Pimpalner Education Society's

Karm. A. M. Patil Arts, Commerce and Kai. Annasaheb

N. K. Patil Science Senior College Pimpalner, Tal.- Sakri, Dist.- Dhule.

CLASS NOTES

CLASS: F.Y.B.SC SEM.-II

SUBJECT: MTH-203(B): NUMERICAL ANALYSIS
PREPARED BY: PROF. K. D. KADAM

MTH 203(B): NUMERICAL ANALYSIS

UNIT-I Solution of Algebraic and Transcendental Equations

Errors and their computation. Absolute, relative and percentage errors. The Bisection method. The iteration method. The method of false position. Newton-Raphson method.

UNIT-II Interpolation

No. of Periods - 12
Finite differences: Forward differences, backward differences, central differences, Symbolic relations and separation of symbols. Gauss's forward difference formula. Gauss's backward difference formula. Interpolations with unevenly spaced points. Lagrange's interpolation formula. Inverse Lagrange's Formula.

UNIT-III Curve Fitting

No. of Periods - 11
Least squares curve fitting procedures. Fitting of straight line. Non-linear curve fitting: power function. Fitting of polynomial of degree two. Fitting of exponential function

UNIT-IV Numerical Solutions of Ordinary Differential Equations

No of Periods - 10
Numerical solution of first order ODE by Taylor's series, Euler's method and Modified Euler's method. Runge-Kutta methods Runge-Kutta second and fourth order formulae.

Reference books:

1. Introductory Methods of Numerical Analysis, by S. S. Sastry, Prentice Hall India Learning Private Limited; Fifth edition, 2012.
2. Introduction to Numerical Analysis, by Carl-Erik Froberg, Addison-Wesley, Second edition, 1979.
3. Numerical Methods by V.N. Vedamurty and N. Ch. S. N. Iyehgar, Vikas Publishing House, India, 1995.
4. Numerical methods for scientific and engineering computation, by M. K. Jain, S. R. K. Iyenger and R. K. Jain. New Age International Publisher Pvt. Ltd., 1999.

Learning Outcomes:

Student will be able to:
a) understand basic concepts of methods of solutions of equations viz. bisection, iteration, NewtonRaphson methods and method of false position.
b) understand methods of curve fitting viz. Gauss's forward and backward difference formulae and Lagrange's interpolation formula.
c) use of curve fitting such as least square, polynomial and exponential fittings for set of given data.
d) use Taylor's series, Euler's method. Modified Euler's method., Runge Kutta methods for solving ordinary differential equations.

UNIT-1: SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

Significant Digit: To write a number x correct to n significant digits write the number from x in which there are n digits from leading non-zero number in x .

Ex. Write a number $\mathrm{a}=3.4560712$ correct to 2,4 and 6 significant digits.
Solution: A number $\mathrm{a}=3.4560712$ correct to 2 significant digits is $\mathrm{a}=3.4$
A number $\mathrm{a}=3.4560712$ correct to 4 significant digits is $\mathrm{a}=3.446$
A number $\mathrm{a}=3.4560712$ correct to 6 significant digits is $\mathrm{a}=3.45607$

Ex. Write a number $\mathrm{b}=0.007102506$ correct to 2,4 and 6 significant digits.
Solution: A number $\mathrm{b}=0.007102506$ correct to 2 significant digits is $\mathrm{b}=0.0071$
A number $b=0.007102506$ correct to 4 significant digits is $b=0.007102$
A number $\mathrm{b}=0.007102506$ correct to 6 significant digits is $\mathrm{b}=0.00710250$

Ex. Write significant digits of numbers
i) 3.57×104, ii) 3.570×104, iii) 3.5700×104,

Solution: i) Significant digit of a number 3.57×104 is 3
ii) Significant digit of a number 3.570×104 is 4
iii) Significant digit of a number 3.5700×104 is 5

Rounded off: To round off a number x to $n^{\text {th }}$ decimal place digit, to right from its decimal point. If the digit in the $(\mathrm{n}+1)^{\text {th }}$ is greater than 4 , we take x upto $\mathrm{n}^{\text {th }}$ decimal place and add $1 \times 10^{- \text {n }}$ i.e. add 1 in $\mathrm{n}^{\text {th }}$ decimal place digit to get the rounded off value of x , if the digit in the $\mathrm{n}^{\text {th }}$ place is odd, and add 0 if the digit in the $\mathrm{n}^{\text {th }}$ place is even. Otherwise we take x as the number formed by leaving its $(\mathrm{n}+1)^{\text {th }}$ decimal place onwards.

Ex. Round off a number a $=3.4560712$ to 1,2 and 6 decimal place.
Solution: A number $\mathrm{a}=3.4560712$ rounded to 1 decimal place is $\mathrm{a}=3.4$
A number $\mathrm{a}=3.4560712$ rounded to 2 decimal place is $\mathrm{a}=3.46$
A number $\mathrm{a}=3.4560712$ rounded to 6 decimal place is $\mathrm{a}=3.456071$

Truncation: To truncate a number x in its decimal fractional part to $\mathrm{n}^{\text {th }}$ place is formed by leaving its $(\mathrm{n}+1)^{\text {th }}$ decimal place onwards.
Truncation Error: If x_{1} is truncated number of number x , then $\mathrm{x}-\mathrm{x}_{1}$ is called truncated error.

Ex. Find the truncated error when a number $\mathrm{a}=3.4560712$ is
i) truncated to $2^{\text {nd }}$ decimal place,
ii) truncated to $5^{\text {th }}$ decimal place,
iii) truncated to $6^{\text {th }}$ decimal place

Solution: i) A number $a=3.4560712$ is truncated to $2^{\text {nd }}$ decimal place $\mathrm{a}_{1}=3.45$
\therefore Truncated error $=\mathrm{a}-\mathrm{a}_{1}=3.4560712-3.45=0.0060712$
ii) A number $\mathrm{a}=3.4560712$ is truncated to $5^{\text {th }}$ decimal place $\mathrm{a}_{1}=3.45607$
\therefore Truncated error $=\mathrm{a}-\mathrm{a}_{1}=3.4560712-3.45607=0.0000012$
iii) A number $\mathrm{a}=3.4560712$ is truncated to $6^{\text {th }}$ decimal place $\mathrm{a}_{1}=3.456071$
\therefore Truncated error $=\mathrm{a}-\mathrm{a}_{1}=3.4560712-3.456071=0.0000002$

Error: If a true value of number x is approximated by a number x_{1}, then $E=\Delta x=x-x_{1}$ is called an error.
Absolute Error: If a true value of number x is approximated by a number x_{1}, then $E_{a}=|E|=\left|x-x_{1}\right|$ is called an absolute error.
Relative Error: If a true value of number x is approximated by a number x_{1}, then $\mathrm{E}_{\mathrm{r}}=\frac{\Delta x}{\mathrm{x}}=\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{x}}$ is called a relative error .
Percentage Error: If a true value of number x is approximated by a number x_{1}, then $E_{p}=100 E_{r}=\frac{x-x_{1}}{x} \times 100$ is called a percentage error.
Remark: If a number x is rounded to N decimal place, then error $\mathrm{E}=\Delta \mathrm{x}=\frac{1}{2} \times 10^{-\mathrm{N}}$ Ex. If $x=0.64$ is corrected to 2 decimal place, then find relative error and percentage error.
Solution: Let $\mathrm{x}=0.64$ is corrected to 2 decimal place.
\therefore Error $\mathrm{E}=\Delta \mathrm{x}=\frac{1}{2} \times 10^{-2}=0.005$

Relative error $=\mathrm{E}_{\mathrm{r}}=\frac{\Delta \mathrm{x}}{\mathrm{x}}=\frac{0.005}{0.64}=0.0078$
and Percentage error $=100 E_{r}=\frac{x-x_{1}}{x} \times 100=\frac{0.005}{0.64} \times 100=0.78$

Ex. If $\sqrt{11}$ is approximated by 3, then find its error, absolute error, relative error and percentage error.
Solution: Let $\mathrm{x}=\sqrt{11}$ is approximated by $\mathrm{x}_{1}=3$.
\therefore Error $\mathrm{E}=\Delta \mathrm{x}=\mathrm{x}-\mathrm{x}_{1}=\sqrt{11}-3$
Absolute error $=|E|=\left|x-x_{1}\right|=|\sqrt{11}-3|=\sqrt{11}-3 \quad \because \sqrt{11}>3$
Relative error $=\mathrm{E}_{\mathrm{r}}=\frac{\Delta \mathrm{x}}{\mathrm{x}}=\frac{\sqrt{11}-3}{\sqrt{11}}$
and Percentage error $=100 E_{r}=\frac{x-x_{1}}{x} \times 100=\frac{\sqrt{11}-3}{\sqrt{11}} \times 100$

Ex. If $\sqrt{11}$ is approximated by 4 , then find its error, absolute error, relative error and percentage error.
Solution: Let $\mathrm{x}=\sqrt{11}$ is approximated by $\mathrm{x}_{1}=4$.
\therefore Error $\mathrm{E}=\Delta \mathrm{x}=\mathrm{x}-\mathrm{x}_{1}=\sqrt{11}-4$
Absolute error $=|E|=\left|x-x_{1}\right|=|\sqrt{11}-4|=4-\sqrt{11} \quad \because \sqrt{11}<4$
Relative error $=\mathrm{E}_{\mathrm{r}}=\frac{\Delta x}{\mathrm{x}}=\frac{4-\sqrt{11}}{\sqrt{11}}$
and Percentage error $=100 E_{r}=\frac{4-\sqrt{11}}{\sqrt{11}} \times 100$
Ex. An approximate value of π is given by $\frac{22}{7}=3.14285714$ and its true value is $x=3.14159265$, then find the absolute error and the relative error.
Solution: Let a true value of $\pi, \mathrm{x}=3.14159265$ is approximated by
$\mathrm{x}_{1}=\frac{22}{7}=3.14285714$
\therefore Error $\mathrm{E}=\Delta \mathrm{x}=\mathrm{x}-\mathrm{x}_{1}=3.14159265-3.14285714=-0.00126449$
Absolute error $=E_{a}=|E|=\left|x-x_{1}\right|=|-0.00126449|=0.00126449$
and Relative error $=\mathrm{E}_{\mathrm{r}}=\frac{0.00126449}{3.14159265}=0.00040250$

Ex. Three approximate values of $\frac{1}{6}$ are given by $0.16,0.166$ and 0.165 . Find the best approximation of these.
Solution: Three approximate values of $\frac{1}{6}$ are given by $0.16,0.166$ and 0.165
\therefore Absolute errors are
i) $\left|x-x_{1}\right|=\left|\frac{1}{6}-0.16\right|=\left|\frac{1}{6}-\frac{8}{50}\right|=\frac{1}{150}$
ii) $\left|x-x_{1}\right|=\left|\frac{1}{6}-0.166\right|=\left|\frac{1}{6}-\frac{249}{1500}\right|=\frac{1}{1500}$
i) $\left|x-x_{1}\right|=\left|\frac{1}{6}-0.165\right|=\left|\frac{1}{6}-\frac{33}{200}\right|=\frac{1}{600}$

The best approximation is 0.166 because it has the least error.

Polynomials: If $a_{0}, a_{1}, a_{2}, \ldots \ldots, a_{n}$ are real numbers with $a_{0} \neq 0$, then
$f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots \ldots+a_{n-1} x+a_{n}$ is called a general polynomial of variable x of degree n.
Polynomials Equation: If $a_{0}, a_{1}, a_{2}, \ldots \ldots, a_{n}$ are real numbers with $a_{0} \neq 0$ and x is variable, then $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots . .+a_{n-1} x+a_{n}=0$ is called a polynomial equation of degree n
Algebraic Equation: An equation of type $y=f(x)$ is called an algebraic equation if it can be expressed as $f_{n} y_{n}+f_{n-1} y_{n-1}+\ldots . .+f_{1} y_{1}+f_{0}=0$, where f_{i} is an $i^{\text {th }}$ order polynomial in x .
Transcendental Equation: A non-algebraic equation is called a transcendental equation if it involves trigonometric, exponential, logarithmic etc. functions. e.g. $4 \sin x-e^{x}=0$ and $\log x^{3}-5 \tan x=0$ are the transcendental equations

Root of an Equation: The value of x which satisfies the given equation $f(x)=0$ is called root of an equation.
Note: A transcendental equation may have finite or infinite number of real roots or may not have real roots.
Solution of an Equation: The process of finding the roots of an equation $f(x)=0$ is called solution of that equation.
Remark: i) Geometrically a root of an equation $f(x)=0$ is that value of x where the graph of $y=f(x)$ cuts the x-axis.
ii) If $f(x)$ is divisible by $(x-a)$, then $x=a$ is the root of $f(x)=0$.
iii) Every algebraic equation of degree n has only n roots. Which are real or imaginary.
iv) If $f(x)$ is continuous in the interval (a, b) and $f(a), f(b)$ have an opposite signs, then the equation $f(x)=0$ has at least one root between $x=a$ and $x=b$.
v) Every equation of odd degree has at least one real root.
vi) If a polynomial of degree n vanishes for more than n values of x, it must be identically zero.
Methods of Solutions: The methods of solution of the equation includes.
i) Direct Methods,
ii) Graphical Methods,
iii) Trial and Error Methods,
iv) Iterative Methods,

Remark: 1) In this unit we use four iterative methods-
i) Bisection method,
ii) Regula falsi method,
iii) Iteration method,
iv) Newton Raphson method,
2) An iterative technique begins with an approximate value of the root which is known as initial guess.
The Bisection method: If $f(x)=0$ be the given equation with $f(a)<0$ and $f(b)>0$, then there exist one root between a and b . In this method we assume that the approximate value of root is $\mathrm{x}_{0}=\frac{\mathrm{a}+\mathrm{b}}{2}$.
If $f\left(x_{0}\right)=0$, then x_{0} is the root of equation $f(x)=0$.
But if $f\left(x_{0}\right) \neq 0$, then the root lies either between x_{0} and a or between x_{0} and b. If $f\left(x_{0}\right)>0$, then the root lies between x_{0} and a .
If $f\left(x_{0}\right)<0$, then the root lies between x_{0} and b.
Denote the new interval by $\left[a_{1}, b_{1}\right]$ whose length is $\frac{|\mathrm{b}-\mathrm{a}|}{2}$.
Let $x_{1}=\frac{a_{1}+b_{1}}{2}$. As before $\left[a_{1}, b_{1}\right]$ is bisected at x_{1} and new interval will be exactly half of previous one.
We repeat the process until the latest interval which contains the root is as small as desired, say ϵ.
Note that the interval width is reduced half of previous one at each step and at the end of $n^{\text {th }}$ step, the new interval $\left[a_{n}, b_{n}\right]$ of length is $\frac{|b-a|}{2^{n}}$.
\therefore We have $\frac{|\mathrm{b}-\mathrm{a}|}{2^{\mathrm{n}}} \leq \epsilon$.

Taking log on both sides, we get,
$\log \left[\frac{|\mathrm{b}-\mathrm{a}|}{2^{\mathrm{n}}}\right] \leq \log \epsilon$
i.e. $\log (|b-a|)-n \log 2 \leq \log \epsilon$
i.e. $\log (|b-a|)-\log \epsilon \leq n \log 2$
i.e. $\operatorname{nlog} 2 \geq \log \left\{\frac{|\mathrm{b}-\mathrm{a}|}{\epsilon}\right\}$
$\therefore \mathrm{n} \geq \frac{\log \left\{\frac{|\mathrm{b}-\mathrm{a}|}{\epsilon}\right\}}{\log 2}$
which gives the number of iterations required to get an accuracy ϵ.

Note: i) The Bisection method fails if $\mathrm{f}(\mathrm{x})$ is not continuous in [a, b],
ii) The Bisection method gives the real root of an equation $f(x)=0$.
iii) The Bisection method is always convergent.

Ex. Find the real root of the equation $x^{3}-x-4=0$ by using bisection method, perform five iterations.
Solution: Let $f(x)=x^{3}-x-4=0$ be the given equation with $f(1)=1-1-4=-4<0$ and $f(2)=8-2-4=2>0$
\therefore The root lies 1 and 2 .
i) Take $\mathrm{x}_{0}=\frac{1+2}{2}=1.5$
$\therefore \mathrm{f}\left(\mathrm{x}_{0}\right)=\mathrm{f}(1.5)=(1.5)^{3}-1.5-4=-2.125<0$
\therefore The root lies 1.5 and 2 .
ii) Let $x_{1}=\frac{1.5+2}{2}=1.75$
$\therefore \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}(1.75)=(1.75)^{3}-1.75-4=-0.390625<0$
\therefore The root lies 1.75 and 2 .
iii) Let $x_{2}=\frac{1.75+2}{2}=1.875$
$\therefore \mathrm{f}\left(\mathrm{x}_{2}\right)=\mathrm{f}(1.875)=(1.875)^{3}-1.875-4=0.716796875>0$
\therefore The root lies 1.75 and 1.875
iv) Let $x_{3}=\frac{1.75+1.875}{2}=1.8125$

$$
\therefore \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathrm{f}(1.8125)=(1.8125)^{3}-1.8125-4=0.141845703>0
$$

\therefore The root lies 1.75 and 1.8125
v) Let $\mathrm{x}_{4}=\frac{1.75+1.8125}{2}=1.78125$
be the approximate value of the root upto fifth iteration.

Ex. Find the real root of the equation $x^{3}-x-1=0$ by bisection method, perform five iterations.
Solution: Let $f(x)=x^{3}-x-1=0$ be the given equation with
$\mathrm{f}(1)=1-1-1=-1<0$ and $\mathrm{f}(2)=8-2-1=5>0$
\therefore The root lies 1 and 2 .
i) Take $\mathrm{x}_{0}=\frac{1+2}{2}=1.5$
$\therefore \mathrm{f}\left(\mathrm{x}_{0}\right)=\mathrm{f}(1.5)=(1.5)^{3}-1.5-1=0.875>0$
\therefore The root lies 1 and 1.5 .
ii) Let $\mathrm{x}_{1}=\frac{1+1.5}{2}=1.25$
$\therefore \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}(1.25)=(1.25)^{3}-1.25-1=-0.296875<0$
\therefore The root lies 1.25 and 1.5 .
iii) Let $\mathrm{x}_{2}=\frac{1.25+1.5}{2}=1.375$
$\therefore \mathrm{f}\left(\mathrm{x}_{2}\right)=\mathrm{f}(1.375)=(1.375)^{3}-1.375-1=0.224609375>0$
\therefore The root lies 1.25 and 1.375
iv) Let $x_{3}=\frac{1.25+1.375}{2}=1.3125$
$\therefore \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathrm{f}(1.3125)=(1.3125)^{3}-1.3125-1=-0.0515136719<0$
\therefore The root lies 1.3125 and 1.375
v) Let $\mathrm{x}_{4}=\frac{1.3125+1.375}{2}=1.34375$
be the approximate value of the root upto fifth iteration.
Ex. Find a root of the equation $x^{3}-4 x-9=0$ using bisection method, upto fourth iterations.
Solution: Let $f(x)=x^{3}-4 x-9=0$ be the given equation with

$$
f(2)=8-8-9=-9<0 \text { and } f(3)=27-12-9=6>0
$$

\therefore The root lies 2 and 3 .
i) Take $\mathrm{x}_{0}=\frac{2+3}{2}=2.5$
$\therefore \mathrm{f}\left(\mathrm{x}_{0}\right)=\mathrm{f}(2.5)=(2.5)^{3}-4(2.5)-9=-3.375<0$
\therefore The root lies 2.5 and 3 .
ii) Let $\mathrm{x}_{1}=\frac{2.5+3}{2}=2.75$

$$
\therefore \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}(2.75)=(2.75)^{3}-4(2.75)-9=0.796875>0
$$

\therefore The root lies 2.5 and 2.75 .
iii) Let $\mathrm{x}_{2}=\frac{2.5+2.75}{2}=2.625$
$\therefore \mathrm{f}\left(\mathrm{x}_{2}\right)=\mathrm{f}(2.625)=(2.625)^{3}-4(2.625)-9=-1.41210938<0$
\therefore The root lies 2.625 and 2.75
iv) Let $x_{3}=\frac{2.625+2.75}{2}=2.6875$
be the approximate value of the root upto fourth iteration.

Ex. Using bisection method determine a real root of the equation $8 \mathrm{x}^{3}-2 \mathrm{x}-1=0$ upto fourth iterations.
Solution: Let $f(x)=8 x^{3}-2 x-1=0$ be the given equation with

$$
\mathrm{f}(0)=0-0-1=-1<0 \text { and } \mathrm{f}(1)=8-2-1=5>0
$$

\therefore The root lies 0 and 1 .
i) Take $x_{0}=\frac{0+1}{2}=0.5$
$\therefore \mathrm{f}\left(\mathrm{x}_{0}\right)=\mathrm{f}(0.5)=8(0.5)^{3}-2(0.5)-1=-1<0$
\therefore The root lies 0.5 and 1 .
ii) Let $x_{1}=\frac{0.5+1}{2}=0.75$
$\therefore \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}(0.75)=8(0.75)^{3}-2(0.75)-1=0.875>0$
\therefore The root lies 0.5 and 0.75 .
iii) Let $\mathrm{x}_{2}=\frac{0.5+0.75}{2}=0.625$
$\therefore \mathrm{f}\left(\mathrm{x}_{2}\right)=\mathrm{f}(0.625)=8(0.625)^{3}-2(0.625)-1=-0.296875<0$
\therefore The root lies 0.625 and 0.75
iv) Let $\mathrm{x}_{3}=\frac{0.625+0.75}{2}=0.6875$
be the approximate value of the root upto fourth iteration.

Ex. Find a positive root of the equation $\mathrm{xe}^{\mathrm{x}}=1$, which lies between 0 and 1 , perform four iterations.
Solution: Let $\mathrm{f}(\mathrm{x})=\mathrm{xe}^{\mathrm{x}}-1=0$ be the given equation with

$$
f(0)=0-1=-1<0 \text { and } f(1)=e-1=2.718-1=1.718>0
$$

\therefore The root lies 0 and 1 .
i) Take $\mathrm{x}_{0}=\frac{0+1}{2}=0.5$
$\therefore \mathrm{f}\left(\mathrm{x}_{0}\right)=\mathrm{f}(0.5)=0.5\left(\mathrm{e}^{0.5}\right)-1=-0.175639365<0$
\therefore The root lies 0.5 and 1 .
ii) Let $\mathrm{x}_{1}=\frac{0.5+1}{2}=0.75$
$\therefore \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}(0.75)=0.75\left(\mathrm{e}^{0.75}\right)-1=0.587750012>0$
\therefore The root lies 0.5 and 0.75 .
iii) Let $\mathrm{x}_{2}=\frac{0.5+0.75}{2}=0.625$
$\therefore \mathrm{f}\left(\mathrm{x}_{2}\right)=\mathrm{f}(0.625)=0.625\left(\mathrm{e}^{0.625}\right)-1=0.167653723>0$
\therefore The root lies 0.5 and 0.625
iv) Let $x_{3}=\frac{0.5+0.625}{2}=0.5625$
be the approximate value of the root upto fourth iteration.
The Iteration method: If $\mathrm{f}(\mathrm{x})=0$ be the given equation with $\mathrm{f}(\mathrm{a})<0$ and $\mathrm{f}(\mathrm{b})>0$, then there exist one root between a and b. In this method we take an approximate value x_{0} of a desired root λ which lies between a and b. Express the equation $f(x)=0$ as
$x=\varnothing(x) \ldots \ldots$.(i) such that $\left|\varnothing^{\prime}(x)\right|<1 \forall x \in(a, b)$.
Putting $\mathrm{x}=\mathrm{x}_{0}$ in equation (i), we get first approximation as $\mathrm{x}_{1}=\varnothing\left(\mathrm{x}_{0}\right)$, and next successive approximations are obtained as follows
$\mathrm{x}_{2}=\varnothing\left(\mathrm{x}_{1}\right), \mathrm{x}_{3}=\emptyset\left(\mathrm{x}_{2}\right)$ and so on in general $\mathrm{x}_{\mathrm{r}}=\emptyset\left(\mathrm{x}_{\mathrm{r}-1}\right)$
i.e. $\mathrm{x}_{\mathrm{n}}=\emptyset\left(\mathrm{x}_{\mathrm{n}-1}\right)$ where $\mathrm{n}=1,2,3, \ldots \ldots$.

Note: i) The successive approximations $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots \ldots, \mathrm{x}_{\mathrm{n}}$ must converges to desired root λ.
ii) The function $\emptyset(x)$ should be chosen such that the sequence should converges to root. It happens when $\left|\phi^{\prime}(\mathrm{x})\right|<1 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$.

Ex. Use Iterative method to find the real root of the equation $x^{3}+x-5=0$ correct to four significant figures.
Solution: Let $f(x)=x^{3}+x-5=0$ be the given equation with
$f(1)=1+1-5=-3<0$ and $f(2)=8+2-5=5>0$
\therefore The root lies 1 and 2 .
Now $\mathrm{x}^{3}+\mathrm{x}-5=0 \Rightarrow \mathrm{x}^{3}=5-\mathrm{x}$ i.e. $\mathrm{x}=(5-\mathrm{x})^{1 / 3}=\emptyset(\mathrm{x})$
where $\emptyset(x)=(5-x)^{1 / 3}$
$\therefore \emptyset^{\prime}(\mathrm{x})=-\frac{1}{3}(5-\mathrm{x})^{-2 / 3}=\frac{-1}{3(5-\mathrm{x})^{2 / 3}}$
$\therefore\left|\emptyset^{\prime}(\mathrm{x})\right|=\left|\frac{-1}{3(5-\mathrm{x})^{2 / 3}}\right|<1 \forall \mathrm{x} \in(1,2)$.
\therefore Iteration method is applicable.
\therefore Take $\mathrm{x}_{0}=1.5$
i) First approximation is

$$
\mathrm{x}_{1}=\emptyset\left(\mathrm{x}_{0}\right)=\varnothing(1.5)=(5-1.5)^{1 / 3}=1.518294486
$$

ii) Second approximation is

$$
x_{2}=\emptyset\left(x_{1}\right)=\emptyset(1.518294486)=(5-1.518294486)^{1 / 3}=1.51564449
$$

iii) Third approximation is

$$
x_{3}=\varnothing\left(x_{2}\right)=\emptyset(1.51564449)=(5-1.51564449)^{1 / 3}=1.516028922
$$

\therefore The approximate value of the root correct to four significant figures is 1.516
Ex. Find the real root of the equation $\mathrm{x}^{3}+\mathrm{x}^{2}-1=0$ which lies between 0 and 1 , correct upto four decimal places by calculating three approximations by iteration method.
Solution: Let $f(x)=x^{3}+x^{2}-1=0$ be the given equation which expressed as

$$
x^{2}(x+1)=1 \text { i.e. } x^{2}=\frac{1}{x+1} \text { i.e. } x=\frac{1}{\sqrt{x+1}}=\varnothing(x)
$$

where $\emptyset(\mathrm{x})=(\mathrm{x}+1)^{-1 / 2}$
$\therefore \emptyset^{\prime}(\mathrm{x})=-\frac{1}{2}(\mathrm{x}+1)^{-3 / 2}=\frac{-1}{2(\mathrm{x}+1)^{3 / 2}}$
$\therefore\left|\emptyset^{\prime}(\mathrm{x})\right|=\left|\frac{-1}{2(\mathrm{x}+1)^{3 / 2}}\right|<1 \forall \mathrm{x} \in(0,1)$.
\therefore Iteration method is applicable.
\therefore Take $\mathrm{x}_{0}=0.75$
i) First approximation is

$$
\mathrm{x}_{1}=\emptyset\left(\mathrm{x}_{0}\right)=\emptyset(0.75)=\frac{1}{\sqrt{0.75+1}}=0.7559289
$$

ii) Second approximation is

$$
x_{2}=\emptyset\left(x_{1}\right)=\emptyset(0.7559289)=\frac{1}{\sqrt{0.7559289+1}}=0.7546517
$$

iii) Third approximation is

$$
x_{3}=\emptyset\left(x_{2}\right)=\emptyset(0.7546517)=\frac{1}{\sqrt{0.7546517+1}}=0.7549263
$$

\therefore The approximate value of the root is 0.7549 up to four decimal places.

Ex. Find the real root of the equation $x^{3}+x-1=0$ which lies between 0 and 1 , correct upto four decimal places by calculating three approximations by iteration method.
Solution: Let $f(x)=x^{3}+x-1=0$ be the given equation $f(0)=0+0-1=-1<0$ and $f(1)=1+1-1=1>0$
\therefore The root lies 0 and 1 .
Now $x^{3}+x-1=0 \Rightarrow x\left(x^{2}+1\right)=1$ i.e. $x=\frac{1}{x^{2}+1}=\varnothing(x)$
$\therefore \emptyset^{\prime}(\mathrm{x})=\frac{-2 \mathrm{x}}{\left(x^{2}+1\right)^{2}}$
$\therefore\left|\emptyset^{\prime}(\mathrm{x})\right|=\left|\frac{-2 \mathrm{x}}{\left(x^{2}+1\right)^{2}}\right|<1 \forall \mathrm{x} \in(0,1)$.
\therefore Iteration method is applicable.
\therefore Take $\mathrm{x}_{0}=0.5$
i) First approximation is

$$
x_{1}=\emptyset\left(x_{0}\right)=\emptyset(0.5)=\frac{1}{0.25+1}=0.8
$$

ii) Second approximation is

$$
x_{2}=\emptyset\left(x_{1}\right)=\emptyset(0.8)=\frac{1}{0.64+1}=0.609756 \approx 0.61
$$

iii) Third approximation is

$$
x_{3}=\emptyset\left(x_{2}\right)=\emptyset(0.61)=\frac{1}{0.3721+1}=0.7288
$$

\therefore The approximate value of the root is 0.7288 .

Ex. Find the root of the equation $2 x-\cos x-3=0$ by iteration method.
Take $\mathrm{x}_{0}=\frac{\pi}{2}$ and calculate two approximations.
Solution: Let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-\cos \mathrm{x}-3=0$ be the given equation which expressed as

$$
\begin{aligned}
& \mathrm{x}=\frac{3+\cos \mathrm{x}}{2}=\emptyset(\mathrm{x}) \\
& \therefore \emptyset^{\prime}(\mathrm{x})=-\frac{1}{2} \sin \mathrm{x} \\
& \therefore\left|\emptyset^{\prime}(\mathrm{x})\right|=\left|-\frac{1}{2} \sin \mathrm{x}\right|<1 \forall \mathrm{x} \in \mathrm{R}
\end{aligned}
$$

\therefore Iteration method is applicable.
\therefore Take $\mathrm{x}_{0}=\frac{\pi}{2}$
i) First approximation is

$$
\mathrm{x}_{1}=\emptyset\left(\mathrm{x}_{0}\right)=\emptyset\left(\frac{\pi}{2}\right)=\frac{3+\cos \frac{\pi}{2}}{2}=1.5
$$

ii) Second approximation is

$$
\mathrm{x}_{2}=\emptyset\left(\mathrm{x}_{1}\right)=\varnothing(1.5)=\frac{3+\cos 1.5}{2}=1.9998
$$

\therefore The approximate value of the root is 1.9998 .

Ex. Starting woth $\mathrm{x}_{0}=0.12$ solve the equation $\mathrm{x}=0.21 \sin (0.5+\mathrm{x})$ by iteration method. Perform third iterations.
Solution: Let $\mathrm{x}=0.21 \sin (0.5+\mathrm{x})=\varnothing(\mathrm{x})$
$\therefore \emptyset^{\prime}(\mathrm{x})=0.21 \cos (0.5+\mathrm{x})$
$\therefore\left|\emptyset^{\prime}(\mathrm{x})\right|=|0.21 \cos (0.5+\mathrm{x})|<1 \forall \mathrm{x} \in \mathrm{R}$
\therefore Take $\mathrm{x}_{0}=0.12$
i) First approximation is

$$
\mathrm{x}_{1}=\varnothing\left(\mathrm{x}_{0}\right)=\varnothing(0.12)=0.21 \sin (0.5+0.12)=0.00227237
$$

ii) Second approximation is

$$
\mathrm{x}_{2}=\emptyset\left(\mathrm{x}_{1}\right)=\varnothing(0.00227237)=0.21 \sin (0.5+0.00227237)=0.00184
$$

iii) Third approximation is

$$
x_{3}=\emptyset\left(x_{2}\right)=\varnothing(0.00184)=0.21 \sin (0.5+0.00184)=0.001839
$$

\therefore The approximate value of the root is 0.001839 .

Ex. Find the square root of 20 correct to three decimal places by using recursion formula $\mathrm{x}_{\mathrm{i}+1}=\frac{1}{2}\left(\mathrm{x}_{\mathrm{i}}+\frac{20}{x_{i}}\right)$.
Solution: Given that $\mathrm{x}_{\mathrm{i}+1}=\frac{1}{2}\left(\mathrm{x}_{\mathrm{i}}+\frac{20}{x_{i}}\right) \ldots$ (1)
Take $\mathrm{x}_{0}=4.5$ and $\mathrm{i}=0$ in equation (1), we get,

$$
\mathrm{x}_{1}=\frac{1}{2}\left(\mathrm{x}_{0}+\frac{20}{x_{0}}\right)=\frac{1}{2}\left(4.5+\frac{20}{4.5}\right)=4.47
$$

Now take $\mathrm{x}_{1}=4.47$ and $\mathrm{i}=1$ in equation (1), we get,
$\mathrm{x}_{2}=\frac{1}{2}\left(\mathrm{x}_{1}+\frac{20}{x_{1}}\right)=\frac{1}{2}\left(4.47+\frac{20}{4.47}\right)=4.472$
\therefore The approximate value of $\sqrt{20}$ correct to three decimal places is 4.472.

The Method of False Position or Regula Falsi Method:

If $f(x)=0$ be the given equation with $f\left(x_{0}\right)$ and $f\left(x_{1}\right)$ have an opposite sign, then the graph $y=f(x)$ crosses the $X-$ axis between these two points x_{0} and x_{1} and hence the root lies between x_{0} and x_{1}.
The equation of chord joining the points $\left(\mathrm{x}_{0}, \mathrm{f}\left(\mathrm{x}_{0}\right)\right)$ and $\left(\mathrm{x}_{1}, \mathrm{f}\left(\mathrm{x}_{1}\right)\right)$ is

$$
\begin{equation*}
\frac{\mathrm{y}-\mathrm{f}\left(\mathrm{x}_{0}\right)}{\mathrm{f}\left(\mathrm{x}_{0}\right)-\mathrm{f}\left(\mathrm{x}_{1}\right)}=\frac{\mathrm{x}-\mathrm{x}_{0}}{\mathrm{x}_{0}-\mathrm{x}_{1}} \ldots \ldots \tag{i}
\end{equation*}
$$

The chord intersects the X -axis at $\mathrm{y}=0$, putting $\mathrm{y}=0$ in (i), we get,

$$
\begin{aligned}
& \frac{-\mathrm{f}\left(\mathrm{x}_{0}\right)}{\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{0}\right)}=\frac{\mathrm{x}-\mathrm{x}_{0}}{\mathrm{x}_{1}-\mathrm{x}_{0}} \\
& \text { i.e. }-\frac{\mathrm{f}\left(\mathrm{x}_{0}\right)}{\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{0}\right)}\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)=\mathrm{x}-\mathrm{x}_{0} \\
& \therefore \mathrm{x}=\mathrm{x}_{0}-\frac{\mathrm{f}\left(\mathrm{x}_{0}\right)}{\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{0}\right)}\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)
\end{aligned}
$$

Hence the second approximation of root is given by

$$
\begin{equation*}
\mathrm{x}_{2}=\mathrm{x}_{0}-\frac{\mathrm{f}\left(\mathrm{x}_{0}\right)}{\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{0}\right)}\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right) \ldots \ldots \tag{ii}
\end{equation*}
$$

If $f\left(x_{2}\right)$ and $f\left(x_{0}\right)$ have an opposite sign, then root lies between x_{0} and x_{2} and replace x_{1} by x_{2} in (ii) and obtain next approximation x_{3}.
If $f\left(x_{2}\right)$ and $f\left(x_{1}\right)$ have an opposite sign, then root lies between x_{1} and x_{2} and replace x_{0} by x_{2} in (ii) and obtain next approximation x_{3}.
The process is repeated till the root is obtained to desired accuracy.

Ex. Find the real root of the equation $x^{3}-9 x+1=0$ lying between 2 and 4 by method of false position to three decimal places
Solution: Let $f(x)=x^{3}-9 x+1=0$ be the given equation.
Take $\mathrm{x}_{0}=2$ and $\mathrm{x}_{1}=4$
$\mathrm{f}(2)=8-18+1=-9<0$ and $\mathrm{f}(4)=64-36+1=29>0$
\therefore The root lies 2 and 4 .
i) First approximation is

$$
\begin{align*}
\mathrm{x}_{2} & =\mathrm{x}_{0}-\frac{\mathrm{f}\left(\mathrm{x}_{0}\right)}{\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{0}\right)}\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)=2-\frac{\mathrm{f}(2)}{\mathrm{f}(4)-\mathrm{f}(2)}(4-2) \\
& =2-\frac{(-9)}{29+9}(2) \tag{2}\\
& =2+\frac{18}{38}=2.4736842
\end{align*}
$$

Now $f\left(x_{2}\right)=(2.4736842)^{3}-9(2.4736842)+1=-6.1264034<0$
\therefore The root lies $\mathrm{x}_{2}=2.4736842$ and $\mathrm{x}_{1}=4$.
ii) Second approximation is

$$
\begin{aligned}
x_{3} & =x_{2}-\frac{f\left(x_{2}\right)}{f\left(x_{1}\right)-f\left(x_{2}\right)}\left(x_{1}-x_{2}\right)=2.4736842-\frac{\mathrm{f}(2.4736842)}{\mathrm{f}(4)-\mathrm{f}(2.4736842)}(4-2.4736842) \\
& =2.4736842+\frac{6.1264034}{29+6.1264034}(1.5263158) \\
& =2.7398893
\end{aligned}
$$

Now $f\left(x_{3}\right)=(2.7398893)^{3}-9(2.7398893)+1=-3.0906725<0$
\therefore The root lies $\mathrm{x}_{3}=2.7398893$ and $\mathrm{x}_{1}=4$.
iii) Third approximation is

$$
\begin{aligned}
\mathrm{x}_{4} & =\mathrm{x}_{3}-\frac{\mathrm{f}\left(\mathrm{x}_{3}\right)}{\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{3}\right)}\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right) \\
& =2.7398893-\frac{\mathrm{f}(2.7398893)}{\mathrm{f}(4)-\mathrm{f}(2.7398893)}(4-2.7398893) \\
& =2.7398893+\frac{3.0906725}{29+3.0906725}(1.2601107) \\
& =2.86125
\end{aligned}
$$

\therefore The approximate value of root upto three decimal places is 2.861 .

Ex. Find the real root of the equation $x^{3}-2 x-5=0$ by Regula Falsi method.
Solution: Let $f(x)=x^{3}-2 x-5=0$ be the given equation.
As $f(2)=8-4-5=-1<0$ and $f(3)=27-6-5=16>0$
\therefore The root lies 2 and 3 .
\therefore Take $\mathrm{x}_{0}=2$ and $\mathrm{x}_{1}=3$
i) First approximation is

$$
\begin{aligned}
\mathrm{x}_{2} & =\mathrm{x}_{0}-\frac{\mathrm{f}\left(\mathrm{x}_{0}\right)}{\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{0}\right)}\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)=2-\frac{\mathrm{f}(2)}{\mathrm{f}(3)-\mathrm{f}(2)}(3-2) \\
& =2+\frac{1}{16+1} \\
& =2+\frac{1}{17}=2.059
\end{aligned}
$$

Now $f\left(x_{2}\right)=(2.059)^{3}-2(2.059)-5=-0.386<0$
\therefore The root lies $\mathrm{x}_{2}=2.059$ and $\mathrm{x}_{1}=3$.
ii) Second approximation is

$$
\mathrm{x}_{3}=\mathrm{x}_{2}-\frac{\mathrm{f}\left(\mathrm{x}_{2}\right)}{\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{2}\right)}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=2.059-\frac{\mathrm{f}(2.059)}{\mathrm{f}(3)-\mathrm{f}(2.059)}(3-2.059)
$$

$$
\begin{aligned}
& =2.059+\frac{0.386}{16+0.386}(0.941) \\
& =2.0812
\end{aligned}
$$

Now $f\left(x_{3}\right)=(2.0812)^{3}-2(2.0812)-5=-0.1479041<0$
\therefore The root lies $\mathrm{x}_{3}=2.0812$ and $\mathrm{x}_{1}=3$.
iii) Third approximation is

$$
\begin{aligned}
\mathrm{x}_{4} & =\mathrm{x}_{3}-\frac{\mathrm{f}\left(\mathrm{x}_{3}\right)}{\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{3}\right)}\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right) \\
& =2.0812-\frac{\mathrm{f}(2.0812)}{\mathrm{f}(3)-\mathrm{f}(2.0812)}(3-2.0812) \\
& =2.0812+\frac{0.1479041}{16+0.1479041}(0.9188) \\
& =2.0934
\end{aligned}
$$

\therefore The approximate value of root is 2.0934 .

Ex. Find the real root between 1 and 2 of the equation $x^{3}-x-4=0$ upto four decimal places using Regula Falsi method.
Solution: Let $f(x)=x^{3}-x-4=0$ be the given equation.
As $f(1)=1-1-4=-4<0$ and $f(2)=8-2-4=2>0$
\therefore The root lies 1 and 2 .
\therefore Take $\mathrm{x}_{0}=1$ and $\mathrm{x}_{1}=2$
i) First approximation is

$$
\begin{aligned}
x_{2} & =x_{0}-\frac{f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}\left(x_{1}-x_{0}\right)=1-\frac{f(1)}{f(2)-f(1)}(2-1) \\
& =1+\frac{4}{2+4} \\
& =1.66666
\end{aligned}
$$

Now $f\left(x_{2}\right)=(1.66666)^{3}-(1.66666)-4=-1.3709<0$
\therefore The root lies $\mathrm{x}_{2}=1.66666$ and $\mathrm{x}_{1}=2$.
ii) Second approximation is

$$
\begin{aligned}
\mathrm{x}_{3} & =\mathrm{x}_{2}-\frac{\mathrm{f}\left(\mathrm{x}_{2}\right)}{\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{2}\right)}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=1.66666-\frac{\mathrm{f}(1.66666)}{\mathrm{f}(2)-\mathrm{f}(1.66666)}(2-1.66666) \\
& =1.66666+\frac{1.3709}{2+1.3709}(0.33334) \\
& =1.78048
\end{aligned}
$$

Now $f\left(x_{3}\right)=(1.78048)^{3}-(1.78048)-4=-0.2197<0$
\therefore The root lies $\mathrm{x}_{3}=1.78048$ and $\mathrm{x}_{1}=2$.
iii) Third approximation is

$$
\begin{aligned}
\mathrm{x}_{4} & =\mathrm{x}_{3}-\frac{\mathrm{f}\left(\mathrm{x}_{3}\right)}{\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{3}\right)}\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right) \\
& =1.78048-\frac{\mathrm{f}(1.78048)}{\mathrm{f}(2)-\mathrm{f}(1.78048)}(2-1.78048) \\
& =1.78048+\frac{0.2197}{2+0.2197}(0.21952) \\
& =1.79447
\end{aligned}
$$

\therefore The approximate value of root correct to four decimal places is 1.7944 .
Ex. Find the real root of the equation $x^{3}-4 x-9=0$ correct to three decimal places by Regula Falsi method.
Solution: Let $f(x)=x^{3}-4 x-9=0$ be the given equation.
As $f(2)=8-8-9=-9<0$ and $f(3)=27-12-9=6>0$
\therefore The root lies 2 and 3 .
\therefore Take $\mathrm{x}_{0}=2$ and $\mathrm{x}_{1}=3$
i) First approximation is

$$
\begin{aligned}
\mathrm{x}_{2} & =\mathrm{x}_{0}-\frac{\mathrm{f}\left(\mathrm{x}_{0}\right)}{\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{0}\right)}\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)=2-\frac{\mathrm{f}(2)}{\mathrm{f}(3)-\mathrm{f}(2)}(3-2) \\
& =2+\frac{9}{6+9} \\
& =2+\frac{9}{15}=2.6
\end{aligned}
$$

Now $f\left(x_{2}\right)=(2.6)^{3}-4(2.6)-9=-1.824<0$
\therefore The root lies $\mathrm{x}_{2}=2.6$ and $\mathrm{x}_{1}=3$.
ii) Second approximation is

$$
\begin{aligned}
x_{3} & =x_{2}-\frac{f\left(x_{2}\right)}{f\left(x_{1}\right)-f\left(x_{2}\right)}\left(x_{1}-x_{2}\right)=2.6-\frac{f(2.6)}{f(3)-f(2.6)}(3-2.6) \\
& =2.6+\frac{1.824}{6+1.824}(0.4) \\
& =2.693
\end{aligned}
$$

Now $f\left(x_{3}\right)=(2.693)^{3}-4(2.693)-9=-0.241694<0$
\therefore The root lies $\mathrm{x}_{3}=2.693$ and $\mathrm{x}_{1}=3$.
iii) Third approximation is

$$
x_{4}=x_{3}-\frac{f\left(x_{3}\right)}{f\left(x_{1}\right)-f\left(x_{3}\right)}\left(x_{1}-x_{3}\right)
$$

$$
\begin{aligned}
& =2.693-\frac{\mathrm{f}(2.693)}{\mathrm{f}(3)-\mathrm{f}(2.693)}(3-2.693) \\
& =2.0812+\frac{0.241694}{6+0.241694}(0.307) \\
& =2.705
\end{aligned}
$$

\therefore The approximate value of root correct to three decimal places is 2.705 .
Ex. Find the real root of the equation $x^{3}-x^{2}-2=0$ by Regula Falsi method.
Solution: Let $f(x)=x^{3}-x^{2}-2=0$ be the given equation.
As $f(1)=1-1-2=-2<0$ and $f(2)=8-4-2=2>0$
\therefore The root lies 1 and 2 .
\therefore Take $\mathrm{x}_{0}=1$ and $\mathrm{x}_{1}=2$
i) First approximation is

$$
\begin{aligned}
\mathrm{x}_{2} & =\mathrm{x}_{0}-\frac{\mathrm{f}\left(\mathrm{x}_{0}\right)}{\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{0}\right)}\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)=1-\frac{\mathrm{f}(1)}{\mathrm{f}(2)-\mathrm{f}(1)}(2-1) \\
& =1+\frac{2}{2+2} \\
& =1.5
\end{aligned}
$$

Now $f\left(x_{2}\right)=(1.5)^{3}-(1.5)^{2}-2=-0.875<0$
\therefore The root lies $\mathrm{x}_{2}=1.5$ and $\mathrm{x}_{1}=2$.
ii) Second approximation is

$$
\begin{aligned}
\mathrm{x}_{3} & =\mathrm{x}_{2}-\frac{\mathrm{f}\left(\mathrm{x}_{2}\right)}{\mathrm{f}\left(\mathrm{x}_{1}-\mathrm{f}\left(\mathrm{x}_{2}\right)\right.}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=1.5-\frac{\mathrm{f}(1.5)}{\mathrm{f}(2)-\mathrm{f}(1.5)}(2-1.5) \\
& =1.5+\frac{0.875}{2+0.875}(0.5) \\
& =1.6522
\end{aligned}
$$

Now $f\left(x_{3}\right)=(1.6522)^{3}-(1.6522)^{2}-2=-0.2197<0$
\therefore The root lies $\mathrm{x}_{3}=1.6522$ and $\mathrm{x}_{1}=2$.
iii) Third approximation is

$$
\begin{aligned}
\mathrm{x}_{4} & =\mathrm{x}_{3}-\frac{\mathrm{f}\left(\mathrm{x}_{3}\right)}{\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{3}\right)}\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right) \\
& =1.6522-\frac{\mathrm{f}(1.6522)}{\mathrm{f}(2)-\mathrm{f}(1.6522)}(2-1.6522) \\
& =1.6522+\frac{0.241694}{2+0.241694}(0.3478) \\
& =1.6866
\end{aligned}
$$

\therefore The approximate value of root is 1.6866 .

The Newton Raphson Method: Suppose x_{0} is an approximate root and $\mathrm{x}_{1}=\mathrm{x}_{0}+\mathrm{h}$ is a correct root of given equation $\mathrm{f}(\mathrm{x})=0$, then $\mathrm{f}\left(\mathrm{x}_{1}\right)=0$ i.e. $\mathrm{f}\left(\mathrm{x}_{0}+\mathrm{h}\right)=0$.
\therefore by Taylor's series, we get,
$\mathrm{f}\left(\mathrm{x}_{0}\right)+\mathrm{h} \mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)+\frac{\mathrm{h}^{2}}{2!} \mathrm{f}^{\prime \prime}\left(\mathrm{x}_{0}\right)+\ldots \ldots=0$
Neglecting the second and higher order derivatives, we get,
$\mathrm{f}\left(\mathrm{x}_{0}\right)+\mathrm{hf} \mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=0$
i.e. $h=-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \quad$ if $f^{\prime}\left(x_{0}\right) \neq 0$
\therefore a better approximation than x_{0} is $\mathrm{x}_{1}=\mathrm{x}_{0}+\mathrm{h}=\mathrm{x}_{0}-\frac{\mathrm{f}\left(\mathrm{x}_{0}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)}$
\therefore Successive approximations $\mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}+1}$ are given by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \text { where } f^{\prime}\left(x_{n}\right) \neq 0
$$

This formula is called Newton Rapson Formula.

Ex. Find the real root of the equation $\mathrm{x}^{3}-2 \mathrm{x}-5=0$ by Newton Raphson method correct up to three decimal places.
Solution: Let $f(x)=x^{3}-2 x-5=0$ be the given equation with $f^{\prime}(x)=3 x^{2}-2$
As $f(2)=8-4-5=-1<0$ and $f(3)=27-6-5=16>0$
\therefore The root lies 2 and 3 .
\therefore We take first approximation $\mathrm{x}_{1}=2 \quad \because \mathrm{f}(2)<\mathrm{f}(3)$
By Newton Raphson method-
Second approximation is

$$
\mathrm{x}_{2}=\mathrm{x}_{1}-\frac{\mathrm{f}\left(\mathrm{x}_{1}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)}=2-\frac{\mathrm{f}(2)}{\mathrm{f}^{\prime}(2)}=2+\frac{1}{10}=2.1
$$

Third approximation is

$$
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=2.1-\frac{f(2.1)}{f^{\prime}(2.1)}=2.1-\frac{9.261-4.2-5}{13.23-2}=2.094
$$

\therefore The approximate value of root up to three decimal places is 2.094 .

Ex. Find the smallest positive root of $x^{3}-5 x+3=0$ by Newton Raphson method correct to three decimal places.
Solution: Let $f(x)=x^{3}-5 x+3=0$ be the given equation with $f^{\prime}(x)=3 x^{2}-5$
As $f(0)=0-0+3=3>0$ and $f(1)=1-5+3=-1<0$
\therefore The root lies 0 and 1 .
\therefore We take first approximation $\mathrm{x}_{1}=1 \because \mathrm{f}(1)<\mathrm{f}(0)$
By Newton Raphson method
Second approximation is

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=1-\frac{f(1)}{f^{\prime}(1)}=1-\frac{-1}{-2}=0.5
$$

Third approximation is

$$
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=0.5-\frac{f(0.5)}{f^{\prime}(0.5)}=0.5-\frac{0.125-2.5+3}{0.75-5}=0.647
$$

\therefore The approximate value of root to three decimal places is 0.647 .

Ex. Use Newton Raphson method to find a real root of the equation $\mathrm{x}^{3}-3 \mathrm{x}-5=0$. Perform three iterations.
Solution: Let $f(x)=x^{3}-3 x-5=0$ be the given equation with $f^{\prime}(x)=3 x^{2}-3$
As $f(2)=8-6-5=-3<0$ and $f(3)=27-9-5=13>0$
\therefore The root lies 2 and 3 .
\therefore We take first approximation $\mathrm{x}_{1}=2 \because \mathrm{f}(2)<\mathrm{f}(3)$
By Newton Raphson method
Second approximation is

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=2-\frac{f(2)}{f^{\prime}(2)}=2-\frac{-3}{9}=2.333
$$

Third approximation is

$$
\mathrm{x}_{3}=\mathrm{x}_{2}-\frac{\mathrm{f}\left(\mathrm{x}_{2}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{2}\right)}=2.333-\frac{\mathrm{f}(2.333)}{\mathrm{f}^{\prime}(2.333)}=2.333-\frac{12.698-6.999-5}{13.329}=2.281
$$

\therefore The approximate value of root to three decimal places is 2.281 .
Ex. Find a real root of the equation $\mathrm{xe}^{\mathrm{x}}-1=0$, by Newton Raphson method. Take $\mathrm{x}_{0}=1$
Solution: Let $f(x)=x e^{x}-1=0$ be the given equation with $f^{\prime}(x)=x e^{x}+e^{x}=e^{x}(x+1)$
As $f\left(x_{0}\right)=f(1)=e-1>0$ and $f^{\prime}\left(x_{0}\right)=f^{\prime}(1)=2 e$
Take $\mathrm{x}_{0}=1$
By Newton Raphson method
Second approximation is

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=1-\frac{f(1)}{f^{\prime}(1)}=1-\frac{e-1}{2 e}=\frac{e+1}{2 e}=\frac{2.718+1}{2(2.718)}=0.684
$$

Third approximation is

$$
\mathrm{x}_{2}=\mathrm{x}_{1}-\frac{\mathrm{f}\left(\mathrm{x}_{1}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)}=0.684-\frac{\mathrm{f}(0.684)}{\mathrm{f}^{\prime}(0.684)}=0.684-\frac{0.684 e^{0.684}-1}{2 e^{0.684}}=0.684-\frac{0.356}{3.963}=0.5942
$$

\therefore The approximate value of root to three decimal places is 0.594 .

Ex. Obtain Newton-Raphson formula for square root of N
Solution: Let $\mathrm{x}=\sqrt{N} \quad \therefore \mathrm{x}^{2}=\mathrm{N} \quad \therefore \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-\mathrm{N}=0 \quad \therefore \mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}$
By Newton Raphson formula

$$
\begin{aligned}
\mathrm{x}_{\mathrm{n}+1} & =\mathrm{x}_{\mathrm{n}}-\frac{\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right)} \\
& =\mathrm{x}_{\mathrm{n}}-\frac{x_{n}^{2}-\mathrm{N}}{2 \mathrm{x}_{\mathrm{n}}} \\
& =\frac{2 x_{n}^{2}-x_{n}^{2}+\mathrm{N}}{2 \mathrm{x}_{\mathrm{n}}} \\
& =\frac{x_{n}^{2}+\mathrm{N}}{2 \mathrm{x}_{\mathrm{n}}} \\
\mathrm{X}_{\mathrm{n}+1} & =\frac{1}{2}\left[\mathrm{x}_{\mathrm{n}}+\frac{\mathrm{N}}{\mathrm{x}_{\mathrm{n}}}\right]
\end{aligned}
$$

is the Newton Raphson formula for square root of N .

Ex. Find the square root of N correct to three decimal places by Newton-Raphson formula if $\mathrm{N}=10$.

Solution: Let Newton Raphson formula for square root of N is
$\mathrm{x}_{\mathrm{n}+1}=\frac{1}{2}\left[\mathrm{x}_{\mathrm{n}}+\frac{\mathrm{N}}{\mathrm{x}_{\mathrm{n}}}\right]$
Here $N=10$
$\therefore \mathrm{x}_{\mathrm{n}+1}=\frac{1}{2}\left[\mathrm{x}_{\mathrm{n}}+\frac{10}{\mathrm{x}_{\mathrm{n}}}\right]$
Now $\mathrm{x}=\sqrt{10} \quad \therefore \mathrm{x}^{2}=10 \quad \therefore \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-10=0 \quad \therefore \mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}$
As $f(x)=x^{2}-10$
$\therefore \mathrm{f}(3)=9-10=-1<0 \& \mathrm{f}(4)=16-10=6>0$
\therefore Take $\mathrm{x}_{0}=3$
$\mathrm{x}_{1}=\frac{1}{2}\left[\mathrm{x}_{0}+\frac{10}{\mathrm{x}_{0}}\right]=\frac{1}{2}\left[3+\frac{10}{3}\right]=3.167$
$\mathrm{x}_{2}=\frac{1}{2}\left[\mathrm{x}_{1}+\frac{10}{\mathrm{x}_{1}}\right]=\frac{1}{2}\left[3.167+\frac{10}{3.167}\right]=3.162$
$\mathrm{x}_{3}=\frac{1}{2}\left[\mathrm{x}_{2}+\frac{10}{\mathrm{x}_{2}}\right]=\frac{1}{2}\left[3.162+\frac{10}{3.162}\right]=3.162$
$\therefore \sqrt{10}=3.162$ up to three decimal places.

MULTIPLE CHOICE QUESTIONS (MCQ'S)

1) Number 0.007102506 correct to 2 significant digits is \qquad
A) 0.0071
B) 0.007102
C) 0.00710
D) 0.007
2) Number 0.007102506 correct to 4 significant digits is
A) 0.0071
B) 0.007102
C) 0.00710
D) 0.007
3) Number 0.007102506 correct to 5 significant digits is \qquad
A) 0.0071
B) 0.007102
C) 0.0071025
D) 0.007
4) Number 0.007102506 correct to 6 significant digits is \qquad
A) 0.00710250
B) 0.007102
C) 0.0071025
D) 0.007
5) Number 3.4560712 is correct to 2 significant digits is
A) 3.4
B) 3.45
C) 3.456
D) 3.4560
6) Number 3.4560712 is correct to 3 significant digits is \qquad
A) 3.4
B) 3.45
C) 3.456
D) 3.4560
7) Number 3.4560712 is correct to 4 significant digits is
A) 3.4
B) 3.45
C) 3.456
D) 3.4560
8) Number 3.4560712 is correct to 5 significant digits is
A) 3.4560
B) 3.45607
C) 3.4560
D) 3.4560712
9) Number 3.4560712 is correct to 6 significant digits is
A) 3.4560
B) 3.45607
C) 3.4560
D) 3.4560712
10) Number 3.4560712 is rounded to 1 decimal places is
A) 3.456
B) 3.46
C) 3.4
D) 3.45
11) Number 3.4560712 is rounded to 2 decimal places is
A) 3.46
B) 3.4
C) 3.456
D) 3.45
12) Number 3.4560712 is rounded to 3 decimal places is \qquad
A) 3.4570
B) 3.456
C) 3.457
D) 3.4560
13) Number 3.4560712 is rounded to 5 decimal places is
A) 3.4560
B) 3.4560712
C) 3.45608
D) 3.45607
14) $\sqrt{2}$ is an \qquad number.
A) even
B) rational
C) irrational
D) complex
15) Significant digit of a number 3.57×104 is
A) 2
B) 3
C) 4
D) 5
16) Significant digit of a number 3.570×104 is
A) 2
B) 3
C) 4
D) 5
17) Significant digit of a number 3.5700×104 is \qquad
A) 2
B) 3
C) 4
D) 5
18) To truncate a number x in its decimal fractional part to $n^{\text {th }}$ place is formed by leaving its \qquad decimal place onwards.
A) $(\mathrm{n}-1)^{\mathrm{th}}$
B) $n^{\text {th }}$
C) $(\mathrm{n}+1)^{\mathrm{th}}$
D) None of these
19) If x_{1} is truncated number of number x, then $x-x_{1}$ is called \qquad
A) truncated
B) absolute
C) relative
D) percentage
20) A truncated number of a number 3.4560712 to $2^{\text {nd }}$ decimal place is
A) 3.46
B) 3.45
C) 3.456
D) 3.4560
21) A truncated number of a number 3.4560712 to $5^{\text {th }}$ decimal place is \qquad
A) 3.4561
B) 3.4560
C) 3.45607
D) 3.456071
22) A truncated number of a number 3.4560712 to $6^{\text {th }}$ decimal place is
A) 3.4561
B) 3.45607
C) 3.456072
D) 3.456071
23) If 3.45 is truncated number of number 3.4560712 to $2^{\text {nd }}$ decimal place, then truncated error is
A) 0.0060712
B) 0.0060712
C) 0.0060712
D) 0.0060712
24) If 3.45607 is truncated number of number 3.4560712 to $5^{\text {th }}$ decimal place, then truncated error is
A) 0.0000012
B) 0.0000712
C) 0.00007
D) 0.000071
25) If 3.456071 is truncated number of number 3.4560712 to $6^{\text {th }}$ decimal place, then truncated error is
A) 0.0000010
B) 0.0000002
C) 0.000007
D) 0.0000702
26) If the true value x of a quantity is approximated by a value x_{1}, then $\Delta x=x-x_{1}$ is called
A) error
B) absolute error
C) relative error
D) percentage error
27) If a number x is approximated by a value x_{1}, then error $\Delta x=$ \qquad
A) $\left|x-x_{1}\right|$
B) $x-x_{1}$
C) $x_{1}-x$
D)None of these
28) If a number x is approximated by a value x_{1}, then the absolute error $E_{a}=|E|=$
A) $\left|x_{1}\right|$
B) $|x|$
C) $x-x_{1}$
D) $\left|x-x_{1}\right|$
29) If the true value x of a quantity is approximated by a value x_{1},
then $\mathrm{E}_{\mathrm{a}}=|\mathrm{E}|=\left|\mathrm{x}-\mathrm{x}_{1}\right|$ is called \qquad error.
A) relative
B) absolute
C) percentage
D) None of these
30) If a number x is approximated by a value x_{1}, then $E_{r}=\frac{\left|x-x_{1}\right|}{x}$ is called error.
A) relative
B) absolute
C) percentage
D) None of these
31) If a number x is approximated by a value x_{1}, then the relative error $E_{r}=$
A) $\frac{\left|x-x_{1}\right|}{x}$
B) $\frac{\left|x-x_{1}\right|}{x_{1}}$
C) $\frac{x_{1}}{x}$
D) None of these
32) If the true value x of a quantity is approximated by a value x_{1}, then $E_{p}=100 E_{r}$ is called error.
A) relative
B) absolute
C) percentage
D) None of these
33) If a number x is approximated by a value x_{1}, then the percentage error $E_{p}=\ldots \ldots$
A) $\left(x-x_{1}\right) \times 100$
B) 100 Er
C) $\frac{E_{r}}{100}$
D) None of these
34) If a number x is rounded to N decimal place, then error $E=\Delta x=$ \qquad
A) $-\frac{1}{2} \times 10^{-\mathrm{N}}$
B) $10^{-\mathrm{N}}$
C) $\frac{1}{2} \times 10^{-\mathrm{N}}$
D) None of these
35) If the true value $\sqrt{11}$ is approximated by a value 3 , then the absolute error $|E|=\ldots \ldots$
A) 3
B) $\sqrt{11}$
C) $\sqrt{11}-3$
D) $3-\sqrt{11}$
36) If 4 is the approximate value of $\sqrt{11}$, then the absolute error $|E|=$
A) 4
B) $\sqrt{11}$
C) $\sqrt{11}-4$
D) $4-\sqrt{11}$
37) If the true value $\sqrt{11}$ is approximated by a value 3 , then the relative error $\mathrm{E}_{\mathrm{r}}=$ \qquad
A) 3
B) $\frac{\sqrt{11}-3}{3}$
C) $\frac{\sqrt{11}-3}{\sqrt{11}}$
D) $3-\sqrt{11}$
38) If the true value $\sqrt{11}$ is approximated by a value 4 , then the relative error $E_{r}=\ldots$
A) 4
B) $\frac{\sqrt{11}-4}{4}$
C) $\frac{4-\sqrt{11}}{\sqrt{11}}$
D) $4-\sqrt{11}$
39) If 3 is the approximate value of $\sqrt{11}$, then the percentage error $E_{p}=$
A) $\frac{\sqrt{11}-3}{\sqrt{11}} \times 100$
B) $\frac{\sqrt{11}-3}{3} \times 100$
C) 300
D) $3-\sqrt{11} \times 100$
40) If 4 is the approximate value of $\sqrt{11}$, then the percentage error $E_{p}=\ldots \ldots$.
A) $\frac{\sqrt{11}-4}{\sqrt{11}} \times 100$
B) $\frac{4-\sqrt{11}}{\sqrt{11}} \times 100$
C) $\frac{\sqrt{11}-4}{4} \times 100$
D) $4-\sqrt{11} \times 100$
41) If true value and approximate value of π are 3.14159265 and 3.14285714 respectively, then the absolute error $\mathrm{E}_{\mathrm{a}}=\ldots \ldots$.
A) 0.126449
B) 0.0126449
C) 0.00126449
D) 0.000126449
42) If true value and approximate value of π are 3.14159265 and 3.14285714 respectively, then the relative error $E_{r}=\ldots \ldots$
A) 0.00004025
B) 0.0004025
C) 0.004025
D) 0.04025
43) If true value and approximate value of π are 3.14159265 and 3.14285714 respectively, then the percentage error $E_{p}=\ldots \ldots$
A) 0.00004025
B) 0.0004025
C) 0.004025
D) 0.04025
44) If three approximate values of $\frac{1}{6}$ are given by $0.16,0.166$ and 0.165 , then the best approximation is \qquad
A) 0.16
B) 0.166
C) 0.165
D) None of these
45) An expression of the type $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots \ldots \ldots+a_{n-1} x+a_{n}$, where all a_{i} 's are constants, provided $a_{0} \neq 0$ and n is positive integer, is called as in x of degree n.
A) polynomial
B) algebraic equation
C) transcendental equation
D) None of these
46) An expression of the type $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots \ldots \ldots .+a_{n-1} x+a_{n}=0$, where all a_{i} 's are constants, provided $a_{0} \neq 0$ and n is positive integer, is called \qquad in x of degree n.
A) an equation
B) polynomial
C) transcendental equation
D) None of these
47) A non-algebraic equation is called a equation, if it involves trigonometric, exponential, logarithmic etc. functions.
A) algebraic
B) polynomial
C) transcendental
D) None of these
48) An equation $4 \sin x-e^{x}=0$ is equation.
A) transcendental B) polynomial
C) algebraic
D) None of these
49) An equation $\log x^{3}-5 \tan x=0$ is \qquad equation.
A) polynomial
B) transcendental
C) algebraic
D) None of these
50) The value of x which satisfies the given equation $f(x)=0$, is called \qquad of an equation.
A) factor
B) solution
C) root
D) None of these
51) Statement 'A transcendental equation may have finite or infinite number of real roots
or may not have real roots.' is \qquad
A) true
B) false
C) may be true or false D) None of these
52) The process of finding the roots of an equation $f(x)=0$ is called
A) zeros
B) solution
C) roots
D) None of these
53) Geometrically a root of an equation $f(x)=0$ is that value of x where the graph of $y=f(x)$ cuts the $\ldots \ldots$
A) X-axis
B) Y-axis
C) Z-axis
D) None of these
54) If $x=a$ is the root of $f(x)=0$, then $f(x)$ is divisible by $\ldots \ldots$
A) x
B) a
C) $x-a$
D) None of these
55) Every algebraic equation of degree n has only ... roots. Which are real or imaginary.
A) n
B) 2
C) 3
D) None of these
56) Every equation of odd degree has at least one root.
A) 0
B) positive
C) negative
D) real
57) Every cubic equation has at least one root.
A) real
B) positive
C) negative
D) None of these
58) If $f(x)$ is continuous in the interval $[a, b]$ and $f(a)$ and $f(b)$ have an opposite signs then by the bisection method first approximate value of the root is..
A) a
B) b
C) $\frac{a+b}{2}$
D) $\sqrt{a b}$
59) Bisection method is applicable if $f(x)$ is
A) factorable
B) continuous
C) not continuous
D) None of these
60) The root of the equation $x^{2}-x-3=0$ is lies between
A) 0 and 1
B) 1 and 2
C) 2 and 3
D) 3 and 4
61) The root of the equation $x^{3}-x-4=0$ is lies between
A) 0 and 1
B) 1 and 2
C) 2 and 3
D) 3 and 4
62) The root of the equation $x^{3}-4 x-9=0$ is lies between $\ldots \ldots$
A) 0 and 1
B) 1 and 2
C) 2 and 3
D) 3 and 4
63) The real roots of the equation $8 x^{3}-2 x-1=0$ are lies between $\ldots \ldots$.
A) 0 and 1
B) 1 and 2
C) 2 and 3
D) 3 and 4
64) In the iteration method if the equation $f(x)=0$ is expressed as $x=\varnothing(x)$, then the successive approximations are given by $x_{n}=\ldots \ldots$.
A) $\emptyset\left(x_{n}\right)$
B) $\varnothing\left(x_{n-1}\right)$
C) $\emptyset\left(\mathrm{x}_{\mathrm{n}-2}\right)$
D) None of these
65) If $f(a)$ and $f(b)$ have an opposite signs and the equation $f(x)=0$ is expressed as $\mathrm{x}=\varnothing(\mathrm{x})$, then iteration method is applicable if $\ldots . . \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$.
A) $\left|\varnothing^{\prime}(x)\right|>1$
B) $\left|\varnothing^{\prime}(x)\right|=1$
C) $\left|\varnothing^{\prime}(x)\right|<1$
D) None of these
66) To find the root of the equation $x^{3}+x-5=0$ by iteration method, the equation is expressed as $x=$ \qquad
A) $5-x^{3}$
B) $(5-x)^{1 / 3}$
C) $\frac{5}{x^{2}+1}$
D)None of these
67) To find the root of the equation $x^{3}+x-1=0$ by iteration method, the equation is expressed as $\mathrm{x}=$
A) $1-x^{3}$
B) $1-x$
C) $\frac{1}{x^{2}+1}$
D)None of these
68) To find the root of the equation $2 x-\cos x-3=0$ by iteration method, the equation is expressed as $\mathrm{x}=$
A) $\cos x+3$
B) $3-\cos x$
C) $\frac{3+\cos x}{2}$
D) $3-2 x$
69) Root of an equation $f(x)=0$ is lies between x_{0} and x_{1} if $f\left(x_{0}\right)$ and $f\left(x_{1}\right)$ have an.....
A) opposite signs
B) equal signs
C) equal values
D) different values
70) By Regula Falsi Method if the root of an equation $f(x)=0$ is lies between x_{0} and x_{1}, then first approximate value $x_{2}=\ldots \ldots$
A) $x_{0}+\frac{f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}\left(x_{1}-x_{0}\right)$
B) $x_{0}-\frac{f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}\left(x_{1}-x_{0}\right)$
C) $x_{0}-\frac{f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}\left(x_{1}+x_{0}\right)$
D) different values
71) If the root of an equation $x^{3}-x^{2}-2=0$ is lies between 1 and 2 , then by the Method False Position first approximate value $x_{2}=\ldots$
A) 1.5
B) 1.4
C) 1.3
D) 1.2
72) By Newton-Raphson Method, successive approximations of an equation $f(x)=0$ are given by the formula $\mathrm{x}_{\mathrm{n}+1}=$
A) $x_{n}-f^{\prime}\left(x_{n}\right)$
B) $x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f\left(x_{n}\right)}$
C) $x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
D)None of these
73) $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ is called
A) Newton-Raphson Formula
B) Regula-Falsi
C) Bisection Formula
D) None of these
74) Newton-Raphson Formula for square root of N is $x_{n+1}=\ldots .$.
A) $\frac{1}{2}\left[\mathrm{x}_{\mathrm{n}}+\mathrm{N}\right]$
B) $\frac{1}{2}\left[x_{n}-\frac{N}{x_{n}}\right]$
C) $\frac{1}{2}\left[x_{n}+\frac{N}{x_{n}}\right]$
D)None of these

UNIT-2: INTERPOLATION

Interpolation: The technique of obtaining the value of a function for any intermediate values of the independent variable is called interpolation.
Shift Operator: Shift operator is denoted by E and defined as $\operatorname{Ef}(x)=f(x+h)$.
Note: $E^{2} f(x)=E[E f(x)]=E f(x+h)=f(x+2 h)$, Similarly $E^{3} f(x)=f(x+3 h)$ and so on, ingeneral $E^{n} f(x)=f(x+n h)$, where n is any real number.

Ex. Find i) $\mathrm{E}^{1 / 2} \mathrm{f}(\mathrm{x})$, ii) $\mathrm{E}^{-1 / 2} \mathrm{f}(\mathrm{x})$, iii) $\mathrm{E}^{-1} \mathrm{f}(\mathrm{x})$, iv) $\mathrm{E}^{-\mathrm{n}} \mathrm{f}(\mathrm{x})$, v) $E^{2} \sin \mathrm{x}$, vi) $\mathrm{E}^{-2} \tan \mathrm{x}$.
Solution: Using $E^{\mathrm{n}} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+\mathrm{nh})$, we get,
i) $E^{1 / 2} f(x)=f\left(x+\frac{1}{2} h\right)$
ii) $E^{-1 / 2} f(x)=f\left(x-\frac{1}{2} h\right)$
iii) $E^{-1} f(x)=f(x-h)$
iv) $E^{-n} f(x)=f(x-n h)$
v) $E^{2} \sin x=\sin (x+2 h)$
vi) $E^{-2} \tan x=\tan (x-2 h)$

Forward difference Operator: Forward difference operator is denoted by Δ and defined as $\Delta f(x)=f(x+h)-f(x)$.
Note: i) $\Delta f(x)=f(x+h)-f(x)$ is called first forward difference of $f(x)$ and $\Delta^{n} f(x)$ is called $n^{\text {th }}$ forward difference of $f(x)$.
ii) $\Delta \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})=\mathrm{Ef}(\mathrm{x})-\mathrm{f}(\mathrm{x})=(\mathrm{E}-1) \mathrm{f}(\mathrm{x})$
$\therefore \Delta=\mathrm{E}-1$ i.e $\mathrm{E}=\Delta+1$
be the relation between shift operator and forward difference operator.
iii) If n values of $f(x)$ are given then $\Delta^{n} f(x)=0$, which used for finding missing term in given data.

Ex. Find i) $\Delta^{2} \mathrm{f}(\mathrm{x})$, ii) $\Delta^{3} \mathrm{f}(\mathrm{x})$, iii) $\Delta \log \mathrm{x}$, iv) $\Delta \cos (\mathrm{ax}+\mathrm{b})$, v) $\Delta \mathrm{e}^{\mathrm{x}}$, vi) $\Delta^{2} \mathrm{e}^{\mathrm{x}}$.
Solution: Using $\Delta=\mathrm{E}-1$, we get,
i) $\Delta^{2}=(\mathrm{E}-1)^{2}=\mathrm{E}^{2}-2 \mathrm{E}+1$

$$
\begin{aligned}
& \therefore \Delta^{2} f(x)=E^{2} f(x)-2 E f(x)+f(x) \\
& \therefore \Delta^{2} f(x)=f(x+2 h)-2 f(x+h)+f(x)
\end{aligned}
$$

ii) $\Delta^{3}=(\mathrm{E}-1)^{3}=\mathrm{E}^{3}-3 \mathrm{E}^{2}+3 \mathrm{E}-1$
$\therefore \Delta^{3} \mathrm{f}(\mathrm{x})=\mathrm{E}^{3} \mathrm{f}(\mathrm{x})-3 \mathrm{E}^{2} \mathrm{f}(\mathrm{x})+3 \mathrm{Ef}(\mathrm{x})-\mathrm{f}(\mathrm{x})$
$\therefore \Delta^{3} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+3 \mathrm{~h})-3 \mathrm{f}(\mathrm{x}+2 \mathrm{~h})+3 \mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})$
iii) As $\Delta=\mathrm{E}-1$
$\therefore \Delta \log \mathrm{x}=\mathrm{Elog} \mathrm{x}-\log \mathrm{x}$
$\therefore \Delta \log x=\log (x+h)-\log x$
$\therefore \Delta \log x=\log \left(1+\frac{h}{x}\right)$
iv) As $\Delta=\mathrm{E}-1$
$\therefore \Delta \cos (\mathrm{ax}+\mathrm{b})=\mathrm{E} \cos (\mathrm{ax}+\mathrm{b})-\cos (\mathrm{ax}+\mathrm{b})$
$\therefore \Delta \cos (a x+b)=\cos [a(x+h)+b]-\cos (a x+b)$
$\therefore \Delta \cos (a x+b)=\cos (a x+a h+b)-\cos (a x+b)$
v) As $\Delta=\mathrm{E}-1$
$\therefore \Delta \mathrm{e}^{\mathrm{x}}=\mathrm{Ee}^{\mathrm{x}}-\mathrm{e}^{\mathrm{x}}$
$\therefore \Delta \mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}+\mathrm{h}}-\mathrm{e}^{\mathrm{x}}$
$\therefore \Delta \mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}}\left(\mathrm{e}^{\mathrm{h}}-1\right)$
vi) $\Delta^{2}=(E-1)^{2}=E^{2}-2 E+1$
$\therefore \Delta^{2} \mathrm{e}^{\mathrm{x}}=\mathrm{E}^{2} \mathrm{e}^{\mathrm{x}}-2 \mathrm{Ee}^{\mathrm{x}}+\mathrm{e}^{\mathrm{x}}$
$\therefore \Delta^{2} \mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}+2 \mathrm{~h}}-2 \mathrm{e}^{\mathrm{x}+\mathrm{h}}+\mathrm{e}^{\mathrm{x}}$
$\therefore \Delta^{2} \mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}}\left(\mathrm{e}^{2 \mathrm{~h}}-2 \mathrm{e}^{\mathrm{h}}+1\right)$
$\therefore \Delta^{2} \mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}}\left(\mathrm{e}^{\mathrm{h}}-1\right)^{2}$

Ex. Show that $\Delta \log f(x)=\log \left[1+\frac{\Delta f(x)}{f(x)}\right]$.
Proof: Using $\Delta=\mathrm{E}-1$, we get,
$\therefore \Delta \log \mathrm{f}(\mathrm{x})=\mathrm{Elog} \mathrm{f}(\mathrm{x})-\log \mathrm{f}(\mathrm{x})$
$\therefore \Delta \log \mathrm{f}(\mathrm{x})=\log \mathrm{f}(\mathrm{x}+\mathrm{h})-\log \mathrm{f}(\mathrm{x})$

$$
\begin{aligned}
& =\log \left[\frac{\mathrm{f}(\mathrm{x}+\mathrm{h})}{\mathrm{f}(\mathrm{x})}\right] \\
& =\log \left[\frac{\mathrm{Ef}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right] \\
& =\log \left[\frac{(1+\Delta) \mathrm{f}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right] \\
& =\log \left[\frac{\mathrm{f}(\mathrm{x})+\Delta \mathrm{f}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]
\end{aligned}
$$

$\therefore \Delta \log \mathrm{f}(\mathrm{x})=\log \left[1+\frac{\Delta \mathrm{f}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]$
Hence proved.
Ex. Find i) $\Delta\left(e^{a x} \log b x\right)$
ii) $\Delta \tan ^{-1} \mathrm{x}$
iii) $\Delta^{2} \cos 2 \mathrm{x}$.

Solution: Using $\Delta=\mathrm{E}-1$, we get,
ii) $\Delta\left(\mathrm{e}^{\mathrm{ax}} \log b \mathrm{x}\right)=\mathrm{E}\left(\mathrm{e}^{\mathrm{ax}} \log b \mathrm{x}\right)-\left(\mathrm{e}^{\mathrm{ax}} \log b \mathrm{x}\right)$

$$
\begin{aligned}
& =\left[\left(\mathrm{e}^{\mathrm{ax}(\mathrm{x})} \log \mathrm{b}(\mathrm{x}+\mathrm{h})\right]-\left(\mathrm{e}^{\mathrm{ax}} \log b x\right)\right. \\
& =\mathrm{e}^{\mathrm{ax}}\left[\mathrm{e}^{\mathrm{ah}} \log (\mathrm{bx}+\mathrm{bh})-\log b x\right]
\end{aligned}
$$

ii) $\Delta \tan ^{-1} \mathrm{x}=\mathrm{Etan}^{-1} \mathrm{x}-\tan ^{-1} \mathrm{x}$

$$
\begin{aligned}
& \left.=\tan ^{-1} x+h\right)-\tan ^{-1} x \\
& =\tan ^{-1}\left(\frac{x+h-x}{1+(x+h) x}\right) \\
& =\tan ^{-1}\left(\frac{h}{1+h x+x^{2}}\right)
\end{aligned}
$$

iii) As $\Delta^{2}=(E-1)^{2}=E^{2}-2 E+1$
$\therefore \Delta^{2} \cos 2 \mathrm{x}=\mathrm{E}^{2} \cos 2 \mathrm{x}-2 \mathrm{E} \cos 2 \mathrm{x}+\cos 2 \mathrm{x}$
$\therefore \Delta^{2} \cos 2 \mathrm{x}=\cos 2(\mathrm{x}+2 \mathrm{~h})-2 \cos 2(\mathrm{x}+\mathrm{h})+\cos 2 \mathrm{x}$
$\therefore \Delta^{2} \cos 2 x=\cos (2 x+4 h)-2 \cos (2 x+2 h)+\cos 2 x$

Backward difference Operator: Backward difference operator is denoted by ∇ and defined as $\nabla f(x)=f(x)-f(x-h)$.
Note: i) $\nabla f(x)=f(x)-f(x-h)$ is called first backward difference of $f(x)$. and $\nabla^{n} f(x)$ is called $n^{\text {th }}$ backward difference of $f(x)$.
ii) As $\nabla \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{x}-\mathrm{h})=\mathrm{f}(\mathrm{x})-\mathrm{E}^{-1} \mathrm{f}(\mathrm{x})=\left(1-\mathrm{E}^{-1}\right) \mathrm{f}(\mathrm{x})$
$\therefore \nabla=1-\mathrm{E}^{-1}$ i.e. $\mathrm{E}^{-1}=1-\nabla \therefore \mathrm{E}=(1-\nabla)^{-1}$
be the relation between shift operator and backward difference operator.

Ex. Find i) $\nabla^{2} f(x)$, ii) $\nabla^{3} f(x)$, iii) $\nabla \sin \mathrm{x}$, iv) $\nabla \sec \mathrm{x}$, v) $\nabla \mathrm{e}^{\mathrm{x}}$, vi) $\nabla^{2} \mathrm{e}^{\mathrm{x}}$.
Solution: Using $\nabla=1-\mathrm{E}^{-1}$, we get,
i) $\nabla^{2}=\left(1-\mathrm{E}^{-1}\right)^{2}=1-2 \mathrm{E}^{-1}+\mathrm{E}^{-2}$
$\therefore \nabla^{2} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x})-2 \mathrm{E}^{-1} \mathrm{f}(\mathrm{x})+\mathrm{E}^{-2} \mathrm{f}(\mathrm{x})$
$\therefore \nabla^{2} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x})-2 \mathrm{f}(\mathrm{x}-\mathrm{h})+\mathrm{f}(\mathrm{x}-2 \mathrm{~h})$
ii) $\nabla^{3}=\left(1-\mathrm{E}^{-1}\right)^{3}=1-3 \mathrm{E}^{-1}+3 \mathrm{E}^{-2}-\mathrm{E}^{-3}$
$\therefore \nabla^{3} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x})-3 \mathrm{E}^{-1} \mathrm{f}(\mathrm{x})+3 \mathrm{E}^{-2} \mathrm{f}(\mathrm{x})-\mathrm{E}^{-3} \mathrm{f}(\mathrm{x})$
$\therefore \nabla^{3} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x})-3 \mathrm{f}(\mathrm{x}-\mathrm{h})+3 \mathrm{f}(\mathrm{x}-2 \mathrm{~h})-\mathrm{f}(\mathrm{x}-3 \mathrm{~h})$
iii) As $\nabla=1-\mathrm{E}^{-1}$
$\therefore \nabla \sin \mathrm{x}=\sin \mathrm{x}-\mathrm{E}^{-1} \sin \mathrm{x}$
$\therefore \nabla \sin \mathrm{x}=\sin \mathrm{x}-\sin (\mathrm{x}-\mathrm{h})$
iv) As $\nabla=1-E^{-1}$
$\therefore \nabla \sec \mathrm{x}=\sec \mathrm{x}-\mathrm{E}^{-1} \sec \mathrm{x}$
$\therefore \nabla \sec \mathrm{x}=\sec \mathrm{x}-\sec (\mathrm{x}-\mathrm{h})$
v) $\operatorname{As} \nabla=1-E^{-1}$
$\therefore \nabla \mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}}-\mathrm{E}^{-1} \mathrm{e}^{\mathrm{x}}$
$\therefore \nabla \mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{\mathrm{x}-\mathrm{h}}$
$\therefore \nabla \mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}}\left(1-\mathrm{e}^{-\mathrm{h}}\right)$
vi) $\nabla^{2}=\left(1-\mathrm{E}^{-1}\right)^{2}=1-2 \mathrm{E}^{-1}+\mathrm{E}^{-2}$
$\therefore \nabla^{2} \mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}}-2 \mathrm{E}^{-1} \mathrm{e}^{\mathrm{x}}+\mathrm{E}^{-2} \mathrm{e}^{\mathrm{x}}$
$\therefore \nabla^{2} \mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}}-2 \mathrm{e}^{\mathrm{x}-\mathrm{h}}+\mathrm{e}^{\mathrm{x}-2 \mathrm{~h}}$
$\therefore \nabla^{2} \mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}}\left(1-2 \mathrm{e}^{-\mathrm{h}}+\mathrm{e}^{-2 \mathrm{~h}}\right)$
$\therefore \nabla^{2} \mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}}\left(1-\mathrm{e}^{-\mathrm{h}}\right)^{2}$

Ex. Prepare forward and backward difference table for the function $y=f(x)$ to the values $\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$ and x_{5}.
Solution: i) Forward difference table for the function $y=f(x)$ to the given values is

x	$\mathrm{y}=\mathrm{f}(\mathrm{x})$	$\Delta \mathrm{y}$	$\Delta^{2} \mathrm{y}$	$\Delta^{3} \mathrm{y}$	$\Delta^{4} \mathrm{y}$	$\Delta^{5} \mathrm{y}$
x_{0}	y_{0}					
x_{1}	y_{1}	E2 $\Delta \mathrm{y}_{0}$	$\Delta^{2} y_{0}$	विन्तात	FCA	
		Δy_{1}		$\Delta^{3} y_{0}$		
X_{2}	y_{2}		$\Delta^{2} \mathrm{y}_{1}$	$\Lambda^{3} \mathrm{v},$	$\Delta^{4} \mathrm{y}_{0}$	${ }^{5} \mathrm{y}_{0}$
x_{3}	y_{3}		$\Delta^{2} \mathrm{y}_{2}$		$\Delta^{4} \mathrm{y}_{1}$	
		Δy_{3}		$\Delta^{3} \mathrm{y}_{2}$		
x_{4}	y_{4}		$\Delta^{2} y_{3}$			
		Δy_{4}				
X_{5}	y_{5}					

ii) Backward difference table for the function $y=f(x)$ to the given values is

x	$\mathrm{y}=\mathrm{f}(\mathrm{x})$	$\nabla \mathrm{y}$	$\nabla^{2} \mathrm{y}$	$\nabla^{3} \mathrm{y}$	$\nabla^{4} \mathrm{y}$	$\nabla^{5} \mathrm{y}$
x_{0}	y_{0}	$\nabla \mathrm{y}_{1}$				
x_{1}	y_{1}	$\nabla \mathrm{y}_{2}$	$\nabla^{2} \mathrm{y}_{2}$		$\nabla^{3} \mathrm{y}_{3}$	
x_{2}	y_{2}	$\nabla \mathrm{y}_{3}$	$\nabla^{2} \mathrm{y}_{3}$	$\nabla^{3} \mathrm{y}_{4}$	$\nabla^{4} \mathrm{y}_{4}$	$\nabla^{5} \mathrm{y}_{5}$
x_{3}	y_{3}	$\nabla^{2} \mathrm{y}_{4}$	$\nabla^{3} \mathrm{y}_{5}$	$\nabla^{4} \mathrm{y}_{5}$		
x_{4}	y_{4}	$\nabla \mathrm{y}_{4}$	$\nabla^{2} \mathrm{y}_{5}$			
x_{5}	y_{5}	$\nabla \mathrm{y}_{5}$				

Note: We observe that $\Delta f\left(x_{i}\right)=f\left(x_{i+1}\right)-f\left(x_{i}\right)=\nabla f\left(x_{i+1}\right)$ i.e. $\Delta y_{i}=y_{i+1}-y_{i}=\nabla y_{i+1}$.

Central difference Operator: Central difference operator is denoted by δ and defined as $\delta f(x)=f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right)$.
Note: i) $\delta f(x)=f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right)$ is called first central difference of $f(x)$. and $\delta^{\mathrm{n}} \mathrm{f}(\mathrm{x})$ is called $\mathrm{n}^{\text {th }}$ central difference of $\mathrm{f}(\mathrm{x})$.
ii) As $\delta f(x)=f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right)=E^{1 / 2} f(x)-E^{-1 / 2} f(x)=\left(E^{1 / 2}-E^{-1 / 2}\right) f(x)$

$$
\therefore \delta=\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}
$$

be the relation between shift operator and backward difference operator.

Ex. Find i) $\delta^{2} \mathrm{f}(\mathrm{x})$, ii) $\delta^{3} \mathrm{f}(\mathrm{x})$, iii) $\delta^{4} \mathrm{f}(\mathrm{x})$, iv) $\delta \operatorname{cosec} \mathrm{x}$.
Solution: Using $\delta=\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}$, we get,
i) $\delta^{2}=\left(\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}\right)^{2}=\mathrm{E}-2+\mathrm{E}^{-1}$
$\therefore \delta^{2} \mathrm{f}(\mathrm{x})=\mathrm{Ef}(\mathrm{x})-2 \mathrm{f}(\mathrm{x})+\mathrm{E}^{-1} \mathrm{f}(\mathrm{x})$
$\therefore \delta^{2} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+\mathrm{h})-2 \mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x}-\mathrm{h})$
ii) $\delta^{3}=\left(\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}\right)^{3}=\mathrm{E}^{3 / 2}-3 \mathrm{E}^{1 / 2}+3 \mathrm{E}^{-1 / 2}-\mathrm{E}^{-3 / 2}$
$\therefore \delta^{3} \mathrm{f}(\mathrm{x})=\mathrm{E}^{3 / 2} \mathrm{f}(\mathrm{x})-3 \mathrm{E}^{1 / 2} \mathrm{f}(\mathrm{x})+3 \mathrm{E}^{-1 / 2} \mathrm{f}(\mathrm{x})-\mathrm{E}^{-3 / 2} \mathrm{f}(\mathrm{x})$
$\therefore \delta^{3} \mathrm{f}(\mathrm{x})=\mathrm{f}\left(\mathrm{x}+\frac{3 \mathrm{~h}}{2}\right)-3 \mathrm{f}\left(\mathrm{x}+\frac{\mathrm{h}}{2}\right)+3 \mathrm{f}\left(\mathrm{x}-\frac{\mathrm{h}}{2}\right)-\mathrm{f}\left(\mathrm{x}-\frac{3 \mathrm{~h}}{2}\right)$
iii) As $\delta^{2}=\left(\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}\right)^{2}=\mathrm{E}-2+\mathrm{E}^{-1}$
$\therefore \delta^{4}=\mathrm{E}^{2}+4+\mathrm{E}^{-2}-4 \mathrm{E}+2-4 \mathrm{E}^{-1}$
i.e. $\delta^{4}=E^{2}-4 \mathrm{E}+6-4 \mathrm{E}^{-1}+\mathrm{E}^{-2}$
$\therefore \delta^{4} f(x)=E^{2} f(x)-4 E f(x)+6 f(x)-4 E^{-1} f(x)+E^{-2} f(x)$
$\therefore \delta^{4} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+2 \mathrm{~h})-4 \mathrm{f}(\mathrm{x}+\mathrm{h})+6 \mathrm{f}(\mathrm{x})-4 \mathrm{f}(\mathrm{x}-\mathrm{h})+\mathrm{f}(\mathrm{x}-2 \mathrm{~h})$
iv) As $\delta=\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}$

$$
\begin{aligned}
& \therefore \delta \operatorname{cosec} x=\mathrm{E}^{1 / 2} \operatorname{cosec} \mathrm{x}-\mathrm{E}^{-1 / 2} \operatorname{cosec} \mathrm{x} \\
& \therefore \delta \operatorname{cosec} \mathrm{x}=\operatorname{cosec}\left(\mathrm{x}+\frac{\mathrm{h}}{2}\right)-\operatorname{cosec}\left(\mathrm{x}-\frac{\mathrm{h}}{2}\right)
\end{aligned}
$$

Ex. Prepare central difference table for the function $y=f(x)$ to the values $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ and x_{5}.
Solution: i) Central difference table for the function $y=f(x)$ to the given values is

x	$\mathrm{y}=\mathrm{f}(\mathrm{x})$	$\delta \mathrm{y}$	$\delta^{2} \mathrm{y}$	$\delta^{3} \mathrm{y}$	$\delta^{4} \mathrm{y}$	$\delta^{5} \mathrm{y}$
x_{0}	y_{0}	$\delta \mathrm{y}_{1 / 2}$				
x_{1}	y_{1}	$\delta^{2} \mathrm{y}_{1}$				
x_{2}	y_{2}	$\delta \mathrm{y}_{3 / 2}$	δ^{3}	$\delta^{2} \mathrm{y}_{2}$	$\delta^{3} \mathrm{y}_{3 / 2}$	$\delta^{4} \mathrm{y}_{2}$
x_{3}	y_{3}	$\delta \mathrm{y}_{5 / 2}$	$\delta^{2} \mathrm{y}_{3}$	$\delta^{3} \mathrm{y}_{5 / 2}$	δ^{4}	$\delta^{5} \mathrm{y}_{5 / 2}$
x_{4}	y_{4}	$\delta \mathrm{y}_{7 / 2}$	$\delta^{2} \mathrm{y}_{3}$			
x_{5}	y_{5}	$\delta \mathrm{y}_{9 / 2}$		$\delta^{3} \mathrm{y}_{7 / 2}$		

Averaging Operator or Mean Operator: Averaging operator or mean operator is denoted by μ and defined as $\mu \mathrm{f}(\mathrm{x})=\frac{1}{2}\left[\mathrm{f}\left(\mathrm{x}+\frac{\mathrm{h}}{2}\right)+\mathrm{f}\left(\mathrm{x}-\frac{\mathrm{h}}{2}\right)\right]$
Note: i) $\mu \mathrm{f}(\mathrm{x})=\frac{1}{2}\left[\mathrm{f}\left(\mathrm{x}+\frac{\mathrm{h}}{2}\right)+\mathrm{f}\left(\mathrm{x}-\frac{\mathrm{h}}{2}\right)\right]$ is called first mean difference of $\mathrm{f}(\mathrm{x})$. and $\mu^{n} f(x)$ is called $n^{\text {th }}$ mean difference of $f(x)$.
ii) As $\mu \mathrm{f}(\mathrm{x})=\frac{1}{2}\left[\mathrm{f}\left(\mathrm{x}+\frac{\mathrm{h}}{2}\right)+\mathrm{f}\left(\mathrm{x}-\frac{\mathrm{h}}{2}\right)\right]=\frac{1}{2}\left[\mathrm{E}^{1 / 2} \mathrm{f}(\mathrm{x})+\mathrm{E}^{-1 / 2} \mathrm{f}(\mathrm{x})\right]=\frac{1}{2}\left(\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}\right) \mathrm{f}(\mathrm{x})$
$\therefore \mu=\frac{1}{2}\left(\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}\right)$
be the relation between shift operator and backward difference operator.

Ex. Find i) $\mu^{2} f(x)$, ii) $\mu^{3} f(x)$ and iii) μ cotx
Solution: Using $\mu=\frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)$, we get,

$$
\text { i) } \begin{aligned}
& \mu^{2}=\left[\frac{1}{2}\left(\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}\right)\right]^{2}=\frac{1}{4}\left(\mathrm{E}+2+\mathrm{E}^{-1}\right) \\
& \therefore \mu^{2} \mathrm{f}(\mathrm{x})=\frac{1}{4}\left[\mathrm{Ef}(\mathrm{x})+2 \mathrm{f}(\mathrm{x})+\mathrm{E}^{-1} \mathrm{f}(\mathrm{x})\right] \\
& \therefore \mu^{2} \mathrm{f}(\mathrm{x})=\frac{1}{4}[\mathrm{f}(\mathrm{x}+\mathrm{h})+2 \mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x}-\mathrm{h})]
\end{aligned}
$$

ii) $\mu^{3}=\frac{1}{8}\left(\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}\right)^{3}=\frac{1}{8}\left[\mathrm{E}^{3 / 2}+3 \mathrm{E}^{1 / 2}+3 \mathrm{E}^{-1 / 2}+\mathrm{E}^{-3 / 2}\right]$
$\therefore \mu^{3} \mathrm{f}(\mathrm{x})=\frac{1}{8}\left[\mathrm{E}^{3 / 2} \mathrm{f}(\mathrm{x})+3 \mathrm{E}^{1 / 2} \mathrm{f}(\mathrm{x})+3 \mathrm{E}^{-1 / 2} \mathrm{f}(\mathrm{x})+\mathrm{E}^{-3 / 2} \mathrm{f}(\mathrm{x})\right]$
$\therefore \mu^{3} \mathrm{f}(\mathrm{x})=\frac{1}{8}\left[\mathrm{f}\left(\mathrm{x}+\frac{3 \mathrm{~h}}{2}\right)+3 \mathrm{f}\left(\mathrm{x}+\frac{\mathrm{h}}{2}\right)+3 \mathrm{f}\left(\mathrm{x}-\frac{\mathrm{h}}{2}\right)+\mathrm{f}\left(\mathrm{x}-\frac{3 \mathrm{~h}}{2}\right)\right]$
iv) As $\mu=\frac{1}{2}\left(\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}\right)$
$\therefore \mu \cot \mathrm{x}=\frac{1}{2}\left[\mathrm{E}^{1 / 2} \cot \mathrm{x}+\mathrm{E}^{-1 / 2} \cot \mathrm{x}\right]$
$\therefore \mu \cot \mathrm{x}=\frac{1}{2}\left[\cot \left(\mathrm{x}+\frac{\mathrm{h}}{2}\right)+\cot \left(\mathrm{x}-\frac{\mathrm{h}}{2}\right)\right]$

Ex. Using definitions of operators E, Δ, ∇, δ and μ, show that
i) $\Delta=E \nabla$
ii) $\nabla=E^{-1} \Delta$
iii) $\Delta=\nabla(1-\nabla)^{-1}$
iv) $(E-1) \nabla^{-1}=1+\Delta$
v) $\Delta \nabla=\nabla \Delta=\delta^{2}$
vi) $\delta^{2} E=\Delta^{2}$
vii) $\mathrm{E}^{-1 / 2}=\mu-\frac{\delta}{2}$
viii) $1+\mu^{2} \delta^{2}=\left(1+\frac{\delta^{2}}{2}\right)^{2}$

Proof: i) Consider EDf(x) $=\mathrm{E}[\nabla f(\mathrm{x})]$

$$
\begin{aligned}
& =\mathrm{E}[\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{x}-\mathrm{h})] \\
& =\mathrm{Ef}(\mathrm{x})-\mathrm{Ef}(\mathrm{x}-\mathrm{h}) \\
& =\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x}) \\
\mathrm{E} \nabla \mathrm{f}(\mathrm{x}) & =\Delta \mathrm{f}(\mathrm{x}) \\
\therefore \mathrm{E} \nabla & =\Delta
\end{aligned}
$$

ii) Consider $\mathrm{E}^{-1} \Delta \mathrm{f}(\mathrm{x})=\mathrm{E}^{-1}[\Delta \mathrm{f}(\mathrm{x})]$

$$
\begin{aligned}
& =\mathrm{E}^{-1}[\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})] \\
& =\mathrm{E}^{-1} \mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{E}^{-1} \mathrm{f}(\mathrm{x}) \\
& =\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{x}-\mathrm{h}) \\
\mathrm{E}^{-1} \Delta \mathrm{f}(\mathrm{x}) & =\nabla \mathrm{f}(\mathrm{x})
\end{aligned}
$$

$\therefore \mathrm{E}^{-1} \Delta=\nabla$

iii) Consider $\nabla(1-\nabla)^{-1}=\nabla\left(\mathrm{E}^{-1}\right)^{-1}=\nabla \mathrm{E}$

$$
\therefore \nabla(1-\nabla)^{-1}=\Delta \quad \text { by }(i)
$$

iv) Consider $(\mathrm{E}-1) \nabla^{-1}=\Delta \nabla^{-1}$

$$
\begin{aligned}
& =\mathrm{E} \nabla \nabla^{-1} \quad \because \Delta=\mathrm{E} \nabla \\
& =\mathrm{E} \\
& =1+\Delta
\end{aligned}
$$

v) Consider $\Delta \nabla=(\mathrm{E}-1)\left(1-\mathrm{E}^{-1}\right)$

$$
\begin{aligned}
& =\mathrm{E}-1-1+\mathrm{E}^{-1} \\
& =\mathrm{E}-2+\mathrm{E}^{-1} \\
& =\left(\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}\right)^{2} \\
& =\delta^{2}
\end{aligned}
$$

Similarly, $\nabla \Delta=\delta^{2}$
vi) Consider $\delta^{2} \mathrm{E}=\left(\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}\right)^{2} \mathrm{E}$

$$
\begin{aligned}
& =\left(\mathrm{E}-2+\mathrm{E}^{-1}\right) \mathrm{E} \\
& =\mathrm{E}^{2}-2 \mathrm{E}+1 \\
& =(\mathrm{E}-1)^{2} \\
& =\Delta^{2}
\end{aligned}
$$

vii) Consider $\mu-\frac{\delta}{2}=\frac{1}{2}\left(\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}\right)-\frac{1}{2}\left(\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}\right)$

$$
\begin{aligned}
& =\frac{1}{2} \mathrm{E}^{1 / 2}+\frac{1}{2} \mathrm{E}^{-1 / 2}-\frac{1}{2} \mathrm{E}^{1 / 2}+\frac{1}{2} \mathrm{E}^{-1 / 2} \\
& =\mathrm{E}^{-1 / 2}
\end{aligned}
$$

viii) $1+\frac{\delta^{2}}{2}=1+\frac{1}{2}\left(\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}\right)^{2}$

$$
\begin{align*}
& =\frac{1}{2}\left[2+\mathrm{E}-2+\mathrm{E}^{-1}\right] \\
1+\frac{\delta^{2}}{2} & =\frac{1}{2}\left(\mathrm{E}+\mathrm{E}^{-1}\right) \ldots . . \tag{1}
\end{align*}
$$

Consider $1+\mu^{2} \delta^{2}=1+\left[\frac{1}{2}\left(\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}\right)\right]^{2}\left(\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}\right)^{2}$

$$
=1+\frac{1}{4}\left(\mathrm{E}-\mathrm{E}^{-1}\right)^{2}
$$

$$
=\frac{1}{4}\left[4+\mathrm{E}^{2}-2+\mathrm{E}^{-2}\right]
$$

$$
=\frac{1}{4}\left(\mathrm{E}^{2}+2+\mathrm{E}^{-2}\right)
$$

$$
=\left[\frac{1}{2}\left(\mathrm{E}+\mathrm{E}^{-1}\right)\right]^{2}
$$

$$
=\left(1+\frac{\delta^{2}}{2}\right)^{2} \quad \text { by }(1) . \quad \text { Hence proved. }
$$

Ex. Construct a forward difference table for the function $f(x)=x^{3}+5 x-7$ with $x=-1,0,1,2,3,4,5$ and form the table to obtain $f(6)$ and $f(7)$.
Solution: From given function $f(x)=x^{3}+5 x-7$, we have,
$f(-1)=-1-5-7=-13, f(0)=-7, f(1)=1+5-7=-1, f(2)=8+10-7=11$,
$f(3)=27+15-7=35, f(4)=64+20-7=77$ and $f(5)=125+25-7=143$
Let $f(6)=a$ and $f(7)=b$
The forward difference table is

x	$\mathrm{f}(\mathrm{x})$	$\Delta \mathrm{f}(\mathrm{x})$	$\Delta^{2} \mathrm{f}(\mathrm{x})$	$\Delta^{3} \mathrm{f}(\mathrm{x})$
-1	-13	6		
0	-7	6	0	
1	-1	12	6	6
2	11	24	12	6
3	35	42	18	6
4	77	66	24	6
5	143	$a-143$	$\mathrm{a}-209$	$\mathrm{a}-233$
6	a	$\mathrm{b}-\mathrm{a}$	$\mathrm{b}-3 \mathrm{a}+33$	
7	b			

Here third order forward differences are constant.
$\therefore \mathrm{a}-233=6$ i.e. $\mathrm{f}(6)=\mathrm{a}=239$ and $\mathrm{b}-3 \mathrm{a}+352=6$ i.e. $\mathrm{f}(7)=\mathrm{b}=6-352+717=371$

Ex. Construct a forward difference table from the following values of x and y , show that the third difference are constant.

x	35	36	37	38	39	40	41
y	14.295	14.143	13.986	13.825	13.661	13.495	13.328

Solution: The forward difference table is

x	y	$\Delta \mathrm{y}$	$\Delta^{2} \mathrm{y}$	$\Delta^{3} \mathrm{y}$
35	14.295	-0.152		
36	14.143	-0.157	-0.005	
37	13.986	-0.161	-0.004	0.001
38	13.825	-0.164	-0.003	0.001
39	13.661	-.0166	-0.002	0.001
40	13.495	-0.167	-0.001	0.001
41	13.328			

Here third order forward differences are constant.

Ex. Construct a forward difference table from the following values of x and y , show that the third difference are constant.

x	0.0	0.2	0.4	0.6	0.8
y	1.0	1.1927	1.3894	1.5616	1.7174

Solution: The backward difference table for the given values is

x	y	$\nabla \mathrm{y}$	$\nabla^{2} \mathrm{y}$	$\nabla^{3} \mathrm{y}$	$\nabla^{4} \mathrm{y}$
0.0	1.0	0.1927			
0.2	1.1927	0.0040			
0.4	1.3894	0.1967		-0.0245	-0.0205
0.6	1.5616	0.1722		0.0071	0.0276
0.8	1.7174	0.1558			

Ex. Prove that $u_{x}=u_{x-1}+\Delta u_{x-2}+\Delta^{2} u_{x-3}+\ldots \ldots+\Delta^{n-1} u_{x-n}+\Delta^{n} u_{x-n}$
Proof: Consider $u_{x}-\Delta^{n} u_{x-n}=u_{x}-\Delta^{n} E^{-n} u_{x}=\left[1-\Delta^{n} E^{-n}\right] u_{x}$

$$
\begin{aligned}
& =\left[1-\frac{\Delta^{n}}{E^{n}}\right] u_{x} \\
& =E^{-n}\left[E^{n}-\Delta^{n}\right] u_{x}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{E}^{-\mathrm{n}}(\mathrm{E}-\Delta)\left[\mathrm{E}^{\mathrm{n}-1}+\Delta \mathrm{E}^{\mathrm{n}-2}+\Delta^{2} \mathrm{E}^{\mathrm{n}-3}+\ldots \ldots+\Delta^{\mathrm{n}-1}\right] \mathrm{u}_{\mathrm{x}} \\
& =\mathrm{E}^{-\mathrm{n}}(1)\left[\mathrm{E}^{\mathrm{n}-1}+\Delta \mathrm{E}^{\mathrm{n}-2}+\Delta^{2} \mathrm{E}^{\mathrm{n}-3}+\ldots \ldots+\Delta^{\mathrm{n}-1}\right] \mathrm{u}_{\mathrm{x}} \\
& =\left[\mathrm{E}^{-1}+\Delta \mathrm{E}^{-2}+\Delta^{2} \mathrm{E}^{-3}+\ldots \ldots .+\Delta^{\mathrm{n}-1} \mathrm{E}^{-\mathrm{n}}\right] \mathrm{u}_{\mathrm{x}} \\
& =\mathrm{E}^{-1} \mathrm{u}_{\mathrm{x}}+\Delta \mathrm{E}^{-2} \mathrm{u}_{\mathrm{x}}+\Delta^{2} \mathrm{E}^{-3} \mathrm{u}_{\mathrm{x}}+\ldots \ldots .+\Delta^{\mathrm{n}-1} \mathrm{E}^{-\mathrm{n}} \mathrm{u}_{\mathrm{x}} \\
\therefore \mathrm{u}_{\mathrm{x}}-\Delta^{\mathrm{n}} \mathrm{u}_{\mathrm{x}-\mathrm{n}} & =\mathrm{u}_{\mathrm{x}-1}+\Delta \mathrm{u}_{\mathrm{x}-2}+\Delta^{2} \mathrm{u}_{\mathrm{x}-3}+\ldots \ldots .+\Delta^{\mathrm{n}-1} \mathrm{u}_{\mathrm{x}-\mathrm{n}}
\end{aligned}
$$

Hence $\mathrm{u}_{\mathrm{x}}=\mathrm{u}_{\mathrm{x}-1}+\Delta \mathrm{u}_{\mathrm{x}-2}+\Delta^{2} \mathrm{u}_{\mathrm{x}-3}+\ldots \ldots+\Delta^{\mathrm{n}-1} \mathrm{u}_{\mathrm{x}-\mathrm{n}}+\Delta^{\mathrm{n}} \mathrm{u}_{\mathrm{x}-\mathrm{n}}$ is proved.
Ex. Prove that $u_{0}+u_{1}+u_{2}+\ldots . .+u_{n}={ }^{n+1} C_{1} u_{0}+{ }^{n+1} C_{2} \Delta u_{0}+{ }^{n+1} C_{3} \Delta^{2} u_{0}+\ldots+\Delta^{n} u_{0}$
Proof: Consider L.H.S. $=u_{0}+u_{1}+u_{2}+\ldots . .+u_{n}$

$$
=u_{0}+E u_{0}+E^{2} u_{0}+\ldots \ldots+E^{n} u_{0}
$$

$$
=\left(1+E+E^{2}+\ldots \ldots+E^{n}\right) u_{0}
$$

$$
=\left[\frac{\mathrm{E}^{\mathrm{n}+1}-1}{\mathrm{E}-1}\right] \mathrm{u}_{0}
$$

$$
=\left[\frac{(1+\Delta)^{\mathrm{n}+1}-1}{\Delta}\right] \mathrm{u}_{0}
$$

$$
=\left[\frac{{ }^{\mathrm{n}+1} \mathrm{C}_{1} \Delta+{ }^{\mathrm{n}+1} \mathrm{C}_{2} \Delta^{2}+{ }^{\mathrm{n}+1} \mathrm{C}_{3} \Delta^{3}+\cdots+\Delta^{\mathrm{n}+1}}{\Delta}\right] \mathrm{u}_{0}
$$

$$
=\left({ }^{\mathrm{n}+1} \mathrm{C}_{1}+{ }^{\mathrm{n}+1} \mathrm{C}_{2} \Delta+{ }^{\mathrm{n}+1} \mathrm{C}_{3} \Delta^{2}+\cdots+\Delta^{\mathrm{n}}\right) \mathrm{u}_{0}
$$

$$
={ }^{n+1} C_{1} u_{0}+{ }^{n+1} \cdot C_{2} \Delta u_{0}+{ }^{n+1} C_{3} \Delta^{2} u_{0}+\ldots+\Delta^{n} u_{0}
$$

= R.H.S.

Hence proved.

Ex. Prove that $\mathrm{e}^{\mathrm{x}}=\left(\frac{\Delta^{2}}{\mathrm{E}}\right) \mathrm{e}^{\mathrm{x}} \frac{E e^{\mathrm{x}}}{\Delta^{2} \mathrm{e}^{\mathrm{x}}}$
Proof: Consider R.H.S. $=\left(\frac{\Delta^{2}}{E}\right) e^{x} \frac{E e^{x}}{\Delta^{2} e^{x}}$

$$
\begin{aligned}
& =\left[\frac{(E-1)^{2}}{E}\right] e^{x} \frac{E e^{x}}{(E-1)^{2} e^{x}} \\
& =\left[\frac{E^{2}-2 E+1}{E}\right] e^{x} \frac{E e^{x}}{\left(E^{2}-2 E+1\right) e^{x}} \\
& =\left(E-2+E^{-1}\right) e^{x} \frac{e^{x+1}}{\left(E^{2} e^{x}-2 E e^{x}+e^{x}\right)} \\
& =\left(e^{x+1}-2 e^{x}+e^{x-1}\right) \frac{e^{x+1}}{\left(e^{x+2}-2 e^{x+1}+e^{x}\right)} \\
& =e^{x}\left(e-2+e^{-1}\right) \frac{e}{\left(e^{2}-2 e+1\right)} \\
& =e^{x}\left(e^{2}-2 e+1\right) \frac{1}{\left(e^{2}-2 e+1\right)} \\
& =e^{x}=\text { L.H.S. Hence proved. }
\end{aligned}
$$

Ex. Show that $\Delta^{\mathrm{p}} \mathrm{y}_{\mathrm{k}}=\nabla^{\mathrm{p}} \mathrm{y}_{\mathrm{k}+\mathrm{p}}$
Proof: Consider L.H.S. $=\Delta^{\mathrm{p}} \mathrm{y}_{\mathrm{k}}$

$$
\begin{aligned}
& =(\nabla \mathrm{E})^{p y_{k}} \\
& =\nabla^{\mathrm{p}} \mathrm{E}^{\mathrm{p}} \mathrm{y}_{\mathrm{k}} \\
& =\nabla^{\mathrm{p}} \mathrm{y}_{\mathrm{k}+\mathrm{p}} \\
& =\text { L.H.S. }
\end{aligned}
$$

Hence proved.

Ex. Show that i) $\Delta+\nabla=\frac{\Delta}{\nabla}-\frac{\nabla}{\Delta} \quad$ ii) $\mu \delta=\frac{1}{2}(\Delta+\nabla)$
Proof: i) Consider R.H.S. $=\frac{\Delta}{\nabla}-\frac{\nabla}{\Delta}$

$$
\begin{aligned}
& =\frac{\nabla \mathrm{E}}{\nabla}-\frac{\mathrm{E}^{-1} \Delta}{\Delta} \quad \because \Delta=\nabla \mathrm{E} \text { and } \nabla=\mathrm{E}^{-1} \Delta \\
& =\mathrm{E}-\mathrm{E}^{-1} \\
& =(1+\Delta)-(1-\nabla) \\
& =\Delta+\nabla \\
& =\text { L.H.S. }
\end{aligned}
$$

Hence proved.
iI) Consider L.H.S. $=\mu \delta$

$$
\begin{aligned}
& =\frac{1}{2}\left(\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}\right)\left(\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}\right) \\
& =\frac{1}{2}\left(\mathrm{E}-\mathrm{E}^{-1}\right) \\
& =\frac{1}{2}[(1+\Delta)-(1-\nabla)] \\
& =\frac{1}{2}(\Delta+\nabla) \\
& =\text { R.H.S. }
\end{aligned}
$$

Hence proved.

Ex. Show that $\delta[f(x) g(x)]=\mu f(x) \delta g(x)+\mu g(x) \delta f(x)$
Proof: Consider R.H.S. $=\mu \mathrm{f}(\mathrm{x}) \delta \mathrm{g}(\mathrm{x})+\mu \mathrm{g}(\mathrm{x}) \delta \mathrm{f}(\mathrm{x})$

$$
\begin{aligned}
= & \frac{1}{2}\left(\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}\right) \mathrm{f}(\mathrm{x})\left(\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}\right) \mathrm{g}(\mathrm{x}) \\
& +\frac{1}{2}\left(\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}\right) \mathrm{g}(\mathrm{x})\left(\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}\right) \mathrm{f}(\mathrm{x}) \\
= & \frac{1}{2}\left[\mathrm{f}\left(\mathrm{x}+\frac{\mathrm{h}}{2}\right)+\mathrm{f}\left(\mathrm{x}-\frac{\mathrm{h}}{2}\right)\right]\left[\mathrm{g}\left(\mathrm{x}+\frac{\mathrm{h}}{2}\right)-\mathrm{g}\left(\mathrm{x}-\frac{\mathrm{h}}{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2}\left[g\left(x+\frac{h}{2}\right)+g\left(x-\frac{h}{2}\right)\right]\left[f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right)\right] \\
= & \frac{1}{2} f\left(x+\frac{h}{2}\right) g\left(x+\frac{h}{2}\right)-\frac{1}{2} f\left(x+\frac{h}{2}\right) g\left(x-\frac{h}{2}\right)+\frac{1}{2} f\left(x-\frac{h}{2}\right) g\left(x+\frac{h}{2}\right)-\frac{1}{2} f\left(x-\frac{h}{2}\right) g\left(x-\frac{h}{2}\right) \\
& +\frac{1}{2} g\left(x+\frac{h}{2}\right) f\left(x+\frac{h}{2}\right)-\frac{1}{2} g\left(x+\frac{h}{2}\right) f\left(x-\frac{h}{2}\right)+\frac{1}{2} g\left(x-\frac{h}{2}\right) f\left(x+\frac{h}{2}\right)-\frac{1}{2} g\left(x-\frac{h}{2}\right) f\left(x-\frac{h}{2}\right) \\
= & f\left(x+\frac{h}{2}\right) g\left(x+\frac{h}{2}\right)-g\left(x-\frac{h}{2}\right) f\left(x-\frac{h}{2}\right) \\
= & E^{1 / 2}[f(x) g(x)]-E^{-1 / 2}[f(x) g(x)] \\
= & \left(E^{1 / 2}-E^{-1 / 2}\right)[f(x) g(x)] \\
= & \delta[f(x) g(x)] \\
= & \text { L.H.S. }
\end{aligned}
$$

Hence proved.

Ex. Estimate the missing term in the following table

x	0	1	2	3	4
$f(x)$	1	3	9	$?$	81

Proof: Four values of $f(x)$ are given

$$
\therefore \Delta^{4} \mathrm{f}(\mathrm{x})=0
$$

$\therefore(\mathrm{E}-1)^{4} \mathrm{f}(\mathrm{x})=0$
$\therefore\left(\mathrm{E}^{4}-4 \mathrm{E}^{3}+6 \mathrm{E}^{2}-4 \mathrm{E}+1\right) \mathrm{f}(\mathrm{x})=0$
$\therefore \mathrm{E}^{4} \mathrm{f}(\mathrm{x})-4 \mathrm{E}^{3} \mathrm{f}(\mathrm{x})+6 \mathrm{E}^{2} \mathrm{f}(\mathrm{x})-4 \mathrm{Ef}(\mathrm{x})+\mathrm{f}(\mathrm{x})=0$
$\therefore \mathrm{f}(\mathrm{x}+4)-4 \mathrm{f}(\mathrm{x}+3)+6 \mathrm{f}(\mathrm{x}+2)-4 \mathrm{f}(\mathrm{x}+1)+\mathrm{f}(\mathrm{x})=0$
Putting $x=0$, we get,
$f(4)-4 f(3)+6 f(2)-4 f(1)+f(0)=0$
i.e. $81-4 f(3)+6(9)-4(3)+1=0$
i.e. $81+54-12+1=4 f(3)$
$\therefore 4 \mathrm{f}(3)=124$
$\therefore \mathrm{f}(3)=31$ be the required missing value.

Ex. Find the missing terms in the following table

x	1	2	3	4	5
$f(x)$	7	-	13	21	37

Proof: Four values of $f(x)$ are given
$\therefore \Delta^{4} \mathrm{f}(\mathrm{x})=0$
$\therefore(\mathrm{E}-1)^{4} \mathrm{f}(\mathrm{x})=0$
$\therefore\left(\mathrm{E}^{4}-4 \mathrm{E}^{3}+6 \mathrm{E}^{2}-4 \mathrm{E}+1\right) \mathrm{f}(\mathrm{x})=0$
$\therefore \mathrm{E}^{4} \mathrm{f}(\mathrm{x})-4 \mathrm{E}^{3} \mathrm{f}(\mathrm{x})+6 \mathrm{E}^{2} \mathrm{f}(\mathrm{x})-4 \mathrm{Ef}(\mathrm{x})+\mathrm{f}(\mathrm{x})=0$
$\therefore \mathrm{f}(\mathrm{x}+4)-4 \mathrm{f}(\mathrm{x}+3)+6 \mathrm{f}(\mathrm{x}+2)-4 \mathrm{f}(\mathrm{x}+1)+\mathrm{f}(\mathrm{x})=0$
Putting $x=1$, we get,
$\mathrm{f}(5)-4 \mathrm{f}(4)+6 \mathrm{f}(3)-4 \mathrm{f}(2)+\mathrm{f}(1)=0$
i.e. $37-4(21)+6(13)-4 f(2)+7=0$
i.e. $37-84+78+7=4 f(2)$
$\therefore 4 f(2)=38$
$\therefore \mathrm{f}(2)=9.5$ be the required missing value.

Gauss's forward difference formula: If $p=\frac{x-x_{0}}{h}$, then $y_{p}=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{-1}$ $+\frac{p\left(p^{2}-1\right)}{3!} \Delta^{3} y_{-1}+\frac{p\left(p^{2}-1\right)(p-2)}{4!} \Delta^{4} y_{-2}+\frac{p\left(p^{2}-1\right)\left(p^{2}-4\right)}{5!} \Delta^{5} y_{-2}+\ldots \ldots$. is known as
Gauss's forward central difference interpolation formula.
Gauss's backward difference formula: If $p=\frac{x-x_{0}}{h}$, then $y_{p}=y_{0}+p \Delta y-1+\frac{p(p+1)}{2!} \Delta^{2} y_{-1}$ $+\frac{p\left(p^{2}-1\right)}{3!} \Delta^{3} y_{-2}+\frac{p\left(p^{2}-1\right)(p+2)}{4!} \Delta^{4} y_{-2}+\frac{p\left(p^{2}-1\right)\left(p^{2}-4\right)}{5!} \Delta^{5} y_{-3}+\ldots .$. is known as
Gauss's backward central difference interpolation formula..

Ex. Using Gauss forward central difference formula, interpolate at $\mathrm{x}=32$ given that $\mathrm{f}(25)=0.2707, \mathrm{f}(30)=0.3027, \mathrm{f}(35)=0.3086, \mathrm{f}(40)=0.3794$
Solution: Select $x_{0}=30$, we prepare difference table as

x	y	$\Delta \mathrm{y}$	$\Delta^{2} \mathrm{y}$	$\Delta^{3} \mathrm{y}$
$\mathrm{x}_{-1}=25$	$\mathrm{y}_{-1}=0.2707$			
$\mathrm{x}_{0}=30$	$\mathrm{y}_{0}=0.3027$	$\Delta \mathrm{y}_{-1}=0.0320$		
$\mathrm{x}_{1}=35$	$\mathrm{y}_{1}=0.3386$	$\Delta \mathrm{y}_{0}=0.0359$	$\Delta^{2} \mathrm{y}_{-1}=0.0039$	
$\mathrm{x}_{2}=40$	$\mathrm{y}_{2}=0.3794$	$\Delta \mathrm{y}_{1}=0.0408$	$\Delta^{2} \mathrm{y}_{0}=0.0049$	$\Delta^{3} \mathrm{y}_{-1}=0.0010$

We have to interpolate at $\mathrm{x}=32$.
$\therefore \mathrm{p}=\frac{\mathrm{x}-\mathrm{x}_{0}}{\mathrm{~h}}=\frac{32-30}{5}=0.4$
By Gauss's forward formula.

$$
\begin{aligned}
& y_{p}=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{-1}+\frac{p\left(p^{2}-1\right)}{3!} \Delta^{3} y_{-1}+\ldots \ldots, \text { we get } \\
& y(32)=(0.3027)+0.4(0.0359)+\frac{0.4(0.4-1)}{2}(0.0039)+\frac{0.4(0.16-1)}{6}(0.0010)
\end{aligned}
$$

i.e. $y(32)=0.3166$

Ex. Use Gauss's forward formula to find y_{30}, given that
$\mathrm{y}_{21}=18.4708, \mathrm{y}_{25}=17.8144, \mathrm{y}_{29}=17.1070, \mathrm{y}_{33}=16.3432, \mathrm{y}_{37}=15.5154$
Solution: Select $\mathrm{x}_{0}=29$, we prepare difference table as

X	y	$\Delta \mathrm{y}$	$\Delta^{2} \mathrm{y}$	$\Delta^{3} \mathrm{y}$	$\Delta^{4} \mathrm{y}$
$\mathrm{X}_{-2}=21$	$y_{-2}=18.4708$				
		$\Delta y_{-2}=-0.6564$			
$\mathrm{x}_{-1}=25$	$\mathrm{y}_{-1}=17.8144$		$\Delta^{2} y_{-2}=-0.0510$		
$\mathrm{x}_{0}=29$	$\mathrm{y}_{0}=17.1070$	$\Delta y_{-1}=-0.7074$	$\Delta^{2} y_{-1}=-0.0564$	$\Delta^{3} y_{-2}=-0.0054$	$\Delta^{4} y_{-2}=-0.0022$
		$\Delta y_{0}=-0.7638$		$\Delta^{3} y_{-1}=-0.0076$	
$\mathrm{x}_{1}=33$	$y_{1}=16.3432$		$\Delta^{2} \mathrm{y}_{0}=-0.0640$		
		$\Delta y_{1}=-0.8278$		S	
$\mathrm{x}_{2}=37$	$\mathrm{y}_{2}=15.5154$	\%2.		-*	

We have to interpolate at $\mathrm{x}=30$.
$\therefore \mathrm{p}=\frac{\mathrm{x}-\mathrm{x}_{0}}{\mathrm{~h}}=\frac{30-29}{4}=0.25$
By Gauss's forward formula.

$$
\begin{aligned}
\mathrm{y}_{\mathrm{p}}=\mathrm{y}_{0} & +\mathrm{p} \Delta \mathrm{y}_{0}+\frac{\mathrm{p}(\mathrm{p}-1)}{2!} \Delta^{2} \mathrm{y}_{-1}+\frac{\mathrm{p}\left(\mathrm{p}^{2}-1\right)}{3!} \Delta^{3} \mathrm{y}_{-1}+\frac{\mathrm{p}\left(\mathrm{p}^{2}-1\right)(\mathrm{p}-2)}{4!} \Delta^{4} \mathrm{y}_{-2}+\ldots \ldots, \text { we get } \\
\mathrm{y}(30) & =(17.1070)+0.25(-0.7638)+\frac{0.25(0.25-1)}{2}(-0.0564) \\
& +\frac{0.25(0.0625-1)}{6}(-0.0054)+\frac{0.25(0.0625-1)(0.25-2)}{24}(-0.0022)
\end{aligned}
$$

i.e. $y(30)=16.969$

Ex. From the following table of values find y when $\mathrm{x}=27.5$ Using Gauss forward central difference formula.

x	25	26	27	28	29
y	16.195	15.919	15.630	15.326	15.006

Solution: Select $x_{0}=27$, we prepare difference table as

We have to interpolate at $x=27.5$.
$\therefore \mathrm{p}=\frac{\mathrm{x}-\mathrm{x}_{0}}{\mathrm{~h}}=\frac{27.5-27}{1}=0.5$
By Gauss's forward formula.

$$
\begin{aligned}
\mathrm{y}_{\mathrm{p}}=\mathrm{y}_{0}+ & \mathrm{p} \Delta \mathrm{y}_{0}+\frac{\mathrm{p}(\mathrm{p}-1)}{2!} \Delta^{2} \mathrm{y}_{-1}+\frac{\mathrm{p}\left(\mathrm{p}^{2}-1\right)}{3!} \Delta^{3} \mathrm{y}_{-1}+\frac{\mathrm{p}\left(\mathrm{p}^{2}-1\right)(\mathrm{p}-2)}{4!} \Delta^{4} \mathrm{y}_{-2}+\ldots \ldots, \text { we get } \\
\mathrm{y}(27.5)= & (15.630)+0.5(-0.304)+\frac{0.5(0.5-1)}{2}(-0.015)+\frac{0.5(0.25-1)}{6}(-0.002) \\
& +\frac{0.5(0.25-1)(0.5-2)}{24}(0.001)
\end{aligned}
$$

i.e. $y(27.5)=15.480$

Ex. Use Gauss's forward central difference formula to find the polynomial of degree four which takes the following values of the function $f(x)$:

x	1	2	3	4	5
$\mathrm{f}(\mathrm{x})$	1	-1	1	-1	1

Solution: Take $\mathrm{x}_{0}=3$, here $\mathrm{h}=1 \therefore \mathrm{p}=\frac{\mathrm{x}-\mathrm{x}_{0}}{\mathrm{~h}}=\frac{\mathrm{x}-3}{1}=\mathrm{x}-3$.
We prepare forward difference table as:

x	$\mathrm{y}=\mathrm{f}(\mathrm{x})$	$\Delta \mathrm{y}$	$\Delta^{2} \mathrm{y}$	$\Delta^{3} \mathrm{y}$	$\Delta^{4} \mathrm{y}$
$\mathrm{x}_{-2}=1$	$\mathrm{y}_{-2}=1$				
$\mathrm{x}_{-1}=2$	$\mathrm{y}_{-1}=-1$	$\Delta \mathrm{y}_{-2}=-2$			
$\mathrm{x}_{0}=3$	$\mathrm{y}_{0}=1$	$\Delta \mathrm{y}_{-1}=2$	$\Delta^{2} \mathrm{y}_{-2}=4$		
		$\Delta^{2} \mathrm{y}_{-1}=-4$	$\Delta^{3} \mathrm{y}_{-2}=-8$		
$\mathrm{x}_{1}=4$	$\mathrm{y}_{1}=-1$	$\Delta \mathrm{y}_{0}=-2$		$\Delta^{2} \mathrm{y}_{0}=4$	$\Delta^{3} \mathrm{y}_{-1}=8$
$\mathrm{x}_{2}=5$	$\mathrm{y}_{2}=1$	$\Delta \mathrm{y}_{1}=2$			
$\mathrm{x}_{-2}=16$					

By Gauss's forward formula.

$$
\begin{aligned}
& y_{p}=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{-1}+\frac{p\left(p^{2}-1\right)}{3!} \Delta^{3} y_{-1}+\frac{p\left(p^{2}-1\right)(p-2)}{4!} \Delta^{4} y_{-2}+\ldots \ldots, \text { we get } \\
& f(x)=1+(x-3)(-2)+\frac{(x-3)(x-4)}{2}(-4)+\frac{(x-3)\left(x^{2}-6 x+8\right)}{6}(8)+\frac{(x-3)\left(x^{2}-6 x+8\right)(x-5)}{24}(16)
\end{aligned}
$$

$$
\text { i.e. } f(x)=1-2 x+6-2\left(x^{2}-7 x+12\right)+\frac{4}{3}\left(x^{3}-6 x^{2}+8 x+12-3 x^{2}+18 x-24\right)
$$

$$
\begin{aligned}
& +\frac{2}{3}\left(x^{2}-8 x+15\right)\left(x^{2}-6 x+8\right) \\
= & \frac{1}{3}\left[3-6 x+18-6\left(x^{2}-7 x+12\right)+4\left(x^{3}-9 x^{2}+26 x-12\right)\right. \\
& +2\left(x^{4}-6 x^{3}+8 x^{2}-8 x^{3}+48 x^{2}-64 x+15 x^{2}-90 x+120\right) \\
= & \frac{1}{3}\left[3-6 x+18-6 x^{2}+42 x-72+4 x^{3}-36 x^{2}+104 x-48+2 x\right. \\
= & \frac{1}{3}\left(2 x^{4}-24 x^{3}+115 x^{2}-232 x+141\right)
\end{aligned}
$$

$$
=\frac{1}{3}\left[3-6 x+18-6 x^{2}+42 x-72+4 x^{3}-36 x^{2}+104 x-48+2 x^{4}-28 x^{3}+142 x^{2}-64 x+15 x^{2}\right.
$$

Ex. Find the value of $\cos 51^{\circ} 42$ by Gauss's backward central difference formula.
Given that:

x	50^{0}	51^{0}	52^{0}	53^{0}	54^{0}
$\cos \mathrm{x}:$	0.6428	0.6293	0.6157	0.6018	0.5878

Solution: Take $\mathrm{x}_{0}=52^{0}$, here $\mathrm{x}=51^{0} 42^{\prime}$ and $\mathrm{h}=1^{0} \therefore \mathrm{p}=\frac{\mathrm{x}-\mathrm{x}_{0}}{\mathrm{~h}}=\frac{51^{0} 42^{\prime}-52^{0}}{1^{0}}=-18^{\prime}=-0.3^{0}$
We prepare forward difference table as:

x	$y=\cos x$	Δy	(1) $\Delta^{2} \mathrm{y}$	$\Delta^{3} \mathrm{y}$	$\Delta^{4} \mathrm{y}$
$\mathrm{x}_{-2}=50^{0}$	$\mathrm{y}_{-2}=0.6428$				
$\mathrm{x}_{-1}=51^{0}$	$\mathrm{y}_{-1}=0.6293$	$\Delta y_{-2}=-0.0135$	$\Delta^{2} y_{-2}=-0.0001$		
$\mathrm{x}_{0}=52^{0}$	$\mathrm{y}_{0}=0.6157$	$\Delta y_{-1}=-0.0136$	$\Delta^{2} y_{-1}=-0.0003$	$\Delta^{3} y_{-2}=-0.0002$	$\Delta^{4} \mathrm{y}_{-2}=0.0004$
$\mathrm{x}_{1}=53^{0}$	$\mathrm{y}_{1}=0.6018$	$\Delta y_{0}=-0.0139$	$\Delta^{2} \mathrm{y}_{0}=-0.0001$	$\Delta^{3} y_{-1}=0.0002$	
$\mathrm{x}_{2}=54^{0}$	$\mathrm{y}_{2}=0.5878$	$\Delta y_{1}=-0.0140$			

By Gauss's backward formula.

$$
\begin{aligned}
& y_{p}=y_{0}+p \Delta y_{-1}+\frac{p(p+1)}{2!} \Delta^{2} y_{-1}+\frac{p\left(p^{2}-1\right)}{3!} \Delta^{3} y_{-2}+\frac{p\left(p^{2}-1\right)(p+2)}{4!} \Delta^{4} y_{-2}+\ldots . ., \text { we get } \\
&{\cos 51^{0} 42^{\prime}}^{\prime}=0.6157+(-0.3)(-0.0136)+\frac{(-0.3)(0.7)}{2}(-0.0003) \\
& \quad+\frac{(-0.3)(-0.91)}{6}(-0.0002)+\frac{(-0.3)(-0.91)(1.7)}{24}(0.0004)
\end{aligned}
$$

i.e. $\cos 51^{0} 42=0.6198$

Ex. From the following table:

Year	1901	1911	1921	1931	1941	1951
Sales in thousands	12	15	20	27	39	52

Find the sales of concern for the year 1936 by Gauss's backward formula. (Mar.2019)
Solution: Take $\mathrm{x}_{0}=1931$, here $\mathrm{x}=1936$ and $\mathrm{h}=10 \therefore \mathrm{p}=\frac{\mathrm{x}-\mathrm{x}_{0}}{\mathrm{~h}}=\frac{1936-1931}{10}=0.5$.
We prepare forward difference table as:

$\mathrm{x}=$ Year	$\begin{gathered} y=\text { Sales in } \\ \text { thousands } \end{gathered}$	Δy	$\Delta^{2} \mathrm{y}$	$\Delta^{3} \mathrm{y}$	$\Delta^{4} \mathrm{y}$	$\Delta^{5} \mathrm{y}$
$\mathrm{X}_{-3}=1901$	$y_{-3}=12$	$\begin{aligned} & \Delta y_{-3}=3 \\ & \Delta y_{-2}=5 \end{aligned}$	$\Delta^{2} y_{-3}=2$	$\Delta^{3} y_{-3}=0$		
$\mathrm{X}_{-2}=1911$	$y_{-2}=15$					
					$\Delta^{4} y_{-3}=3$	$\Delta^{5} \mathrm{y}_{-3}=-10$
$\mathrm{X}_{-1}=1921$	$y_{-1}=20$	$\Delta y_{-1}=7$	$\Delta^{2} y_{-2}=2$	$\Delta^{3} y_{-2}=3$		
$\mathrm{x}_{0}=1931$	$\mathrm{y}_{0}=27$		$\Delta^{2} y_{-1}=5$		$\Delta^{4} y_{-2}=-7$	
		$\Delta y_{0}=12$		$\Delta^{3} y_{-1}=-4$		
$\mathrm{x}_{1}=1941$	$\mathrm{y}_{1}=39$	-	$\Delta^{2} \mathrm{y}_{0}=1$			
		$\Delta \mathrm{y}_{1}=13$		84ce		
$\mathrm{x}_{2}=1951$	$\mathrm{y}_{2}=52$					

By Gauss's backward formula.

$$
\begin{aligned}
& y_{p}=y_{0}+p \Delta y_{-1}+\frac{p(p+1)}{2!} \Delta^{2} y_{-1}+\frac{p\left(p^{2}-1\right)}{3!} \Delta^{3} y_{-2}+\frac{p\left(p^{2}-1\right)(p+2)}{4!} \Delta^{4} y_{-2} \\
& \quad+\frac{p\left(p^{2}-1\right)\left(p^{2}-4\right)}{5!} \Delta^{5} y_{-3}+\ldots \ldots, \text { we get } \\
& y(1936)=27+(0.5)(7)+\frac{(0.5)(1.5)}{2}(5)+\frac{(0.5)(-0.75)}{6}(3)+\frac{(0.5)(-0.75)(2.5)}{24}(-7) \\
& +\frac{(0.5)(-0.75)(-3.75)}{120}(-10)
\end{aligned}
$$

i.e. $y(1936)=32.344$
\therefore Sales in the year 1936 is approximately 32.344 thousands.

Ex. Using Gauss's backward formula estimate the number of persons earning wages between Rs. 60 and Rs. 70 from the following data:

Wages (Rs.):	Below 40	$40-60$	$60-80$	$80-100$	$100-120$
No. of persons (in thousands):	250	120	100	70	50

Solution: We prepare forward difference table as:

Below(x)	$\mathrm{y}=$ Sales in thousands	$\Delta \mathrm{y}$	$\Delta^{2} \mathrm{y}$	$\Delta^{3} \mathrm{y}$	$\Delta^{4} \mathrm{y}$
$\mathrm{x}_{-2}=40$	$\mathrm{y}_{-2}=250$	$\Delta \mathrm{y}_{-2}=120$			
$\mathrm{x}_{-1}=60$	$\mathrm{y}_{-1}=370$		$\Delta^{2} \mathrm{y}_{-2}=-20$		

$\begin{gathered} \mathrm{x}_{0}=80 \\ \mathrm{x}_{1}=100 \end{gathered}$	$\begin{aligned} & \mathrm{y}_{0}=470 \\ & \mathrm{y}_{1}=540 \end{aligned}$	$\begin{aligned} & \Delta y_{-1}=100 \\ & \Delta y_{0}=70 \\ & \Delta y_{1}=50 \end{aligned}$	$\left\|\begin{array}{l} \Delta^{2} y_{-1}=-30 \\ \Delta^{2} y_{0}=-20 \end{array}\right\|$	$\begin{gathered} \Delta^{3} y_{-2}=-10 \\ \Delta^{3} y_{-1}=10 \end{gathered}$	$\Delta^{4} y_{-2}=20$
$x_{2}=120$ Take $\mathrm{x}_{0}=80$ By Gauss's b $\begin{aligned} & y_{p}=y_{0}+\mathrm{p} \Delta \mathrm{y} \\ & \mathrm{y}(70)=470+ \end{aligned}$ i.e. $y(70)=4$ \therefore the number $=423.6-370$	$\mathrm{y}_{2}=590$ re $x=70$ kward form $+\frac{\mathrm{p}(\mathrm{p}+1)}{2!} \Delta^{2}$.5)(100) + 6 persons e 53.6 thous	and $\mathrm{h}=20:$ ula. $\begin{aligned} & y_{-1}+\frac{\mathrm{p}\left(\mathrm{p}^{2}-1\right)}{3!} \\ & \frac{(-0.5)(0.5)}{2}(-3 \end{aligned}$ rning wage ands.	$\begin{aligned} & \mathrm{p}=\frac{\mathrm{x}-\mathrm{x}_{0}}{\mathrm{~h}}= \\ & \Delta^{3} \mathrm{y}_{-2}+\frac{\mathrm{p}\left(\mathrm{p}^{2}-\right.}{} \\ & 30)+\frac{(-0.5)(-\mathrm{c}}{6} \end{aligned}$ setween	$\begin{aligned} & \frac{70-80}{20}=-0.5 . \\ & \frac{-1)(p+2)}{4!} \Delta^{4} y- \\ & 0.75) \\ & \hline(-10)+\frac{(-1}{} \end{aligned}$ s. 60 and Rs	$\begin{aligned} & 2+\ldots \ldots, n \\ & -0.5)(-0.75)(C \\ & 24 \end{aligned}$ $.70$

Lagrange's Interpolation Formula:

If $y=f(x)$ takes the values $y_{0}, y_{1}, y_{2}, \ldots \ldots, y_{n}$ corresponding to $x_{0}, x_{1}, x_{2}, \ldots \ldots, x_{n}$ then $f(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots\left(x_{0}-x_{n}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)} y_{1}+$

$$
+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-2}\right)\left(x-x_{n}\right)}{\left(x_{n-1}-x_{0}\right)\left(x_{n-1}-x_{1}\right) \ldots\left(x_{n-1}-x_{n}\right)} y_{n-1}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \ldots\left(x_{n}-x_{n-1}\right)} y_{n}
$$

Lagrange's Interpolation formula for unequal intervals.
Proof: Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be a polynomial in x which takes the values $\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \ldots, \mathrm{y}_{\mathrm{n}}$ corresponding to $x_{0}, x_{1}, x_{2}, \ldots \ldots, x_{n}$. There are $(n+1)$ values of $f(x)$ so $(n+1)^{\text {th }}$ difference is zero. Thus $f(x)$ is a polynomial in x of degree n. Let this polynomial be $y=f(x)=a_{0}\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)+a_{1}\left(x-x_{0}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$ $+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right) \ldots\left(x-x_{n}\right)+\ldots+a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n-1}\right)$ (1)
Where $\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$ are constants and can be determined by putting $\mathrm{y}=\mathrm{y}_{0}$ when $\mathrm{x}=\mathrm{x}_{0}$, $y=y_{1}$ when $x=x_{1}, y=y_{2}$ when $x=x_{2}$ etc.
Now put $y=y_{0}$ when $x=x_{0}$ in (1), we get,

$$
\begin{aligned}
& \mathrm{y}_{0}=\mathrm{a}_{0}\left(\mathrm{x}_{0}-\mathrm{x}_{1}\right)\left(\mathrm{x}_{0}-\mathrm{x}_{2}\right) \ldots\left(\mathrm{x}_{0}-\mathrm{x}_{\mathrm{n}}\right)+0 \\
& \therefore \mathrm{a}_{0}=\frac{\mathrm{y}_{0}}{\left(\mathrm{x}_{0}-\mathrm{x}_{1}\right)\left(\mathrm{x}_{0}-\mathrm{x}_{2}\right) \ldots\left(\mathrm{x}_{0}-\mathrm{x}_{\mathrm{n}}\right)}
\end{aligned}
$$

Similarly, by putting $y=y_{1}$ when $x=x_{1}$ in (1), we get,

$$
\begin{aligned}
& y_{1}=a_{1}\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)+0 \\
& \therefore a_{1}=\frac{y_{1}}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)}
\end{aligned}
$$

proceeding in this we get $a_{2}, a_{3}, \ldots, a_{n}$.
By substituting the values of $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ in (1), we get,

$$
\begin{aligned}
f(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots\left(x_{0}-x_{n}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)} y_{1}+\ldots . . \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-2}\right)\left(x-x_{n}\right)}{\left(x_{n-1}-x_{0}\right)\left(x_{n-1}-x_{1}\right) \ldots\left(x_{n-1}-x_{n}\right)} y_{n-1}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \ldots\left(x_{n}-x_{n-1}\right)} y_{n}
\end{aligned}
$$

Ex. Find $f(4)$ from the following table

x	0	1	2	5
y	2	5	7	8

Solution: Given $\mathrm{x}_{0}=0, \mathrm{x}_{1}=1, \mathrm{x}_{2}=2, \mathrm{x}_{3}=5$ and $\mathrm{y}_{0}=2, \mathrm{y}_{1}=5, \mathrm{y}_{2}=7, \mathrm{y}_{3}=8$.
By Lagrange's Interpolation formula

$$
\begin{aligned}
f(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3} \\
\therefore f(4)= & \frac{(4-1)(4-2)(4-5)}{(0-1)(0-2)(0-5)}(2)+\frac{(4-0)(4-2)(4-5)}{(1-0)(1-2)(1-5)}(5) \\
& +\frac{(4-0)(4-1)(4-5)}{(2-0)(2-1)(2-5)}(7)+\frac{(4-0)(4-1)(4-2)}{(5-0)(5-1)(5-2)}(8) \\
& =\frac{(3)(2)(-1)(2)}{(-1)(-2)(-5)}+\frac{(4)(2)(-1)(5)}{(1)(-1)(-4)}+\frac{(4)(3)(-1)(7)}{(2)(1)(-3)}+\frac{(4)(3)(2)(8)}{(5)(4)(3)} \\
& =1.2-10+14+3.2 \\
& =8.4
\end{aligned}
$$

Ex. Compute the value of $f(x)$ for $\mathrm{x}=2.5$ from the following table

x	1	2	3	4
y	1	8	27	64

Solution: Given $\mathrm{x}_{0}=1, \mathrm{x}_{1}=2, \mathrm{x}_{2}=3, \mathrm{x}_{3}=4$ and $\mathrm{y}_{0}=1, \mathrm{y}_{1}=8, \mathrm{y}_{2}=27, \mathrm{y}_{3}=64$.
By Lagrange's Interpolation formula

$$
\begin{aligned}
f(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \mathrm{A}(2.5)= & \frac{(2.5-2)(2.5-3)(2.5-4)}{(1-2)(1-3)(1-4)}(1)+\frac{(2.5-1)(2.5-3)(2.5-4)}{(2-1)(2-3)(2-4)}(8) \\
& +\frac{(2.5-1)(2.5-2)(2.5-4)}{(3-1)(3-2)(3-4)}(27)+\frac{(2.5-1)(2.5-2)(2.5-3)}{(4-1)(4-2)(4-3)}(64) \\
= & \frac{(0.5)(-0.5)(-1.5)(1)}{(-1)(-2)(-3)}+\frac{(1.5)(-0.5)(-1.5)(8)}{(1)(-1)(-2)}+\frac{(1.5)(0.5)(-1.5)(27)}{(2)(1)(-1)} \\
& +\frac{(1.5)(0.5)(-0.5)(64)}{(3)(2)(1)} \\
= & -0.0625+4.5+15.1875-4 \\
= & 15.625
\end{aligned}
$$

Ex. The values of x and y are given as below

x	5	6	9	11
y	12	13	14	16

Find the value of y at $\mathrm{x}=10$.
Solution: Given $\mathrm{x}_{0}=5, \mathrm{x}_{1}=6, \mathrm{x}_{2}=9, \mathrm{x}_{3}=11$ and $\mathrm{y}_{0}=12, \mathrm{y}_{1}=13, \mathrm{y}_{2}=14, \mathrm{y}_{3}=16$.
Here the values of x are not equally spaced.
\therefore We use Lagrange's Interpolation formula

$$
\begin{aligned}
\mathrm{f}(\mathrm{x})= & \frac{\left(\mathrm{x}-\mathrm{x}_{1}\right)\left(\mathrm{x}-\mathrm{x}_{2}\right)\left(\mathrm{x}-\mathrm{x}_{3}\right)}{\left(\mathrm{x}_{0}-\mathrm{x}_{1}\right)\left(\mathrm{x}_{0}-\mathrm{x}_{2}\right)\left(\mathrm{x}_{0}-\mathrm{x}_{3}\right)} \mathrm{y}_{0}+\frac{\left(\mathrm{x}-\mathrm{x}_{0}\right)\left(\mathrm{x}-\mathrm{x}_{2}\right)\left(\mathrm{x}-\mathrm{x}_{3}\right)}{\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right)} \mathrm{y}_{1}+\frac{\left(\mathrm{x}-\mathrm{x}_{0}\right)\left(\mathrm{x}-\mathrm{x}_{1}\right)\left(\mathrm{x}-\mathrm{x}_{3}\right)}{\left(\mathrm{x}_{2}-\mathrm{x}_{0}\right)\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\left(\mathrm{x}_{2}-\mathrm{x}_{3}\right)} y_{2} \\
+ & +\frac{\left(\mathrm{x}-\mathrm{x}_{0}\right)\left(\mathrm{x}-\mathrm{x}_{1}\right)\left(\mathrm{x}-\mathrm{x}_{2}\right)}{\left(\mathrm{x}_{3}-\mathrm{x}_{0}\right)\left(\mathrm{x}_{3}-\mathrm{x}_{1}\right)\left(\mathrm{x}_{3}-\mathrm{x}_{2}\right)} \mathrm{y}_{3} \\
\therefore \mathrm{y}(10)= & \frac{(10-6)(10-9)(10-11)}{(5-6)(5-9)(5-11)}(12)+\frac{(10-5)(10-9)(10-11)}{(6-5)(6-9)(6-11)}(13) \\
& \quad+\frac{(10-5)(10-6)(10-11)}{(9-5)(9-6)(9-11)}(14)+\frac{(10-5)(10-6)(10-9)}{(11-5)(11-6)(11-9)}(16) \\
= & \frac{(4)(1)(-1)(12)}{(-1)(-4)(-6)}+\frac{(5)(1)(-1)(13)}{(1)(-3)(-5)}+\frac{(5)(4)(-1)(14)}{(4)(3)(-2)}+\frac{(5)(4)(1)(16)}{(6)(5)(2)} \\
= & 2-4.33+11.67+5.33 \\
= & 14.67
\end{aligned}
$$

Ex. Find the form of function given by

x	3	2	1	-1
y	3	12	15	-21

Solution: Given $\mathrm{x}_{0}=3, \mathrm{x}_{1}=2, \mathrm{x}_{2}=1, \mathrm{x}_{3}=-1$ and $\mathrm{y}_{0}=3, \mathrm{y}_{1}=12, \mathrm{y}_{2}=15, \mathrm{y}_{3}=-21$.
By Lagrange's Interpolation formula

$$
\begin{aligned}
& \hline \mathrm{f}(\mathrm{x})= \frac{\left(\mathrm{x}-\mathrm{x}_{1}\right)\left(\mathrm{x}-\mathrm{x}_{2}\right)\left(\mathrm{x}-\mathrm{x}_{3}\right)}{\left(\mathrm{x}_{0}-\mathrm{x}_{1}\right)\left(\mathrm{x}_{0}-\mathrm{x}_{2}\right)\left(\mathrm{x}_{0}-\mathrm{x}_{3}\right)} \mathrm{y}_{0}+\frac{\left(\mathrm{x}-\mathrm{x}_{0}\right)\left(\mathrm{x}-\mathrm{x}_{2}\right)\left(\mathrm{x}-\mathrm{x}_{3}\right)}{\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right)} \mathrm{y}_{1}+\frac{\left(\mathrm{x}-\mathrm{x}_{0}\right)\left(\mathrm{x}-\mathrm{x}_{1}\right)\left(\mathrm{x}-\mathrm{x}_{3}\right)}{\left(\mathrm{x}_{2}-\mathrm{x}_{0}\right)\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\left(\mathrm{x}_{2}-\mathrm{x}_{3}\right)} \mathrm{y}_{2} \\
&+\frac{\left(\mathrm{x}-\mathrm{x}_{0}\right)\left(\mathrm{x}-\mathrm{x}_{1}\right)\left(\mathrm{x}-\mathrm{x}_{2}\right)}{\left(\mathrm{x}_{3}-\mathrm{x}_{0}\right)\left(\mathrm{x}_{3}-\mathrm{x}_{1}\right)\left(\mathrm{x}_{3}-\mathrm{x}_{2}\right)} \mathrm{y}_{3} \\
&= \frac{(\mathrm{x}-2)(\mathrm{x}-1)(\mathrm{x}+1)}{(3-2)(3-1)(3+1)}(3)+\frac{(\mathrm{x}-3)(\mathrm{x}-1)(\mathrm{x}+1)}{(2-3)(2-1)(2+1)}(12)+\frac{(\mathrm{x}-3)(\mathrm{x}-2)(\mathrm{x}+1)}{(1-3)(1-2)(1+1)}(15) \\
&+\frac{(\mathrm{x}-3)(\mathrm{x}-2)(\mathrm{x}-1)}{(-1-3)(-1-2)(-1-1)}(-21) \\
&= \frac{(\mathrm{x}-2)(\mathrm{x}-1)(\mathrm{x}+1)}{(1)(2)(4)}(3)+\frac{(\mathrm{x}-3)(\mathrm{x}-1)(\mathrm{x}+1)}{(-1)(1)(3)}(12)+\frac{(\mathrm{x}-3)(\mathrm{x}-2)(\mathrm{x}+1)}{(-2)(-1)(2)}(15) \\
&=\frac{3}{8}(\mathrm{x}-2)(\mathrm{x}-1)(\mathrm{x}+1)-4(\mathrm{x}-3)(\mathrm{x}-1)(\mathrm{x}+1) \\
&+\frac{15}{4}(\mathrm{x}-4)(-3)(-2) \\
&= \frac{1}{8}[3(\mathrm{x}-2)(\mathrm{x}-1)(\mathrm{x}+1)-32(\mathrm{x}-3)(\mathrm{x}-1)(\mathrm{x}+1)+30(\mathrm{x}-3)(\mathrm{x}-2)(\mathrm{x}+1)+7(\mathrm{x}-3)(\mathrm{x}-2)(\mathrm{x}-1)] \\
&=\frac{1}{8} {\left[(3 \mathrm{x}-6)\left(\mathrm{x}^{2}-1\right)-(32 \mathrm{x}-96)\left(\mathrm{x}^{2}-1\right)+(30 \mathrm{x}-90)\left(\mathrm{x}^{2}-\mathrm{x}-2\right)+(7 \mathrm{x}-21)\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right)\right] } \\
&=\frac{1}{8} {\left[3 \mathrm{x}^{3}-3 \mathrm{x}-6 \mathrm{x}^{2}+6-32 \mathrm{x}^{3}+32 \mathrm{x}+96 \mathrm{x}^{2}-96+30 \mathrm{x}^{3}-30 \mathrm{x}^{2}-60 \mathrm{x}-90 \mathrm{x}^{2}+90 \mathrm{x}+180\right.} \\
&+\left.7 \mathrm{x}^{3}-21 \mathrm{x}^{2}+14 \mathrm{x}-21 \mathrm{x}^{2}+63 \mathrm{x}-42\right] \\
&=\frac{1}{8} {\left[8 \mathrm{x}^{3}-72 \mathrm{x}^{2}+136 \mathrm{x}+48\right] } \\
&= \mathrm{x}^{3}-9 \mathrm{x}^{2}+17 \mathrm{x}+6
\end{aligned}
$$

Ex. Find the cubic Lagrange's interpolating polynomial from the following data

x	0	1	2	5
y	2	3	12	147

Solution: Given $\mathrm{x}_{0}=0, \mathrm{x}_{1}=1, \mathrm{x}_{2}=2, \mathrm{x}_{3}=5$ and $\mathrm{y}_{0}=2, \mathrm{y}_{1}=3, \mathrm{y}_{2}=12, \mathrm{y}_{3}=147$.
By Lagrange's Interpolation formula

$$
\begin{align*}
f(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3} \\
= & \frac{(x-1)(x-2)(x-5)}{(0-1)(0-2)(0-5)}(2)+\frac{(x-0)(x-2)(x-5)}{(1-0)(1-2)(1-5)}(3)+\frac{(x-0)(x-1)(x-5)}{(2-0)(2-1)(2-5)}(12) \tag{12}\\
& +\frac{(x-0)(x-1)(x-2)}{(5-0)(5-1)(5-2)}(147) \\
= & -\frac{1}{5}(x-1)(x-2)(x-5)+\frac{3}{4} x(x-2)(x-5)
\end{align*}
$$

$$
\begin{aligned}
& -2 x(x-1)(x-5)+\frac{49}{20} x(x-1)(x-2) \\
= & \frac{1}{20}\left[-4(x-1)\left(x^{2}-7 x+10\right)+15 x\left(x^{2}-7 x+10\right)-40 x\left(x^{2}-6 x+5\right)+49 x\left(x^{2}-3 x+2\right)\right] \\
= & \frac{1}{20}\left[-4 x^{3}+28 x^{2}-40 x+4 x^{2}-28 x+40+15 x^{3}-105 x^{2}+150 x-40 x^{3}+240 x^{2}-200 x\right. \\
& \left.\quad+49 x^{3}-147 x^{2}+98 x\right] \\
= & \frac{1}{20}\left(20 x^{3}+20 x^{2}-20 x+40\right) \\
= & x^{3}+x^{2}-x+2
\end{aligned}
$$

Ex. Find the unique polynomial $p(x)$ of degree 2 such that $p(1)=1, p(3)=27, p(4)=64$ By Lagrange's method of interpolation.
Solution: Given $x_{0}=1, x_{1}=3, x_{2}=4$ and $y_{0}=1, y_{1}=27, y_{2}=64$.
By Lagrange's Interpolation formula

$$
\begin{aligned}
f(x) & =\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} y_{1}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} y_{2} \\
= & \frac{(x-3)(x-4)}{(1-3)(1-4)}(1)+\frac{(x-1)(x-4)}{(3-1)(3-4)}(27)+\frac{(x-1)(x-3)}{(4-1)(4-3)}(64) \\
= & \frac{1}{6}\left(x^{2}-7 x+12\right)-\frac{27}{2}\left(x^{2}-5 x+4\right)+\frac{64}{3}\left(x^{2}-4 x+3\right) \\
= & \frac{1}{6}\left(x^{2}-7 x+12-81 x^{2}+405 x-324+128 x^{2}-512 x+384\right) \\
= & \frac{1}{6}\left(48 x^{2}-114 x+72\right) \\
= & 8 x^{2}-19 x+12
\end{aligned}
$$

MULTIPLE CHOICE QUESTIONS (MCQ'S)

1) If E denote the shift operator, then $E f(x)=\ldots \ldots$
A) $f(x+h)$
B) $f(x-h)$
C) $f(x)$
D) None of these
2) If E denote the shift operator, then $E^{n} f(x)=\ldots \ldots$
A) $f(x+n h)$
B) $\mathrm{f}(\mathrm{x}-\mathrm{nh})$
C) $f(x)$
D) None of these
3) If E denote the shift operator, then $E^{-n} f(x)=$ \qquad
A) $f(x+n h)$
B) $\mathrm{f}(\mathrm{x}-\mathrm{nh})$
C) $f(x)$
D) None of these
4) If E denote the shift operator, then $E^{-1} f(x)=\ldots \ldots$
A) $f(x-h)$
B) $f(x+h)$
C) $f(x)$
D) None of these
5) If E denote the shift operator, then $E^{1 / 2} f(x)=\ldots \ldots$
A) $f\left(x-\frac{1}{2} h\right)$
B) $f\left(x+\frac{1}{2} h\right)$
C) $f(x)$
D) None of these
6) If E denote the shift operator, then $E^{-1 / 2} f(x)=\ldots \ldots$.
A) $f\left(x-\frac{1}{2} h\right)$
B) $f\left(x+\frac{1}{2} h\right)$
C) $f(x)$
D) None of these
7) $E^{2} \sin x=\ldots \ldots$
A) $\sin (x-2 h)$
B) $\sin (x-h)$
C) $\sin (x+2 h)$
D) $\sin (x+h)$
8) $E^{-2} \tan x=$ \qquad
A) $\tan (x-2 h)$
B) $\tan (x-h)$
C) $\tan (x+2 h)$
D) $\tan (x+h)$
9) If Δ denote the forward difference operator, then $\Delta f(x)=$
A) $f(x+h)+f(x)$
B) $f(x-h)-f(x)$
C) $f(x+h)-f(x)$
D) $f(x+h)$
10) Relation between forward difference operator Δ and shift operator E is \qquad
A) $\Delta=1+E$
B) $\Delta=1-E$
C) $\Delta=1+\mathrm{E}^{-1}$
D) $\Delta=\mathrm{E}-1$
11) $\Delta \log x=$
A) $\log (x+h)$
B) $\log \left(1+\frac{h}{x}\right)$
C) $\log (x-h)$
D) $\log \left(1-\frac{h}{x}\right)$
12) $\Delta \cos x=\ldots \ldots$
A) $\cos (x+h)$
B) $\cos (x+h)-\cos x$
C) $\cos (\mathrm{x}-\mathrm{h})$
D) $\cos x$
13) $\Delta e^{x}=$ \ldots.
A) $e^{x}+e^{h}$
B) $e^{x}(h-1)$
C) $e^{x}\left(e^{h}-1\right)$
D) $e^{x}\left(e^{h}+1\right)$
14) $\Delta \tan ^{-1} x=$
A) $\tan ^{-1}\left(\frac{h}{1+h x+x^{2}}\right)$
B) $\tan ^{-1}\left(\frac{x}{1+h x+x^{2}}\right)$
C) $\tan ^{-1}\left(\frac{h}{1-h x-x^{2}}\right)$
D) None of these
15) If Δ denote the forward difference operator, then $\Delta^{2} f(x)=\ldots \ldots$.
A) $f(x+2 h)-2 f(x+h)+f(x)$
B) $f(x-h)-f(x)$
C) $f(x+h)-f(x)$
D) $f(x+2 h)+2 f(x+h)+f(x)$
16) $\Delta^{2} e^{x}=$
A) $e^{x}+e^{h}$
B) $e^{x}\left(e^{h}-1\right)^{2}$
C) $\mathrm{e}^{\mathrm{x}}\left(\mathrm{e}^{\mathrm{h}}-1\right)$
D) $\mathrm{e}^{\mathrm{x}}\left(\mathrm{e}^{\mathrm{h}}+1\right)$
17) $\Delta^{2} \cos 2 x=\ldots \ldots$
A) $\cos (2 x+4 h)-\cos (2 x+2 h)+\cos 2 x$
B) $\cos (2 x+2 h)-2 \cos (2 x+h)+\cos 2 x$
C) $\cos (2 x+4 h)-2 \cos (2 x+2 h)+\cos 2 x$
D) None of these
18) If Δ denote the forward difference operator, then $\Delta^{3} f(x)=\ldots \ldots$
A) $f(x+2 h)-2 f(x+h)+f(x)$
B) $f(x+3 h)-3 f(x+2 h)+3 f(x+h)-f(x)$
C) $f(x+2 h)+2 f(x+h)+f(x)$
D) $f(x+3 h)+3 f(x+2 h)+3 f(x+h)+f(x)$
19) If n values of $f(x)$ are given, then
A) $\Delta^{n} f(x)>0$
B) $\Delta^{n} f(x)=0$
C) $\Delta^{n} f(x)<0$
D) $\Delta^{\mathrm{n}} \mathrm{f}(\mathrm{x}) \neq 0$
20) $n^{\text {th }}$ order forward difference of a polynomial $P_{n}(x)$ of degree n is \qquad
A) constant
B) 0
C) x
D) None of these
21) $n^{\text {th }}$ order forward difference of a polynomial of degree $\leq(n-1)$ is $\ldots \ldots$
A) constant
B) 0
C) x
D) None of these
22) If ∇ denote the backward difference operator, then $\nabla f(x)=\ldots \ldots$
A) $f(x+h)-f(x)$
B) $f(x)-f(x-h)$
C) $f(x+h)+f(x)$
D) $f(x-h)$
23) $\Delta f\left(x_{i}\right)=\ldots$.
A) $\nabla f\left(x_{i-1}\right)$
B) $\nabla f\left(x_{i}\right)$
C) $\nabla f\left(x_{i+1}\right)$
D) $\nabla f\left(x_{i+2}\right)$
24) Relation between backward difference operator ∇ and shift operator E is
A) $\nabla=1+E$
B) $\nabla=1-E$
C) $\nabla=1-E^{-1}$
D) $\nabla=E-1$
25) If ∇ is backward difference operator and E is shift operator, then $E \nabla=$
A) E
B) ∇
C) Δ
D) $\mathrm{E}+1$
26) If Δ is forward difference operator and E is shift operator, then $E^{-1} \Delta=\ldots$..
A) E
B) ∇
C) Δ
D) E^{-1}
27) If ∇ denote the backward difference operator, then $\nabla \sin x=$ \qquad
A) $\sin x-\sin (x-h)$
B) $\sin (x+h)-\sin x$
C) $\sin (x-h)-\sin x$
D) None of these
28) If ∇ denote the backward difference operator, then $\nabla \sec x=$
A) $\sec (x-h)-\sec x$
B) $\sec (x+h)-\sec x$
C) $\sec x-\sec (x-h)$
D) None of these
29) $\nabla e^{x}=$
A) $e^{x}+e^{h}$
B) $e^{x}(h-1)$
C) $e^{\mathrm{x}}\left(1-e^{-\mathrm{h}}\right)$
D) $e^{x}\left(e^{h}+1\right)$
30) If ∇ denote the backward difference operator, then $\nabla^{2} f(x)=\ldots .$.
A) $f(x+h)-f(x)$
B) $f(x)-f(x+h)$
C) $f(x)-2 f(x-h)+f(x-2 h)$
D) $f(x+2 h)+2 f(x+h)+f(x)$
31) If ∇ denote the backward difference operator, then $\nabla^{2} e^{x}=\ldots \ldots$
A) $e^{\mathrm{x}}\left(1+\mathrm{e}^{-\mathrm{h}}\right)^{2}$
B) $e^{x}\left(1-e^{-h}\right)^{2}$
C) $\mathrm{e}^{\mathrm{x}}\left(\mathrm{e}^{\mathrm{h}}-1\right)^{2}$
D) None of these
32) If ∇ denote the backward difference operator, then $\nabla^{3} f(x)=$ \qquad
A) $f(x+2 h)+2 f(x+h)+f(x)$
B) $f(x)-f(x+h)+f(x+2 h)$
C) $f(x)-2 f(x-h)+f(x-2 h)$
D) $f(x)-3 f(x-h)+3 f(x-2 h)-f(x-3 h)$
33) If δ denote the central difference operator, then $\delta f(x)=$ \qquad
A) $f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right)$
B) $f\left(x+\frac{h}{2}\right)+f\left(x-\frac{h}{2}\right)$
C) $f(x+h)-f(x-h)$
D) $f(x-h)-f(x+h)$
34) Relation between central difference operator δ and shift operator E is
A) $\delta=\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}$
B) $\delta=E+E^{-1}$
C) $\delta=E-E^{-1}$
D) $\delta=\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}$
35) If δ denote the central difference operator, then $\delta f\left(x+\frac{h}{2}\right)=\delta f_{1 / 2}=\ldots$..
A) $f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right)$
B) $f\left(x+\frac{h}{2}\right)+f\left(x-\frac{h}{2}\right)$
C) $f(x+h)-f(x)$
D) $f(x-h)-f(x+h)$
36) If δ denote the central difference operator, then $\delta f\left(x+\frac{3 h}{2}\right)=\delta f_{3 / 2}=\ldots \ldots$
A) $f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right)$
B) $f(x+2 h)-f(x+h)$
C) $f(x+h)-f(x-h)$
D) $f(x-h)-f(x+h)$
37) If Δ and ∇ are forward and backward difference operators respectively, then $\nabla \Delta=\Delta \nabla=$
A) E
B) δ
C) Δ
D) δ^{2}
38) If δ is central difference operator and E is shift operator, then $\delta^{2} E=$ \qquad
A) δ
B) Δ
C) Δ^{2}
D) E^{-1}
39) If μ denote an averaging operator, then $\mu \mathrm{f}(\mathrm{x})=\ldots$..
A) $\frac{1}{2}[\mathrm{f}(\mathrm{x}+\mathrm{h} / 2)+\mathrm{f}(\mathrm{x}-\mathrm{h} / 2)]$
B) $\frac{1}{2}[\mathrm{f}(\mathrm{x}+\mathrm{h} / 2)-\mathrm{f}(\mathrm{x}-\mathrm{h} / 2)]$
C) $[\mathrm{f}(\mathrm{x}+\mathrm{h} / 2)+\mathrm{f}(\mathrm{x}-\mathrm{h} / 2)]$
D) $[f(x+h / 2)-f(x-h / 2)]$
40) Relation between an averaging operator μ and shift operator E is
A) $\mu=\frac{1}{2}\left(\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}\right)$
B) $\mu=\frac{1}{2}\left(\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}\right)$
C) $\mu=\frac{1}{2}\left(\mathrm{E}^{-1 / 2}-\mathrm{E}^{1 / 2}\right)$
D) $\mu=\frac{1}{2}\left(\mathrm{E}-\mathrm{E}^{-1}\right)$
41) If μ is an averaging operator and δ is a central difference operator, then $\mu-\frac{\delta}{2}=\ldots$..
A) $\frac{1}{2} E^{1 / 2}$
B) $\frac{1}{2} \mathrm{E}^{-1 / 2}$
C) $E^{1 / 2}$
D) $E^{-1 / 2}$
42) If Δ and ∇ are forward and backward difference operators respectively, then $\frac{\Delta}{\nabla}-\frac{\nabla}{\Delta}=.$.
A) $\Delta+\nabla$
B) $\Delta-\nabla$
C) $\nabla-\Delta$
D) None of these
43)If μ is an averaging operator and δ is a central difference operator, then $\mu \delta=\ldots$...
A) $\frac{1}{2}(\Delta-\nabla)$
B) $\frac{1}{2}(\nabla-\Delta)$
C) $\frac{1}{2}(\Delta+\nabla)$
D) $\mathrm{E}^{-1 / 2}$
43) If μ is an averaging operator and δ is a central difference operator, then $\delta[\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})]=\ldots .$.
A) $\delta \mathrm{f}(\mathrm{x}) \mu \mathrm{g}(\mathrm{x})-\mu \mathrm{f}(\mathrm{x}) \delta \mathrm{g}(\mathrm{x})$
B) $\delta f(x) \mu g(x)+\mu f(x) \delta g(x)$
C) $\delta \mathrm{f}(\mathrm{x}) \delta \mathrm{g}(\mathrm{x})+\delta \mathrm{f}(\mathrm{x}) \delta \mathrm{g}(\mathrm{x})$
D) $\mu \mathrm{f}(\mathrm{x}) \mu \mathrm{g}(\mathrm{x})+\mu \mathrm{f}(\mathrm{x}) \mu \mathrm{g}(\mathrm{x})$
44)

$y_{p}=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{-1}+\frac{p\left(p^{2}-1\right)}{3!} \Delta^{3} y_{-1}+\frac{p\left(p^{2}-1\right)(p-2)}{4!} \Delta^{4} y_{-2}+\frac{p\left(p^{2}-1\right)\left(p^{2}-4\right)}{5!} \Delta^{5} y_{-2}$
$+\ldots .$. is known as the Gauss central difference formula.
A) forward
B) backward
C) shift
D) average
46) $y_{p}=y_{0}+p \Delta y_{-1}+\frac{p(p+1)}{2!} \Delta^{2} y_{-1}+\frac{p\left(p^{2}-1\right)}{3!} \Delta^{3} y_{-2}+\frac{p\left(p^{2}-1\right)(p+2)}{4!} \Delta^{4} y_{-2}+\frac{p\left(p^{2}-1\right)\left(p^{2}-4\right)}{5!} \Delta^{5} y_{-3}$ $+\ldots .$. is known as the Gauss central difference formula.
A) forward
B) backward
C) shift
D) average
47) If $y=f(x)$ takes the values y_{0}, y_{1}, y_{2} corresponding to x_{0}, x_{1}, x_{2} then Lagrange's Interpolation formula for $\mathrm{f}(\mathrm{x})=$
A) $\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} y_{1}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} y_{2}$
B) $\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} y_{0}$
C) $\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} y_{0}-\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} y_{1}-\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} y_{2}$
D) $\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} y_{1}$
48) Lagrange's Interpolation Formula is used for intervals
A) equal
B) unequal
C) both equal and unequal
D) closed
49) Statement 'Lagrange's Interpolation Formula is used for both equal and unequal intervals' is
A) true
B) false
C) may or may not be true
D) None of these
50) The polynomial $\mathrm{p}(\mathrm{x})$ of degree 2 such that $\mathrm{p}(1)=1, \mathrm{p}(3)=27, \mathrm{p}(4)=64$ is
A) $8 x^{2}-19 x+12$
B) $8 x^{2}-19 x-12$
C) $8 x^{2}+19 x+12$
D) None of these
51) The cubic polynomial obtained by using the data is

x	0	1	2	5
y	2	3	12	147

A) $x^{3}+x^{2}+x+2$
B) $x^{3}+x^{2}-x+2$
C) $x^{3}+x^{2}-x-2$
D) None of these

UNIT-3: CURVE FITTING

Error of Approximation: Let $y=f(x)$ be a continuous curve fitting the given data $\left(x_{i}, y_{i}\right), i=1,2, \ldots \ldots n$, then $E_{i}=y_{i}-f\left(x_{i}\right)$ is called error of approximation.
Least Square Method: The least square method requires that the sum of squares of the errors at all the points i.e. $\sum_{i=1}^{n} E_{i}^{2}=\sum_{i=1}^{n}\left[y_{i}-\mathrm{f}\left(x_{i}\right)\right]^{2}$ must be minimum.
Weierstrass Theorem: If $\mathrm{f}(\mathrm{x})$ is a continuous function in the interval $[\mathrm{a}, \mathrm{b}]$, then to each $\epsilon>0$, there exists a polynomial $\mathrm{P}(\mathrm{x})$ such that $|f(x)-P(x)|<\epsilon \forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}]$.

Linear Curve Fitting-Fitting of Straight Line: Let the data $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=1,2, \ldots \ldots \mathrm{n}$ be given. We can find least square approximation to the given data in the form $y=f(x)=a+b x$
Error of approximation $=y_{i}-f\left(x_{i}\right)=y_{i}-a-b x_{i}$
The sum of squares of the errors should be minimum.
i.e. $\mathrm{S}(\mathrm{a}, \mathrm{b})=\sum_{i=1}^{n}\left[y_{i}-\mathrm{a}-\mathrm{b} x_{i}\right]^{2}=$ minimum.

Now, $\mathrm{S}(\mathrm{a}, \mathrm{b})$ is a function of the two variables a and b . By necessary condition
$\mathrm{S}(\mathrm{a}, \mathrm{b})$ is minimum if $\frac{\partial S}{\partial a}=-2 \sum_{i=1}^{n}\left(y_{i}-\mathrm{a}-\mathrm{b} x_{i}\right)=0$
i.e. $\sum_{i=1}^{n}\left(y_{i}-\mathrm{a}-\mathrm{b} x_{i}\right)=0$
i.e. $\sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n} \mathrm{a}+\sum_{i=1}^{n} \mathrm{~b} x_{i}$
i.e. $\sum_{i=1}^{n} y_{i}=n a+b \sum_{i=1}^{n} x_{i}$
$\& \frac{\partial S}{\partial b}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\mathrm{a}-\mathrm{b} x_{i}\right)=0$
i.e. $\sum_{i=1}^{n} x_{i}\left(y_{i}-\mathrm{a}-\mathrm{b} x_{i}\right)=0$
i.e. $\sum_{i=1}^{n} x_{i} y_{i}-\mathrm{a} x_{i}-\mathrm{b} x_{i}{ }^{2}=0$
i.e. $\sum_{i=1}^{n} x_{i} y_{i}=\sum_{i=1}^{n} \mathrm{a} x_{i}+\sum_{i=1}^{n} \mathrm{~b} x_{i}^{2}$
i.e. $\sum_{i=1}^{n} x_{i} y_{i}=a \sum_{i=1}^{n} x_{i}+b \sum_{i=1}^{n} x_{i}^{2}$

By given data $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=1,2, \ldots . . \mathrm{n}$, we can find the sums occurred in equations (2) and (3) and solving these equations, we get values of a and b, putting these values in (1), we approximation of straight line which fit the given data. Equations (2) and (3) are called the normal equations for fitting a straight line to a given data.

Ex. Fit a least square straight line approximation to the data

x	0.5	1.0	1.5	2.0	2.5	3.0
y	0.31	0.82	1.29	1.85	2.51	3.02

Find the least squares error.

Solution: Let the straight line be $y=f(x)=a+b x \ldots \ldots$. (1), the number of the given data values are $\mathrm{n}=6$. The normal equations for fitting a straight line to a given data are

$$
\begin{align*}
& \sum_{i=1}^{6} y_{i}=6 a+b \sum_{i=1}^{6} x_{i} \ldots \ldots \text { (2) } \tag{2}\\
& \sum_{i=1}^{6} x_{i} y_{i}=a \sum_{i=1}^{6} x_{i}+b \sum_{i=1}^{6} x_{i}^{2} . \tag{3}
\end{align*}
$$

	x_{i}	y_{i}	$x_{i}{ }^{2}$	$x_{i} y_{i}$
	0.5	0.31	0.25	0.155
	1.0	0.82	1.00	0.820
	1.5	1.29	2.25	1.935
	2.0	1.85	4.00	3.700
	2.5	2.51	6.25	6.275
	3.0	3.02	9.00	9.060
\sum.	10.5	9.80	22.75	21.945

Using these values of sums, from equations (2) and (3), we get,
$6 a+10.5 b=9.80$ i.e. $a+1.75 b=1.63$
$\& 10.5 \mathrm{a}+22.75 \mathrm{~b}=21.945$ i.e. $\mathrm{a}+2.167 \mathrm{~b}=2.09$
Solving these equations, we get, $a=-0.28467$ and $b=1.096$
\therefore Required straight line which fit a given data approximately is $y=f(x)=-0.28467+1.096 x$
Now the least square error is

$$
\begin{aligned}
\sum_{i=1}^{n}\left[y_{i}-\mathrm{f}\left(x_{i}\right)\right]^{2}= & \sum_{i=1}^{6}\left[y_{i}+0.28467-1.096 x_{i}\right]^{2} \\
& =0.002178+0.000075+0.004807+0.003287 \\
& +0.002989+0.000278 \\
& =0.013614
\end{aligned}
$$

Ex. Obtain the least square straight line fit the following data

x	0.2	0.4	0.6	0.8	1
y	0.447	0.632	0.775	0.894	1

Find the least squares error.
Solution: Let the straight line be $\mathrm{y}=\mathrm{a}+\mathrm{bx} \ldots \ldots$ (1), the number of the given data values are $\mathrm{n}=5$. The normal equations for fitting a straight line to a given data are

$$
\begin{align*}
& \sum_{i=1}^{5} y_{i}=5 a+b \sum_{i=1}^{5} x_{i} \ldots \ldots \text { (2) } \tag{2}\\
& \sum_{i=1}^{5} x_{i} y_{i}=a \sum_{i=1}^{5} x_{i}+b \sum_{i=1}^{5} x_{i}^{2} . \tag{3}
\end{align*}
$$

	x_{i}	y	$x_{i}{ }^{2}$	$x_{i} y_{i}$
	0.2	0.447	0.25	0.155
	0.4	0.632	1.00	0.082
	0.6	0.775	2.25	1.935
	0.8	0.894	4.00	3.700
	1.0	1.000	6.25	6.275
\sum.	3.0	3.748	2.5224	2.200

Using these values of sums, from equations (2) and (3), we get,
$5 a+3 b=3.748$ i.e. $a+0.6 b=0.7496$
$\& 3 \mathrm{a}+2.5224 \mathrm{~b}=2.2$ i.e. $\mathrm{a}+0.8408 \mathrm{~b}=0.73333$
Solving these equations, we get, $\mathrm{a}=0.3392$ and $\mathrm{b}=0.684$
\therefore Required straight line which fit a given data approximately is
$y=0.3392+0.684 x$
Now the least square error is

$$
\begin{aligned}
\sum_{i=1}^{n}\left[y_{i}-\mathrm{f}\left(x_{i}\right)\right]^{2} & =\sum_{i=1}^{5}\left[y_{i}-0.3392-0.684 x_{i}\right]^{2} \\
& =0.000841+0.000369+0.000645+0.000058+0.000538 \\
& =0.00245
\end{aligned}
$$

Ex. Fit a straight line for the following data

x	1	2	3	4	6	8
y	2.4	3	3.6	4	5	6

Find the least squares error.
Solution: Let the straight line be $\mathrm{y}=\mathrm{a}+\mathrm{bx} \ldots \ldots$. (1), the number of the given data values are $\mathrm{n}=6$. The normal equations for fitting a straight line to a given data are

$$
\begin{align*}
& \sum_{i=1}^{6} y_{i}=6 a+b \sum_{i=1}^{6} x_{i} \ldots \ldots . \tag{2}\\
& \sum_{i=1}^{6} x_{i} y_{i}=a \sum_{i=1}^{6} x_{i}+b \sum_{i=1}^{6} x_{i}^{2} . \tag{3}
\end{align*}
$$

	x_{i}	y	$x_{i}{ }^{2}$	$x_{i} y_{i}$
	1	2.4	2.4	1
	2	3	6	4
	3	3.6	10.8	9
	4	4	16	16
	6	5	30	36
	8	6	48	64
	24	24	113.2	130

Using these values of sums, from equations (2) and (3), we get,
$6 a+24 b=24$ i.e. $a+4 b=4$
$\& 24 a+113.2 b=130$ i.e. $a+4.4716 b=5.4162$
Solving these equations, we get, $a=1.976$ and $b=0.506$
\therefore Required straight line which fit a given data approximately is

$$
y=1.976+0.506 x
$$

Ex. Using the method of least square fit a straight line to the following data

x	1	2	3	4	5
y	2	4	6	8	10

Find the least squares error.
Solution: Let the straight line be $\mathrm{y}=\mathrm{a}+\mathrm{bx} \ldots \ldots$. (1), the number of the given data values are $\mathrm{n}=5$. The normal equations for fitting a straight line to a given data are

$$
\begin{equation*}
\sum_{i=1}^{5} y_{i}=5 a+b \sum_{i=1}^{5} x_{i} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{5} x_{i} y_{i}=a \sum_{i=1}^{5} x_{i}+b \sum_{i=1}^{5} x_{i}^{2} . \tag{3}
\end{equation*}
$$

	x_{i}	y	$x_{i}{ }^{2}$	$x_{i} y_{i}$
	1	2	1	2
	2	4	4	8
	3	6	9	18
	4	8	-16	32
	5	10	25	50
\sum.	15	30	55	110

Using these values of sums, from equations (2) and (3), we get,
$5 a+15 b=30$ i.e. $a+3 b=6$
$\& 15 \mathrm{a}+55 \mathrm{~b}=110$ i.e. $\mathrm{a}+\frac{11}{3} \mathrm{~b}=\frac{22}{3}$
Solving these equations, we get, $\mathrm{a}=0$ and $\mathrm{b}=2$
\therefore Required straight line which fit a given data approximately is $\mathrm{y}=2 \mathrm{x}$.

Ex. By the method of least squares, find the straight line that best fits the following data

x	1	2	3	4	5
y	14	27	40	55	68

Solution: Let the straight line be $\mathrm{y}=\mathrm{a}+\mathrm{bx} \ldots \ldots$. (1), the number of the given data values are $\mathrm{n}=5$. The normal equations for fitting a straight line to a given data are

$$
\begin{align*}
& \sum_{i=1}^{5} y_{i}=5 a+b \sum_{i=1}^{5} x_{i} \ldots \ldots . \\
& \sum_{i=1}^{5} x_{i} y_{i}=a \sum_{i=1}^{5} x_{i}+b \sum_{i=1}^{5} x_{i}^{2} . \tag{2}
\end{align*}
$$

	x_{i}	y	$x_{i}{ }^{2}$	$x_{i} y_{i}$
	1	14	1	14
	2	57	4	114
	3	40	9	120
	4	55	16	220
	5	68	25	340
	15	204	55	748

Using these values of sums, from equations (2) and (3), we get,
$5 a+15 b=204$ i.e. $a+3 b=40.8$
$\& 15 a+55 b=748$ i.e. $a+\frac{11}{3} b=\frac{748}{15}$
Solving these equations, we get, $\mathrm{a}=0$ and $\mathrm{b}=13.6$
\therefore Required straight line which fit a given data approximately is $\mathrm{y}=13.6 \mathrm{x}$.

Non-Linear Curve Fitting-Fitting of Quadratic Equation:

Let the data $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=1,2, \ldots \ldots \mathrm{n}$ be given. We can find least square approximation to the given data in the form
$y=f(x)=a+b x+c x^{2}$
Error of approximation $=y_{i}-f\left(x_{i}\right)=y_{i}-a-b x_{i}-c x_{i}^{2}$
The sum of squares of the errors should be minimum.
i.e. $\mathrm{S}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum_{i=1}^{n}\left[y_{i}-\mathrm{a}-\mathrm{bxi}-\mathrm{c} x_{i}^{2}\right]^{2}=$ minimum.
i.e. $\mathrm{S}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum_{i=1}^{n}\left[\mathrm{a}+\mathrm{bxi}+\mathrm{c} x_{i}^{2}-y_{i}\right]^{2}=$ minimum.

Now, $\mathrm{S}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is a function of the three variables a, b and c . By necessary condition if $\mathrm{S}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is minimum, then
$\frac{\partial S}{\partial a}=2 \sum_{i=1}^{n}\left(\mathrm{a}+\mathrm{bxi}+\mathrm{c} x_{i}^{2}-y_{i}\right)=0$
i.e. $\sum_{i=1}^{n}\left(\mathrm{a}+\mathrm{bxi}+\mathrm{c} x_{i}^{2}-y_{i}\right)=0$
i.e. $\sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n} \mathrm{a}+\sum_{i=1}^{n} \mathrm{~b} x_{i}+\sum_{i=1}^{n} \mathrm{c} x_{i}^{2}$
i.e. $\sum_{i=1}^{n} y_{i}=n a+b \sum_{i=1}^{n} x_{i}+c \sum_{i=1}^{n} x_{i}^{2}$.
$\frac{\partial S}{\partial b}=2 \sum_{i=1}^{n} x_{i}\left(\mathrm{a}+\mathrm{b} x_{i}+\mathrm{c} x_{i}^{2}-y_{i}\right)=0$
i.e. $\sum_{i=1}^{n} x_{i}\left(\mathrm{a}+\mathrm{b} x_{i}+\mathrm{c} x_{i}^{2}-y_{i}\right)=0$
i.e. $\sum_{i=1}^{n} x_{i} y_{i}=\sum_{i=1}^{n} \mathrm{a} x_{i}+\sum_{i=1}^{n} \mathrm{~b} x_{i}{ }^{2}+\sum_{i=1}^{n} \mathrm{c} x_{i}^{3}$
i.e. $\sum_{i=1}^{n} x_{i} y_{i}=a \sum_{i=1}^{n} x_{i}+b \sum_{i=1}^{n} x_{i}^{2}+c \sum_{i=1}^{n} x_{i}^{3} \ldots \ldots$.
$\& \frac{\partial S}{\partial c}=2 \sum_{i=1}^{n} x_{i}^{2}\left(\mathrm{a}+\mathrm{b} x_{i}+\mathrm{c} x_{i}^{2}-y_{i}\right)=0$
i.e. $\sum_{i=1}^{n} x_{i}^{2}\left(\mathrm{a}+\mathrm{b} x_{i}+\mathrm{c} x_{i}^{2}-y_{i}\right)=0$
i.e. $\sum_{i=1}^{n} x_{i}^{2} y_{i}=\sum_{i=1}^{n} \mathrm{a} x_{i}^{2}+\sum_{i=1}^{n} \mathrm{~b} x_{i}^{3}+\sum_{i=1}^{n} \mathrm{c} x_{i}^{4}$
i.e. $\sum_{i=1}^{n} x_{i}^{2} y_{i}=a \sum_{i=1}^{n} x_{i}^{2}+b \sum_{i=1}^{n} x_{i}^{3}+c \sum_{i=1}^{n} x_{i}^{4} \ldots$.

By given data $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=1,2, \ldots . . \mathrm{n}$, we can find the sums occurred in equations (2), (3) and (4) and solving these equations, we get values of a, b and c, putting these values in (1), we get equation of parabola which fit the given data approximately. Equations (2), (3) and (4) are called the normal equations for fitting a non-linear curve i.e. quadratic curve i.e. parabola to a given data.

Ex. Find the least squares approximation of second degree, to the discrete data

x	-2	-1	0	1	2
y	15	1	1	3	19

Solution: Let the second degree approximation is $y=f(x)=a+b x+c x^{2} \ldots \ldots$ (1) the number of the given data values are $n=5$. The normal equations for fitting a second degree curve to a given data are

$$
\begin{align*}
& \sum_{i=1}^{5} y_{i}=5 a+b \sum_{i=1}^{5} x_{i}+c \sum_{i=1}^{5} x_{i}^{2} \ldots \ldots \\
& \sum_{i=1}^{5} x_{i} y_{i}=a \sum_{i=1}^{5} x_{i}+b \sum_{i=1}^{5} x_{i}^{2}+c \sum_{i=1}^{5} x_{i}^{3} \tag{3}\\
& \& \sum_{i=1}^{5} x_{i}^{2} y_{i}=a \sum_{i=1}^{5} x_{i}^{2}+b \sum_{i=1}^{5} x_{i}^{3}+c \sum_{i=1}^{5} x_{i}^{4} . \tag{4}
\end{align*}
$$

	x_{i}	y_{i}	$x_{i}{ }^{2}$	$x_{i}{ }^{3}$	$x_{i}{ }^{4}$	$x_{i} y_{i}$	$x_{i}^{2} y_{i}$
	-2	15	4	-8	16	-30	60
	-1	1	1	-1	1	-1	1
	0	1	0	0	0	0	0
	1	3	1	1	1	3	3
	2	19	4	8	16	38	76
\sum.	0	39	10	0	34	10	140

Using these values of sums, from equations (2), (3) and (4), we get,
$5 \mathrm{a}+0+10 \mathrm{c}=39$ i.e. $\mathrm{a}+2 \mathrm{c}=\frac{39}{5}$
$0+10 b+0=10$ i.e. $b=1$
$\& 10 a+0+34 c=140$ i.e. $a+\frac{17}{5} c=14$
Solving these equations, we get, $\mathrm{a}=-\frac{37}{35}, \mathrm{~b}=1$ and $\mathrm{c}=\frac{31}{7}$
\therefore Required equation of second degree which fit a given data approximately is
$y=-\frac{37}{35}+x+\frac{31}{7} x^{2}=\frac{1}{35}\left(-37+35 x+155 x^{2}\right)$

Ex. Fit a parabola of second degree of the following data

x	0	1	2	3	4
y	1	4	10	17	30

Solution: Let the second degree approximation is $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2} \ldots \ldots$. (1)
the number of the given data values are $\mathrm{n}=5$. The normal equations for fitting a second degree curve to a given data are

	x_{i}	y_{i}	$x_{i}{ }^{2}$	$x_{i}{ }^{3}$	$x_{i}{ }^{4}$	$x_{i} y_{i}$	$x_{i}^{2} y_{i}$
	0	1	0	0	0	0	0
	1	4	1	1	1	4	4
	2	10	4	8	16	20	40
	3	17	9	27	81	51	153
	4	30	16	64	256	120	480
\sum.	10	62	30	100	354	195	677

Using these values of sums, from equations (2), (3) and (4), we get,
$5 \mathrm{a}+10 \mathrm{~b}+30 \mathrm{c}=62$ i.e. $\mathrm{a}+2 \mathrm{~b}+6 \mathrm{c}=12.4$
$10 a+30 b+100 c=195$ i.e. $a+3 b+10 c=19.5$
$\& 30 a+100 b+354 c=677$ i.e. $a+3.33 b+11.8 c=22.567$
Solving these equations, we get, $\mathrm{a}=1.2, \mathrm{~b}=1.1$ and $\mathrm{c}=1.5$
\therefore Required equation parabola of second degree which fit a given data approximately is $\mathrm{y}=1.2+1.1 \mathrm{x}+1.5 \mathrm{x}^{2}$

Ex. Fit a parabola of second degree, to the following data

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

Solution: Let the second degree approximation is $y=f(x)=a+b x+c x^{2}$
the number of the given data values are $\mathrm{n}=5$. The normal equations for fitting a second degree curve to a given data are

$\sum_{i=1}^{5} y_{i}=5 a+b \sum_{i=1}^{5} x_{i}+c \sum_{i=1}^{5} x_{i}^{2} \ldots \ldots$ (2)							
$\sum_{i=1}^{5} x_{i} y_{i}=a \sum_{i=1}^{5} x_{i}+b \sum_{i=1}^{5} x_{i}{ }^{2}+c \sum_{i=1}^{5} x_{i}^{3}$.							
\& $\sum_{i=1}^{5} x_{i}^{2} y_{i}=a \sum_{i=1}^{5} x_{i}^{2}+b \sum_{i=1}^{5} x_{i}^{3}+c \sum_{i=1}^{5} x_{i}^{4} \ldots \ldots$ (4)							
	x_{i}	y_{i}	$x_{i}{ }^{2}$	$x_{i}{ }^{3}$	$x_{i}{ }^{4}$	$x_{i} y_{i}$	$x_{i}^{2} y_{i}$
	0	1	0	0	0	0	0
	1	1.8	1	1	1	1.8	1.8
	2	1.3	4	8	16	2.6	5.2
	3	2.5	9	27	81	7.5	22.5
	4	6.3	16	64	256	25.2	100.8
Σ.	10	12.9	30	100	354	37.1	130.3

Using these values of sums, from equations (2), (3) and (4), we get,
$5 \mathrm{a}+10 \mathrm{~b}+30 \mathrm{c}=12.9$ i.e. $\mathrm{a}+2 \mathrm{~b}+6 \mathrm{c}=2.58$
$10 a+30 b+100 c=37.1$ i.e. $a+3 b+10 c=3.71$
$\& 30 a+100 b+354 c=130.3$ i.e. $a+3.33 b+11.8 c=4.34$
Solving these equations, we get, $\mathrm{a}=1.42, \mathrm{~b}=-1.07$ and $\mathrm{c}=0.55$
\therefore Required equation parabola of second degree which fit a given data approximately is $\mathrm{y}=1.42-1.07 \mathrm{x}+0.55 \mathrm{x}^{2}$

Fitting an Exponential Curve of Type $y=a e^{b x}$. Let $y=a e^{b x}$ be the exponential curve which fit the given data $\left(x_{i}, y_{i}\right), i=1,2, \ldots \ldots . n$. First we reduce it to linear form by taking logarithm on both sides as:
$\log _{m} \mathrm{y}=\log _{m} \mathrm{a}+\mathrm{bx} \log _{m} \mathrm{e}$
i.e. $\mathrm{Y}=\mathrm{A}+\mathrm{Bx}$, which is linear equation having normal equations
$\sum Y=\mathrm{nA}+\mathrm{B} \sum x$
and $\sum x Y=\mathrm{A} \sum x+\mathrm{B} \sum x^{2} \ldots \ldots$. (3),
where, $\mathrm{Y}=\log _{m} \mathrm{y}, \mathrm{A}=\log _{m} \mathrm{a}$ and $\mathrm{B}=b \log _{m} e$

Solving these equations, we get values of A and B. From this we find values of a and b discussed in two cases.
Case-i) When $\mathrm{m}=\mathrm{e}$, then $\mathrm{A}=\log _{e}$ a i.e. $\mathrm{a}=\mathrm{e}^{\mathrm{A}}$ and $\mathrm{B}=\log _{e} e=\mathrm{b}$.
Case-ii) When $\mathrm{m}=10$, then $\mathrm{A}=\log _{10}$ a i.e. $\mathrm{a}=10^{\mathrm{A}}$ and $\mathrm{B}=\operatorname{blog}_{10} e=(0.4343) \mathrm{b}$
Fitting a Logarithmic Curve of Type $y=a x^{b}$. Let $y=a x^{b}$.
be the logarithmic curve which fit the given data $\left(x_{i}, y_{i}\right), i=1,2, \ldots \ldots n$.
First we reduce it to linear form by taking logarithm on both sides as:
$\log y=\log a+b \log x$
i.e. $\mathrm{Y}=\mathrm{A}+\mathrm{bX}$, which is linear equation having normal equations
$\sum Y=\mathrm{nA}+\mathrm{b} \sum X$
and $\sum X Y=\mathrm{A} \sum X+\mathrm{b} \sum X^{2}$
where $\mathrm{X}=\log \mathrm{x}, \mathrm{Y}=\log \mathrm{y}$ and $\mathrm{A}=\log \mathrm{a}$.
Solving these equations, we get values of $A=\log a$ i.e. $a=e^{A}$ and b, putting these values in (1), we approximation of an exponential curve which fit the given data. Equations (2) and (3) are called the normal equations for fitting a straight line to a given data.

Ex. Using the method of least squares fit the non-linear curve of the form $y=a e^{b x}$ to the following data

x	0	2	4
y	5.012	10	31.62

Solution: Let $\mathrm{y}=\mathrm{ae} \mathrm{a}^{\mathrm{bx}}$

be the exponential curve which fit the given data $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=1,2,3$.
First we reduce it to linear form by taking logarithm of base 10 on both sides as:
$\log _{10} y=\log _{10} a+b x \log _{10} e$
i.e. $\mathrm{Y}=\mathrm{A}+\mathrm{Bx}$, which is linear equation having normal equations
$\sum Y=3 \mathrm{~A}+\mathrm{B} \sum x \ldots \ldots$ (2)
and $\sum x Y=\mathrm{A} \sum x+\mathrm{B} \sum x^{2} \ldots \ldots$. (3),
where $\mathrm{Y}=\log _{10} \mathrm{y}$ and $\mathrm{A}=\ln a$ and $\mathrm{B}=\mathrm{b} \log _{10} e=0.4343 \mathrm{~b}$

	x	y	$\mathrm{Y}=\log _{10} \mathrm{y}$	x^{2}	xY
	0	5.012	0.7	0	0
	2	10	1.0	4	2
	4	31.62	1.5	16	6
\sum.	6	--	3.2	20	8

\therefore The normal equations become,
$3 \mathrm{~A}+6 \mathrm{~B}=3.2$ and $6 \mathrm{~A}+20 \mathrm{~B}=8$
Solving these equations, we get,
$\mathrm{A}=\log _{10} \mathrm{a}=0.6667$ and $\mathrm{B}=0.4343 \mathrm{~b}=0.2$
$\therefore \mathrm{a}=10^{0.6667}=4.6419$ and $\mathrm{b}=\frac{0.2}{0.4343}=0.4605$
\therefore Required exponential curve which fit a given data
approximately is $y=4.6419 \mathrm{e}^{0.4605 \mathrm{x}}$
Ex. Find the best fit of the type $y=a e^{b x}$ to the following data by the method of least squares

x	1	5	7	9	12
y	10	15	12	15	21

Solution: Let $\mathrm{y}=\mathrm{ae}^{\mathrm{bx}}$
be the exponential curve which fit the given data $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=1,2, \ldots \ldots 5$.
First we reduce it to linear form by taking logarithm of base 10 on both sides as:
$\log _{10} \mathrm{y}=\log _{10} \mathrm{a}+\mathrm{bx} \log _{10} e$
i.e. $\mathrm{Y}=\mathrm{A}+\mathrm{Bx}$, which is linear equation having normal equations
$\sum Y=5 \mathrm{~A}+\mathrm{B} \sum x$
and $\sum x Y=\mathrm{A} \sum x+\mathrm{B} \sum x^{2}$
where $\mathrm{Y}=\log _{10} \mathrm{y}$ and $\mathrm{A}=\ln a$ and $\mathrm{B}=\mathrm{b} \log _{10} e=0.4343 \mathrm{~b}$

	x	y	$\mathrm{Y}=\log _{10} \mathrm{y}$	x^{2}	xY
	1	10	1.0	1	1
	5	15	1.17609	25	5.88045
	7	12	1.07918	49	7.55426
	9	15	1.17609	81	10.58481
	12	21	1.32222	144	15.86664
\sum.	34	--	5.75358	300	40.88616

\therefore The normal equations become,
$5 \mathrm{~A}+34 \mathrm{~B}=5.75358$ and $34 \mathrm{~A}+300 \mathrm{~B}=40.88616$
Solving these equations, we get,
$\mathrm{A}=\log _{10} \mathrm{a}=0.97658$ and $\mathrm{B}=0.4343 \mathrm{~b}=0.02561$
$\therefore \mathrm{a}=10^{0.97658}=9.47502$ and $\mathrm{b}=\frac{0.02561}{0.4343}=0.05897$
\therefore Required exponential curve which fit a given data
approximately is $\mathrm{y}=9.47502 \mathrm{e}^{0.05897 \mathrm{x}}$

Ex. Fit an exponential curve by least squares to the following data

x	1	3	5	7	9
y	5.06	12.09	31.23	82.97	223.74

Solution: Let $y=a e^{b x}$
be the exponential curve which fit the given data $\left(x_{i}, y_{i}\right), i=1,2, \ldots \ldots .5$.
First we reduce it to linear form by taking natural logarithm on both sides as:
$\ln \mathrm{y}=\ln \mathrm{a}+\mathrm{bx}$
i.e. $\mathrm{Y}=\mathrm{A}+\mathrm{bx}$, which is linear equation having normal equations
$\sum Y=5 \mathrm{~A}+\mathrm{b} \sum x$
and $\sum x Y=\mathrm{A} \sum x+\mathrm{b} \sum x^{2}$.
where $\mathrm{Y}=\ln \mathrm{y}$ and $\mathrm{A}=\ln a$

	x	y	$\mathrm{Y}=\ln \mathrm{y}$	x^{2}	xY
	1	5.06	1.6214	1	1.6214
	3	12.09	2.4924	9	7.4772
	5	31.23	3.4414	25	17.2070
	7	82.97	4.4185	49	30.9295
	9	223.74	5.4104	81	48.6936
Σ.	25	--	17.3841	165	105.9287

\therefore The normal equations become,
$5 \mathrm{~A}+25 \mathrm{~b}=17.3841$ and $25 \mathrm{~A}+165 \mathrm{~b}=105.9287$
Solving these equations, we get,
$A=\ln a=1.1008$ i.e. $a=e^{1.1008}=3.0066$ and $b=0.4752$
\therefore Required exponential curve which fit a given data
approximately is $\mathrm{y}=3.0066 \mathrm{e}^{0.4752 \mathrm{x}}$
Ex. Fit a power curve of the form $\mathrm{y}=\mathrm{ax}^{\mathrm{b}}$ to the following data

x	1	2	3	4	5
y	0.5	2	4.5	8	12.5

Solution: Let $\mathrm{y}=\mathrm{ax}^{\mathrm{b}} \ldots \ldots$. (1)
be a power curve which fit the given data $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=1,2, \ldots \ldots 5$.
First we reduce it to linear form by taking logarithm of base 10 on both sides as:
$\log _{10} \mathrm{y}=\log _{10} \mathrm{a}+\mathrm{b} \log _{10} \mathrm{x}$
i.e. $\mathrm{Y}=\mathrm{A}+\mathrm{bX}$, which is linear equation having normal equations
$\sum Y=5 \mathrm{~A}+\mathrm{b} \sum X$
and $\sum X Y=\mathrm{A} \sum X+\mathrm{b} \sum X^{2} \ldots \ldots$. (3),
where $\mathrm{Y}=\log _{10} \mathrm{y}, \mathrm{X}=\log _{10} \mathrm{x}$ and $\mathrm{A}=\log _{10} a$

	x	y	$\mathrm{X}=\log _{10} \mathrm{x}$	$\mathrm{Y}=\log _{10} \mathrm{y}$	X^{2}	XY
	1	0.5	0	-0.30103	0	0
	2	2	0.30103	0.30103	0.09062	0.09062
	3	4.5	0.47712	0.65321	0.22764	0.31166
	4	8	0.60206	0.90309	0.36248	0.54371
	5	12.5	0.69897	1.09691	0.48856	0.76671
\sum.	--	--	2.07918	2.65321	1.16930	1.71270

\therefore The normal equations become,
$5 \mathrm{~A}+2.07918 \mathrm{~b}=2.65321$ and $2.07918 \mathrm{~A}+1.16930 \mathrm{~b}=1.71270$
Solving these equations, we get,
$\mathrm{A}=\log _{10} \mathrm{a}=3.70764$ i.e. $\mathrm{a}=10^{3.70764}=5100.82002$ and $\mathrm{b}=0.73563$
\therefore Required power curve which fit a given data approximately is
$\mathrm{y}=5100.82002 \mathrm{x}^{0.73563}$
Ex. Fit a power curve of the form $\mathrm{y}=\mathrm{ax}^{\mathrm{b}}$ to the following data

x	2	4	6	8	10
y	0.973	3.839	8.641	15.987	23.794

Solution: Let $\mathrm{y}=\mathrm{ax}^{\mathrm{b}} \ldots \ldots$. (1)
be a power curve which fit the given data $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=1,2, \ldots \ldots .5$.
First we reduce it to linear form by taking natural logarithm on both sides as:
$\ln \mathrm{y}=\ln \mathrm{a}+\mathrm{b} \ln \mathrm{x}$
i.e. $\mathrm{Y}=\mathrm{A}+\mathrm{bX}$, which is linear equation having normal equations
$\sum Y=5 \mathrm{~A}+\mathrm{b} \sum X$
and $\sum X Y=\mathrm{A} \sum X+\mathrm{b} \sum X^{2} \ldots \ldots$ (3),
where $\mathrm{Y}=\ln \mathrm{y}, \mathrm{X}=\ln \mathrm{x}$ and $\mathrm{A}=\ln a$

	x	y	$\mathrm{X}=\ln \mathrm{x}$	$\mathrm{Y}=\ln \mathrm{y}$	X^{2}	XY
	2	0.973	0.6931	-0.0274	0.4804	0.0190
	4	3.839	1.3862	1.3452	1.9216	1.8647
	6	8.641	1.7918	2.1565	3.2105	3.8640
	8	15.987	2.0794	2.7718	4.3239	5.7636
	10	23.794	2.3026	3.1694	5.3020	7.2978
	--	--	8.2531	9.4155	15.2384	18.8091

\therefore The normal equations become,
$5 \mathrm{~A}+8.2531 \mathrm{~b}=9.4155$ and $8.2531 \mathrm{~A}+15.2384 \mathrm{~b}=18.8091$
Solving these equations, we get,
$\mathrm{A}=\ln \mathrm{a}=-1.4134$ i.e. $\mathrm{a}=\mathrm{e}^{-1.4134}=0.2433$ and $\mathrm{b}=2.0225$
\therefore Required power curve which fit a given data approximately is $\mathrm{y}=0.2433 \mathrm{x}^{2.0225}$
Ex. Fit a power curve of the form $y=a x^{b}$ to the following data

x	2	4	7	10	20	40	60	80
y	43	25	18	13	8	5	3	2

Solution: Let $\mathrm{y}=\mathrm{ax}^{\mathrm{b}} \ldots \ldots$. (1)
be a power curve which fit the given data $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=1,2, \ldots \ldots .8$.
First we reduce it to linear form by taking natural logarithm on both sides as:
$\ln \mathrm{y}=\ln \mathrm{a}+\mathrm{b} \ln \mathrm{x}$
i.e. $\mathrm{Y}=\mathrm{A}+\mathrm{bX}$, which is linear equation having normal equations
$\sum Y=8 \mathrm{~A}+\mathrm{b} \sum X$
and $\sum X Y=\mathrm{A} \sum X+\mathrm{b} \sum X^{2} \ldots \ldots$. (3),
where $\mathrm{Y}=\ln \mathrm{y}, \mathrm{X}=\ln \mathrm{x}$ and $\mathrm{A}=\ln a$

	x	y	$\mathrm{X}=\ln \mathrm{x}$	$\mathrm{Y}=\ln \mathrm{y}$	X^{2}	XY
	2	43	0.6931	3.7612	0.4804	2.6068
	4	25	1.3862	3.2188	1.9216	4.4619
	7	18	1.9459	2.8904	3.7865	5.6244
	13	2.3026	2.5649	5.3020	5.9059	
	8	2.9957	2.0794	8.9742	6.2292	
40	5	3.6888	1.6094	13.6072	5.9368	
	60	3	4.0943	1.0986	16.7633	4.4980
	80	2	4.3820	0.6931	19.2019	3.0372
	--	--	21.4886	17.9158	70.0371	38.3002

\therefore The normal equations become,
$8 \mathrm{~A}+21.4886 \mathrm{~b}=17.9158$ and $21.4886 \mathrm{~A}+70.037 \mathrm{lb}=38.3002$
Solving these equations, we get,
$\mathrm{A}=\ln \mathrm{a}=1.3816$ i.e. $\mathrm{a}=\mathrm{e}^{1.3816}=79.9658$ and $\mathrm{b}=-0.7975$
\therefore Required power curve which fit a given data approximately is
$\mathrm{y}=79.9658 \mathrm{x}^{-0.7975}$

MULTIPLE CHOICE QUESTIONS (MCQ'S)

1) If $y=f(x)$ is a continuous curve fitting the given data $\left(x_{i}, y_{i}\right), i=1,2, \ldots \ldots n$, then the error of approximation is $\mathrm{E}_{\mathrm{i}}=\ldots \ldots$.
A) $y_{i}+f\left(x_{i}\right)$
B) $y_{i}-f\left(x_{i}\right)$
C) $f\left(x_{i}\right)-y_{i}$
D) $f\left(x_{i}\right)+y_{i}$
2) The least square method requires that the sum of squares of the errors at all the points i.e. $\sum_{i=1}^{n} E_{i}^{2}=\sum_{i=1}^{n}\left[y_{i}-\mathrm{f}\left(x_{i}\right)\right]^{2}$ must be
A) minimum
B) maximum
C) 0
D) 1
3) By theorem, if $f(x)$ is a continuous function in the interval $[a, b]$, then to each $\epsilon>0$, there exists a polynomial $\mathrm{P}(\mathrm{x})$ such that $|f(x)-P(x)|<\epsilon \forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}]$.
A) Rolle's
B) Lagrange's
C) Weierstrass
D) None of these
4) A straight line is a curve.
A) linear
B) non-linear
C) quadratic
D) None of these
5) Which of the following is linear curve?
A) parabola
B) straight line
C) circle
D) None of these
6) To fit a given data $\left(x_{i}, y_{i}\right), i=1,2, \ldots \ldots n$, to a straight line $y=f(x)=a+b x$, the error of approximation $=$
A) $y_{i}-a$
B) $y_{i}-b x_{i}$
C) $y_{i}-a-b x_{i}$
D) None of these
7) By the necessary condition $S(a, b)$ is minimum, if
A) $\frac{\partial S}{\partial a}=\frac{\partial S}{\partial b}=0$
B) $\frac{\partial S}{\partial a}=\frac{\partial S}{\partial b} \neq 0$
C) $\frac{\partial S}{\partial a} \neq \frac{\partial S}{\partial b}$
D) None of these
8) $\sum_{i=1}^{n} y_{i}=\mathrm{na}+\mathrm{b} \sum_{i=1}^{n} x_{i}$ is one of the normal equation for fitting
to a given data ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$), $\mathrm{i}=1,2, \ldots \ldots \mathrm{n}$.
A) a parabola
B) a straight line
C) an exponential curve
D) None of these
9) The normal equations for fitting a linear curve i.e. a straight line $y=a+b x$ to a given data $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=1,2, \ldots \ldots . \mathrm{n}$ are \qquad
A) $\sum_{i=1}^{n} y_{i}=n a+b \sum_{i=1}^{n} x_{i}$ and $\sum_{i=1}^{n} x_{i} y_{i}=a \sum_{i=1}^{n} x_{i}+b \sum_{i=1}^{n} x_{i}{ }^{2}$
B) $\sum_{i=1}^{n} y_{i}=n a+b \sum_{i=1}^{n} x_{i}$ and $\sum_{i=1}^{n} x_{i} y_{i}=a \sum_{i=1}^{n} x_{i}+b \sum_{i=1}^{n} y_{i}$
C) $\sum_{i=1}^{n} x_{i}=n a+b \sum_{i=1}^{n} y_{i}$ and $\sum_{i=1}^{n} x_{i} y_{i}=a \sum_{i=1}^{n} x_{i}+b \sum_{i=1}^{n} x_{i}{ }^{2}$
D) None of these
10) From the following data, $\sum x=$

x	1	2	3	4
y	0	3	5	7

A) 1
B) 3
C) 6
D) 10
11) From the following data, $\sum y=\ldots \ldots$.

x	1	2	3	4
y	0	3	5	7

A) 15
B) 30
C) 60
D) 10
12) From the following data, $\sum x y=$

x	1	2	3	4
y	0	3	5	7

A) 15
B) 49
C) 60
D) 10
13) From the following data, $\sum x^{2}=$

x	1	2	3	4
y	0	3	5	7

A) 15
B) 49
C) 30
D) 10
14) From the following data, $\sum y^{2}=\ldots \ldots$.

x	1	2	3	4
y	0	3	5	7

A) 15
B) 30
C) 60
D) 83
15) From the given data, $\sum x=\ldots \ldots$.

x	0	1	2	3	4
y	1	3	5	7	9

A) 9
B) 10
C) 15
D) 25
16) From the given data, $\sum y=\ldots \ldots$.

x	0	1	2	3	4
y	1	3	5	7	9

A) 25
B) 22
C) 28
D) 20
17) From the given data, $\sum x y=\ldots \ldots \ldots$

x	0	1	2	3	4
y	1	3	5	7	9

A) 12
B) 16
C) 70
D) 71
18) From the given data, $\sum x^{2}=\ldots \ldots \ldots$

x	0	1	2	3	4
y	1	3	5	7	9

A) 12
B) 30
C) 70
D) 165
19) From the given data, $\sum y^{2}=\ldots \ldots \ldots$.

x	0	1	2	3	4
y	1	3	5	7	9

A) 12
B) 30
C) 70
D) 165
20) From the given data, $\sum x=\ldots \ldots$.

x	1	2	3	4	5
y	2	4	6	8	10

A) 9
B) 10
C) 15
D) 25
21) From the given data, $\sum y=$ \qquad

x	1	2	3	4	5
y	2	4	6	8	10

A) 25
B) 30
C) 28
D) 20
22) From the given data, $\sum x y=\ldots \ldots \ldots$

x	1	2	3	4	5
y	2	4	6	8	10

A) 100
B) 105
C) 110
D) 120
23) From the given data, $\sum x^{2}=$

x	1	2	3	4	5
y	2	4	6	8	10

A) 12
B) 30
C) 70
D) 55
24) From the given data, $\sum y^{2}=\ldots \ldots \ldots$

x	1	2	3	4	5
y	2	4	6	8	10

A) 120
B) 220
C) 100
D) 165
25) From the given data, $\sum x=\ldots \ldots$.

x	0.5	1.0	1.5	2.0	2.5	3.0
y	0.31	0.82	1.29	1.85	2.51	3.02

A) 9.5
B) 10.5
C) 11.5
D) 12.5
26) From the given data, $\sum y=\ldots \ldots$.

x	0.5	1.0	1.5	2.0	2.5	3.0
y	0.31	0.82	1.29	1.85	2.51	3.02

A) 9.80
B) 10.5
C) 22.75
D) 12.5
27) From the given data, $\sum x^{2}=\ldots \ldots$.

x	0.5	1.0	1.5	2.0	2.5	3.0
y	0.31	0.82	1.29	1.85	2.51	3.02

A) 9.80
B) 10.5
C) 22.75
D) 12.5
28) Parabola is a \qquad degree polynomial.
A) second
B) first
C) third
D) forth
29) Parabola is a \qquad curve.
A) linear
B) third degree
C) non-linear
D) None of these
30) To fit a given data $\left(x_{i}, y_{i}\right), i=1,2, \ldots \ldots n$, to a parabola $y=f(x)=a+b x+c x^{2}$, the error of approximation $=$
A) $y_{i}-a$
B) $a+b x_{i}+c x_{i}^{2}-y_{i}$
C) $y_{i}-a-b x_{i}$
D) None of these
31) One of normal equation of fitting the curve $\mathrm{y}=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}$ is \qquad
A) $\sum_{i=1}^{n} y_{i}=n a+b \sum_{i=1}^{n} x_{i}$
B) $\sum_{i=1}^{n} y_{i}=n a+b \sum_{i=1}^{n} x_{i}+c \sum_{i=1}^{n} x_{i}^{2}$
C) $\sum_{i=1}^{n} y_{i}=a+b \sum_{i=1}^{n} x_{i}+c \sum_{i=1}^{n} x_{i}^{2}$
D) None of these
32) $\sum_{i=1}^{n} y_{i}=n a+b \sum_{i=1}^{n} x_{i}+c \sum_{i=1}^{n} x_{i}^{2}$ is the one of normal equation of the fitting a curve
A) $y=a+b x+c x^{2}$
B) $y=a+b x$
C) $y=a e^{b x}$
D) None of these
33) $y=a e^{b x}$ is the equation of
A) circle
B) parabola
C) ellipse
D) an exponential curve.
34) $y=2 e^{3 x}$ is the equation of $\ldots \ldots \ldots \ldots$.
A) linear curve
B) an exponential curve
C) logarithmic curve
D) None of these
35) $\mathrm{I}=\mathrm{I}_{0} e^{-\alpha t}$ is the equation of
A) an exponential curve
B) straight line
C) logarithmic curve
D) None of these
36) For fitting of an exponential curve of the type $y=a e^{b x}$ to a given data $\left(x_{i}, y_{i}\right), i=1,2, \ldots \ldots n$, first we reduce the curve into $\ldots .$. form.
A) non-linear
B) linear
C) logarithmic
D) None of these
37) If an exponential curve $a e^{b x}$ is reduced to linear form as $Y=A+b x$, where $Y=\ln y$ and $\mathrm{A}=\ln \mathrm{a}$, then the normal equations are $\ldots .$.
A) $\sum Y=\mathrm{nA}+b \sum x$ and $\sum x Y=\mathrm{A} \sum x+b \sum x^{2}$
B) $\sum Y=\mathrm{A}+b \sum x$ and $\sum x Y=\mathrm{nA}+b \sum x^{2}$
C) $\sum Y=\mathrm{A} \sum x+n b$ and $\sum x=\mathrm{A} \sum x+b \sum Y$
D) None of these
38) $y=a x^{b}$ is the equation of \qquad
A) an exponential curve
B) logarithmic curve
C) straight line
D) parabola
39) Logarithmic curve is also called
A) quadratic curve
B) power curve
C) straight line
D) circle
40) $y=5 x^{4}$ is the equation of
A) circle
B) quadratic curve
C) straight line
D) logarithmic curve
41) For fitting of logarithmic curve of the type $y=a x^{b}$ to a given data $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=1,2, \ldots \ldots \mathrm{n}$, first we reduce the curve into $\ldots \ldots$ form.
A) non-linear
B) linear
C) exponential
D) None of these
42) If $Y=\ln y, X=\ln x$ and $A=\ln a$, then after reducing logarithmic curve $a x^{b}$ to linear form $\mathrm{Y}=\mathrm{A}+\mathrm{bx}$, the normal equations are \qquad
A) $\sum Y=\mathrm{A}+b \sum x$ and $\sum x Y=\mathrm{nA}+b \sum x^{2}$
B) $\sum Y=\mathrm{n} \mathrm{A}+b \sum X$ and $\sum X Y=\mathrm{A} \sum X+b \sum X^{2}$
C) $\sum Y=\mathrm{A} \sum X+n b$ and $\sum X=\mathrm{A} \sum X+b \sum Y$
D) None of these

UNIT-4: NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTLAL EQUATIONS

==1
Initial Value Problem: First order differential equation $\frac{d y}{d x}=f(x, y)$ with initial condition $y\left(x_{0}\right)=y_{0}$ is called initial value problem.

Boundary Value Problem: Second or higher order differential equation with conditions at two or more points is called boundary value problem.

Remark: i) Initial value problem may have one solution or more than one solution or no solution.
ii) General solution of differential equation of order n contains n arbitrary constants.

Taylor's Series Method: Consider a differential equation with initial condition

$$
\begin{align*}
& \frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y}) \ldots \ldots \tag{i}\\
& \mathrm{y}\left(\mathrm{x}_{\mathrm{o}}\right)=\mathrm{y}_{0} \ldots \ldots \text { (ii) }
\end{align*}
$$

If $y=f(x)$ is an exact solution of equation (i), then Taylor's series expansion of $y(x)$ about a point $x=x_{0}$ is
$\mathrm{y}(\mathrm{x})=\mathrm{y}_{\mathrm{o}}+\left(\mathrm{x}-\mathrm{x}_{\mathrm{o}}\right) y_{0}^{\prime}+\frac{\left(\mathrm{x}-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+$
If the values of $y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}, \ldots \ldots$ are known, then (iii) gives the power series solution of (i).

Derivatives are obtained in following manner, $y^{\prime}=\mathrm{f}(\mathrm{x}, \mathrm{y})$
$y^{\prime \prime}=\frac{\partial \mathrm{f}}{\partial \mathrm{x}}+\frac{\partial \mathrm{f}}{\partial \mathrm{y}} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\partial \mathrm{f}}{\partial \mathrm{x}}+f \frac{\partial \mathrm{f}}{\partial \mathrm{y}}$
again differentiating, we get $y^{\prime \prime \prime}$ and so on.

Remark: Taylor's series method is not very useful to solve practical problems because it contains higher order derivatives of $y(x)$.

Ex. By using Taylor's series method, find $y(0.1)$ correct to four decimal places
if $\frac{d y}{d x}=\mathrm{x}-\mathrm{y}^{2}$ and $\mathrm{y}(0)=1$.
Solution: Let $\frac{d y}{d x}=\mathrm{x}-\mathrm{y}^{2}$ and $\mathrm{y}(0)=1$ be the given initial value problem.
Here $\mathrm{x}_{0}=0$ and $\mathrm{y}_{0}=1$.
Taylor's series expansion of $y(x)$ about a point $x=0$ is

$$
\begin{equation*}
\mathrm{y}(\mathrm{x})=\mathrm{y}_{\mathrm{o}}+\mathrm{x} y_{0}^{\prime}+\frac{\mathrm{x}^{2}}{2!} y_{0}^{\prime \prime}+\frac{\mathrm{x}^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\mathrm{x}^{4}}{4!} y_{0}^{(\mathrm{iv})}+\ldots \ldots \tag{i}
\end{equation*}
$$

Now we find $\mathrm{y}_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}, \ldots .$. as follows.

$$
\text { As } \frac{d y}{d x}=\mathrm{x}-\mathrm{y}^{2} \text { i.e. } y^{\prime}=\mathrm{x}-\mathrm{y}^{2} \quad \therefore y_{0}^{\prime}=\mathrm{x}_{0}-y_{0}^{2}=0-1^{2}=-1
$$

$$
y^{\prime \prime}=1-2 \mathrm{y} y^{\prime} \quad \therefore y_{0}^{\prime \prime}=1-2 \mathrm{y}_{0} y_{0}^{\prime}=1-2(1)(-1)=3
$$

$$
y^{\prime \prime \prime}=-2\left(y^{\prime}\right)^{2}-2 \mathrm{y} y^{\prime \prime} \quad \therefore y_{0}^{\prime \prime \prime}=-2\left(y_{0}^{\prime}\right)^{2}-2 y_{0} y_{0}^{\prime \prime}=-2(-1)^{2}-2(1)(3)=-8
$$

$$
y^{(\mathrm{iv})}=-4 y^{\prime} y^{\prime \prime}-2 y^{\prime} y^{\prime \prime}-2 \mathrm{y} y^{\prime \prime \prime}=-6 y^{\prime} y^{\prime \prime}-2 \mathrm{y} y^{\prime \prime \prime}
$$

$$
\therefore y_{0}^{(\mathrm{iv})}=-6 y_{0}^{\prime} y_{0}^{\prime \prime}-2 \mathrm{y}_{0} y_{0}^{\prime \prime \prime}=-6(-1)(3)-2(1)(-8)=18+16=34
$$

and so on. Putting these values in (i), we get,
$y(x)=1+x(-1)+\frac{x^{2}}{2!}(3)+\frac{x^{3}}{3!}(-8)+\frac{x^{4}}{4!}(34)+\ldots \ldots$
i.e. $y(x)=1-x+\frac{3}{2} x^{2}-\frac{4}{3} x^{3}+\frac{17}{12} x^{4}+\ldots \ldots$
$\therefore \mathrm{y}(0.1)=1-0.1+\frac{3}{2}(0.01)-\frac{4}{3}(0.001)+\frac{17}{12}(0.0001)+\ldots .$.
i.e. $\mathrm{y}(0.1) \approx 0.9138$

Ex. Solve $\frac{d y}{d x}=x^{2}-\mathrm{y}$ and $\mathrm{y}(0)=1$ at $\mathrm{x}=0.1$ and $\mathrm{x}=0.2$, by using Taylor's series method.
Solution: Let $\frac{d y}{d x}=x^{2}-\mathrm{y}$ and $\mathrm{y}(0)=1$ be the given initial value problem.
Here $\mathrm{x}_{0}=0$ and $\mathrm{y}_{0}=1$.
Taylor's series expansion of $y(x)$ about a point $x=0$ is

$$
\begin{equation*}
\mathrm{y}(\mathrm{x})=\mathrm{y}_{0}+\mathrm{x} y_{0}^{\prime}+\frac{\mathrm{x}^{2}}{2!} y_{0}^{\prime \prime}+\frac{\mathrm{x}^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\mathrm{x}^{4}}{4!} y_{0}^{(\mathrm{iv})}+ \tag{i}
\end{equation*}
$$

Now we find $\mathrm{y}_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}, \ldots \ldots$ as follows.

$$
\begin{aligned}
& \text { As } \frac{d y}{d x}=\mathrm{x}^{2}-\mathrm{y} \quad \text { i.e. } y^{\prime}=\mathrm{x}^{2}-\mathrm{y} \quad \therefore y_{0}^{\prime}=x_{0}^{2}-\mathrm{y}_{0}=0-1=-1 \\
& y^{\prime \prime}=2 \mathrm{x}-y^{\prime} \quad \therefore y_{0}^{\prime \prime}=2 \mathrm{x}_{0}-y_{0}^{\prime}=0-(-1)=1 \\
& y^{\prime \prime \prime}=2-y^{\prime \prime} \therefore y_{0}^{\prime \prime \prime}=2-y_{0}^{\prime \prime}=2-1=1
\end{aligned}
$$

$y^{(\text {iv })}=-y^{\prime \prime \prime} \quad \therefore y_{0}^{(\text {iv })}=-y_{0}^{\prime \prime \prime}=-1$
and so on. Putting these values in (i), we get,
$y(x)=1+x(-1)+\frac{x^{2}}{2!}(1)+\frac{x^{3}}{3!}(1)+\frac{x^{4}}{4!}(-1)+\ldots \ldots$
i.e. $y(x)=1-x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\ldots \ldots$
$\therefore \mathrm{y}(0.1)=1-0.1+\frac{1}{2}(0.01)+\frac{1}{6}(0.001)-\frac{1}{24}(0.0001)+\ldots .$.
i.e. $y(0.1) \approx 0.9052$
$\& \therefore \mathrm{y}(0.2)=1-0.2+\frac{1}{2}(0.04)+\frac{1}{6}(0.008)-\frac{1}{24}(0.0016)+\ldots .$.
i.e. $y(0.1) \approx 0.8212$

Ex. Use Taylor's series method to obtain y at $\mathrm{x}=0.2$ if $\frac{d y}{d x}=2 \mathrm{y}+3 \mathrm{e}^{\mathrm{x}}, \mathrm{y}(0)=0$.
Solution: Let $\frac{d y}{d x}=2 y+3 e^{x}, y(0)=0$ be the given initial value problem.
Here $\mathrm{x}_{0}=0$ and $\mathrm{y}_{0}=0$.
Taylor's series expansion of $y(x)$ about a point $x=0$ is

$$
\mathrm{y}(\mathrm{x})=\mathrm{y}_{0}+\mathrm{x} y_{0}^{\prime}+\frac{\mathrm{x}^{2}}{2!} y_{0}^{\prime \prime}+\frac{\mathrm{x}^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\mathrm{x}^{4}}{4!} y_{0}^{(\mathrm{iv})}+\ldots \ldots \text { (i) }
$$

Now we find $y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}, \ldots \ldots$ as follows.

$$
\begin{aligned}
& \text { As } \frac{d y}{d x}=2 \mathrm{y}+3 \mathrm{e}^{\mathrm{x}} \text { i.e. } y^{\prime}=2 \mathrm{y}+3 \mathrm{e}^{\mathrm{x}} \quad \therefore y_{0}^{\prime}=2 \mathrm{y}_{0}+3 e^{x_{0}}=2(0)+3 \mathrm{e}^{0}=0+3=3 \\
& y^{\prime \prime}=2 y^{\prime}+3 \mathrm{e}^{\mathrm{x}} \quad \therefore y_{0}^{\prime \prime}=2 y_{0}^{\prime}+3 e^{x_{0}}=2(3)+3 \mathrm{e}^{0}=9 \\
& y^{\prime \prime \prime}=2 y^{\prime \prime}+3 \mathrm{e}^{\mathrm{x}} \quad \therefore y_{0}^{\prime \prime \prime}=2 y_{0}^{\prime \prime}+3 e^{x_{0}}=2(9)+3 \mathrm{e}^{0}=21 \\
& y^{(\mathrm{iv})}=2 y^{\prime \prime \prime}+3 \mathrm{e}^{\mathrm{x}}
\end{aligned} \quad \therefore y_{0}^{(\mathrm{iv})}=2 y_{0}^{\prime \prime \prime}+3 e^{x_{0}}=2(21)+3 \mathrm{e}^{0}=45
$$

and so on. Putting these values in (i), we get,
$y(x)=0+x(3)+\frac{x^{2}}{2!}(9)+\frac{x^{3}}{3!}(21)+\frac{x^{4}}{4!}(45)+\ldots \ldots$
i.e. $y(x)=3 x+\frac{9}{2} x^{2}+\frac{7}{2} x^{3}+\frac{15}{8} x^{4}+\ldots \ldots$
$\therefore \mathrm{y}(0.2)=3(0.2)+\frac{9}{2}(0.2)^{2}+\frac{7}{2}(0.2)^{3}+\frac{15}{8}(0.2)^{4}+\ldots \ldots$.
i.e. $y(0.2) \approx 0.8110$

Ex. Using Taylor's series method, find the solution of an initial value problem

$$
\frac{d y}{d x}=\mathrm{x}+\mathrm{y}, \mathrm{y}(1)=0 \text { at } \mathrm{x}=1.1 \text { with } \mathrm{h}=0.1
$$

Solution: Let $\frac{d y}{d x}=x+y, y(1)=0$ be the given initial value problem.
Here $\mathrm{x}_{0}=1$ and $\mathrm{y}_{0}=0$.
Taylor's series expansion of $\mathrm{y}(\mathrm{x})$ about a point $\mathrm{x}=1$ is

$$
\begin{equation*}
\mathrm{y}(\mathrm{x})=\mathrm{y}_{\mathrm{o}}+(\mathrm{x}-1) y_{0}^{\prime}+\frac{(\mathrm{x}-1)^{2}}{2!} y_{0}^{\prime \prime}+\frac{(\mathrm{x}-1)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{(\mathrm{x}-1)^{4}}{4!} y_{0}^{(\mathrm{iv})}+\ldots \ldots \tag{i}
\end{equation*}
$$

Now we find $\mathrm{y}_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}, \ldots \ldots$ as follows.

$$
\begin{aligned}
& \text { As } \frac{d y}{d x}=\mathrm{x}+\mathrm{y} \text { i.e. } y^{\prime}=\mathrm{x}+\mathrm{y} \quad \therefore y_{0}^{\prime}=\mathrm{x}_{\mathrm{o}}+\mathrm{y}_{\mathrm{o}}=1+0=1 \\
& y^{\prime \prime}=1+y^{\prime} \quad \therefore \quad \therefore y_{0}^{\prime \prime}=1+y_{0}^{\prime}=1+1=2 \\
& y^{\prime \prime \prime}=y^{\prime \prime} \quad \therefore y_{0}^{\prime \prime \prime}=y_{0}^{\prime \prime}=2 \\
& y^{(\text {(iv })}=y^{\prime \prime \prime} \quad \therefore y_{0}^{(\text {iv })}=y_{0}^{\prime \prime \prime}=2
\end{aligned}
$$

and so on. Putting these values in (i), we get,
$y(x)=0+(x-1)(1)+\frac{(x-1)^{2}}{2!}$
$(2)+\frac{(x-1)^{3}}{3!}$
$(2)+\frac{(x-1)^{4}}{4!}$
$(2)+$
i.e. $y(x)=(x-1)+(x-1)^{2}+\frac{1}{3}(x-1)^{3}+\frac{1}{12}(x-1)^{4}+\ldots \ldots$
$\therefore \mathrm{y}(1.1)=(0.1)+(0.1)^{2}+\frac{1}{3}$
$(0.1)^{3}+\frac{1}{12}$
$(0.1)^{4}+\ldots \ldots$
i.e. $y(1.1) \approx 0.1103$

Ex. Using Taylor's series method, find the value of y a $\mathrm{x}=1.02$ given that

$$
\frac{d y}{d x}=x y-1, y(1)=2 .
$$

Solution: Let $\frac{d y}{d x}=\mathrm{xy}-1, \mathrm{y}(1)=2$ be the given initial value problem.
Here $\mathrm{x}_{0}=1$ and $\mathrm{y}_{0}=2$.
Taylor's series expansion of $y(x)$ about a point $x=1$ is

$$
\begin{equation*}
\mathrm{y}(\mathrm{x})=\mathrm{y}_{\mathrm{o}}+(\mathrm{x}-1) y_{0}^{\prime}+\frac{(\mathrm{x}-1)^{2}}{2!} y_{0}^{\prime \prime}+\frac{(\mathrm{x}-1)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{(\mathrm{x}-1)^{4}}{4!} y_{0}^{(\mathrm{iv})}+\ldots \ldots \tag{i}
\end{equation*}
$$

Now we find $\mathrm{y}_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}, \ldots .$. as follows.
As $\frac{d y}{d x}=x y-1$
$\therefore y^{\prime}=x y-1$
$\therefore y_{0}^{\prime}=\mathrm{x}_{\mathrm{o}} \mathrm{y}_{\mathrm{o}}-1=1(2)-1=1$
$y^{\prime \prime}=y+x y^{\prime}$
$\therefore y_{0}^{\prime \prime}=\mathrm{y}_{\mathrm{o}}+\mathrm{x}_{\mathrm{o}} y_{0}^{\prime}=2+1(1)=3$
$y^{\prime \prime \prime}=y^{\prime}+y^{\prime}+\mathrm{x} y^{\prime \prime}=2 y^{\prime}+\mathrm{x} y^{\prime \prime} \quad \therefore y_{0}^{\prime \prime \prime}=2 y_{0}^{\prime}+\mathrm{x}_{\mathrm{o}} y_{0}^{\prime \prime}=2(1)+1(3)=5$
$y^{(\mathrm{iv})}=2 y^{\prime \prime}+y^{\prime \prime}+\mathrm{x} y^{\prime \prime \prime}=3 y^{\prime \prime}+\mathrm{x} y^{\prime \prime \prime} \quad \therefore y_{0}^{(\mathrm{iv})}=3 y_{0}^{\prime \prime}+\mathrm{x}_{\mathrm{o}} y_{0}^{\prime \prime \prime}=3(3)+1(5)=14$ and so on. Putting these values in (i), we get,
$y(x)=2+(x-1)(1)+\frac{(x-1)^{2}}{2!}(3)+\frac{(x-1)^{3}}{3!}(5)+\frac{(x-1)^{4}}{4!}(14)+\ldots \ldots$.
i.e. $y(x)=2+(x-1)+\frac{3}{2}(x-1)^{2}+\frac{5}{6}(x-1)^{3}+\frac{7}{12}(x-1)^{4}+\ldots \ldots$
$\therefore \mathrm{y}(1.02)=2+(0.02)+\frac{3}{2}(0.02)^{2}+\frac{5}{6}(0.02)^{3}+\frac{7}{12}(0.02)^{4}+\ldots .$.
i.e. $y(1.02) \approx 2.0206$

Ex. Using Taylor's series method, find the value of y at $\mathrm{x}=0.1$ given that if $\frac{d y}{d x}=3 \mathrm{x}+\mathrm{y}^{2}$ and $\mathrm{y}(0)=1$. Take $\mathrm{h}=0.1$
Solution: Let $\frac{d y}{d x}=3 x+y^{2}$ and $y(0)=1$ be the given initial value problem.
Here $\mathrm{x}_{0}=0$ and $\mathrm{y}_{0}=1$.
Taylor's series expansion of $y(x)$ about a point $x=0$ is

$$
\mathrm{y}(\mathrm{x})=\mathrm{y}_{\mathrm{o}}+\mathrm{x} y_{0}^{\prime}+\frac{\mathrm{x}^{2}}{2!} y_{0}^{\prime \prime}+\frac{\mathrm{x}^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{\mathrm{x}^{4}}{4!} y_{0}^{(\mathrm{iv})}+\ldots \ldots \text { (i) }
$$

Now we find $y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}, \ldots \ldots$ as follows.

$$
\begin{aligned}
& \text { As } \frac{d y}{d x}=3 \mathrm{x}+\mathrm{y}^{2} \text { i.e. } y^{\prime}=3 \mathrm{x}+\mathrm{y}^{2} \quad \therefore y_{0}^{\prime}=3 \mathrm{x}_{\mathrm{o}}+y_{0}^{2}=0+1^{2}=1 \\
& y^{\prime \prime}=3+2 \mathrm{y} y^{\prime} \quad \therefore y_{0}^{\prime \prime}=3+2 \mathrm{y}_{\mathrm{o}} y_{0}^{\prime}=3+2(1)(1)=5 \\
& y^{\prime \prime \prime}=2\left(y^{\prime}\right)^{2}+2 \mathrm{y} y^{\prime \prime} \quad \therefore y_{0}^{\prime \prime \prime}=2\left(y_{0}^{\prime}\right)^{2}+2 \mathrm{y}_{\mathrm{o}} y_{0}^{\prime \prime}=2(1)^{2}+2(1)(5)=12 \\
& y^{(\mathrm{iv})}=4 y^{\prime} y^{\prime \prime}+2 y^{\prime} y^{\prime \prime}+2 \mathrm{y} y^{\prime \prime \prime}=6 y^{\prime} y^{\prime \prime}+2 \mathrm{y} y^{\prime \prime \prime} \\
& \therefore y_{0}^{(\mathrm{iv})}=6 y_{0}^{\prime} y_{0}^{\prime \prime}+2 \mathrm{y}_{\mathrm{o}} y_{0}^{\prime \prime \prime}=6(1)(5)+2(1)(12)=30+24=54
\end{aligned}
$$

and so on. Putting these values in (i), we get,
$y(x)=1+x(1)+\frac{x^{2}}{2!}(5)+\frac{x^{3}}{3!}(12)+\frac{x^{4}}{4!}(54)+\ldots \ldots$
i.e. $y(x)=1+x+\frac{5}{2} x^{2}+2 x^{3}+\frac{9}{4} x^{4}+\ldots \ldots$
$\therefore \mathrm{y}(0.1)=1+0.1+\frac{5}{2}(0.01)+2(0.001)+\frac{9}{4}(0.0001)+\ldots .$.
i.e. $y(0.1) \approx 1.1272$

Euler's Method: Consider a differential equation with initial condition

$$
\begin{align*}
& \frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y}) \tag{i}\\
& \mathrm{y}\left(\mathrm{x}_{\mathrm{o}}\right)=\mathrm{y}_{\mathrm{o}} . \tag{ii}
\end{align*}
$$

Let $x=x_{r}=x_{0}+r$, where $r=1,2,3, \ldots \ldots$ and suppose $y=f(x)$ be the solution of equation (i).
Consider the Taylor's series expansion of $\mathrm{y}\left(\mathrm{x}_{0}+\mathrm{h}\right)$ about a point $\mathrm{x}=\mathrm{x}_{0}$ as
$y\left(x_{0}+h\right)=y\left(x_{0}\right)+h y^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{0}\right)+\frac{h^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+$
For very small value of h, we neglect h^{2} and higher order terms, we get,
$y\left(x_{0}+h\right)=y\left(x_{0}\right)+h y^{\prime}\left(x_{0}\right)$
i.e. $y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right)$

Repeated application of above formula gives
$\mathrm{y}_{2}=\mathrm{y}_{1}+\mathrm{hf}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$y_{3}=y_{2}+h f\left(x_{2}, y_{2}\right)$
and so on, ingeneral,
$\mathrm{y}_{\mathrm{n}+1}=\mathrm{y}_{\mathrm{n}}+\mathrm{hf}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$
Which is called the Euler's formula.

Remark: Euler's method is not useful to solve practical problems because process is very slow to obtain reasonable accuracy as we have to take h very small.

Ex. Given $\frac{d y}{d x}=\frac{y-x}{y+x}$ with initial condition $\mathrm{y}=1$ at $\mathrm{x}=0$, find y approximately at $\mathrm{x}=0.1$ in five steps, using Euler's method.
Solution: Let $\frac{d y}{d x}=\frac{y-x}{y+x}$ with initial condition $\mathrm{y}=1$ at $\mathrm{x}=0$.
Here $\mathrm{x}_{0}=0$ and $\mathrm{y}_{0}=1$, to find y at $\mathrm{x}=0.1$ in five steps we take $\mathrm{h}=\frac{x-x_{0}}{5}=\frac{0.1-0}{5}=0.02$ i.e. we have to find y at $\mathrm{x}=0.02,0.04,0.06,0.08$ and 0.1 by using Euler's formula $y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$ as
$y_{1}=y(0.02)=y_{0}+\operatorname{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=1+(0.02)\left(\frac{1-0}{1+0}\right)=1.02$
$\mathrm{y}_{2}=\mathrm{y}(0.04)=\mathrm{y}_{1}+\mathrm{hf}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=1.02+(0.02)\left(\frac{1.02-0.02}{1.02+0.02}\right)=1.0392$
$y_{3}=y(0.06)=y_{2}+h f\left(x_{2}, y_{2}\right)=1.0392+(0.02)\left(\frac{1.0392-0.04}{1.0392+0.04}\right)=1.0577$
$y_{4}=y(0.08)=y_{3}+\operatorname{hf}\left(x_{3}, y_{3}\right)=1.0577+(0.02)\left(\frac{1.0577-0.06}{1.0577+0.06}\right)=1.0738$
$\& y_{5}=y(0.1)=y_{4}+h f\left(x_{4}, y_{4}\right)=1.0738+(0.02)\left(\frac{1.0738-0.08}{1.0738+0.08}\right)=1.0910$
i.e. value of y at $x=0.1$ is 1.0910 .

Ex. Given $\frac{d y}{d x}=-y$ with initial condition $\mathrm{y}=1$ at $\mathrm{x}=0$, find $\mathrm{y}(0.04)$ with $\mathrm{h}=0.01$, using Euler's method.
Solution: Let $\frac{d y}{d x}=-y$ with initial condition $y=1$ at $x=0$.
Here $\mathrm{x}_{0}=0$ and $\mathrm{y}_{0}=1$, to find $\mathrm{y}(0.04)$ with $\mathrm{h}=0.01$
i.e. we have to find y at $x=0.01,0.02,0.03$ and 0.04
by using Euler's formula $y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$ as
$y_{1}=y(0.01)=y_{0}+\operatorname{hf}\left(x_{0}, y_{0}\right)=1+(0.01)(-1)=0.99$
$y_{2}=y(0.02)=y_{1}+h f\left(x_{1}, y_{1}\right)=0.99+(0.01)(-0.99)=0.9801$
$y_{3}=y(0.03)=y_{2}+h f\left(x_{2}, y_{2}\right)=0.9801+(0.01)(-0.9801)=0.9703$
$\& y_{4}=y(0.04)=y_{3}+h f\left(x_{3}, y_{3}\right)=0.9703+(0.01)(-0.9703)=0.9606$
i.e. value of y at $x=0.04$ is 0.9606 .

Ex. Apply Euler's method to find the initial value problem $\frac{d y}{d x}=x+y, \mathrm{y}=0$ when $\mathrm{x}=0$, find y at $\mathrm{x}=1.0$ taking $\mathrm{h}=0.2$
Solution: Let $\frac{d y}{d x}=x+y$ with $\mathrm{y}=0$ at $\mathrm{x}=0$.
Here $\mathrm{x}_{0}=0$ and $\mathrm{y}_{0}=0$, to find y at $\mathrm{x}=1.0$ with $\mathrm{h}=0.2$
i.e. we have to find y at $x=0.2,0.4,0.6,0.8$ and 1.0
by using Euler's formula $y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$ as
$y_{1}=y(0.2)=y_{0}+h f\left(x_{0}, y_{0}\right)=0+(0.2)(0+0)=0$
$\mathrm{y}_{2}=\mathrm{y}(0.4)=\mathrm{y}_{1}+\operatorname{hf}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=0+(0.2)(0.2+0)=0.04$
$y_{3}=y(0.6)=y_{2}+h f\left(x_{2}, y_{2}\right)=0.04+(0.2)(0.4+0.04)=0.128$
$\mathrm{y}_{4}=\mathrm{y}(0.8)=\mathrm{y}_{3}+\mathrm{hf}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)=0.128+(0.2)(0.6+0.128)=0.2736$
$\& y_{5}=y(1.0)=y_{4}+\operatorname{hf}\left(x_{4}, y_{4}\right)==0.2736+(0.2)(0.8+0.2736)=0.48832$
i.e. value of y at $\mathrm{x}=1.0$ is 0.48832 .

Modified Euler's Method: Consider a differential equation

$$
\begin{align*}
& \frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y}) \ldots \ldots \tag{i}\\
& \mathrm{y}\left(\mathrm{x}_{\mathrm{o}}\right)=\mathrm{y}_{0} \ldots \ldots \tag{ii}
\end{align*}
$$

From (i), we have $\mathrm{dy}=\mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dx}$
$\therefore \int_{x_{0}}^{x_{1}} d y=\int_{x_{0}}^{x_{1}} f(x, y) d x$
$\therefore \mathrm{y}\left(x_{1}\right)-\mathrm{y}\left(x_{0}\right)=\int_{x_{0}}^{x_{1}} f(x, y) d x$
$\therefore \mathrm{y}\left(x_{1}\right)=\mathrm{y}\left(x_{0}\right)+\int_{x_{0}}^{x_{1}} f(x, y) d x$
$\therefore y_{1}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}\right)\right] \quad$ by Trapezoidal Rule, where $\mathrm{h}=x_{1}-x_{0}$ By taking alternative procedure as,
$y_{1}^{(1)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(0)}\right)\right] \quad$ where $y_{1}^{(0)}=\mathrm{y}_{0}+\operatorname{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$
$y_{1}^{(2)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(1)}\right)\right]$
$y_{1}^{(3)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(2)}\right)\right]$
and so on, ingeneral,
$y_{1}^{(n+1)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(n)}\right)\right]$
which is called the modified Euler's formula.
Where $\mathrm{n}=0,1,2,3, \ldots$ and $y_{1}^{(n)}$ is the $\mathrm{n}^{\text {th }}$ approximation to y_{1}.

Remark: We stop modified Euler's method when accuracy $\left|y_{1}^{(n+1)}-y_{1}^{(n)}\right|<\varepsilon$ (error tolerance) is obtained. We repeat the computation to find the approximations $y\left(x_{0}+2 h\right) \approx y_{2}, y\left(x_{0}+3 h\right) \approx y_{3}$, etc.

Ex. Solve $\frac{d y}{d x}=1-y, y(0)=0$, by using modified Euler's method to find $y(0.1)$ correct upto four decimal places.
Solution: Let $\frac{d y}{d x}=1-y$ with $y(0)=0$.
Here $\mathrm{x}_{0}=0$ and $\mathrm{y}_{0}=0$, to find $\mathrm{y}(0.1)$ with $\mathrm{h}=\mathrm{x}-\mathrm{x}_{0}=0.1-0=0.1$
by using modified Euler's formula $y_{1}^{(n+1)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(n)}\right)\right]$ as
$y_{1}^{(1)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(0)}\right)\right]$
where $y_{1}^{(0)}=y_{0}+\operatorname{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=0+(0.1)(1-0)=0.1$
$\therefore y_{1}^{(1)}=0+\frac{(0.1)}{2}[(1-0)+(1-0.1)]=0.095$
$y_{1}^{(2)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(1)}\right)\right]=0+\frac{(0.1)}{2}[(1-0)+(1-0.095)]=0.09525$
$y_{1}^{(3)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(2)}\right)\right]=0+\frac{(0.1)}{2}[(1-0)+(1-0.09525)]=0.0952375$
Now $\left|y_{1}^{(3)}-y_{1}^{(2)}\right|<0.000125$
$\therefore \mathrm{y}_{1} \approx y_{1}^{(3)}=0.0952375$
$\therefore y_{1}=y(0.1) \approx 0.0952$ is correct upto four decimal places.

Ex. Find the value of y when $\mathrm{x}=0.05$ correct to four decimals, given that $\mathrm{y}(0)=1$, and $y^{\prime}=\mathrm{x}^{2}+y$, using modified Euler's method. Take $\mathrm{h}=0.05$.
Solution: Let $y^{\prime}=x^{2}+y$ with $\mathrm{y}(0)=1$.
Here $\mathrm{x}_{0}=0$ and $\mathrm{y}_{0}=1$, to find $\mathrm{y}(0.05)$ with $\mathrm{h}=0.05$
by using modified Euler's formula $y_{1}^{(n+1)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(n)}\right)\right]$ as
$y_{1}^{(1)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(0)}\right)\right]$
where $\mathrm{f}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=x_{0}^{2}+y_{0}=0^{2}+1=1, \mathrm{x}_{1}=\mathrm{x}_{0}+\mathrm{h}=0+0.05=0.05$ and
$y_{1}^{(0)}=\mathrm{y}_{0}+\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=1+(0.05)(1)=1.05$
$\therefore y_{1}^{(1)}=1+\frac{(0.05)}{2}\left[1+(0.05)^{2}+1.05\right]=1.0513125$

$$
\begin{aligned}
y_{1}^{(2)} & =y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(1)}\right)\right] \\
& =1+\frac{(0.05)}{2}\left[1+(0.05)^{2}+1.0513125\right]=1.0513453
\end{aligned}
$$

Now $\left|y_{1}^{(2)}-y_{1}^{(1)}\right|<0.0000328$
$\therefore \mathrm{y}_{1} \approx y_{1}^{(2)}=1.0513453$
$\therefore \mathrm{y}_{1}=\mathrm{y}(0.05) \approx 1.0513$ is correct upto four decimals.

Ex. Given $\mathrm{y}^{\prime}=\mathrm{x}+y, \mathrm{y}(1)=1$. by using modified Euler's method, find y at $\mathrm{x}=1.2$ correct to 4 decimals.
Solution: Let $\mathrm{y}^{\prime}=\mathrm{x}+y, \mathrm{y}(1)=1$.
Here $\mathrm{x}_{0}=1$ and $\mathrm{y}_{0}=1$, to find y at $\mathrm{x}=1.2$ with $\mathrm{h}=\mathrm{x}-\mathrm{x}_{0}=1.2-1=0.2$ by using modified Euler's formula $y_{1}^{(n+1)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(n)}\right)\right]$ as
$y_{1}^{(1)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(0)}\right)\right]$
where $\mathrm{f}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=x_{0}+y_{0}=1+1=2, \mathrm{x}_{1}=\mathrm{x}_{0}+\mathrm{h}=1+0.2=1.2$ and
$y_{1}^{(0)}=\mathrm{y}_{0}+\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=1+(0.2)(2)=1.4$
$y_{1}^{(1)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(0)}\right)\right]$
$\therefore y_{1}^{(1)}=1+\frac{(0.2)}{2}[2+(1.2+1.4)]=1.46$
$y_{1}^{(2)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(1)}\right)\right]$

$$
=1+\frac{(0.2)}{2}[2+(1.2+1.46)]=1.466
$$

$y_{1}^{(3)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(2)}\right)\right]$ $=1+\frac{(0.2)}{2}[2+(1.2+1.466)]=1.4666$
$y_{1}^{(4)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(3)}\right)\right]$

$$
=1+\frac{(0.2)}{2}[2+(1.2+1.4666)]=1.46666
$$

Now $\left|y_{1}^{(4)}-y_{1}^{(3)}\right|<0.00006$
$\therefore \mathrm{y}_{1} \approx y_{1}^{(4)}=1.46666$
$\therefore \mathrm{y}_{1}=\mathrm{y}(1.2) \approx 1.4666$ is correct upto 4 decimals.

Ex. Use modified Euler's method to solve $\mathrm{y}^{\prime}=\frac{y}{2}, \mathrm{y}(0)=1$, find y at $\mathrm{x}=0.1$ correct to 4 decimals.
Solution: Let $\mathrm{y}^{\prime}=\frac{y}{2}, \mathrm{y}(0)=1$.
Here $\mathrm{x}_{0}=0$ and $\mathrm{y}_{0}=1$, to find y at $\mathrm{x}=0.1$ with $\mathrm{h}=\mathrm{x}-\mathrm{x}_{0}=0.1-0=0.1$ by using modified Euler's formula $y_{1}^{(n+1)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(n)}\right)\right]$ as
$y_{1}^{(1)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(0)}\right)\right]$
where $\mathrm{f}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\frac{y_{0}}{2}=\frac{1}{2}=0.5, \mathrm{x}_{1}=\mathrm{x}_{0}+\mathrm{h}=0+0.1=0.1$ and
$y_{1}^{(0)}=y_{0}+\operatorname{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=1+(0.1)(0.5)=1.05$
$\therefore y_{1}^{(1)}=1+\frac{(0.1)}{2}\left[0.5+\left(\frac{1.05}{2}\right)\right]=1.05125$
$y_{1}^{(2)}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}^{(1)}\right)\right]$

$$
=1+\frac{(0.1)}{2}\left[0.5+\left(\frac{1.05125}{2}\right)\right]=1.05128
$$

Now $\left|y_{1}^{(2)}-y_{1}^{(1)}\right|<0.00003$
$\therefore y_{1} \approx y_{1}^{(2)}=1.05128$
$\therefore \mathrm{y}_{1}=\mathrm{y}(0.1) \approx 1.0512$ is correct upto 4 decimals.

Runge-Kutta Second Order Method:

Consider the formula
$y_{1}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, y_{1}\right)\right]$
Now replace y_{1} by $y_{1}=y_{0}+\operatorname{hf}\left(x_{0}, y_{0}\right)$ on the right hand side, we get,
$y_{1}=y_{0}+\frac{h}{2}\left[\mathrm{f}\left(x_{0}, y_{0}\right)+\mathrm{f}\left(x_{1}, \mathrm{y}_{0}+\mathrm{hf}\left(x_{0}, y_{0}\right)\right)\right]$
i.e. $y_{1}=y_{0}+\frac{1}{2}\left[\operatorname{hf}\left(x_{0}, y_{0}\right)+\operatorname{hf}\left(x_{1}, y_{0}+\operatorname{hf}\left(x_{0}, y_{0}\right)\right)\right]$

By setting $\mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{0}\right)$ and $\mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{x}_{1}, \mathrm{y}_{0}+\mathrm{k}_{1}\right)$, we get,
$\mathrm{y}_{1}=\mathrm{y}_{\mathrm{o}}+\frac{1}{2}\left[\mathrm{k}_{1}+\mathrm{k}_{2}\right]$
Repeating the process, we get,
$\mathrm{y}_{2}=\mathrm{y}_{1}+\frac{1}{2}\left[\mathrm{k}_{1}+\mathrm{k}_{2}\right]$
$y_{3}=y_{2}+\frac{1}{2}\left[k_{1}+k_{2}\right]$
and so on, ingeneral,
$\mathrm{y}_{\mathrm{n}+1}=\mathrm{y}_{\mathrm{n}}+\frac{1}{2}\left[\mathrm{k}_{1}+\mathrm{k}_{2}\right]$
where $\mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ and $\mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}}+\mathrm{k}_{1}\right)$.

Remark: Runge Kutta methods are more accurate and having great practical importance. These methods are widely used to find the numerical solutions of linear and nonlinear ordinary differential equations.

Ex. Given $\frac{d y}{d x}=y-x$ with $y(0)=2$, find $y(0.1)$ and $y(0.2)$ using Runge-Kutta second order method with $\mathrm{h}=0.1$
Solution: Given $\frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y})=y-x$ with $\mathrm{y}(0)=2$ i.e. $\mathrm{x}_{0}=0$ and $\mathrm{y}_{0}=2$
To find $y(0.1) \approx y_{1}$ by using Runge-Kutta second order method, we have the data

$$
\begin{aligned}
& \mathrm{x}_{0}=0, \mathrm{y}_{0}=2, \mathrm{~h}=0.1 \text { and } \mathrm{x}_{1}=0.1 \\
& \therefore \mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(0.1)\left(\mathrm{y}_{0}-\mathrm{x}_{0}\right)=(0.1)(2-0)=0.2 \text { and } \\
& \mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{x}_{1}, \mathrm{y}_{0}+\mathrm{k}_{1}\right)=\mathrm{h}\left(\mathrm{y}_{0}+\mathrm{k}_{1}-\mathrm{x}_{1}\right)=(0.1)(2+0.2-0.1)=0.21 \\
& \therefore \mathrm{y}_{1}=\mathrm{y}_{0}+\frac{1}{2}\left[\mathrm{k}_{1}+\mathrm{k}_{2}\right]=2+\frac{1}{2}[0.2+0.21]=2.205
\end{aligned}
$$

i.e. $y(0.1) \approx y_{1}=2.205$

Again to find $y(0.2) \approx y_{2}$ by using Runge-Kutta second order method, we have the data $\mathrm{x}_{1}=0.1, \mathrm{y}_{1}=2.205, \mathrm{~h}=0.1$ and $\mathrm{x}_{2}=0.2$
$\therefore \mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(0.1)\left(\mathrm{y}_{1}-\mathrm{x}_{1}\right)=(0.1)(2.205-0.1)=0.2105$ and
$\mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{k}_{1}\right)=\mathrm{h}\left(\mathrm{y}_{1}+\mathrm{k}_{1}-\mathrm{x}_{2}\right)=(0.1)(2.205+0.2105-0.2)=0.22155$
$\therefore \mathrm{y}_{2}=\mathrm{y}_{1}+\frac{1}{2}\left[\mathrm{k}_{1}+\mathrm{k}_{2}\right]=2.205+\frac{1}{2}[0.2105+0.22155]=2.421025$
i.e. $y(0.2) \approx y_{2}=2.421$

Ex. Use Runge-Kutta method to find y when $\mathrm{x}=1.2$ in steps of 0.1 given that $\frac{d y}{d x}=x^{2}+y^{2}$ and $y(1)=1.5$
Solution: Given $\frac{d y}{d x}=f(x, y)=x^{2}+y^{2}$ and $y(1)=1.5$ i.e. $x_{0}=1$ and $y_{0}=1.5$
We have to find y when $\mathrm{x}=1.2$ in steps of 0.1 i.e. $\mathrm{h}=0.1, \mathrm{x}_{1}=1.1$ and $\mathrm{x}_{2}=1.2$
To find $y(1.1) \approx y_{1}$ by using Runge-Kutta second order method, we have the data
$\mathrm{x}_{0}=1, \mathrm{y}_{0}=1.5, \mathrm{~h}=0.1$ and $\mathrm{x}_{1}=1.1$
$\therefore \mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(0.1)\left(x_{0}^{2}+y_{0}^{2}\right)=(0.1)(1+2.25)=0.325$ and
$\mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{x}_{1}, \mathrm{y}_{0}+\mathrm{k}_{1}\right)=\mathrm{h}\left[x_{1}^{2}+\left(y_{0}+k_{1}\right)^{2}\right]$
$=(0.1)\left[(1.1)^{2}+(1.5+0.325)^{2}\right]=0.4540625$
$\therefore \mathrm{y}_{1}=\mathrm{y}_{\mathrm{o}}+\frac{1}{2}\left[\mathrm{k}_{1}+\mathrm{k}_{2}\right]=1.5+\frac{1}{2}[0.325+0.4540625]=1.8895$
i.e. $y(0.1) \approx y_{1}=1.8895$

Again to find $y(1.2) \approx y_{2}$ by using Runge-Kutta second order method, we have the data $\mathrm{x}_{1}=1.1, \mathrm{y}_{1}=1.8895, \mathrm{~h}=0.1$ and $\mathrm{x}_{2}=1.2$
$\therefore \mathrm{k}_{1}=\operatorname{hf}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(0.1)\left(x_{1}^{2}+y_{1}^{2}\right)=(0.1)(1.21+3.5702)=0.4780$ and
$\mathrm{k}_{2}=\operatorname{hf}\left(\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{k}_{1}\right)=\mathrm{h}\left[x_{2}^{2}+\left(y_{1}+k_{1}\right)^{2}\right]$

$$
=(0.1)\left[(1.2)^{2}+(1.8895+0.4780)^{2}\right]=0.7045
$$

$\therefore \mathrm{y}_{2}=\mathrm{y}_{1}+\frac{1}{2}\left[\mathrm{k}_{1}+\mathrm{k}_{2}\right]=1.8895+\frac{1}{2}[0.4780+0.7045]=2.4808$
i.e. $y(0.2) \approx y_{2}=2.4808$

Ex. Use Runge-Kutta method to find y when $x=0.5$ and 1 . Given that $\frac{d y}{d x}=\frac{y}{2}$ and $y(0)=1$
Solution: Given $\frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{y}{2}$ and $\mathrm{y}(0)=1$ i.e. $\mathrm{x}_{0}=0$ and $\mathrm{y}_{0}=1$
We have to find y when $x=0.5$ and 1 i.e. $h=0.5, x_{1}=0.5$ and $x_{2}=1$
To find $y(0.5) \approx y_{1}$ by using Runge-Kutta second order method, we have the data $\mathrm{x}_{0}=0, \mathrm{y}_{0}=1, \mathrm{~h}=0.5$ and $\mathrm{x}_{1}=0.5$
$\therefore \mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(0.5)\left(\frac{y_{0}}{2}\right)=(0.5)\left(\frac{1}{2}\right)=0.25$ and
$\mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{x}_{1}, \mathrm{y}_{0}+\mathrm{k}_{1}\right)=\mathrm{h}\left(\frac{y_{0}+k_{1}}{2}\right)=(0.5)\left(\frac{1+0.25}{2}\right)=0.3125$
$\therefore \mathrm{y}_{1}=\mathrm{y}_{\mathrm{o}}+\frac{1}{2}\left[\mathrm{k}_{1}+\mathrm{k}_{2}\right]=1+\frac{1}{2}[0.25+0.3125]=1.28125$
i.e. $y(0.1) \approx y_{1}=1.28125$

Again to find $y(1) \approx y_{2}$ by using Runge-Kutta second order method, we have the data $\mathrm{x}_{1}=0.5, \mathrm{y}_{1}=1.28125, \mathrm{~h}=0.5$ and $\mathrm{x}_{2}=1$
$\therefore \mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(0.5)\left(\frac{y_{1}}{2}\right)=(0.5)\left(\frac{1.28125}{2}\right)=0.3203$ and $\mathrm{k}_{2}=\operatorname{hf}\left(\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{k}_{1}\right)=\mathrm{h}\left(\frac{y_{1}+k_{1}}{2}\right)=(0.5)\left(\frac{1.28125+0.3203}{2}\right)=0.4004$
$\therefore \mathrm{y}_{2}=\mathrm{y}_{1}+\frac{1}{2}\left[\mathrm{k}_{1}+\mathrm{k}_{2}\right]=1.28125+\frac{1}{2}[0.3203+0.4004]=1.6416$
i.e. $y(0.2) \approx y_{2}=1.6416$

Fourth Order Runge-Kutta Method: To find the solution of initial value problem
$\frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ with $\mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}$ by fourth order Runge-Kutta method.
The fourth order Runge-Kutta formula is
$\mathrm{y}_{1}=\mathrm{y}_{\mathrm{o}}+\frac{1}{6}\left[\mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}+\mathrm{k}_{4}\right]$,
where $\mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$

$$
\begin{aligned}
& \mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{0}+\frac{k_{1}}{2}\right) \\
& \mathrm{k}_{3}=\mathrm{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{0}+\frac{k_{2}}{2}\right) \\
& \mathrm{k}_{4}=\mathrm{hf}\left(\mathrm{x}_{0}+\mathrm{h}, \mathrm{y}_{0}+\mathrm{k}_{3}\right)
\end{aligned}
$$

Ingeneral $\mathrm{y}_{\mathrm{n}+1}=\mathrm{y}_{\mathrm{n}}+\frac{1}{6}\left[\mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}+\mathrm{k}_{4}\right]$
where $\mathrm{k}_{1}=\operatorname{hf}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$

$$
\begin{aligned}
& \mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{x}_{\mathrm{n}}+\frac{\mathrm{h}}{2}, \mathrm{y}_{\mathrm{n}}+\frac{k_{1}}{2}\right) \\
& \mathrm{k}_{3}=\operatorname{hf}\left(\mathrm{x}_{\mathrm{n}}+\frac{\mathrm{h}}{2}, \mathrm{y}_{\mathrm{n}}+\frac{k_{2}}{2}\right) \\
& \mathrm{k}_{4}=\mathrm{hf}\left(\mathrm{x}_{\mathrm{n}}+\mathrm{h}, \mathrm{y}_{\mathrm{n}}+\mathrm{k}_{3}\right)
\end{aligned}
$$

Remark: Runge Kutta fourth order method is more accurate than Euler's modified method. This method agrees with Taylor's series solution upto the term h^{4}.

Ex. Given $y^{\prime}=x^{2}-y$ with $y(0)=1$, find $y(0.1)$ and $y(0.2)$ using Runge-Kutta method of fourth order.
Solution: Given $y^{\prime}=\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}-y$ with $\mathrm{y}(0)=1$ i.e. $\mathrm{x}_{0}=0$ and $\mathrm{y}_{0}=1$
To find $y(0.1) \approx y_{1}$ by using Runge-Kutta method of fourth order, we have the data
$\mathrm{x}_{0}=0, \mathrm{y}_{0}=1, \mathrm{~h}=0.1$ and $\mathrm{x}_{1}=0.1$
$\therefore \mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(0.1)\left(x_{0}^{2}-y_{0}\right)=(0.1)(0-1)=-0.1$ and
$\mathrm{k}_{2}=\operatorname{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{0}+\frac{k_{1}}{2}\right)=\operatorname{hf}(0.05,0.95)=(0.1)(0.0025-0.95)=-0.09475$
$\mathrm{k}_{3}=\mathrm{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{0}+\frac{k_{2}}{2}\right)=\mathrm{hf}(0.05,0.952625)$
$=(0.1)(0.0025-0.952625)=-0.0950125$
$\mathrm{k}_{4}=\mathrm{hf}\left(\mathrm{x}_{0}+\mathrm{h}, \mathrm{y}_{0}+\mathrm{k}_{3}\right)=\mathrm{hf}(0.1,0.9049875)$
$=(0.1)(0.01-0.9049875)=-0.08949875$
$\therefore \mathrm{y}_{1}=\mathrm{y}_{\mathrm{o}}+\frac{1}{6}\left[\mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}+\mathrm{k}_{4}\right]$
$=1+\frac{1}{6}[-0.1+2(-0.09475)+2(-0.0950125)-0.08949875]=0.9052$
i.e. $\mathrm{y}(0.1) \approx \mathrm{y}_{1}=0.9052$

Again to find $y(0.2) \approx y_{2}$ by using Runge-Kutta method of fourth order, we have the data $\mathrm{x}_{1}=0.1, \mathrm{y}_{1}=0.9052, \mathrm{~h}=0.1$ and $\mathrm{x}_{2}=0.2$
$\therefore \mathrm{k}_{1}=\operatorname{hf}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(0.1)\left(x_{1}^{2}-y_{1}\right)=(0.1)(0.01-0.9052)=-0.08952$ and

$$
\begin{aligned}
\mathrm{k}_{2} & =\mathrm{hf}\left(\mathrm{x}_{1}+\frac{\mathrm{h}}{2}, \mathrm{y}_{1}+\frac{k_{1}}{2}\right)=\mathrm{hf}(0.15,0.86044) \\
& =(0.1)(0.0225-0.86044)=-0.083794
\end{aligned}
$$

$$
\mathrm{k}_{3}=\operatorname{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{1}+\frac{k_{2}}{2}\right)=\operatorname{hf}(0.15,0.863303)
$$

$$
=(0.1)(0.0225-0.863303)=-0.0840803
$$

$$
\mathrm{k}_{4}=\mathrm{hf}\left(\mathrm{x}_{0}+\mathrm{h}, \mathrm{y}_{1}+\mathrm{k}_{3}\right)=\mathrm{hf}(0.2,0.82112)
$$

$$
=(0.1)(0.04-0.82112)=-0.078112
$$

$$
\therefore \mathrm{y}_{2}=\mathrm{y}_{1}+\frac{1}{6}\left[\mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}+\mathrm{k}_{4}\right]
$$

$$
=0.9052+\frac{1}{6}[-0.08952+2(-0.083794)+2(-0.0840803)-0.078112]=0.8213
$$

i.e. $y(0.2) \approx y_{2}=0.8213$

Ex. Using Runge-Kutta fourth order method find $y(0.1)$, given that $\frac{d y}{d x}=x y+y^{2}$ with $\mathrm{y}(0)=1$,
Solution: Given $\frac{d y}{d x}=f(x, y)=x y+y^{2}$ with $y(0)=1$ i.e. $x_{0}=0$ and $y_{0}=1$
To find $y(0.1) \approx y_{1}$ by using Runge-Kutta fourth order method, we have the data
$\mathrm{x}_{0}=0, \mathrm{y}_{0}=1, \mathrm{~h}=0.1$ and $\mathrm{x}_{1}=0.1$
$\therefore \mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(0.1)\left(x_{0} y_{0}+y_{0}^{2}\right)=(0.1)(0+1)=0.1$ and $\mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{0}+\frac{k_{1}}{2}\right)=\mathrm{hf}(0.05,1.05)=(0.1)\left[(0.05)(1.05)+(1.05)^{2}\right]=0.1155$

$$
\begin{aligned}
\mathrm{k}_{3} & =\mathrm{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{0}+\frac{k_{2}}{2}\right)=\mathrm{hf}(0.05,1.05775) \\
& =(0.1)\left[(0.05)(1.10775)+(1.05775)^{2}\right]=0.1171723
\end{aligned}
$$

$$
\mathrm{k}_{4}=\operatorname{hf}\left(\mathrm{x}_{0}+\mathrm{h}, \mathrm{y}_{0}+\mathrm{k}_{3}\right)=\operatorname{hf}(0.1,1.1171723)
$$

$$
=(0.1)\left[(0.1)(1.1171723)+(1.1171723)^{2}\right]=0.1359791
$$

$$
\therefore \mathrm{y}_{1}=\mathrm{y}_{\mathrm{o}}+\frac{1}{6}\left[\mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}+\mathrm{k}_{4}\right]
$$

$$
=1+\frac{1}{6}[0.1+2(0.1155)+2(0.1171723)+0.1359791]=1.1168873
$$

i.e. $y(0.1) \approx y_{1}=1.1168873$

Ex. Using Runge-Kutta fourth order method find $y(0.1)$, given that $\frac{d y}{d x}=x+y^{2}$ with $\mathrm{y}(0)=1$,
Solution: Given $\frac{d y}{d x}=f(x, y)=x+y^{2}$ with $y(0)=1$ i.e. $x_{0}=0$ and $y_{0}=1$
To find $y(0.1) \approx y_{1}$ by using Runge-Kutta fourth order method, we have the data

$$
\begin{aligned}
\mathrm{x}_{0} & =0, \mathrm{y}_{0}=1, \mathrm{~h}=0.1 \text { and } \mathrm{x}_{1}=0.1 \\
\therefore \mathrm{k}_{1} & =\operatorname{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(0.1)\left(x_{0}+y_{0}^{2}\right)=(0.1)(0+1)=0.1 \text { and } \\
\mathrm{k}_{2} & =\operatorname{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{0}+\frac{k_{1}}{2}\right)=\operatorname{hf}(0.05,1.05)=(0.1)\left[(0.05)+(1.05)^{2}\right]=0.11525 \\
\mathrm{k}_{3} & =\operatorname{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{0}+\frac{k_{2}}{2}\right)=\operatorname{hf}(0.05,1.057625) \\
& =(0.1)\left[(0.05)+(1.057625)^{2}\right]=0.11685 \\
\mathrm{k}_{4} & =\operatorname{hf}\left(\mathrm{x}_{0}+\mathrm{h}, \mathrm{y}_{0}+\mathrm{k}_{3}\right)=\mathrm{hf}(0.1,1.11685) \\
& =(0.1)\left[(0.1)+(1.11685)^{2}\right]=0.134735 \\
\therefore \mathrm{y}_{1} & =\mathrm{y}_{\mathrm{o}}+\frac{1}{6}\left[\mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{2}+\mathrm{k}_{4}\right] \\
& =1+\frac{1}{6}[0.1+2(0.11525)+2(0.11685)+0.134735]=1.1165
\end{aligned}
$$

i.e. $\mathrm{y}(0.1) \approx \mathrm{y}_{1}=1.1165$

Ex. Apply Runge-Kutta fourth order method, to find the approximate value of y when $\mathrm{x}=0.2$, given that $\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{x}+\mathrm{y}$ and $\mathrm{y}=1$ when $\mathrm{x}=0$.
Solution: Given $\frac{d y}{d x}=f(x, y)=x+y$ and $y=1$ when $x=0$ i.e. $x_{0}=0$ and $y_{0}=1$
To find $y(0.2) \approx y_{1}$ by using Runge-Kutta fourth order method, we have the data $\mathrm{x}_{0}=0, \mathrm{y}_{0}=1, \mathrm{~h}=0.2$ and $\mathrm{x}_{1}=0.2$
$\left.\therefore \mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(0.2)\left(x_{0}+y_{0}\right)\right)=(0.2)(0+1)=0.2$ and $\mathrm{k}_{2}=\operatorname{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{0}+\frac{k_{1}}{2}\right)=\operatorname{hf}(0.1,1.1)=(0.2)(0.1+1.1)=0.24$
$\mathrm{k}_{3}=\operatorname{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{0}+\frac{k_{2}}{2}\right)=\operatorname{hf}(0.1,1.12)$
$=(0.2)[(0.1+1.12)=0.244$
$\mathrm{k}_{4}=\mathrm{hf}\left(\mathrm{x}_{0}+\mathrm{h}, \mathrm{y}_{0}+\mathrm{k}_{3}\right)=\mathrm{hf}(0.2,1.244)$
$=(0.2)[(0.2+1.244)=0.2888$
$\therefore \mathrm{y}_{1}=\mathrm{y}_{\mathrm{o}}+\frac{1}{6}\left[\mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}+\mathrm{k}_{4}\right]$
$=1+\frac{1}{6}[0.2+2(0.24)+2(0.244)+0.2888]=1.2428$
i.e. $\mathrm{y}(0.1) \approx \mathrm{y}_{1}=1.2428$

Ex. Using Runge-Kutta fourth order method obtain y when $\mathrm{x}=1.1$, given that $\mathrm{y}=1.2$ when $\mathrm{x}=1$ and y satisfies the equation $\frac{d y}{d x}=3 x+y^{2}$.
Solution: Given $\frac{d y}{d x}=f(x, y)=3 x+y^{2}$ with $y=1.2$ when $x=1$ i.e. $x_{0}=1$ and $y_{0}=1.2$ To find $y(1.1) \approx y_{1}$ by using Runge-Kutta fourth order method, we have the data

$$
\begin{aligned}
\mathrm{x}_{0}= & 1, \mathrm{y}_{0}=1.2, \mathrm{~h}=0.1 \text { and } \mathrm{x}_{1}=1.1 \\
\therefore \mathrm{k}_{1} & \left.=\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\mathrm{hf}(1,1.2)=(0.1)\left[3(1)+(1.2)^{2}\right]\right)=(0.1)(3+1.44)=0.444 \text { and } \\
\mathrm{k}_{2} & =\mathrm{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{0}+\frac{k_{1}}{2}\right)=\mathrm{hf}(1.05,1.422)=(0.1)\left[3(1.05)+(1.422)^{2}\right]=0.5172 \\
\mathrm{k}_{3} & =\mathrm{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{0}+\frac{k_{2}}{2}\right)=\mathrm{hf}(1.05,1.4586) \\
& =(0.1)\left[3(1.05)+(1.4586)^{2}\right]=0.5278 \\
\mathrm{k}_{4} & =\mathrm{hf}\left(\mathrm{x}_{0}+\mathrm{h}, \mathrm{y}_{0}+\mathrm{k}_{3}\right)=\mathrm{hf}(1.1,1.7278) \\
& =(0.1)\left[3(1.1)+(1.7278)^{2}\right]=0.6285 \\
\therefore \mathrm{y}_{1} & =\mathrm{y}_{0}+\frac{1}{6}\left[\mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{2}+\mathrm{k}_{4}\right] \\
& =1.2+\frac{1}{6}[0.444+2(0.5172)+2(0.5278)+0.6285]=1.72708
\end{aligned}
$$

i.e. $y(0.1) \approx y_{1}=1.72708$

MULTIPLE CHOICE QUESTIONS (MCQ'S)

1) First order differential equation $\frac{d y}{d x}=f(x, y)$ with initial condition $y\left(x_{0}\right)=y_{0}$ is known as
A) exact equation
B) initial value problem
C) linear equation
D) boundary value problem
2) $\frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ with is known as initial value problem.
A) $y\left(x_{1}\right)=y_{o}$
B) $y\left(x_{0}\right)=y_{1}$
C) $y\left(x_{o}\right)=y_{o}$
D) $y\left(x_{1}\right)=y_{1}$
3) Second or higher order differential equation with conditions at two or more points is called
A) boundary value problem
B) initial value problem
C) linear equation
D) None of these
4) General solution of differential equation of order n contains ... arbitrary constants.
A) $n-1$
B) n
C) $n+1$
D) 0
5) Taylor's series expansion of $y(x)$ about a point $x=x_{0}$ is
A) $y(x)=\left(x-x_{0}\right) y^{\prime}{ }_{0}+\left(x-x_{0}\right)^{2} / 2!y^{\prime \prime}{ }_{0}+\ldots$
B) $y(x)=y_{o}+\left(x_{0}\right) y^{\prime}{ }_{o}+\left(x_{0}\right)^{2} / 2!y^{\prime \prime}{ }_{o}+\ldots$
C) $y(x)=y_{0}+\left(x-x_{0}\right) y^{\prime}{ }_{0}+\left(x-x_{0}\right)^{2} / 2!y^{\prime \prime}{ }_{o}+.$.
D) None of these
6) $y(x)=y_{0}+\left(x-x_{0}\right) y^{\prime}{ }_{0}+\left(x-x_{0}\right)^{2} / 2!y^{\prime \prime}{ }_{0}+$. \qquad ..is the \qquad
A) Taylor's
B) Maclaurin's
C) Laurents's
D) None of these
7) In Taylors series if we take $x_{0}=0$, then it said to be series.
A) Cauchy's
B) Maclaurin's
C) Laurent's
D) None of these
8) If $y^{\prime}=x+y$, then $y^{\prime \prime}=$
A) 1
B) $1+y^{\prime}$
C) $x+y^{\prime}$
D) $x+1$
9) If $y^{\prime}=2 x+y$, then $y^{\prime \prime}=$
A) 2
B) $2+y^{\prime}$
C) $2 x+y^{\prime}$
D) $2 x+1$
10) If $y^{\prime}=2 y+3 e^{x}$, then $y^{\prime \prime}=$
A) $2 y+3 e^{x}$
B) $2 y^{\prime}+e^{x}$
C) $2 y^{\prime}+3 e^{x}$
D) $2 y^{\prime}+9 e^{x}$
11) If $y^{\prime}=3 y+5 e^{x}$, then $y^{\prime \prime}=$ \qquad
A) $3 y+5 e^{x}$
B) $3 y^{\prime}+5 e^{x}$
C) $3 y^{\prime}+e^{x}$
D) $3 y^{\prime}+25 e^{x}$
12) If $y^{\prime \prime}=1+y^{\prime}$, then $y^{\prime \prime \prime}=$
A) 0
B) 1
C) y^{\prime}
D) $y^{\prime \prime}$
13) If $y^{\prime \prime}=10+y^{\prime}$, then $y^{\prime \prime \prime}=$
A) 0
B) $\mathrm{y}^{\prime \prime}$
C) y^{\prime}
D) 10
14) If $\frac{d y}{d x}=x-y^{2}$ and $y(0)=1$, then $y_{0}^{\prime}=$
A) -1
B) 1
C) 2
D) -2
15) If $\frac{d y}{d x}=\mathrm{x}-\mathrm{y}^{2}$ and $\mathrm{y}(0)=1$, then $y_{0}^{\prime \prime}=$ \qquad
A) -1
B) 1
C) 3
D) -3
16) If $\frac{d y}{d x}=x+y$ and $y(1)=0$, then $y_{0}^{\prime}=\ldots \ldots \ldots \ldots$
A) -1
B) 1
C) 2
D) -2
17) If $\frac{d y}{d x}=x+y$ and $y(1)=0$, then $y_{0}^{\prime \prime}=\ldots \ldots \ldots \ldots$
A) -1
B) 1
C) 3
D) 2
18) If $\frac{d y}{d x}=\mathrm{x}+\mathrm{y}$ and $\mathrm{y}(1)=0$, then $y_{0}^{\prime \prime \prime}=$ \qquad
A) -1
B) 1
C) 3
D) 2
19) If $\frac{d y}{d x}=x^{2}-y$ and $y(0)=1$, then $y_{0}^{\prime}=$. \qquad
A) -1
B) 1
C) 2
D) -2
20) If $\frac{d y}{d x}=x^{2}-y$ and $y(0)=1$, then $y_{0}^{\prime \prime}=$
A) -1
B) 1
C) 2
D) -3
21) If $\frac{d y}{d x}=2 y+3 \mathrm{e}^{\mathrm{x}}$ and $\mathrm{y}(0)=0$, then $y_{0}^{\prime}=$ \qquad
A) -1
B) 1
C) 2
D) 3
22) If $\frac{d y}{d x}=2 \mathrm{y}+3 \mathrm{e}^{\mathrm{x}}$ and $\mathrm{y}(0)=0$, then $y_{0}^{\prime \prime}=$ \qquad
A) -1
B) 9
C) 2
D) 0
23) If $\frac{d y}{d x}=x y-1$ and $y(1)=2$, then $y_{0}^{\prime}=$
A) -1
B) 1
C) 2
D) 3
24) If $\frac{d y}{d x}=x y-1$ and $y(1)=2$, then $y_{0}^{\prime \prime}=$
A) 0
B) 1
C) 3
D) 2
25) If $\frac{d y}{d x}=3 \mathrm{x}+\mathrm{y}^{2}$ and $\mathrm{y}(0)=1$, then $y_{0}^{\prime}=$
A) -1
B) 1
C) 2
D) 3
26) If $\frac{d y}{d x}=3 x+y^{2}$ and $y(0)=1$, then $y_{0}^{\prime \prime}=$ \qquad
A) 5
B) 1
C) 2
D) 3
27) By Eulers formula $y_{n+1}=$
A) $y_{n}+h f\left(x_{n}, y_{n}\right)$
B) $y_{o}+h f\left(x_{n}, y_{n}\right)$
C) $y_{n}+\operatorname{hf}\left(x_{0,} y_{n}\right)$
D) $y_{n}+h f\left(x_{o}, y_{o}\right)$
28) For the initial value problem $y^{\prime}=x+y, y=0$ when $x=0$. For $h=0.2$ by Eulers formula the value of $y_{1}=\ldots \ldots$.
A) -1
B) 0
C) 0.2
D) None of these
29) For the initial value problem $y^{\prime}=x+y, y=0$ when $x=0$. For $h=0.2$ by Eulers formula the value of $y_{2}=$
A) 0
B) 0.02
C) 0.03
D) 0.04
30) For the initial value problem $y^{\prime}=x+y, y=0$ when $x=0$. For $h=0.2$ by Euler's formula the value of $y_{3}=$ \qquad
A) 0.12
B) 0.128
C) 0.1
D) 0.2
31) For the initial value problem $y^{\prime}=x+2 y, y=0$ when $x=0$. For $h=0.2$ by Euler's formula the value of $y_{1}=\ldots \ldots$.
A) -1
B) 0
C) 0.2
D) None of these
32) For the initial value problem $y^{\prime}=x+2 y, y=0$ when $x=0$. For $h=0.2$ by Euler's formula the value of $y_{2}=\ldots \ldots$.
A) 0
B) 0.02
C) 0.03
D) 0.04
33) For the initial value problem $y^{\prime}=x+2 y, y=0$ when $x=0$. For $h=0.2$ by Eulers formula the value of $y_{3}=\ldots \ldots$
A) 0.12
B) 0.136
C) 0.1
D) 0.2
34) By Modified Euler's Method $y_{1}{ }^{(n+1)}=\ldots$
A) $y_{0}+h / 2\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}{ }^{(n)}\right)\right]$
B) $\mathrm{y}_{\mathrm{o}}+\mathrm{h}\left[\mathrm{f}\left(\mathrm{x}_{0}, \mathrm{y}_{\mathrm{o}}\right)+\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{y}_{1}{ }^{(\mathrm{n})}\right)\right]$
C) $y_{0}+h / 3\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}{ }^{(n)}\right)\right]$
D) $y_{0}+h / 4\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}{ }^{(n)}\right)\right]$
35) If $y(0)=1$ and $y^{\prime}=x^{2}+y$ then $f\left(x_{0}, y_{0}\right)=$ \qquad for $\mathrm{h}=0.05$
A) 0
B) 2
C) 1
D) None of these
36) If $y(0)=1$ and $y^{\prime}=x^{2}+y$ then by modified Euler's method $y_{1}{ }^{(0)}=$
A) 1
B) 1.05
C) 1.1
D) 1.15
37) If $y(0)=1$ and $y^{\prime}=x^{2}-4 y$ then $f\left(x_{0}, y_{0}\right)=\ldots \ldots$. for $h=0.05$
A) 0
B) 2
C) -4
D) None of these
38) If $y(0)=1$ and $y^{\prime}=x^{2}+y$ then by modified Euler's method $y_{1}{ }^{(0)}=$
A) 1
B) 1.05
C) 1.1
D) 1.15
39) By Runge-Kutta Second Order Method $y_{1}=y_{0}+\frac{1}{2}\left[k_{1}+k_{2}\right]$, where $k_{1}=$
A) $\mathrm{f}\left(\mathrm{x}_{0}, \mathrm{y}_{\mathrm{o}}\right)$
B) $\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{1}\right)$
C) $\mathrm{hf}\left(\mathrm{x}_{1}, \mathrm{y}_{0}\right)$
D) $\operatorname{hf}\left(x_{o}, y_{o}\right)$
40) By Runge-Kutta Second Order Method $y_{1}=y_{0}+\frac{1}{2}\left[k_{1}+k_{2}\right]$, where $k_{2}=$
A) $h f\left(x_{0}+h, y_{0}+k_{1}\right)$
B) $f\left(x_{0}+h, y_{1}+k_{1}\right)$
C) $h f\left(x_{1}+h, y_{0}+k_{1}\right)$
D) $f\left(x_{1}+h, y_{1}+k_{1}\right)$
41) If $y^{\prime}=x^{2}+y^{2}$ with $y(1)=1.5$ and $h=0.1$ then by Runge-Kutta Second Order Method $\mathrm{k}_{1}=$
A) 0.1
B) 1.5
C) 0.325
D) 0
42) If $y^{\prime}=x^{2}+y^{2}$ with $y(1)=1.5$ and $h=0.1$ then by Runge-Kutta Second Order Method $\mathrm{k}_{2}=$
A) 0.4540625
B) 1.540625
C) 0.625
D) 0
43) If $\frac{d y}{d x}=y-x$ with $y(0)=2$ and $h=0.1$ then by Runge-Kutta Second Order Method $\mathrm{k}_{1}=$
A) 0.1
B) 0.2
C) 0.3
D) 0.4
44) If $\frac{d y}{d x}=y-x$ with $y(0)=2$ and $h=0.1$ then by Runge-Kutta Second Order Method $\mathrm{k}_{2}=$
A) 0.21
B) 0.22
C) 0.23
D) 0.24
45) If $\frac{d y}{d x}=\frac{y}{2}$ with $y(0)=1$ and $h=0.5$ then by Runge-Kutta Second Order Method $\mathrm{k}_{1}=$
A) 0.15
B) 0.25
C) 0.35
D) 0.45
46) If $\frac{d y}{d x}=\frac{x}{y}$ with $y(1)=2$ and $h=0.2$ then by Runge-Kutta Second Order Method $\mathrm{k}_{1}=$
A) 0.1
B) 0.2
C) 0.3
D) 0.4
47) Fourth order Runge-Kutta formula for the solution of the initial value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ is given by $y_{1}=$ \qquad
A) $y_{0}+\frac{1}{2}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)$
B) $\mathrm{y}_{0}+\frac{1}{2}\left(\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}+\mathrm{k}_{4}\right)$
C) $y_{0}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)$
D) $y_{0}+\frac{1}{6}\left(k_{1}+k_{2}+k_{3}+k_{4}\right)$
48) In Fourth order Runge-Kutta formula $\mathrm{k}_{1}=\ldots \ldots \ldots \ldots$
A) $f\left(x_{0}, y_{0}\right)$
B) $\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{1}\right)$
C) $\operatorname{hf}\left(x_{1}, y_{o}\right)$
D) $h f\left(x_{0}, y_{o}\right)$
49) If $y^{\prime}=x^{2}-y$ with $y(0)=1$ and $h=0.1$, then by Runge-Kutta Fourth Order Method $\mathrm{k}_{1}=$ \qquad
A) 0.1
B) -0.1
C) 0.2
D) -0.2
50) If $\frac{\mathrm{d} y}{d x}=x y+y^{2}$ with $y(0)=1$ and $\mathrm{h}=0.1$, then by Runge-Kutta Fourth Order Method $\mathrm{k}_{1}=$
A) 0.1
B) -0.1
C) 0.2
D) -0.2
51) If $\frac{\mathrm{dy}}{d x}=\mathrm{x}+\mathrm{y}^{2}$ with $\mathrm{y}(0)=1$ and $\mathrm{h}=0.1$, then by Runge-Kutta Fourth Order Method $\mathrm{k}_{1}=$
A) 0.1
B) -0.1
C) 0.2
D) -0.2
52) If $\frac{\mathrm{dy}}{d x}=\mathrm{x}+\mathrm{y}$ with $\mathrm{y}=1$ when $\mathrm{x}=0$ and $\mathrm{h}=0.2$, then by Runge-Kutta Fourth Order Method $\mathrm{k}_{1}=$
A) 0.1
B) -0.1
C) 0.2
D) -0.2
53) If $\frac{d y}{d x}=3 x+y^{2}$ with $y=1.2$ when $x=1$ and $h=0.1$, then by Runge-Kutta Fourth Order Method $\mathrm{k}_{1}=$
A) 0.14
B) 0.444
C) 0.222
D) 0.2
54) In Fourth order Runge-Kutta formula $\mathrm{k}_{2}=$
A) $h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right)$
B) $h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right)$
C) $h f\left(x_{o}+h, y_{o}+k_{3}\right)$
D) None of these
55) In Fourth order Runge-Kutta formula $k_{3}=$
A) $h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right)$
B) $\operatorname{hf}\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right)$
C) $h f\left(x_{o}+h, y_{o}+k_{3}\right)$
D) None of these
56) In Fourth order Runge-Kutta formula $\mathrm{k}_{4}=$
A) $h f\left(x_{0}+\frac{h}{2}, y_{o}+\frac{k_{1}}{2}\right)$
B) $\operatorname{hf}\left(x_{o}+\frac{h}{2}, y_{o}+\frac{k_{2}}{2}\right)$
C) $h f\left(x_{o}+h, y_{o}+k_{3}\right)$
D) None of these

॥ अंतरी पेटवू ज्ञानज्योत ॥

विद्यापीठ गीत

मंत्र असो हा एकच ह्रदयी 'जीवन म्हणजे ज्ञान' ज्ञानामधूनी मिळो मुक्ती अन मुक्तीमधूनी ज्ञान ॥धृ॥ कला, ज्ञान, विज्ञान, संस्कृती साधू पुरूषार्थ साफल्यास्तव सदा ‘अंतरी पेटवू ज्ञानज्योत' मंगल पावन चराचरातून स्रवते अक्षय ज्ञान॥१॥ उत्तम विद्या, परम शक्ति ही आमुची ध्येयासक्ती शील, एकता, चारित्र्यावर सदैव आमुची भक्ती सत्य शिवाचे मंदिर सुंदर, विद्यापीठ महान ॥२॥ समता, ममता, स्वातंत्र्याचे नांदो जगी नाते, आत्मबलाने होऊ आम्ही आमुचे भाग्यविधाते, ज्ञानप्रभुची लाभो करूणा आणि पायसदान ॥३॥ - कै.प्रा. राजा महाजन

THE NATIONAL INTERGRATION PLEDGE

"I solemnly pledge to work with dedication to preserve and strengthen the freedom and integrity of the nation.

I further affirm that I shall never resort to violence and that all differences and disputes relating to religion, language, region or other political or economic grievance should be settled by peaceful and constitutional means."

