂf dxdydz 1 [1' , 5]
" Gry+rz+13 219%° 78

Ex: Using triple integration find the volume of a sphere of radius a.
Solution: The equation of sphere of radius a is x? + y% + z2 = a?.
The region of volume V of a sphere is expressed as

—a<x<a-Va?—-x2<y<vVvaz—xZand—Ja?—x2—-y2<z<.a?—x2—y?
~ Volume of sphere = [[f dx dy dz

Vaz—x2 2_x2
f f :/laz_xxz f\/jaz xxz dZ dy dx

—8f f\/az_xzf‘/az % 4z dy dx
—8f f\/a —x2 \/az x2-y2 dy dx
8f faz \/az x%2 —y? dy dx
Va2
> (a? —x) 1Y
=8 [ [ Jaz — 2 + —=sin W]o dx

=8/’ [o+(“ ’”(2) o] dx
=21tf0(a —x?) dx

a

1
=21 [azx - —x3]
3 0

= 2n[a® — §a3 — 0]
= %na3 cubic unit.

Ex: Find the volume of the region bounded by the co-ordinate planes (i.e.x = 0,y =0,z = 0)

andx +y+z=1.

Solution: The volume of the region bounded by the co-ordinates planesx =0,y =0,z =0
andx+y+z=1.
The region of volume V' of is expressed as
0 <x<10<y<l-xand0<z<1l-x-y

= [[f dxdydz={ [~ [/ 7 dzdydx
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- folfol 2] dy dx

1 01—
= [, J; T (1—x—y)] dy dx
= fol (1 —x)y -3 ]O

1

- 1f0 L(1—x)2—5(1—x)2—0] dx
=2 [, [(1—x)?] dx
_ 1[a-=3"
T2 [ -3 ]0

-1
= —[(1 -2

-1

= —[0-1]

V= %cubic unit.

Ex: Find the volume bounded by the cylinder x? + y? = 4 and the planes y + z = 3,z = 0.
Solution: The region V bounded by cylinder x? + y2 = 4 and the planesy + z = 3,z = 0

isexpressedas -2 < x <2, —V4—x?<y<v4—x?2and0<z<3-y.
~ Volume = [ff dx dy dz

3—

= [ fmf Y dz dy dx
= I fﬂ (10 dy dx
= f_zf_m(3—Y) dy dx

= 4f02 fOWB dy dx
[ F(x) dx = {2 foaf(x) d.x if f(x.) is even fur.lction
4 0 if f(x)isodd function
= 12f02 fomdy dx

=12 [ [yly*™ dx

=12 f02V4—x2 dx

=12 [2Va—22 +3sin71 (5]
2

=12[0+2(5) -0

~ Volume = 127 cubic unit.

2

0
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