Pimpalner Education Society's

Karm. A. M. Patil Arts, Commerce and Kai. Annasaheb N. K. Patil Science Senior College Pimpalner, Tal.- Sakri,

Dist.- Dhule.

CLASS NOTES CLASS: F.Y.B.SC SEM.-II SUBJECT: MTH-202: THEORY OF EQUATIONS PREPARED BY: PROF. K. D. KADAM

MTH 202: THEORY OF EQUATIONS

Unit-1. Divisibility of Integers

Natural numbers. Well ordering principle (statement only). Principle of Mathematical Induction. Divisibility of integers and theorems. Division algorithm. GCD and LCM. Euclidean algorithm. Unique factorization theorem.

Unit-2. Polynomials

Revision of Polynomials, Horner's method of synthetic division, Existence and uniqueness of GCD of two polynomials, Polynomial equations, Factor theorem and generalized factor theorem for polynomials, Fundamental theorem of algebra (Statement only), Methods to find common roots of polynomial equation, Descarte's rule of signs, Newton's method of divisors for the integral roots.

Unit-3. Theory of Equations-I

Relation between roots and coefficient of general polynomial equation in one variable. Relation between roots and coefficient of quadratic, cubic and biquadratic equations. Symmetric functions of roots.

Unit-4. Theory of Equations –II

Transformation of equations. Cardon's method of solving cubic equations. Biquadratic equations. Descarte's method of solving biquadratic equations.

Reference Books:

- 1. Elementary Number Theory, by David M. Burton, W. C. Brown publishers, Dubuquo lowa 1989.
- 2. Higher Algebra, by H. S. Hall and S. R. Knight, H. M. Publications 1994.
- 3. Matrix and Linear Algebra, by K. B. Datta, Prentice Hall of India Pvt. Ltd. New Delhi, 2000.
- 4. Theory of Equations, by D. R. Sharma, Sharma Publications, Jalandar.

Learning Outcomes:

Students can find out roots of any equation of degree less than or equal to five. Theory of equations is highly useful in various subjects like algebra, linear algebra, calculus, ordinary and partial differential equations etc.

==x==

No. of Periods – 12

No. of Periods – 12

No. of Periods – 10

No. of Periods – 11

UNIT-1. DIVISIBILITY OF INTEGERS

Natural numbers: The numbers used for counting are called natural numbers and the set of natural numbers is denoted by $N = \{1, 2, 3, 4, \dots \}$

Remark: i) $W = \{0, 1, 2, 3, 4, \dots \}$ is called set of whole numbers.

ii) I or $Z = \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \}$ is called set of integers.

Properties of addition and multiplication: For any three numbers a, b, c,

i) $a + (b + c) = (a + b) + c$	(Associative law w.r.t. addition)
ii) a.(b.c) = (a.b).c	(Associative law w.r.t. multiplication)
iii) $a + b = b + a$	(Commutative law w.r.t. addition)
iv) a.b = b.a	(Commutative law w.r.t. multiplication)
v) $a + 0 = 0 + a = a$	(Law of identity w.r.t. addition)
vi) a.1 = 1.a = a	(Law of identity w.r.t. multiplication)
vii) $a.(b + c) = a.b + a.c$	(Left distributive law)
viii) $(b + c).a = b.a + c.a$	(Right distributive law)

Remark: i) All the above laws are satisfied by W and Z.

ii) All the above laws are satisfied by N except a + 0 = 0 + a = aOrder Relation in N: Let m and $n \in N$, then m is said to be less than n written as m < n if there exists $p \in N$ such that m + p = n

e.g. i) 5 < 8 because there exists $3 \in N$ such that 5 + 3 = 8

ii) 2 < 6 because there exists $4 \in N$ such that 2 + 4 = 6

Law of Trichotomy:

For any two natural numbers m and n, only one of the following holds

a) m = n b) m < n c) n < m.

Transitive Property: For m, n, $p \in N$, if m < n and n < p then m < p**Note:** i) If m < n then $m + p < n + p \forall m, n, p \in N$

ii) If m < n then $mp < np \forall m, n, p \in N$ and a standard world with the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n, p \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m, n \in N$ and the matrix $m < np \forall m \in N$ and the matrix $m < np \forall m \in N$ and the matrix $m < np \forall m \in N$ and the matrix $m < np \forall m \in N$ and the matrix $m < np \forall m \in N$ and the matrix $m < np \forall m \in N$ and the matrix $m < np \forall m \in N$ and the matrix $m < np \forall m \in N$ and the matrix $m < np \forall m \in N$ and the matrix $m < np \forall m \in N$ and the matrix $m < np \forall m \in N$ and the matrix $m < np \forall m \in N$ and the matrix $m < np \forall m \in N$ and the m and the matrix $m < np \in N$ and the matrix $m < np \in$

Well ordering principle: Every nonempty subset of N has a least element. <u>Principle of Mathematical Inductions:</u> First Principle of Finite Induction:

Let P(n) be the statement for $n \in N$, such that

i) P(1) is true.

ii) P(k) is true $\Rightarrow P(k+1)$ is true $\forall k \ge 1$

Then P(n) is true for all $n \in N$.

Generalized form of the First Principle of Finite Induction:

Let P(n) be the statement for $n \in N$, such that

i) P(k) is true for some fixed $k \in N$.

ii) P(m) is true \Rightarrow P(m+1) is true \forall m \ge k

Then P(n) is true $\forall n \ge k$.

Ex. Prove that the sum of all first n odd natural numbers is n^2 . Or prove that $1+3+5+\ldots+(2n-1) = n^2$. Proof: Let $P(n) : 1+3+5+\ldots+(2n-1) = n^2$ be the statement for $n \in N$. Step-i) For n = 1, we have, LHS = 1 and RHS = $1^2 = 1$ \therefore LHS = RHS \therefore P(1) is true.

Ex. Use principle of induction to prove that $5^n + 3$ is divisible by 4. **Proof:** Let $P(n) : 5^n + 3$ is divisible by 4 be the statement for $n \in N$. Step-i) For n = 1, we have, $5^1 + 3 = 8$ which is divisible by 4.

 \therefore P(1) is true. Step-ii) Suppose P(k) is true i.e. 5^{k} + 3 is divisible by 4 $\therefore 5^k + 3 = 4r$ for some $r \in \mathbb{Z}$ (1) Consider $5^{k+1} + 3 = 5.5^k + 3$ = 5(4r - 3) + 3by(1) = 20r - 15 + 3= 20r - 12 $\therefore 5^{k+1} + 3 = 4(5r - 3)$ is divisible by 4. \therefore P(k+1) is true. i.e. P(k) is true $\Rightarrow P(k+1)$ is true $\forall k \ge 1$ ∴ By first principle of induction, P(n) is true $\forall n \in N$. i.e. $5^{n} + 3$ is divisible by 4. $\forall n \in N$ Hence proved.

Ex. Show by principle of induction $7^{n} + 2$ is divisible by 3'

Proof: Let P(n): '7ⁿ + 2 is divisible by 3' be the statement for $n \in N$. Step-i) For n = 1, we have, $7^1 + 2 = 9$ which is divisible by 3. \therefore P(1) is true. Step-ii) Suppose P(k) is true i.e. 7^{k} + 2 is divisible by 3 \therefore 7^k + 2 = 3r for some r \in Z (1) Consider $7^{k+1} + 2 = 7.7^{k} + 2$ =7(3r-2)+2by(1) =21r+14+2भारत सिधिद विन्दति मानवः = 21r - 12 $\therefore 7^{k+1} + 2 = 3(7r - 4)$ is divisible by 3. \therefore P(k+1) is true. i.e. P(k) is true $\Rightarrow P(k+1)$ is true $\forall k \ge 1$ \therefore By first principle of induction, P(n) is true $\forall n \in N$. i.e. $7^{n} + 2$ is divisible by 3. $\forall n \in N$ Hence proved.

Ex. Prove that $2^n < n! \forall n \ge 4$. **Proof:** Let P(n): $2^n < n! \forall n \ge 4$ Step-i) For n = 4, we have, $2^4 = 16$ and 4! = 24 $\therefore 2^4 < 4!$ $\begin{array}{l} \therefore P(4) \text{ is true.} \\ \text{Step-ii) Suppose P(k) is true} \\ \text{ i.e. } 2^k < k! \dots (1) \text{ for } k \ge 4 \\ \text{ As } 4 \le k \Rightarrow 2 < k < k+1 \\ \therefore 2^k \cdot 2 < (k!)(k+1) \\ \therefore 2^{k+1} < (k+1)! \\ \therefore P(k+1) \text{ is true.} \\ \text{ i.e. } P(k) \text{ is true } \Rightarrow P(k+1) \text{ is true } \forall k \ge 4 \\ \therefore \text{ By generlized form of first principle of induction,} \\ P(n) \text{ is true } \forall n \ge 4. \\ \text{ i.e. } 2^n < n! \forall n \ge 4 \\ \text{ Hence proved.} \end{array}$

Divisibility of Integers: Let $a, b \in Z$, $a \neq 0$. If there exist $c \in Z$ such that b = ac, then it is said that 'a divides b' and denoted by a|b.

e.g. i) 3|15 : 15 = 3x5, i) 7|(-28) : -28 = 7x(-4)

Remark: i) a|b is read as a divides b or b is multiple of a or a is divisor of b or b is divisible by a or a is factor of b.

ii) If $a \neq 0$, then a|0 and $a|(\pm a)$

iii) a does not divide b is written as a { b

Theorem: a|b and b|c then a|c

Proof: Let a|b and b|c

 \Rightarrow b = ar and c = bk for some r, k \in Z

 \Rightarrow c = (ar)k by putting value of b.

 \Rightarrow c = a(rk) where rk \in Z

⇒a|c ।। स्वकमर्णा तमभ्यर्च्य सिध्दि विन्दति मानवः

Theorem: a|b and a|c then $a|b\pm c$

Proof: Let a|b and a|c

- \Rightarrow b = ar and c = ak for some r, k \in Z
- \Rightarrow b \pm c = ar \pm ak
- \Rightarrow b \pm c = a(r \pm k) where (r \pm k) \in Z
- $\Rightarrow a|b\pm c$

Theorem: a|b and a|c then a|bx + cy for all $x, y \in Z$ **Proof:** Let a|b and a|c

- \Rightarrow b = ar and c = ak for some r, k \in Z
- \Rightarrow bx+cy = (ar)x+(ak)y where x, y \in Z

 \Rightarrow bx+cy = a(rx+ky) where rx+ky \in Z

 $\Rightarrow a|bx+cy|$

 $\Rightarrow a = +b$

Division Algorithm: If a and b are any two integers and $b \neq 0$ then there exist unique integers q and r such that a = bq + r where $0 \le r < |b|$ e.g. i) For 7 and 50, we have 50 = 7x7+1, ii) For 9 and 80, we have 80 = 9x8+8

Greatest Common Divisor (GCD): Let a and b be any two non-zero integers then the positive integers d is called greatest common divisor (GCD) of a and b if i) d|a and d|b, ii) if c|a and c|b then c|d. Denoted by d = (a, b). e.g. i) (12, -18) = 6, ii) (75, 48) = 3 **Least Common Multiple (LCM):** Let a and b be any two non-zero integers then the positive integers *l* is called least common multiple (LCM) of a and b if i) a|*l* and b|*l*, ii) if a|c and b|c then *l*|c. Denoted by l = [a, b]. e.g. i) [6, 10] = 30, ii) [75, 48] = 1200 **Note:** a×b = (a, b)×[a, b]

Prime Number: A non-zero integer $a \neq 1$ is called a prime number if it is divisible by ± 1 and $\pm a$ only.

e.g. 2, 3, 5 etc. are prime numbers.

Composite Number: A non-zero integer a is called a composite number if it is product of two or more prime numbers.

e.g. 4, 6 and 15 are composite numbers.

Relatively Prime Integers: Two non-zero integer a and b are said to be relatively prime integers if (a, b) = 1.

e.g. 4 and 15 are relatively prime integers : (4, 15) = 1.

Remark: Two distinct prime numbers are always relatively prime integers. But if (a, b) = 1 then a and b may or may not be prime.

Euclidean Algorithm: The process of finding g.c.d. of two integers by applying division algorithm repeatedly is called Euclidean algorithm.

Remark: g.c.d. of any two integers is expressed into linear form of them. i.e. if

(a, b) = d then there exists some integers m and n such that d = ma + nb.

Unique factorization theorem: Every positive integer a > 1 is uniquely expressed as the product of primes irrespective of their orders.

e.g. i) $12 = 2 \times 2 \times 3$ or $2 \times 3 \times 2$ or $3 \times 2 \times 2$, ii) $28 = 2 \times 2 \times 7$ or $2 \times 7 \times 2$ or $7 \times 2 \times 2$.

Ex. Find g.c.d. of 75 and 48. Also express in the form (75, 48) = 75m+48n **Solution:** By Euclidean algorithm, we get

$75 = 1 \times 48 + 27$ (1)
$48 = 1 \times 27 + 21 \dots (2)$
$27 = 1 \times 21 + 6$ (3)
$21 = 3 \times 6 + 3 \dots (4)$
$6 = 2 \times 3 + 0$
(75, 48) = 3
Now from (4), we get
$3 = 21 - 3 \times 6$
$= 21 - 3 \times (27 - 1 \times 21)$ by (3)
$= 4 \times 21 - 3 \times 27$
$= 4 \times (48 - 1 \times 27) - 3 \times 27$ by (2)
। स्वकम= 4×48 - 7×27 रिंद विन्दति मानवः
$= 4 \times 48 - 7 \times (75 - 1 \times 48)$ by (1)
$= 11 \times 48 - 7 \times 75$
3 = 75(-7) + 48(11)

Ex. Find g.c.d. of 483 and 574, and express g.c.d ma + nb **Solution:** By Euclidean algorithm, we get

 $574 = 1 \times 483 + 91 \dots (1)$ $483 = 5 \times 91 + 28 \dots (2)$ $91 = 3 \times 28 + 7 \dots (3)$ $28 = 4 \times 7 + 0$ ∴ (483, 574) = 7 Now from (3), we get

$$7 = 91 - 3 \times 28$$

= 91 - 3 \times (483 - 5 \times 91) by (2)
= 16 \times 91 - 3 \times 483
= 16 \times (574 - 1 \times 483) - 3 \times 483 by (1)
= 16 \times 574 - 19 \times 483
7 = 483(-19) + 574(16)

Ex. If a, b, m, n are non-zero integers such that ma + nb = 1, then show that (a, b) = (m, n) = (a, n) = (m, b) =1 Proof: Let (a, b) = d i.e. g.c.d. of a and b is d. \therefore d|a and d|b \Rightarrow a = dr and b = dk for some r, k $\in \mathbb{Z}$ \therefore ma + nb= 1 gives m(dr) + n(dk) = 1 \therefore d(mr+nk) = 1 \therefore d(mr+nk) = 1 \therefore d[1 \Rightarrow mr+nk $\in \mathbb{Z}$ \therefore d = 1 \Rightarrow d > 0 \therefore (a, b) = 1 Similarly we can prove (m, n) = (a, n) = (m, b) = 1.

Ex. If d = (a, b), a = dx, b = dy; $x, y \in Z$, then show that (x, y) = 1. **Proof:** Let (a, b) = d

```
\therefore ma + nb= d for some m, n \in Z
```

```
\therefore m(dx) + n(dy) = d \qquad \because a = dx , b = dy; x, y \in Z
```

 $\frac{d}{d}(mx+ny) = d$

 \therefore mx+ny = 1

 \therefore (x, y) = 1 Hence proved.

विनयनमा तमध्यस्य स्थितः विन्तातं मानव

Ex. If d = (a, b), a|c, b|c, then show that ab|cd.

Proof: Let (a, b) = d

 \therefore ma + nb= d for some m, n \in Z ... (1)

Also $a|c, b|c \Rightarrow c = ar$ and c = bk for some $r, k \in Z$

Multiplying by c to (1), we get.

 \therefore mac + nbc= cd

 \therefore ma(bk) + nb(ar)= cd

$$\therefore$$
 ab(mk+nr) = cd

$$\therefore ab|cd$$
 $\because mk+nr \in Z$

Hence proved.

Euclid's Lemma. If p is prime and a and b are integers such that p|ab then either p|a or p|b

Proof: Let p is prime and a and b are integers such that p|ab.

If p|a, then we are through. If pla, then (a, p) = 1 \therefore ma + np= 1 for some m, n $\in \mathbb{Z}$... (1) Multiplying by b to (1), we get. \therefore mab + npb= b \therefore m(pk) + npb= b \therefore p|ab \Rightarrow ab = pk for some k $\in \mathbb{Z}$ \therefore p(mk+nb) = b

 $\therefore p|b$ $\because mk+nb \in Z$

Hence if p|ab then either p|a or p|b is proved.

Ex. Show that $\sqrt{5}$ is not a rational number.

Proof: Suppose $\sqrt{5}$ is a rational number.

Ex. Show that $\sqrt{7}$ is not a rational number.

Proof: Suppose $\sqrt{7}$ is a rational number.

$$\therefore \sqrt{7} = \frac{p}{q} \text{ where } p, q \in \mathbb{Z} \text{ and } (p, q) = 1$$

$$\therefore p = \sqrt{7} q$$

$$\therefore p^2 = 7q^2 \qquad (1)$$

$$\therefore 7|p^2 \Rightarrow 7|p \qquad \because 7 \text{ is prime.}$$

$$\therefore p = 7k \text{ for some } k \in \mathbb{Z}$$

$$\therefore p^2 = 49k^2 \qquad \text{by } (1)$$

 $\therefore q^2 = 7k^2$

 $\therefore 7|q^2 \Rightarrow 7|q \qquad \because 7 \text{ is prime.}$

Now 7|p and 7|q \Rightarrow (p, q) \geq 7 which contradicts to (p, q) = 1

 \therefore Our assumption is wrong.

 $\therefore \sqrt{7}$ is not a rational number.

MULTIPLE CHOICE QUESTIONS

1) For m, n, $p \in N$, if	m < n and $n < p$ t	hen	
[A] m < p	[B] m > p	[C] m = p	[D] n < m
2) Every nonempty su	ibset of N has a	element	
[A] 0	[B] greatest	[C] least	[D] 1
3) Let P(n) be the stat	ement for $n \in N$, s	uch that	
i) P(1) is true. ii) P(k	$x) is true \Rightarrow P(k+1)$	is true $\forall k \ge 1$	(A)
Then P(n) is true for	all $n \in N$. is the st	atement of	A
[A] first princip	ole of finite inducti	ion	A A
[B] second prin	ciple o <mark>f finite in</mark> du	iction	R*
[C] generalized	l form of first prine	ciple of finite induct	ion
[D] None of Th	iese	12	A
4) Let P(n) be the stat	eme <mark>nt f</mark> or n ∈ N, s	uch that	띜
i) P(1) is true, ii) P	(r) is <mark>tru</mark> e ∀ r < m ÷	⇒ P(m) is true	<u>s</u>
Then P(n) is true for	$r all n \in N$ is the st	atement of	3
[A] first princip	ole of finite inducti	ion	
[B] second prin	ciple of finite indu	iction	
[C] generalized	l form of first prin	ciple of finite induct	ion
[D] None of Th	iese		
5) 1+2+3+ + n =	वकमणा तमस्यच्य	गासाध्द ।वन्दात मा	-d:
[A] $\frac{n(n+1)(2n+1)}{6}$	$\frac{1}{1}$ [B] n^2	[C] $\frac{n(n+1)}{2}$	[D] $\frac{n(n-1)}{2}$
6) 1+3+5+ +(2n	-1) =	2	2
[A] $\frac{n(n+1)(2n+1)}{6}$		[C] $\frac{n(n+1)}{2}$	[D] $\frac{n(n-1)}{n(n-1)}$
7) $1^2 + 2^2 + 3^2 + \dots + 1$		2	2 2
[A] $\frac{n(n+1)(2n+1)}{6}$		[C] $\frac{n(n+1)}{2}$	$[\mathbf{D}]\frac{n(n-1)}{2}$
8) a b is read as			
[A] a divides b		[B] b is multipl	le of a
[C] b is divisib	le by a	[D] All of Thes	se
9) For any natural num	nber n, $5^n + 3$ is di	visible by	
[A] 3	[B] 4	[C] 5	[D] 6

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCHNCE SR. COLLEGE, PIMPALNER. 10

10) For any natura	al number n, $7^n + 2$ is c	livisible by	
[A] 3	[B] 4	[C] 5	[D] 8
11) $2^{n} < n!$ for al	l , n € N		
[A] n < 4	[B] n	[C] n ≥ 4	[D] $n \ge 2$
12) If a b and b c t	hen		
[A] b a	[B] c a	[C] a c	[D] c b
13) If a b and a c t	hen		
[A] a bc	[B] a b±c	[C] a bx+cy	[D] All of These
14) If a b and b a t	hen a =		
[A] 1	[B] ±b	[C] 0	[D] 2
15) If $a \neq 0$, then a	a		
[A] 0 only	[B] a only	$[\mathbf{C}]$ 0 and $\pm a$	[D] any nmber
16) If a and b any	two integers with $b \neq$	0 then there exist u	nique integers q and r
such that $a = .$	where $0 \le r < b $	unda 10	8.
[A] bq+r	[B] bq-r	[C] bq	[D] r
17) g.c.d of 12 and	d 15 is	100	2
[A] 3	[B] 12	[C] 15	[D] 6
18) g.c.d of 75 and	d 48 is	2.0	
[A] 3		[C] 4	[D] 12
19) $(12, -18) = \dots$			<u>a</u>
[A] 3	[B] 4	[C] 6	[D] 18
20) L.C.M of 6 an			3
[A] 6	[B] 10	[C] 30	[D] 15
	c.m. of integers a and		
[A] d <i>l</i>	[B] d	[C] <i>l</i>	[D] d+ <i>l</i>
	, then $[75, 48] = \dots$	0.000.00	
	[Kaa [B] 600 N. w		
	relatively prime then g		
[A] 0	[B] 1	[C] -1	[D] 2
· · · · · · · · · · · · · · · · · · ·	are prime then g.c.d		
[A] a	[B] b	[C] 1	[D] 2
,	relatively prime then a		
[A] both pri		[B] both not p	
	may not be prime	[D] None of T	
	e non-zero integers su $= (a, b) = (a, b)$	ch that ma $+$ nb= 1	, then
	$= (a, n) = (m, b) = \dots$		
[A] 1 27) If $(a, k) = (b, 1)$	[B] -1	[C]0	[D] a
(a, k) = (0, k) [A] 0	(x) = 1 then (ab, k) = [B] 1	[C] -1	[D] k

UNIT-2. POLYNOMIALS

- **Polynomials:** $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ with $a_n \neq 0$ is called a polynomial of degree n.
- **Monic Polynomials:** $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ with $a_n = 1$ is called a monic polynomial of degree n.

e.g. $x^5 + x^4 + x^3 + x^2 + x$ is a monic polynomial.

- An Algebraic Equation: $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0$ with $a_n \neq 0$ is called an algebraic equation of degree n.
- **Monic Polynomials Equation:** $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n = 0$ with $a_n = 1$ is called a monic polynomial equation of degree n.

e.g. $x^5 + 4x^3 + 2 = 0$ is a monic polynomial equation of degree 5.

Root: x is called root of an equation f(x) = 0 if it satisfies the equation f(x) = 0.

Note: Q[x] = The set of all polynomials with rational coefficients.

R[x] = The set of all polynomials with real coefficients.

C[x] = The set of all polynomials with complex coefficients.

Remark: i) The polynomial of degree 1 is called linear polynomial.

ii) The polynomial of degree 2 is called quadratic polynomial.

iii) The polynomial of degree 3 is called cubic polynomial.

iv) The polynomial of degree 4 is called biquadratic polynomial.

v) An equation of degree 1 is called linear equation.

vi) An equation of degree 2 is called quadratic equation.

vii) An equation of degree 3 is called cubic equation.

viii) An equation of degree 4 is called biquadratic equation.

ix) Root of an equation f(x) = 0 may be real or complex.

Equality: Two polynomials $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_mx^m$ and

 $g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n$ in Q[x] are said to be equal

if $a_i = b_i$ for all i and m = n.

Addition: Let $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m \& g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n$

be any two polynomials in Q[x], then their sum f(x)+g(x) is defined by

 $f(x)+g(x) = (a_0+b_0)+(a_1+b_1)x+(a_2+b_2)x^2+\dots$

Multiplication: Let $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_mx^m$ and

 $g(x) = b_0+b_1x+b_2x^2+\ldots+b_nx^n$ be any two polynomials in Q[x], then their multiplication f(x)g(x) is defined by $f(x)g(x) = c_0+c_1x+c_2x^2+\ldots+c_{m+n}x^{m+n}$ where $c_0 = a_0b_0$, $c_1 = a_0b_1+a_1b_0$, $c_2 = a_0b_2+a_1b_1+a_2b_0$

where $c_0 = a_0 b_0$, $c_1 = a_0 b_1 + a_1 b_0$, $c_2 = a_0 b_2 + a_1 b_1 + a_2 b_0$, .

 $c_i = a_0 b_i + a_1 b_{i^-1} + a_2 b_{i^-2} + \ldots + a_i b_0, \ \ldots \ldots$

Remark: If degree of f(x) = m and degree of g(x) = n, then

degree of $f(x)+g(x) = max.\{m, n\}$ and degree of f(x)g(x) = m + n

Ex. If
$$f(x) = 3+5x-7x^2 + \frac{1}{2}x^3$$
 and $g(x) = 5+7x-5x^2+2x^3+9x^4$,
then find i) $f(x)+g(x)$ and ii) $f(x)g(x)$
Solution: Let $f(x) = 3+5x-7x^2 + \frac{1}{2}x^3$ and $g(x) = 5+7x-5x^2+2x^3+9x^4$,
 \therefore i) $f(x)+g(x) = 3+5x-7x^2 + \frac{1}{2}x^3+5+7x-5x^2+2x^3+9x^4$
 $= (3+5)+(5+7)x+(-7-5)x^2+(\frac{1}{2}+2)x^3+9x^4$
 $= 8+12x-12x^2 + \frac{5}{2}x^3 + 9x^4$
and ii) $f(x)g(x) = (3+5x-7x^2 + \frac{1}{2}x^3)(5+7x-5x^2+2x^3+9x^4)$
 $= 15+21x-15x^2+6x^3+27x^4+25x+35x^2-25x^3+10x^4+45x^5$
 $-35x^2-49x^3+35x^4-14x^5-63x^6+\frac{5}{2}x^3+\frac{7}{2}x^4-\frac{5}{2}x^5+x^6+\frac{9}{2}x^7$
 $= 15+(21+25)x+(-15+35-35)x^2+(6-25-49+\frac{5}{2})x^3$
 $+ (27+10+35+\frac{7}{2})x^4+(45-14-\frac{5}{2})x^5+(-63+1)x^6+\frac{9}{2}x^7$
 $= 15+46x-15x^2-\frac{131}{2}x^3+\frac{151}{2}x^4+\frac{57}{2}x^5-62x^6+\frac{9}{2}x^7$

Ex. If
$$f(x) = 1-3x+2x^2$$
 and $g(x) = 3 - \frac{1}{2}x+4x^2 - x^3$,
then find i) $f(x)+g(x)$ and ii) $f(x)g(x)$
Solution: Let $f(x) = 1-3x+2x^2$ and $g(x) = 3 - \frac{1}{2}x+4x^2 - x^3$,
 \therefore i) $f(x)+g(x) = 1-3x+2x^2+3 - \frac{1}{2}x+4x^2 - x^3$
 $= (1+3)+(-3-\frac{1}{2})x+(2+4)x^2 - x^3$
 $= 4 - \frac{7}{2}x + 6x^2 - x^3$
and ii) $f(x)g(x) = (1-3x+2x^2)(3 - \frac{1}{2}x+4x^2 - x^3)$
 $= 3 - \frac{1}{2}x+4x^2 - x^3 - 9x + \frac{3}{2}x^2 - 12x^3 + 3x^4 + 6x^2 - x^3 + 8x^4 - 2x^5$
 $= 3+(c-9)x+(4+\frac{3}{2}+6)x^2+(-1-12-1)x^3+(3+8)x^4 - 2x^5$
 $= 3 - \frac{19}{2}x + \frac{23}{2}x^2 - 14x^3 + 11x^4 - 2x^5$

Ex. Find the sum and product of
$$f(x)$$
 and $g(x)$, where
 $f(x) = x^5 + 8x^4 - 2x^3 - 2x^2 - 16x + 4$ and $g(x) = x^4 + 7x^3 - 9x^2 + 10x - 2$,
then find i) $f(x)+g(x)$ and ii) $f(x)g(x)$
Solution: Let $f(x) = x^5 + 8x^4 - 2x^3 - 2x^2 - 16x + 4$ and $g(x) = x^4 + 7x^3 - 9x^2 + 10x - 2$,
 \therefore i) $f(x)+g(x) = x^5 + 8x^4 - 2x^3 - 2x^2 - 16x + 4 + x^4 + 7x^3 - 9x^2 + 10x - 2$
 $= x^5 + (8+1)x^4 + (-2+7)x^3 + (-2-9)x^2 + (-16+10)x + (4-2)$
 $= x^5 + 9x^4 + 5x^3 - 11x^2 - 6x + 2$
and ii) $f(x)g(x) = (x^5 + 8x^4 - 2x^3 - 2x^2 - 16x + 4) (x^4 + 7x^3 - 9x^2 + 10x - 2)$
 $= x^9 + 7x^8 - 9x^7 + 10x^6 - 2x^5 + 8x^8 + 56x^7 - 72x^6 + 80x^5 - 16x^4$
 $- 2x^7 - 14x^6 + 18x^5 - 20x^4 + 4x^3 - 2x^6 - 14x^5 + 18x^4 - 20x^3 + 4x^2$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER. 2

$$\begin{aligned} -16x^{5} - 112x^{4} + 144x^{3} - 160x^{2} + 32x + 4x^{4} + 28x^{3} - 36x^{2} + 40x - 8 \\ &= x^{9} + (7 + 8)x^{8} + (-9 + 56 - 2)x^{7} + (10 - 72 - 14 - 2)x^{6} \\ &+ (-2 + 80 + 18 - 14 - 16)x^{5} + (-16 - 20 + 18 - 112 + 4)x^{4} \\ &+ (4 - 20 + 144 + 28)x^{3} + (4 - 160 - 36)x^{2} + (32 + 40)x - 8 \\ &= x^{9} + 15x^{8} + 45x^{7} - 78x^{6} + 66x^{5} - 126x^{4} + 156x^{3} - 192x^{2} + 72x - 8 \end{aligned}$$

Synthetic Division: If a polynomial of degree n is divided by linear term x+a. Then quotient will be a polynomial of degree n-1 and remainder will be constant. this process is called synthetic division.

Ex. Using Horner's method of synthetic division find quotient and remainder when $x^{5} + 3x^{4} + 5x^{2} - 2$ is divided by x - 3. **Solution:** To find quotient and remainder when $x^5 + 3x^4 + 5x^2 - 2$ i.e. $x^5 + 3x^4 + 0x^3 + 5x^2 + 0x - 2$ is divided by x - 3, we use Horner's method of synthetic division as follows: 3 | 1 3 0 5 0 -2 A 18 54 3 177 531 _____ 529 18 59 | 1 6 177 : Quotient is $q(x) = x^4 + 6x^3 + 18x^2 + 59x + 177$ and remainder r = 529. **Ex.** Use synthetic division to find quotient and remainder when $4x^{3} + x^{2} - 2x + 5$ is divided by x - 3. **Solution:** To find quotient and remainder when $4x^3 + x^2 - 2x + 5$ is divided by x - 3, we use synthetic division as follows: -2 5 3 | 4 1 12 39 111 तमभ्यच्य सिध्द विन्दात मानवः 37 116 4 13 : Quotient is $q(x) = 4x^2 + 13x + 37$ and remainder r = 116. **Ex.** Use synthetic division to find quotient and remainder when $x^{4} + x^{3} + 4x^{2} - x - 5$ is divided by x - 1. **Solution:** To find quotient and remainder when $x^4 + x^3 + 4x^2 - x - 5$ is divided by x - 1, we use synthetic division as follows: 4 1 | 11 -1 -5 1 2 6 5 2 6 5 0 | 1 : Quotient is $q(x) = x^3 + 2x^2 + 6x + 5$ and remainder r = 0.

Ex. Express the polynomial $2x^3 + 3x + 2$ in powers of x - 3.

Hence find f(x-3) in powers of x.

Solution: To express the polynomial $2x^3 + 3x + 2$ i.e. $2x^3 + 0x^2 + 3x + 2$ in powers of x - 3 we use synthetic division as follows:

| 2

$$\therefore f(x) = 2(x-3)^4 + 14(x-3)^3 + 18(x-3)^2 - 51(x-3) - 95$$

which is in powers of (x-3).
Replacing x by x+3, we get,
 $f(x+3) = 2x^4 + 14x^3 + 18x^2 - 51x - 95$

Ex. Express the polynomial $4x^5 - 6x^3 + 2x^2 + 10$ in powers of x - 2. Hence find f(x+2) in powers of x.

Solution: To express the polynomial $4x^5 - 6x^3 + 2x^2 + 10$

i.e.
$$4x^5 + 0x^4 - 6x^3 + 2x^2 + 0x + 10$$
 in powers of $x - 2$

we use synthetic division as follows:

Replacing x by x+2, we get,

 $f(x+2) = 4x^5 + 40x^4 + 154x^3 + 286x^2 + 256x + 98$

Divisibility of Polynomials: Let f(x) and g(x) are polynomials over Q[x] with $f(x) \neq 0$. Then we say that f(x)|g(x) i.e. f(x) divides g(x) if there exist polynomials q(x) over Q[x] such that g(x) = f(x).q(x)

Division Algorithm: Let f(x) and g(x) be any two polynomials over Q[x] with $g(x) \neq 0$. Then there exist polynomials r(x) and q(x) over Q[x] such that f(x) = g(x).q(x) + r(x), where r(x) = 0 or degree of r(x) < degree of g(x).

Here g(x) is called divisor, q(x) is called quotient and r(x) is called remainder. **Remark:** i) f(x) | g(x) is read as f(x) divides g(x) or g(x) is multiple of f(x) or f(x) is divisor of g(x) or g(x) is divisible by f(x) or f(x) is factor of g(x).

Greatest Common Divisor (GCD): Let f(x) and g(x) be any two polynomials over Q[x] then the polynomials d(x) over Q[x] is called greatest common divisor (GCD) of f(x) and g(x) if

i) d(x)| f(x) and d(x)| g(x), ii) if c(x)| f(x) and c(x)| g(x) then c(x)|d(x). GCD d(x) of f(x) and g(x) is denoted by d(x) = (f(x), g(x)).

Ex. Find G.C.D. of f(x) and g(x).
Where f(x) =
$$x^4 + x^3 + 4x^2 - x - 5$$
 and $g(x) = x^2 - 1$
Solution: Let f(x) = $x^4 + x^3 + 4x^2 - x - 5$ and $g(x) = x^2 - 1$
We divide f(x) by g(x)

$$\frac{x^2 + x + 5}{x^2 - 1)x^4 + x^3 + 4x^2 - x - 5} - \frac{x^4 - 4x^2}{x^3 + 5x^2 - x - 5} - \frac{x^4 - 4x^2}{x^3 + 5x^2 - x - 5} - \frac{x^3 - 4x}{5x^2 + 0x - 5} - \frac{5x^2 + 0x + 5}{0} - \frac{5x^2 + 0x - 5}{0} + \frac{5x^2 - 5x^2 -$$

Ex. Find G.C.D. of f(x) and g(x). Where $f(x) = x^2 - 1$ and $g(x) = x^3 + 7x^2 + 4x - 12$ **Solution:** Let $f(x) = x^2 - 1$ and $g(x) = x^3 + 7x^2 + 4x - 12$

we divide
$$g(x)$$
 by $f(x)$

$$\frac{x+7}{x^2-1}$$

$$x^2 - 1) \frac{x^3 + 7x^2 + 4x - 12}{x^3 + 7x^2 + 4x - 12}$$

$$\frac{-7x^2 + 7}{5x - 5}$$

$$\therefore x^3 + 7x^2 + 4x - 12 = (x+7)(x^2 - 1) + 5(x - 1)$$
Again divide $x^2 - 1$ by $x - 1$

$$\frac{x+1}{x-1} \frac{x+1}{x^2 + 0x - 1}$$

$$\frac{-x^2 + x}{x - 1}$$

$$\frac{-x + 1}{0}$$

$$\therefore x^2 - 1 = (x+1)(x-1) + 0 = (x+1)(x-1)$$

$$\therefore$$
 G.C.D. of $f(x)$ and $g(x)$ is $(x-1)$.

Ex. Find G.C.D. of f(x) and g(x). Where $f(x) = x^4 - x^3 - 2x + 2$ and $g(x) = x^3 + x - 2$ **Solution:** Let $f(x) = x^4 - x^3 - 2x + 2$ and $g(x) = x^3 + x - 2$ We divide g(x) by f(x) $\frac{x-1}{x^3+x-2)x^4-x^3+0x^2-2x+2}$ $\frac{-x^4 - x^2 + 2x}{-x^3 - x^2 + 0x + 2}$ $\frac{x^3 + 0x^2 + x - 2}{-x^2 + x + 0}$ $\therefore x^{4} - x^{3} + 0x^{2} - 2x + 2 = (x-1)(x^{3} + x - 2) + (-x^{2} + x)$ Again divide $x^3 + x - 2$ by $(-x^2 + x)$ $-x^{2} + x) \frac{-x-1}{x^{3}+0x^{2}+x-2}$ $\frac{-x^{3} + x^{2}}{x^{2} + x - 2}$ $\frac{-x^{2} + x}{2x - 2}$ $\therefore x^{3} + x - 2 = (-x-1)(-x^{2} + x) + 2(x-1)$ Again divide - $x^2 + x$ by (x - 1) $(x - 1) - x^2 + x$ $\frac{x^2 - x}{0}$ $\therefore - x^2 + x = (-x)(x - 1) + 0$ \therefore G.C.D. of f(x) and g(x) is (x-1).

Ex. If f(x) and g(x) are polynomials over Q[x] such that f(x) | g(x) and

g(x) | f(x), then prove that $\exists c \in Q$ such that g(x) = cf(x).

Proof: Let f(x) and g(x) are polynomials over Q[x]

such that f(x) | g(x) and g(x) | f(x)

 $\therefore \exists q(x) and r(x) \in Q[x]$ such that

g(x) = q(x)f(x) and f(x) = r(x)g(x)...(1)

$$\therefore f(x) = r(x)q(x)f(x)$$

$$\therefore r(x)q(x) = 1$$

$$\therefore r(x)q(x) = 1$$

$$\therefore \text{ degree of } q(x) = \text{degree of } r(x) = 0$$

- \therefore q(x) and r(x) both are constants say q(x) = c and r(x) = d
- \therefore g(x) = cf(x) by(1) with c \in Q. Hence proved.

Remainder Theorem: If a polynomial f(x) of degree n > 1 is divided by $(x-\alpha)$, where α is any constant, then remainder is $f(\alpha)$.

where u is any constant, then remainder is $f(\alpha)$. **Proof:** Let $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ be a polynomials of degree n>1. For any constant α , put $x - \alpha = t$ i.e. $x = t + \alpha$. $\therefore f(x) = a_0(t + \alpha)^n + a_1(t + \alpha)^{n-1} + \dots + a_{n-1}(t + \alpha) + a_n$ $= a_0[t^n + nt^{n-1}\alpha + \dots + nt\alpha^{n-1} + \alpha^n]$ $+ a_1[t^{n-1} + (n-1)t^{n-2}\alpha + \dots + (n-1)t\alpha^{n-2} + \alpha^{n-1}] + \dots + a_{n-1}t + a_{n-1}\alpha + a_n$ $= [a_0\alpha^n + a_1\alpha^{n-1} + \dots + a_{n-1}\alpha + a_n] + t[polynomial in t of degree n-1]$ $= f(\alpha) + (x - \alpha)[polynomial in x of degree n-1] \quad \because t = x - \alpha$ $\therefore f(x) = (x - \alpha)[polynomial in x of degree n > 1 is divided by <math>(x - \alpha)$ the remainder is $f(\alpha)$ is proved. **Factor Theorem:** A constant α is a root of polynomial equation f(x) = 0if and only if $(x - \alpha)$ is a factor of f(x). **Proof:** Let $f(x) = a_0x^n + a_1x^{n-1} + \dots + a_{n-1}x + a_n = 0$ be a polynomial equation. For any constant α , by remainder theorem.

 $f(x) = (x - \alpha)[polynomial in x of degree n-1] + f(\alpha)$

If α is a root of polynomial equation f(x) = 0, then $f(\alpha) = 0$.

 \therefore f(x) = (x- α)[polynomial in x of degree n-1]

Hence $(x-\alpha)$ is a factor of f(x).

Conversely: If $(x-\alpha)$ is a factor of f(x), then $f(x) = (x-\alpha)q(x)$

 \therefore f(α) = (α - α)q(α)= 0 i.e. α satisfies an equation f(x) = 0.

 $\therefore \alpha$ is a root of polynomial equation f(x) = 0 is proved.

Fundamental Theorem of Algebra: Every polynomial is factorized into a product of linear and irreducible quadratic factors.

Multiplicity of roots: If a root α repeated m times, then α is called root of multiplicity m.

Note: i) A polynomial equation f(x) = 0 of degree $n \ge 1$ has exactly n roots.

ii) If α is a root of multiplicity r of a polynomial equation f(x) = 0

then α is a root of multiplicity r-1 of f '(x) = 0.

- iii) A polynomial f(x) of degree n can't vanish for more than n values of x.
- iv) If $a + \sqrt{b}$ is a root of the real polynomial equation f(x) = 0,

then a- \sqrt{b} is also a root of equation f(x) = 0.

- v) If a+ib is a root of the real polynomial equation f(x) = 0, then a-ib is also root of f(x) = 0.
- vi) If a rational number $\frac{p}{q}$ is a root of polynomial equation $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = 0$, where $a_i \in Z$
 - then $p \mid a_0$ and $q \mid a_n$.

Ex. Find the rational root of the equation $15x^3 - 16x^2 - x + 2 = 0$ **Solution:** Let $\frac{p}{q}$ be rational root of the given equation $15x^3 - 16x^2 - x + 2 = 0$ Comparing given equation $15x^3 - 16x^2 - x + 2 = 0$ with the equation $a_0x^3 + a_1x^2 + a_2x + a_3 = 0$, we get $a_0 = 15$ and $a_3 = 2$. By condition of rational root $p \mid a_0$ and $q \mid a_3 \Longrightarrow p \mid 15$ and $q \mid 2$ \Rightarrow p = ±1, ±3, ±5, ±15 and q = ±1, ±2 $\therefore \frac{p}{a} = 1$ satisfies the given equation. \therefore (x-1) is factor of given equation. By actual division $\frac{15x^2 - x - 2}{x - 1) 15x^3 - 16x^2 - x + 2}$ $\frac{-15x^3 + 15x^2}{-x^2 - x + 2}$ $x^2 - x$ $\frac{\mathbf{x}}{-2\mathbf{x}+2}$ 2x - 2 $\therefore 15x^{3} - 16x^{2} - x + 2 = (15x^{2} - x - 2)(x - 1) + 0$ Now roots of equation $15x^2 - x - 2 = 0$ are $X = \frac{1 \pm \sqrt{1 + 120}}{30} = \frac{1 \pm 11}{30} = \frac{12}{30} \text{ or } -\frac{10}{30} \text{ i.e. } \frac{2}{5} \text{ or } -\frac{1}{3}$: The rational root of the given equation are 1, $\frac{2}{5}$ or $-\frac{1}{3}$

Rule to find common roots of polynomial equations:

- i) The common roots of polynomial equations are the roots of their g.c.d.
- ii) To find the repeated roots of polynomial equation f(x) = 0, first find g.c.d of f(x) and f '(x).
- iii) If α is a root of f'(x) repeated n times, then α is a root of f(x) repeated (n+1) times.

Ex. Solve the equation $16x^4 \cdot 24x^2 + 16x \cdot 3 = 0$ Solution: Let $f(x) = 16x^4 \cdot 24x^2 + 16x \cdot 3 = 0$ \therefore f'(x) = $64x^3 \cdot 48x + 16 = 16(4x^3 \cdot 3x + 1)$ Now we find g.c.d. of f(x) and f'(x) i.e. $16x^4 \cdot 24x^2 + 16x \cdot 3$ and $4x^3 \cdot 3x + 1$ $4x^3 \cdot 3x + 1$) $16x^4 \cdot 24x^2 + 16x \cdot 3$ $-16x^4 + 12x^2 \cdot 4x$ $-12x^2 + 12x \cdot 3$ As $16x^4 \cdot 24x^2 + 16x \cdot 3 = (4x \cdot 2)(4x^3 \cdot 3x + 1) \cdot 12x^2 + 12x \cdot 3$ $= 2(2x \cdot 1)(4x^3 \cdot 3x + 1) \cdot 3(4x^2 \cdot 4x + 1)$

x +1 $4x^2 - 4x + 1) 4x^3 - 3x + 1$ $\frac{-4x^3+4x^2-x}{4x^2-4x+1}$ $\frac{-4x^2+4x-1}{0}$ $\therefore 4x^3 - 3x + 1 = (x + 1) (4x^2 - 4x + 1) + 0$ \therefore g.c.d of f(x) and f '(x) is $(4x^2 - 4x + 1)$ Now roots of equation $4x^2 - 4x + 1 = 0$ i.e. $(2x-1)^2 = 0$ are $\frac{1}{2}, \frac{1}{2}$ which are the common roots of f(x) and f'(x). $4x^2 + 4x - 3$ $4x^2 - 4x + 1$) $16x^4 + 0x^3 - 24x^2 + 16x - 3$ $-16x^{4} + 16x^{3} - 4x^{2}$ $16x^3 - 28x^2 + 16x - 3$ $-16x^3 + 16x^2 - 4x$ $-12x^{2} + 12x - 3$ $12x^2 - 12x + 3$ $\therefore 16x^4 + 0x^3 - 24x^2 + 16x - 3 = (4x^2 - 4x + 1)(4x^2 + 4x - 3)$ The roots of factor $4x^2 + 4x - 3 = 0$ are $x = \frac{-4 \pm \sqrt{16 + 48}}{8} = \frac{-4 \pm 8}{8} = \frac{4}{8} \text{ or } -\frac{12}{8} \text{ i.e. } \frac{1}{2} \text{ or } -\frac{3}{2}$ \therefore The root of the given equation $16x^4 - 24x^2 + 16x - 3 = 0$ are $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ and $-\frac{3}{2}$

MULTIPLE CHOICE QUESTIONS [MCQ'S]

1) If $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$ with $a_n \neq 0$ is called of degree n. A) polynomial B) equation C) linear equation D) None of these 2) If $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n$ with $a_n = 1$ is called \dots polynomial of degree n. A) quadratic B) linear C) monic D)None of these 3) Polynomial $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n$ is called monic polynomial of degree n, if $a_n = \dots$ A) -1 **B**) 0 C) 1 D)None of these 4) If coefficient of highest degree term of polynomial is one then is called A) linear polynomial B) quadratic polynomial C) cubic polynomial D) monic polynomial 5) If $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ is polynomial, then its constant term is A) a_0 C) *a*_{*n*} D) None of these B) a_1

6) $f(x) = x^{2} + 4x^{2} + 2$	is a polynom	ial of degree 5.	
A) linear	B) quadratic	C) cubic	D) monic
7) A polynomial of de	egree 1 is called	. polynomial.	
A) linear	B) quadratic	C) cubic	D) None of these
8) A polynomial of de	egree 2 is called	. polynomial.	
A) linear	B) quadratic	C) cubic	D) None of these
9) A polynomial of de	egree 3 is called	. polynomial.	
A) linear	B) quadratic	C) cubic	D) None of these
10) A polynomial of c	legree 4 is called	polynomial.	
A) linear	B) biquadratic	C) cubic	D) None of these
11) $5x + 3$ is polynom	nial of degree is		
A) 0	B) 1	C) 2	D) None of these
12) $x^4 + 7x^3 + 8x^2 - $	+9x = 0 is po	olynomial.	
A) quadratic	B) cubic	C) biquadratic	D) None of these
13) Two polynomials	$\mathbf{f}(\mathbf{x}) = a_0 + a_1 \mathbf{x} + a_1 \mathbf{x}$	$a_2 x^2 + \dots + a_m x^m$	and
$g(\mathbf{x}) = b_0 + b_1 \mathbf{x} + \mathbf{x}$	$b_2 x^2 + \dots + b_n x^n$	in Q[x] are equal if	
A) $a_i = b_i \forall i$	and $m = n$ B) a	$a_i = b_i \forall i and m \neq i$	n
C) $a_i \neq b_i$	D)	None of these	
14) If $f(x) = a_0 + a_1 x + a_1 x + a_2 + a_2 + a_2 + a_3 + a_4 $	$_{2}x^{2}+a_{3}x^{3}+\ldots+a_{n}x^{n}$	$x^n = 0$ with $a_n \neq 0$ is c	alled of
degree n.		all here	
A) polynomial	B) equation C)	ational equation	D) None of these
A) polynomial 15) If $f(x) = a_0 + a_1x + a_1x$	32.00		
	$a_2 x^2 + a_3 x^3 + \dots + a_n x^n$		
15) If $f(x) = a_0 + a_1x + a_0$ polynomial equation	$a_2 x^2 + a_3 x^3 + \dots + a_n x^n$	$a_n = 0$ with $a_n = 1$ is $a_n = 1$	called
15) If $f(x) = a_0 + a_1x + a_0$ polynomial equation	$a_2x^2+a_3x^3+\dots+a_nx^n$ ion of degree n. B) linear	$a^n = 0$ with $a_n = 1$ is C) monic	called D)None of these
15) If $f(x) = a_0 + a_1x + a_0$ polynomial equation A) quadratic	$a_{2}x^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ ion of degree n. B) linear $a_{2}^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}=$	$a^n = 0$ with $a_n = 1$ is of C) monic = 0 is called monic p	called D)None of these
15) If $f(x) = a_0 + a_1x + a_0$ polynomial equation A) quadratic 16) $f(x) = a_0 + a_1x + a_2x$ of degree n, if $a_n = A$ A) -1	$a_{2}x^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ ion of degree n. B) linear $a_{2}^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}=$ = B) 0	$a^n = 0$ with $a_n = 1$ is of C) monic = 0 is called monic p C) 1	D)None of these olynomial equation D)None of these
15) If $f(x) = a_0 + a_1x + a_0$ polynomial equation A) quadratic 16) $f(x) = a_0 + a_1x + a_2x$ of degree n, if $a_n = A$ A) -1	$a_{2}x^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ ion of degree n. B) linear $a_{2}^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}=$ = B) 0	$a^n = 0$ with $a_n = 1$ is of C) monic = 0 is called monic p C) 1	D)None of these olynomial equation D)None of these
15) If $f(x) = a_0 + a_1x + a_0$ polynomial equation A) quadratic 16) $f(x) = a_0 + a_1x + a_2x^2$ of degree n, if $a_n = A$ A) -1 17) An equation of degree	$a_{2}x^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ ion of degree n. B) linear $a_{2}^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}=$ = B) 0	$a^n = 0$ with $a_n = 1$ is of C) monic a = 0 is called monic p C) 1 equation.	D)None of these olynomial equation D)None of these
15) If $f(x) = a_0 + a_1x + a_0$ polynomial equation A) quadratic 16) $f(x) = a_0 + a_1x + a_2x^2$ of degree n, if $a_n = A$ A) -1 17) An equation of degree	$a_{2}x^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ ion of degree n. B) linear $a_{2}+a_{3}x^{3}+\dots+a_{n}x^{n}=$ B) 0 egree one is called B) quadratic	 aⁿ = 0 with a_n = 1 is of C) monic a 0 is called monic p C) 1 c) 1 c) cubic 	D)None of these oolynomial equation D)None of these
15) If $f(x) = a_0 + a_1x + a_0$ polynomial equation A) quadratic 16) $f(x) = a_0 + a_1x + a_2x^2$ of degree n, if $a_n = A^2 - A^2$ A) -1 17) An equation of degree n, if $a_n = A^2 - A^2$	$a_{2}x^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ ion of degree n. B) linear $a_{2}+a_{3}x^{3}+\dots+a_{n}x^{n}=$ B) 0 egree one is called B) quadratic	$a^n = 0$ with $a_n = 1$ is of C) monic a = 0 is called monic p C) 1 equation. C) cubic equation.	D)None of these oolynomial equation D)None of these
15) If $f(x) = a_0 + a_1x + a_0$ polynomial equation A) quadratic 16) $f(x) = a_0 + a_1x + a_2x$ of degree n, if $a_n = A_0 - 1$ 17) An equation of degree A) linear 18) An equation of degree	$a_{2}x^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ ion of degree n. B) linear $a_{2}+a_{3}x^{3}+\dots+a_{n}x^{n}=$ B) 0 egree one is called B) quadratic egree two is called B) quadratic	 xⁿ = 0 with a_n = 1 is of C) monic = 0 is called monic p C) 1 equation. C) cubic equation. C) cubic c) cubic 	D)None of these oolynomial equation D)None of these D) None of these
15) If $f(x) = a_0 + a_1x + a_0$ polynomial equation A) quadratic 16) $f(x) = a_0 + a_1x + a_2x$ of degree n, if $a_n = A_0 - 1$ 17) An equation of degree n A) linear 18) An equation of degree n A) linear	$a_{2}x^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ ion of degree n. B) linear $a_{2}+a_{3}x^{3}+\dots+a_{n}x^{n}=$ B) 0 egree one is called B) quadratic egree two is called B) quadratic	$a^n = 0$ with $a_n = 1$ is of C) monic $a^n = 0$ is called monic p C) 1 equation. C) cubic equation. C) cubic equation.	D)None of these oolynomial equation D)None of these D) None of these
15) If $f(x) = a_0 + a_1x + a_0$ polynomial equation A) quadratic (A) quadratic (A) quadratic (A) $f(x) = a_0 + a_1x + a_2x$ of degree n, if $a_n = A_0 - 1$ (A) -1 (A) -1	$a_{2}x^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ ion of degree n. B) linear $a_{2}+a_{3}x^{3}+\dots+a_{n}x^{n} =$ $a_{2}+a_{3}x^{3}+\dots+a_{n}x^{n} =$ B) 0 egree one is called B) quadratic egree two is called B) quadratic egree three is called B) quadratic	$a^n = 0$ with $a_n = 1$ is of C) monic $a^n = 0$ is called monic p C) 1 equation. C) cubic equation. C) cubic equation. C) cubic equation. C) cubic	 D)None of these D)None of these D)None of these D) None of these D) None of these
15) If $f(x) = a_0 + a_1x + a_0$ polynomial equation A) quadratic A) quadratic (A) quadratic (A) $f(x) = a_0 + a_1x + a_2x$ of degree n, if $a_n = A_0 - 1$ (A) -1 (A) -1 (A) -1 (A) -1 ($a_{2}x^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ and of degree n. B) linear $a_{2}^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{3}x^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{3}x^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{3}x^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n$	$a^n = 0$ with $a_n = 1$ is of C) monic $a^n = 0$ is called monic p C) 1 equation. C) cubic equation. C) cubic equation. C) cubic equation. C) cubic equation. C) biquadratic	 D)None of these D)None of these D)None of these D) None of these D) None of these
15) If $f(x) = a_0+a_1x+a_0$ polynomial equation A) quadratic (A) quadratic (A) quadratic (A) $f(x) = a_0+a_1x+a_2x$ of degree n, if $a_n = A_0 - 1$ (A) -1 (A) $-$	$a_{2}x^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ and of degree n. B) linear $a_{2}^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{3}x^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{3}x^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{3}x^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n$	$a^n = 0$ with $a_n = 1$ is of C) monic $a^n = 0$ is called monic p C) 1 equation. C) cubic equation. C) cubic equation. C) cubic equation. C) cubic equation. C) biquadratic	 called D)None of these oolynomial equation D)None of these D) None of these D) None of these D) None of these
15) If $f(x) = a_0 + a_1x + a_0$ polynomial equation A) quadratic A) quadratic (A) quadratic (A) $f(x) = a_0 + a_1x + a_2x$ of degree n, if $a_n = A_0 - 1$ (A) -1 (A) -1 (A) -1 (A) -1 ($a_{2}x^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ $B) linear = -a_{n}x^{n} = -a_{n}x$	$a^n = 0$ with $a_n = 1$ is of C) monic $a^n = 0$ is called monic p C) 1 equation. C) cubic equation. C) cubic equation. C) cubic equation. C) cubic equation. C) biquadratic	 called D)None of these oolynomial equation D)None of these D) None of these D) None of these D) None of these
15) If $f(x) = a_0 + a_1x + a_0$ polynomial equation A) quadratic (A) quadratic (A) quadratic (A) $f(x) = a_0 + a_1x + a_2x$ of degree n, if $a_n = A_0 - 1$ (A) -1 (A) -1	$a_{2}x^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ ion of degree n. B) linear $a_{2}^{2}+a_{3}x^{3}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{3}x^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{3}x^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{3}x^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{3}x^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2}+a_{2}^{2}+\dots+a_{n}x^{n}$ $a_{2}^{2}+a_{2}^{2$	$a^n = 0$ with $a_n = 1$ is of C) monic $a^n = 0$ is called monic p C) 1 equation. C) cubic equation. C) cubic equation. C) cubic equation. C) cubic equation. C) biquadratic f degree C) 1	 b)None of these b)None of these b)None of these b)None of these b) None of these b) None of these b) None of these

23) $x^5+6x^3-5x^2+7=0$ is a polynomial equation of degree			
A) 2	B) 4	C) 5	D) None of these
24) If f(x) is polynomi	al of degree m and g	g(x) is polynomial of	of degree n then
degree of $[f(x)+g(x)]$	x)] is		
A) max. $\{m, n\}$	B) min.{m, n}	C) m+n	D) None of these
25) If $f(x) = a_0 + a_1 x$	$+a_2x^2+\ldots+a_mx^m$	and	
$g(\mathbf{x}) = b_0 + b_1 \mathbf{x} + \mathbf{x}$	$b_2 x^2 + \ldots + b_n x^n$ the	en deg[f(x)+g(x)] =	
A) max. $\{m, n\}$	B) m+n	C) mn	D) min.{m, n}
26) If f(x) is polynomi	al of degree 4 and g	(x) is polynomial o	f degree 5 then
degree of $[f(x)+g(x)]$	x)] is		
A) 9	B) 5	C) 4	D) None of these
27) If $f(x) = 3 + 5x - 7$	$x^{2} + \frac{1}{2}x^{3}$ and $g(x) = 3$	$5 + 7x - 5x^2 + 2x^3 + $	$9x^4$,
then degree of [f(x)+g(x)] is	A 1000000	
A) 9			D) None of these
28) If $f(x) = 1 - 3x + 2$	x^2 and $g(x) = 3 - \frac{1}{2}x$	$+4x^2 - x^3$, then f(x	$) + g(x) = \dots$
	- x ³ B) 4		R I
C) 3 - $\frac{1}{2}x + 6x^2$	- x ³ D) M	None of these	81-
29) If $f(x) = 3 + 5x - 7$	$x^{2} + \frac{1}{2}x^{3}$ and $g(x) = 3$	$5 + 7x - 5x^2 + 2x^3 +$	$9x^4$,
then $f(x) + g(x) = $.		alla Leva	ä
A) $8 + 12x - 12x$	$x^2 + \frac{5}{2}x^3 + 9x^4$	B) 8 + 12x - 12x	$x^{2} + \frac{1}{2}x^{3} + 9x^{4}$
C) $8 + 12x - 12x$	Z	D) None of these	
30) If f(x) is polynomi	al of degree m and g	(x) is polynomial o	of degree n then
degree of [f(x).g(x))] is	~~ ~?	
A) max. $\{m, n\}$	B) min. $\{m, n\}$	C) m+n	D) None of these
31) If $f(x) = a_0 + a_1 x$	$1 \sim \alpha^2 + 1 \sim \alpha^m$		
	$+ a_2 x^- + \dots + a_m x^m$	and	
$g(x) = b_0 + b_1 x +$	$+ a_2 x^2 + \ldots + a_m x^m$ $b_2 x^2 + \ldots + b_n x^n$ the	and en deg[$f(x).g(x)$] =	
$g(x) = b_0 + b_1 x +$ A) max.{m, n}	$b_2 x^2 + \ldots + b_n x^n$ the	and en deg[f(x).g(x)] = C) mn	 D) min.{m, n}
$g(\mathbf{x}) = b_0 + b_1 \mathbf{x} + \mathbf{x}$	$b_2 x^2 + \ldots + b_n x^n$ the B) m+n	en deg[$f(x).g(x)$] = C) mn	D) min. $\{m, n\}$
$g(x) = b_0 + b_1 x +$ A) max.{m, n}	$b_2x^2 + \dots + b_nx^n$ the B) m+n al of degree 4 and ge	en deg[$f(x).g(x)$] = C) mn	D) min. $\{m, n\}$
$g(x) = b_0 + b_1 x +$ A) max.{m, n} 32) If f(x) is polynomi	$b_2x^2 + \ldots + b_nx^n$ the B) m+n al of degree 4 and ge)] is	en deg[$f(x).g(x)$] = C) mn	D) min.{m, n} f degree 5 then
$g(x) = b_0 + b_1 x +$ A) max.{m, n} 32) If f(x) is polynomidegree of [f(x).g(x)]	$b_2x^2 + \ldots + b_nx^n$ the B) m+n al of degree 4 and go)] is B) 5	en deg[f(x).g(x)] = C) mn (x) is polynomial o C) 4	D) min.{m, n} f degree 5 then D) None of these
$g(x) = b_0 + b_1 x +$ A) max.{m, n} 32) If f(x) is polynomic degree of [f(x).g(x) A) 9	$b_2x^2 + \ldots + b_nx^n$ the B) m+n al of degree 4 and go)] is B) 5	en deg[f(x).g(x)] = C) mn (x) is polynomial o C) 4	D) min.{m, n} f degree 5 then D) None of these
$g(x) = b_0 + b_1 x +$ A) max.{m, n} 32) If f(x) is polynomic degree of [f(x).g(x) A) 9 33) If f(x) is divided by	$b_2 x^2 + + b_n x^n$ the B) m+n al of degree 4 and ge)] is B) 5 y (x- α) where α is co B) f(α) er α is root of an equ	en deg[f(x).g(x)] = C) mn (x) is polynomial o C) 4 onstant, then remain C) 0	 D) min.{m, n} f degree 5 then D) None of these nder is D) None of these
$g(x) = b_0 + b_1 x +$ A) max.{m, n} 32) If f(x) is polynomidegree of [f(x).g(x) A) 9 33) If f(x) is divided by A) α 34) If a constant numbid A) root	$b_2 x^2 + + b_n x^n$ the B) m+n al of degree 4 and ge)] is B) 5 y (x- α) where α is co B) f(α) er α is root of an eq B) factor	en deg[f(x).g(x)] = C) mn (x) is polynomial o C) 4 cnstant, then remain C) 0 uation f(x) = 0, then C) remainder	 D) min. {m, n} f degree 5 then D) None of these nder is D) None of these n (x-α) isof f(x). D) None of these
$g(x) = b_0 + b_1 x +$ A) max.{m, n} 32) If f(x) is polynomidegree of [f(x).g(x) A) 9 33) If f(x) is divided by A) α 34) If a constant numbid A) root 35) If a constant numbid	$b_2 x^2 + + b_n x^n$ the B) m+n al of degree 4 and ge)] is B) 5 y (x- α) where α is co B) f(α) er α is root of an eq B) factor er α is root of an eq	en deg[f(x).g(x)] = C) mn (x) is polynomial o C) 4 cnstant, then remain C) 0 uation $f(x) = 0$, then C) remainder uation $f(x) = 0$, then	D) min. {m, n} f degree 5 then D) None of these nder is D) None of these n $(x-\alpha)$ isof f(x). D) None of these n
$g(x) = b_0 + b_1 x +$ A) max.{m, n} 32) If f(x) is polynomidegree of [f(x).g(x) A) 9 33) If f(x) is divided by A) α 34) If a constant numbid A) root 35) If a constant numbid A) (x+ α) f(x)	$b_2 x^2 + + b_n x^n$ the B) m+n al of degree 4 and ge)] is B) 5 y (x- α) where α is co B) f(α) er α is root of an eq B) factor er α is root of an eq B) f(x) (x- α)	en deg[f(x).g(x)] = C) mn (x) is polynomial of C) 4 onstant, then remain C) 0 uation f(x) = 0, then C) remainder uation f(x) = 0, then C) (x- α) f(x)	D) min. $\{m, n\}$ f degree 5 then D) None of these nder is D) None of these n (x- α) isof f(x). D) None of these n D) None of these
$g(x) = b_0 + b_1 x +$ A) max.{m, n} 32) If f(x) is polynomidegree of [f(x).g(x) A) 9 33) If f(x) is divided by A) α 34) If a constant numbid A) root 35) If a constant numbid A) (x+ α) f(x) 36) If f(x) = 2x ³ + 3x +	$b_2 x^2 + + b_n x^n$ the B) m+n al of degree 4 and ge)] is B) 5 y (x- α) where α is co B) f(α) er α is root of an eq B) factor er α is root of an eq B) f(x) (x- α) - 2 is divided by (x- β	en deg[f(x).g(x)] = C) mn (x) is polynomial of C) 4 onstant, then remain C) 0 uation f(x) = 0, then C) remainder uation f(x) = 0, then C) (x- α) f(x)	D) min. $\{m, n\}$ f degree 5 then D) None of these nder is D) None of these n (x- α) isof f(x). D) None of these n D) None of these
$g(x) = b_0 + b_1 x +$ A) max.{m, n} 32) If f(x) is polynomidegree of [f(x).g(x) A) 9 33) If f(x) is divided by A) α 34) If a constant numbid A) root 35) If a constant numbid A) (x+ α) f(x)	$b_2 x^2 + + b_n x^n$ the B) m+n al of degree 4 and ge)] is B) 5 y (x- α) where α is co B) f(α) er α is root of an eq B) factor er α is root of an eq B) f(x) (x- α) - 2 is divided by (x- β	en deg[f(x).g(x)] = C) mn (x) is polynomial of C) 4 onstant, then remain C) 0 uation f(x) = 0, then C) remainder uation f(x) = 0, then C) (x- α) f(x)	D) min. $\{m, n\}$ f degree 5 then D) None of these nder is D) None of these n (x- α) isof f(x). D) None of these n D) None of these

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER. 12

37) If $f(x) = x^5 + 3x^4 + 5x^2 - 2$ is divided by (x-3), then by Horner's method	od of		
synthetic division remainder is			
A) 3 B) -2 C) 529 D) 286			
38) The remainder when $4x^4 - 2x^3 + 3x - 3$ is divided by $x + 1$ is			
A) 0 B) -1 C) 1 D) None	of these		
39) A constant α is root of polynomial equation $f(x) = 0$, if is factor	of $f(x)$.		
A) \mathbf{x} - $\mathbf{\alpha}$ B) $\mathbf{f}(\mathbf{\alpha})$ C) \mathbf{x} + $\mathbf{\alpha}$ D) None	of these		
40) A polynomial equation $f(x) = 0$ of degree $n \ge 1$ has exactly roo	ts.		
A) 1 B) n-1 C) n D) None	of these		
41) A cubic polynomial equation $f(x) = 0$ has exactly roots.			
A) 3 B) 2 C) 1 D) None	of these		
42) A cubic polynomial equation $f(x) = 0$ has minimum real roots.			
A) 3 B) 2 C) 1 D) None	of these		
43) If a + \sqrt{b} is a real root of polynomial equation $f(x) = 0$ then is a	also		
a root of $f(x) = 0$.			
A) a B) \sqrt{b} C) a $-\sqrt{b}$ D) None	of these		
44) If $\alpha + i\beta$ is a root of polynomial equation $f(x) = 0$ then is also a			
f(x) = 0.			
A) $\alpha - i\beta$ B) α C) β D) None	of these		
45) If $f(x)$ and $g(x)$ are polynomials over $Q[x]$ such that $g(x) \neq 0$ then the	re exists		
polynomials $q(x)$ and $r(x)$ over $Q[x]$ such that $f(x) = q(x).g(x) + r(x)$			
where $r(x) = 0$ or deg of $r(x) < \deg$ of $g(x)$ then $r(x)$ is called			
A) divisor B) quotient C) remainder D) None	of these		
46) If $f(x)$ and $g(x)$ are polynomials over $Q[x]$ such that $g(x) \neq 0$ then the	re exists		
polynomials $q(x)$ and $r(x)$ over $Q[x]$ such that $f(x) = q(x).g(x) + r(x)$			
where $r(x) = 0$ or deg of $r(x) < \deg of g(x)$ then $g(x)$ is called			
A) divisor B) quotient C) remainder D) None	of these		
47) If $f(x)$ and $g(x)$ are polynomials over $Q[x]$ such that $g(x) \neq 0$ then the	re exists		
polynomials $q(x)$ and $r(x)$ over $Q[x]$ such that $f(x) = q(x).g(x) + r(x)$			
where $r(x) = 0$ or deg of $r(x) < deg$ of $g(x)$ then $q(x)$ is called			
A) divisor B) quotient C) remainder D) None	of these		
48) $d(x)$ is g.c.d of $f(x)$ and $g(x)$, then			
A) $d(x) f(x)$ and $d(x) g(x)$ B) $f(x) d(x)$ and $g(x) d(x)$			
C) $d(x) f(x)$ and $f(x) g(x)$ D) None of these			
49) g.c.d of $f(x)$ and $g(x)$ is denoted by			
A) $(f(x), g(x))$ B) $[f(x), g(x)]$ C) $\{f(x), g(x)\}$ D) None	of these		
50) The common roots of two given polynomials are the roots of their	· • •		
A) g.c.d. B) quotient C) remainder D) None	of these		
51) To find the repeated roots of given polynomial equation $f(x) = 0$. We	first find		
the g.c.d. of			
A) $f(x) = 0 \& f''(x) = 0$ B) $f(x) = 0 \& f'(x) = 0$			
C) $f'(x) = 0 \& f''(x) = 0$ D) None of these			

UNIT-3. THEORY OF EQUATIONS-I

- **Polynomials:** If $a_0, a_1, a_2, \ldots, a_n$ are real numbers with $a_0 \neq 0$, then $P_n(x)$ or $f(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_{n-1}x + a_n$ is called a general polynomial of one variable x of degree n.
- **Polynomials Equation:** If $a_0, a_1, a_2, \ldots, a_n$ are real numbers with $a_0 \neq 0$ and x is variable, then $P_n(x)$ or $f(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_{n-1}x + a_n = 0$ is called a polynomial equation of degree n
- **Root of an Equation:** The value of x which satisfies the given equation f(x) = 0 is called root of an equation.
- **Note:** The values of roots may be real or complex.
- **Solution of an Equation:** The set of all roots an equation f(x) = 0 is called it's solution.
- **Linear Equation:** A polynomial equation ax + b = 0 of degree 1 is called linear equation.
- **Quadratic Equation:** A polynomial equation $ax^2 + bx + c = 0$ of degree 2 is called quadratic equation.
- **Cubic Equation:** A polynomial equation $ax^3 + bx^2 + cx + d = 0$ of degree 3 is called cubic equation.
- **Biquadratic Equation:** A polynomial equation $ax^4 + bx^3 + cx^2 + dx + e = 0$ of degree 4 is called biquadratic equation.
- **Quintic Equation:** A polynomial equation $ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0$ of degree 5 is called quintic equation.
- Sextic Equation: A polynomial equation $ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g = 0$ of degree 6 is called sextic equation.
- e.g. i) $3x^2 + 4x 7 = 0$ is a quadratic equation.
 - ii) $4x^3 7x + 1 = 0$ is a cubic equation.
 - iii) $x^4 8x^3 + 5x 7 = 0$ is a biquadratic equation.
- Notation: $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$ are n numbers in sequence, then
 - $\sum \alpha_1 = \alpha_1 + \alpha_2 + \alpha_3 + \ldots + \alpha_n$
 - $\sum \alpha_1 \alpha_2$ = The sum of all possible products of α_i 's taken two distinct α_i at a time.

 $\sum \alpha_1 \alpha_2 \alpha_3$ = The sum of all possible products of α_i 's taken three distinct α_i at a time.

Relation between roots and coefficient of general polynomial equation:

Let $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n = 0$ with $a_0 \neq 0$ be a general polynomial equation of one variable x of degree n and $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ are n roots of f(x) = 0, then

 $f(\mathbf{x}) = \mathbf{a}_0 (\mathbf{x} - \alpha_1) (\mathbf{x} - \alpha_2) (\mathbf{x} - \alpha_3) \dots (\mathbf{x} - \alpha_n)$

$$\begin{aligned} \dot{a}_{0} a_{1}^{n} + a_{1} x^{n-1} + a_{2} x^{n-2} + \dots + a_{n-1} x + a_{n} = a_{0} (x - a_{1}) (x - a_{2}) (x - a_{3}) \dots (x - a_{n}) \\ &= a_{0} [x^{n} - (a_{1} + a_{2} + a_{3} + \dots + a_{n}) x^{n-1} + (a_{1}a_{2} + a_{1}a_{3} + \dots + a_{n-1}a_{n}) x^{n-2} \\ &- (a_{1}a_{2}a_{3} + a_{1}a_{2}a_{3} + \dots + a_{n}) x^{n-1} + x^{n-2}, \dots, x \text{ and constant terms, we get,} \\ &- a_{0} (a_{1} + a_{2} + a_{3} + \dots + a_{n-1}a_{n}) = a_{1} i.e. \sum a_{1} = -\frac{a_{1}}{a_{0}} \\ &a_{0} (a_{1}a_{2} + a_{1}a_{3} + \dots + a_{n-1}a_{n}) = a_{2} i.e. \sum \alpha_{1}a_{2} = \frac{a_{2}}{a_{0}} \\ &- a_{0} (a_{1}a_{2} + a_{1}a_{3} + \dots + a_{n-1}a_{n}) = a_{1} i.e. \sum \alpha_{1}a_{2}a_{2} = \frac{a_{2}}{a_{0}} \\ &- a_{0} (a_{1}a_{2}a_{3} + a_{1}a_{2}a_{3} + \dots + a_{n-2}a_{n-1}a_{n}) = a_{3} i.e. \sum \alpha_{1}a_{2}a_{3}a_{2} = -\frac{a_{3}}{a_{0}} \\ &\cdots \\ &\cdots \\ &\cdots \\ &\cdots \\ &a_{0} (-1)^{n} (a_{1}a_{2}a_{3} \dots a_{n+1}a_{n}) = a_{n} i.e. a_{1}a_{2}a_{3} \dots a_{n+1}a_{n} = (-1)^{n} \frac{a_{n}}{a_{0}} \\ &\text{Relation between roots and coefficients of some polynomial equations:} \\ &i) Let \alpha and \beta are the roots of a quadratic equation ax^{2} + bx + c = 0, then relation between roots and coefficients are $\sum \alpha = \alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$ a_{0} $(ii) Let \alpha$ and β are the roots of a quadratic equation $x^{2} + bx + c = 0$, then relation between roots and coefficients are $\sum \alpha = \alpha + \beta = -p$ and $\alpha\beta = q$ a_{0} $iii)$ Let α and β are the roots of a cubic equation $x^{3} + bx^{2} + cx + d = 0$, then relation between roots and coefficients are $\sum \alpha = \alpha + \beta + \gamma = -\frac{b}{a}, \sum \alpha\beta = \frac{c}{a}$ and $\alpha\beta\gamma = -\frac{d}{a}$ a_{0} $iv)$ Let α, β and γ are the roots of a cubic equation $x^{3} + bx^{2} + cx + d = 0$, then relation between roots and coefficients are $\sum \alpha = \alpha + \beta + \gamma = -\frac{b}{a}, \sum \alpha\beta = \frac{c}{a}$ and $\alpha\beta\gamma = -\frac{d}{a}$ a_{0} $a_{0} + a_{0} + -\frac{c}{a}$ $iv)$ Let α, β and γ are the roots of a cubic equation $x^{3} - px^{2} + qx - r = 0$, then relation between roots and coefficients are $\sum \alpha = \alpha + \beta + \gamma + \delta = -\frac{b}{a}, \sum \alpha\beta = \frac{c}{a}, \sum \alpha\beta\gamma = -\frac{c}{a}$ $a_{0} \alpha\beta\gamma\delta = \frac{c}{a}$ $v^{2} + a$$$

=

Ex.: Solve the equation $x^3 - 3x^2 - 16x + 48 = 0$, if sum of two of its roots is zero. Solution: Let α , β and γ are the roots of the given equation $x^3 - 3x^2 - 16x + 48 = 0$,

with sum of two of its roots is zero say $\beta + \gamma = 0$ (1)

By relation between roots and coefficients, we have

$$\sum \alpha = \alpha + \beta + \gamma = -\frac{b}{a} \text{ i.e. } \alpha + 0 = -\frac{(-3)}{1} \text{ i.e. } \alpha = 3 \qquad \text{by (1)}$$

$$\sum \alpha \beta = \alpha \beta + \alpha \gamma + \beta \gamma = \frac{c}{a} \text{ i.e. } \alpha(0) + \beta(-\beta) = \frac{-16}{1} \qquad \text{by (1)}$$

$$-\beta^2 = -16$$

$$\beta^2 = 16$$

By taking positive square root, we get,

$$\therefore \beta = 4$$
 and $\gamma = -4$ by (1)

 \therefore 3, 4 and -4 are the roots of given equation.

Ex.: Solve the equation $x^3 - 5x^2 - 16x + 80 = 0$, if sum of two of its roots is zero. Solution: Let α , β and γ are the roots of the given equation $x^3 - 5x^2 - 16x + 80 = 0$,

with sum of two of its roots is zero say $\beta + \gamma = 0$ (1)

By relation between roots and coefficients, we have

$$\sum \alpha = \alpha + \beta + \gamma = -\frac{b}{a} \text{ i.e. } \alpha + 0 = -\frac{(-5)}{1} \text{ i.e. } \alpha = 5 \qquad \text{by (1)}$$

$$\sum \alpha \beta = \alpha \beta + \alpha \gamma + \beta \gamma = \frac{c}{a} \text{ i.e. } \alpha(0) + \beta(-\beta) = \frac{-16}{1} \qquad \text{by (1)}$$

i.e. $\beta^2 = 16$

By taking positive square root, we get

$$\beta = 4$$
 and $\gamma = -4$ by (1)

 \therefore 5, 4 and - 4 are the roots of given equation.

Ex.: Solve the equation $x^3 - 3x^2 + 4 = 0$, if two its roots are equal. Solution: Let α , β and γ are the roots of the given equation

 $x^{3} - 3x^{2} + 4 = 0$ with two roots are equal say $\gamma = \beta$ (1) By relation between roots and coefficients, we have find (1) $\sum \alpha = \alpha + \beta + \gamma = -\frac{b}{a}$ i.e. $\alpha + 2\beta = -\frac{(-3)}{1}$ by (1) i.e. $\alpha + 2\beta = 3$ (2) $\sum \alpha\beta = \alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$ i.e. $2\alpha\beta + \beta^{2} = 0$ by (1) i.e. $\beta (2\alpha + \beta) = 0$ $\therefore 2\alpha + \beta = 0$ (3) $\therefore \beta = 0$ does not satisfy given equation. Consider 2(2) - (3) $2\alpha + 4\beta - 2\alpha - \beta = 6 - 0$ $\therefore 3\beta = 6 \Rightarrow \beta = 2$ From (2), we get, $\alpha + 4 = 3 \Rightarrow \alpha = -1$

 \therefore -1, 2 and 2 are the roots of given equation.

Ex.: Solve the equation $x^3 - 7x^2 + 36 = 0$ whose one of the root is double the other. Solution: Let α , β and γ are the roots of the given equation $x^3 - 7x^2 + 36 = 0$,

whose one of the root is double the other say $\gamma = 2\beta$ (1) By relation between roots and coefficients, we have $\sum \alpha = \alpha + \beta + \gamma = -\frac{b}{2}$ i.e. $\alpha + \beta + 2\beta = -\frac{(-7)}{1}$ by (1) i.e. $\alpha + 3\beta = 7$ (2) $\sum \alpha \beta = \alpha \beta + \alpha \gamma + \beta \gamma = \frac{c}{2}$ i.e. $\alpha \beta + \alpha (2\beta) + \beta (2\beta) = \frac{0}{1}$ by (1) i.e. $3\alpha\beta+2\beta^2=0$ i.e. $\beta (3\alpha + 2\beta) = 0$ $\therefore 3\alpha + 2\beta = 0$ (3) $\therefore \beta = 0$ does not satisfy given equation. Consider 3(2) - (3) $3\alpha + 9\beta - 3\alpha - 2\beta = 21 - 0$ stated where β i.e. $7\beta = 21$ $\therefore \beta = 3$ and $\gamma = 2(3) = 6$ by (1) From (2), we get, $\alpha + 3(3) = 7$ $\therefore \alpha = -2$ \therefore -2, 3 and 6 are the roots of given equation.

Ex.: Solve the equation $x^3 - 9x^2 + 23x - 15 = 0$ whose roots are in A. P. Solution: Let $\alpha - \beta$, α and $\alpha + \beta$ are the roots of the given equation $x^3 - 9x^2 + 23x - 15 = 0$ in A. P. By relation between roots and coefficients, we have $\alpha - \beta + \alpha + \alpha + \beta = -\frac{b}{a}$ i.e. $3\alpha = -\frac{(-9)}{1}$ i.e. $3\alpha = 9 \Rightarrow \alpha = 3$ $(\alpha - \beta)\alpha(\alpha + \beta) = -\frac{d}{a}$ i.e. $\alpha(\alpha^2 - \beta^2) = -\frac{(-15)}{1}$ i.e. $3(9 - \beta^2) = 15$ $\therefore 9 - \beta^2 = 5$ $\therefore \beta^2 = 4$ By taking positive square root, we get, $\therefore \beta = 2$

 \therefore 3-2, 3 and 3+2 i.e. 1, 3 and 5 are the roots of given equation.

Ex.: Solve the equation $x^3 - 3x^2 - 6x + 8 = 0$ if the roots are in arithmetic progression (A. P.).

Solution: Let α - β , α and α + β are the roots of the given equation $x^3 - 3x^2 - 6x + 8 = 0$ in A. P.

By relation between roots and coefficients, we have

 $\alpha - \beta + \alpha + \alpha + \beta = -\frac{b}{a}$ i.e. $3\alpha = -\frac{(-3)}{1}$ by(1) i.e. $3\alpha = 3 \Rightarrow \alpha = 1$ $(\alpha - \beta)\alpha(\alpha + \beta) = -\frac{d}{a}$ i.e. $\alpha(\alpha^2 - \beta^2) = -\frac{(8)}{1}$ i.e. $1 - \beta^2 = -8$ $\therefore \beta^2 = 9$ By taking positive square root, we get, $\therefore \beta = 3$ \therefore 1-3, 1 and 1+3 i.e. -2, 1 and 4 are the roots of given equation. **Ex.:** Find the condition that the roots of $x^3 - px^2 + qx - r = 0$ are in A. P. **Solution:** Let α - β , α and α + β are the roots of the given equation $x^{3} - px^{2} + qx - r = 0$ in A. P. By relation between roots and coefficients, we have $\alpha - \beta + \alpha + \alpha + \beta = -\frac{b}{a}$ i.e. $3\alpha = -\frac{(-p)}{1}$ by(1) i.e. $3\alpha = p \Rightarrow \alpha = \frac{p}{2}$ As $\alpha = \frac{p}{2}$ is root of given equation. $\therefore \left(\frac{p}{2}\right)^{3} - p\left(\frac{p}{2}\right)^{2} + q\left(\frac{p}{2}\right) - r = 0$ $\therefore \frac{p^3}{27} - \frac{p^3}{9} + \frac{pq}{3} - r = 0$ $\therefore p^3 - 3p^3 + 9pq - 27r = 0$ $\therefore -2p^3 + 9pq - 27r = 0$ $\therefore 2p^3 - 9pq + 27r = 0$ be the required condition.

Ex.: Find the condition that $x^3 + px^2 + qx + r = 0$ should have the roots α , β related by $\alpha\beta + 1 = 0$.

Solution: Let α , β and γ are the roots of the given equation $x^{3} + px^{2} + qx + r = 0$ with $\alpha\beta + 1 = 0$ i.e. $\alpha\beta = -1$ (1) By relation between roots and coefficients, we have $\alpha\beta\gamma = -\frac{d}{a}$ i.e. $(-1)\gamma = -\frac{r}{1}$ by (1) i.e. $\gamma = r$ As $\gamma = r$ is root of given equation. $\therefore r^{3} + pr^{2} + qr + r = 0$

i.e. $r^2 + pr + q + 1 = 0$ be the required condition.

Symmetric Functions of Roots: An expression in roots which is remain same after interchange of roots is called symmetric functions of roots.

e.g: i) $\alpha + \beta$, $\alpha\beta$, $\alpha^2 + \beta^2$, $\frac{1}{\alpha} + \frac{1}{\beta}$, $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ etc. are symmetric functions of two roots $\alpha \& \beta$.

ii) α+β+γ, αβ+βγ+ γα, αβγ, α²+β²+γ²,
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}, \frac{\alpha}{\beta} + \frac{\beta}{\gamma} + \frac{\gamma}{\alpha}$$
 etc. are the
symmetric functions of two roots α, β & γ.
iii) α-β, $\frac{\alpha}{\beta}, \alpha^2 - \beta^2, \frac{1}{\alpha} - \frac{1}{\beta}, \frac{\alpha}{\beta} - \frac{\beta}{\alpha}$ are not symmetric functions.
Ex.: If α and β are the roots of $ax^2 + bx + c = 0$, then find the values of
i) $\alpha^2 + \beta^2$ ii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ iii) $\alpha^3 + \beta^3$ iv) $\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2}$
Solution: Let α and β are the roots of the equation $ax^2 + bx + c = 0$
 $\therefore \alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$ (1)
i) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = (-\frac{b}{a})^2 - 2(\frac{c}{a})$ by (1)
 $= \frac{b^2 - 2ac}{a^2}$ (2)
ii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = (\frac{a}{c})(\frac{b^2 - 2ac}{a^2})$ by (1) and (2)
 $= \frac{b^2 - 2ac}{ac}$
iii) $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = (-\frac{b}{a})^3 - 3(\frac{c}{a})(-\frac{b}{a})$ by(1)
 $= \frac{-b^3}{a^3} + \frac{3bc}{a^2}$
 $= \frac{-a^3}{a^3} + \frac{3bc}{a^2}$
 $= \frac{-a^3}{a^3} + \frac{a^3bc}{a^2}$
iv) $\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2} = \frac{\alpha^4 + \beta^4}{\alpha^2 \beta^2} = \frac{(\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2}{(\alpha\beta)^2} = \frac{(\frac{b^2 - 2ac}{a^2})^2 - 2(\frac{c}{a})^2}{(\frac{c}{a})^2}$ by (1) and (2)
 $= \frac{(b^2 - 2ac}{ac}$
iv) $\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2} = \frac{\alpha^4 + \beta^4}{\alpha^2 \beta^2} = \frac{(\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2}{(\alpha\beta)^2} = \frac{(\frac{b^2 - 2ac}{a^2})^2 - 2(\frac{c}{a})^2}{(\frac{c}{a})^2}$ by (1) and (2)
 $= \frac{(b^2 - 2ac}{a^2} - 2ac^2 - 2ac^2}{(\alpha\beta)^2} = \frac{(b^2 - 2ac}{a^2})^2 - 2(\frac{c}{a^2})^2}{(\frac{c}{a^2})^2}$ by (1) and (2)

Ex.: If α and β are the roots of $x^2 - 5x + 1 = 0$, then find the values of i) $\frac{1}{\alpha} + \frac{1}{\beta}$ ii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ iii) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ iv) $\alpha^4 + \beta^4$

Solution: Let α and β are the roots of the equation $x^2 - 5x + 1 = 0$

$$\therefore \alpha + \beta = -\frac{(-5)}{1} = 5 \text{ and } \alpha\beta = \frac{1}{1} = 1....(1)$$

i) $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{5}{1} = 5$ by (1)
ii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{(5)^2 - 2(1)}{(1)} = 23$ by (1)
iii) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{\alpha\beta} = \frac{(5)^3 - 3(1)(5)}{(1)}$ by (1)
 $= 125 - 15$
 $= 110$
iv) $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2 = (23)^2 - 2(1)^2$ by (1) and (2)
 $= 529 - 2$
 $= 527$

Ex.: If α and β are the roots of $3x^2 - 4x + 7 = 0$, then find the values of

i) $\frac{1}{\alpha} + \frac{1}{\beta}$ iv) $\alpha^2 + \beta^2$ ii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ iii) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ Solution: Let α and β are the roots of the equation $3x^2 - 4x + 7 = 0$ $\therefore \alpha + \beta = -\frac{(-4)}{3} = \frac{4}{3}$ and $\alpha\beta = \frac{7}{3}$ (1) i) $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{\frac{4}{3}}{\frac{7}{3}} = \frac{4}{7}$ by (1) ii) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = (\frac{4}{3})^2 - 2(\frac{7}{3})$ by (1) $= \frac{16}{9} - \frac{14}{3}$ $= \frac{-26}{9}$ (2) iii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{\frac{-26}{\frac{7}{3}}}{\frac{7}{3}} = \frac{-26}{9} \times \frac{3}{7} = \frac{-26}{21}$ by (1) and (2)

Ex.: If α , β and γ are the roots of $x^3 + px^2 + qx + r = 0$, then find the values of ii) $\sum \alpha^2 \beta$ iii) $\sum \alpha^3$ i) $\sum \alpha^2$ **Solution:** Let α , β and γ are the roots of $x^3 + px^2 + qx + r = 0$ $\therefore \sum \alpha = \alpha + \beta + \gamma = -\frac{p}{1} = -p, \ \sum \alpha \beta = \alpha \beta + \beta \gamma + \gamma \alpha = \frac{q}{1} = q$ and $\alpha\beta\gamma = -\frac{r}{1} = -r \dots (1)$ i) $\sum \alpha^2 = \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ $= (\sum \alpha)^2 - 2\sum \alpha \beta$ $=(-p)^{2}-2(q)$ $= p^2 - 2q$ (2) ii) $\sum \alpha^2 \beta = \alpha^2 \beta + \alpha^2 \gamma + \beta^2 \alpha + \beta^2 \gamma + \gamma^2 \alpha + \gamma^2 \beta$ $= (\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha) - 3\alpha\beta\gamma$ =(-p)(q)-3(-r) $= 3r - pq \dots (3)$ iii) $\sum \alpha^3 = \alpha^3 + \beta^3 + \gamma^3 = (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2)$ $-(\alpha^2\beta + \alpha^2\gamma + \beta^2\alpha + \beta^2\gamma + \gamma^2\alpha + \gamma^2\beta)$ $= (\sum \alpha)(\sum \alpha^2) - \sum \alpha^2 \beta$ $=(-p)(p^2-2q)-(3r-pq)$ $= -p^3 + 2pq - 3r + pq$ $= 3pq - p^3 - 3r$

Ex.: If α , β and γ are the roots of $x^3 - 5x^2 - 2x + 24 = 0$, then find the values of $\sum \alpha^2$ and $\sum \alpha^2 \beta$ **Solution:** Let α , β and γ are the roots of $x^3 - 5x^2 - 2x + 24 = 0$

$$\therefore \sum \alpha = \alpha + \beta + \gamma = -\frac{(-5)}{1} = 5, \ \sum \alpha \beta = \alpha \beta + \beta \gamma + \gamma \alpha = \frac{-2}{1} = -2 \text{ and}$$

$$\alpha\beta\gamma = -\frac{(24)}{1} = -24 \dots (1)$$

i) $\sum \alpha^2 = \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$
 $= (\sum \alpha)^2 - 2\sum \alpha\beta$
 $= (5)^2 - 2(-2)$
 $= 29 \dots (2)$
ii) $\sum \alpha^2\beta = \alpha^2\beta + \alpha^2\gamma + \beta^2\alpha + \beta^2\gamma + \gamma^2\alpha + \gamma^2\beta$
 $= (\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha) - 3\alpha\beta\gamma$
 $= (5)(-2) - 3(-24)$
 $= 62$

Ex.: If α , β and γ are the roots of $x^3 - 3x^2 + 4x - 1 = 0$, then find the values of i) $\sum \alpha^2$ ii) $\sum \alpha^2 \beta$ iii) $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$ iv) $\frac{1}{\alpha^2 \beta^2} + \frac{1}{\beta^2 \gamma^2} + \frac{1}{\gamma^2 \alpha^2}$

Solution: Let α , β and γ are the roots of $x^3 - 3x^2 + 4x - 1 = 0$

$$\therefore \sum \alpha = \alpha + \beta + \gamma = -\frac{(-3)}{1} = 3, \ \sum \alpha\beta = \alpha\beta + \beta\gamma + \gamma\alpha = \frac{4}{1} = 4 \text{ and}$$

$$\alpha\beta\gamma = -\frac{(-1)}{1} = 1 \dots (1)$$

$$i) \sum \alpha^2 = \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$$

$$= (\sum \alpha)^2 - 2\sum \alpha\beta$$

$$= (3)^2 - 2(4) \quad \text{by (1)}$$

$$= 1 \dots (2)$$

$$ii) \sum \alpha^2\beta = \alpha^2\beta + \alpha^2\gamma + \beta^2\alpha + \beta^2\gamma + \gamma^2\alpha + \gamma^2\beta$$

$$= (\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha) - 3\alpha\beta\gamma$$

$$= (3)(4) - 3(1) \quad \text{by (1)}$$

$$= 9 \dots (3)$$

$$iii) (\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) = (\alpha\beta + \alpha\gamma + \beta^2 + \beta\gamma)(\gamma + \alpha)$$

$$= \alpha\beta\gamma + \alpha^2\beta + \gamma^2\alpha + \alpha^2\gamma + \beta^2\gamma + \beta^2\alpha + \gamma^2\beta + \alpha\beta\gamma$$

$$= 2\alpha\beta\gamma + \sum \alpha^2\beta + \alpha^2\beta + \alpha^2\gamma + \beta^2\gamma + \beta^2\alpha + \gamma^2\beta + \alpha\beta\gamma$$

$$= 2(1) + 9 \quad \text{by (1) and (3)}$$

$$= 11$$

$$iv) \frac{1}{\alpha^2\beta^2} + \frac{1}{\beta^2\gamma^2} + \frac{1}{\gamma^2\alpha^2} = \frac{\gamma^2 + \alpha^2 + \beta^2}{\alpha^2\beta^2\gamma^2}$$

$$= \frac{\sum \alpha^2}{(\alpha\beta\gamma)^2}$$

$$= \frac{1}{(1)^2} \quad \text{by (1) and (2)}$$

MULTIPLE CHOICE QUESTIONS [MCQ'S]

1) If $a_0, a_1, a_2, \ldots, a_n$ are real numbers with $a_0 \neq 0$, then $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x + a_n \text{ is called } a \dots \text{ of one}$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER. 🖇

variable x of degree	n			
A) general equation B) general polynomial				
C) linear equation D) None of these				
2) If $a_0, a_1, a_2, \ldots, a_n$ are real numbers with $a_n \neq 0$, then				
$f(x) = a_0 x^n + a_1 x^{n-1} + $	$a_2 x^{n-2} + \dots + a_{n-1} x$	+ a _n is a general pol	ynomial	
of degree				
A) 0	B) 1	C) n	D) None of these	
3) Constant term of a g	iven polynomial f	$f(x) = a_0 x^n + a_1 x^{n-1} + a_0 x^{n-1}$	$a_{2}x^{n-2}+\ldots+a_{n-1}x+a_{n$	
is				
A) a ₀	B) a ₁	C) a _n	D) None of these	
4) Coefficient of n th de	gree term of a give	n polynomial		
$f(x) = a_0 x^n + a_1 x^{n-1} + a_1 x^{n-1}$	$a_2 x^{n-2} + \ldots + a_{n-1} x$	$a + a_n$ is		
A) a ₀	B) a ₁	C) a _n	D) None of these	
5) If $a_0, a_1, a_2, \ldots, a_n$				
$f(x) = a_0 x^n + a_1 x^{n-1} + a_1 x^{n-1}$	$a_2 x^{n-2} + \dots + a_{n-1} x$	$+a_n = 0$ is called a	of degree n.	
A) general equat	ion B) genera	al polynomial	25	
C) linear equation	on D) None	of these	N AL	
6) If $a_0, a_1, a_2, \ldots, a_n$		1 (The	\mathbb{R}^{1}	
$f(x) = a_0 x^n + a_1 x^{n-1} + a_1 x^{n-1}$	$a_2 x^{n-2} + \dots + a_{n-1} x$	$+a_n = 0$ is a general	equation	
of degree	1 1	12	4	
A) 0	B) 1	C) n	D) None of these	
7) Constant term of a g	iven equation f(x)	$= a_0 x^n + a_1 x^{n-1} + a_2 x^n$	$a_{n-2} + \ldots + a_{n-1}x + a_n$	
is		11/1	3	
A) a_0	B) a ₁	$C) a_n$	D) None of these	
8) Coefficient of n th de				
$f(x) = a_0 x^n + a_1 x^{n-1} + a_1 x^{n-1}$				
A) a_0	B) a ₁	/ 11	D) None of these	
9) The value of x which	h satisfies the give	n equation $f(x) = 0$ i	s called	
of an equation		and the second se		
A) root	B) solution		D) None of these	
10) The values of roots				
A) only real	B)	• •		
	r complex D)			
11) The set of all roots	•			
A) solution	B) open	*	D) None of these	
12) A polynomial equa		U	•	
A) cubic	B) quadratic	C) linear	D) None of these	
13) Degree of linear eq	-			
A) 1	,	C) 3	D) 4	
	14) A polynomial equation $ax^2 + bx + c = 0$ of degree 2 is called equation.			
A) cubic	B) quadratic	C) linear	D) None of these	

15) Degree of quadrat	ic equation is		
A) 1	B) 2	C) 3	D) 4
16) A polynomial equ	ation $ax^3 + bx^2 + cx$	+ d = 0 of degree 3	is called
equation.			
A) cubic	B) quadratic	C) linear	D) None of these
17) Degree of cubic ed		_	
A) 1	· ·	C) 3	D) 4
18) A polynomial equ	ation $ax^4 + bx^3 + cx^2$	dx + dx + e = 0 of deg	gree 4 is called
equation.			
A) cubic	B) biquadratic		D) None of these
19) Degree of a biqua	_		
A) 5	B) 4	I G B I I I I I I I I I I I I I I I I I	D) 2
20) Degree of an equa			
A) 1	B) $\frac{4}{5}$	C) 3	D) 2
21) Degree of an equa			
A) 5	B) 4	C) 1	D) -1
22) Degree of an equa			
	B) 4		D) 2
23) Degree of an equa			DUO
A) 5	B) 4	C) 6	D) 9
24) If α and β are the r		equation as $+$ bx $+$	c = 0, then
$\sum \alpha = \dots$ and $\alpha \beta =$		h c	S h c
A) $\frac{b}{a}$ and $-\frac{c}{a}$	B) - $\frac{b}{a}$ and $\frac{c}{a}$	C) - $\frac{b}{a}$ and - $\frac{c}{a}$	D) $\frac{b}{a}$ and $\frac{c}{a}$
25) If α and β are the r			
$\sum \alpha = \dots$ and $\alpha \beta =$	A. Stes	14914	
A) $\frac{4}{2}$ and $\frac{7}{2}$	B) $-\frac{4}{3}$ and $-\frac{7}{3}$	C) $\frac{4}{2}$ and $-\frac{7}{2}$	D) $-\frac{4}{2}$ and $\frac{7}{2}$
26) If α , β and γ are the		2 2	
$\sum \alpha = \alpha + \beta + \gamma = \dots$		साधद विन्दात मान	
	B) $\frac{c}{a}$	C) d	D) None of these
a	a	a	
27) If α , β and γ are the	e roots of a cubic eq	uation $x^3 + px^2 + qx$	x + r = 0, then
$\sum \alpha = \dots$		2 3	
A) -p	· •	/	D) None of these
28) If α , β and γ are the	e roots of a cubic eq	uation $ax^3 + bx^2 + c$	dx + d = 0, then
$\sum \alpha \beta = \dots$		d	
A) - $\frac{b}{a}$	B) $\frac{c}{a}$	C) - $\frac{d}{a}$	D) None of these
29) If α , β and γ are the	e roots of a cubic eq	uation $\bar{x}^3 + px^2 + qx$	x + r = 0, then
$\sum \alpha \beta = \dots$	-	- •	
A) - p	B) q	C) -r	D) None of these
30) If α , β and γ are the	e roots of a cubic eq	uation $ax^3 + bx^2 + c$	dx + d = 0, then

 $\alpha\beta\gamma = \ldots$ C) - $\frac{d}{a}$ A) - $\frac{b}{a}$ B) $\frac{c}{a}$ D) None of these 31) If α , β and γ are the roots of a cubic equation $x^3 + px^2 + qx + r = 0$, then $\sum \alpha \beta \gamma = \ldots$ C) -r A) - p B) q D) None of these 32) If α , β , γ and δ are the roots of a biquadratic equation $ax^4 + bx^3 + cx^2 + dx + e = 0$, then $\sum \alpha = \alpha + \beta + \gamma + \delta = \dots$ A) $-\frac{b}{a}$ B) $\frac{c}{a}$ C) $-\frac{d}{a}$ D) $\frac{e}{a}$ 33) If α , β , γ and δ are the roots of a biquadratic equation $x^4 + px^3 + qx^2 + rx + s = 0$, then $\sum \alpha = \ldots$ A) -p B) q C) - r D) s34) If α , β , γ and δ are the roots of a biquadratic equation $ax^4+bx^3+cx^2+dx+e=0$, then $\sum \alpha \beta = \dots$. (B) $\frac{c}{a}$ (C) $-\frac{d}{a}$ A) - $\frac{b}{a}$ D) $\frac{e}{a}$ 35) If α , β , γ and δ are the roots of a biquadratic equation $x^4 + px^3 + qx^2 + rx + s = 0$, then $\sum \alpha \beta = \dots$ C) - r A) –p B) q D) s 36) If α , β , γ and δ are the roots of a biquadratic equation $ax^4+bx^3+cx^2+dx+e=0$, then $\sum \alpha \beta \gamma = \dots$. $C) - \frac{d}{a}$ A) - $\frac{b}{a}$ B) $\frac{c}{a}$ 37) If α , β , γ and δ are the roots of a biquadratic equation $x^4 + px^3 + qx^2 + rx + s = 0$, then $\sum \alpha \beta \gamma = \dots$ C) - r B) q A) -p D) s38) If α , β , γ and δ are the roots of a biquadratic equation $ax^4+bx^3+cx^2+dx+e=0$, then $\alpha\beta\gamma\delta = \ldots$ A) $-\frac{b}{a}$ (Reg B) $\frac{c}{a}$ (Reg B) $\frac{c}{a}$ (Reg D) $\frac{d}{a}$ (Reg D) $\frac{d}{a}$ 39) If α , β , γ and δ are the roots of a biquadratic equation $x^4 + px^3 + qx^2 + rx + s = 0$, then $\sum \alpha \beta \gamma \delta = \dots$ C) - r A) -p B) q D) s 40) If α , β and γ are the roots of a cubic equation $x^3 - 5x^2 - 16x + 30 = 0$, then $\sum \alpha = \ldots$ A) 5 B) -5 C) -16 D) None of these 41) If α and β are the roots of equation $x^2 - 5x + 1 = 0$ then $\frac{1}{\alpha} + \frac{1}{\beta} = \dots$ B) -5 A) 5 **C**) -1 D) None of these 42) If α , β , γ are the roots of equation $x^3 - 9x^2 + 14x + 24 = 0$ then $\alpha + \beta + \gamma = \dots$ B) -9 A) 24 C) 9 D) None of These 43) If α , β , γ are the roots of equation $x^3 + 9x^2 + 14x + 24 = 0$,

			MIH-202. IHEONI OF EQUATION
then $\alpha + \beta + \gamma = \dots$			
A) 24	B) -9	C) 9	D) None of These
44) If α , β , γ are the root	ts of equation x^3 –	$-5x^2 - 16x + 80 =$	• 0 if sum two roots
being equal to zero t	then $\sum \alpha = \dots$		
A) 1		C) -5	
45) If α , β , γ are the root	ts of equation x^3 +	$-2x^2 + 5x - 24 =$	0 then $\sum \alpha \beta =$
A) -5	B) 5	C) -24	D) None of These
46) If α , β , γ and δ are the function of the second seco	ne roots of an equa	ation $x^4 + x^3 + x^2 + x^4$	-x + 1 = 0,
then $\sum \alpha = \dots$			
A) -1	,	C) 0	,
47) If α , β , γ and δ are the function of the second seco	ne roots of an equa	ation $x^4 + x^3 + x^2 + x^4$	+x+1=0,
then $\sum \alpha \beta = \dots$	- word fi	WARD	
	B) 1 arenarci, m		D) None of These
48) If α , β , γ and δ are the function of β and β are the function of β are the function of β and β are the function of β are the function of β and β are the function of β are the function of β and β are the function of β and β are the function of β and β are the function of \beta are the function of β are the function of β are the f			-x + 1 = 0,
then $\sum \alpha \beta \gamma = \dots$			81
A) -1			D) None of These
49) If α , β , γ and δ are the function of the second seco	- Ka	ation $x^4 + x^3 + x^2 +$	+x+1=0,
then $\sum \alpha \beta \gamma \delta = \dots$		A al	
			D) None of These
50) If α , β , γ and δ are the formula of the second secon	ne <mark>root</mark> s of an equa	ation x ⁴ – x ³ + x ² -	$-\mathbf{x}+1=0,$
then $\sum \alpha = \dots$	1 A		3
A) -1			D) None of These
51) If α , β , γ and δ are the function of the second seco	ne roots of an equa	ation $x^4 - x^3 + x^2 - x^3$	-x+1=0,
then $\sum \alpha \beta = \dots$	the Sta	10 S	
			D) None of These
52) If α , β , γ and δ are the formula of the second secon	ne roots of an equa	ation $x^4 - x^3 + x^2 - x^3 + x^3 + x^2 - x^3 + x^3 + x^2 - x^3 + x^3 + x^3 + x^2 - x^3 + x^3 $	-x + 1 = 0,
then $\sum \alpha \beta \gamma = \dots$		A-0.0-0-	
			D) None of These
53) If α , β , γ and δ are the formula of the second secon		ation $x^4 - x^3 + x^2 - x^3 + x^3 $	-x + 1 = 0,
then $\sum \alpha \beta \gamma \delta = \dots$			
			D) None of These
54) The equation $x^4 + 4$		9 = 0 has two pairs	of equal roots then
$\alpha + \alpha + \beta + \beta = \dots$			
A) -4	,	,	D) None of These
55) Solution of equation			
		C) {1, 3, 5}	D) None of These
56) Solution of equation			
		C) $\{5, 4, -4\}$	D) None of These
57) Solution of equation $(1, 2, 5)$			
A) $\{1, 3, 5\}$	в) {1, 3, -5}	C) {2, 0, 3}	D) None of These

58) Solution of equation	$n x^3 - 7x^2 + 36 =$	0 is				
A) {0, 1, -1}	B) {-2, 3, 6}	C) {1, -2, 5}	D) None of These			
59) Roots $\alpha - \beta$, α , $\alpha + \beta$	β of cubic equation	n are in progr	ession.			
A) arithmetic	B) geometric	C) harmonic	D) None of These			
60) Roots $\frac{\alpha}{\beta}$, α , $\alpha\beta$ of cubic equation are in progression.						
A) arithmetic	B) geometric	C) harmonic	D) None of These			
61) An expression in ro	ots which is remain	n same after interch	ange of roots is			
calledfunction						
A) symmetric	B) linear	C) quadratic	D) None of These			
62) If α , β , γ are the roo	-					
A) p ² +2q	B) p ² - 2q	C) 2r	D) None of These			
63) If α , β , γ are the roo	ts of equation $x^3 - $	$3x^2 + 4x - 1 = 0$), then $\sum \alpha^2 = \dots$			
A) 17	B) 1	C) -2	D) None of These			
64) If α , β , γ , δ are the r	roots of equation x ⁴	$+ px^3 + qx^2 + rx$	$\mathbf{x} + \mathbf{s} = 0,$			
then $\sum \alpha^2 = \dots$	* 3maile	ieu en.	19 A.			
A) p^2+2q	B) p ² - 2q	C) 2r	D) None of These			
65) If α , β , γ are the roo	ts of equation x^3 +	$px^2 + qx + r = 0$, then $\sum \alpha^2 \beta = \dots$.			
A) pq+3r	B) 3r-pq	C) pq-3r	D) None of These			
66) If α , β , γ are the roo	ts o <mark>f equ</mark> ation <mark>x³ –</mark>	$3x^2 + 4x - 1 = 0$), then $\sum \alpha^2 \beta = \dots$.			
A) -2	B) 1	C) 9	D) None of These			
67) If α , β , γ , δ are the r	roo <mark>ts o</mark> f equation x ⁴	$+ px^3 + qx^2 + rx$	$\mathbf{x} + \mathbf{s} = 0,$			
then $\sum \alpha^2 \beta = \dots$		1 - 1 / 1	3			
A) pq+3r	B) 3r-pq	C) pq-3r	D) None of These			
68) $\alpha + \beta$, $\alpha^2 + \beta^2$, $\frac{1}{\alpha} + \frac{1}{\beta}$, $\frac{\alpha}{\beta}$	$\frac{\beta}{\alpha} + \frac{\beta}{\alpha}$ are symmetric	functions of two r	oots α & β is			
A) True B) H	False C) May be	true or false D)	None of These			
69) α - β , α^2 - β^2 , $\frac{1}{\alpha} - \frac{1}{\beta}$, $\frac{\alpha}{\beta}$	$-\frac{\beta}{\alpha}$ are symmetric f	functions of two ro	ots α & β is			
	a Galse C) May be					
70) $\sum \alpha^2 =$		-				
A) $(\sum \alpha)^2 - 2(\sum$	$(\alpha \beta)$ B) $(\sum \alpha)^2$	$+ 2(\sum \alpha \beta)$				
C) $(\sum \alpha)^2 - \sum \alpha$	β D) None o	f These				

UNIT-4. THEORY OF EQUATIONS -II

The Transformation of Equations: I) Roots with sign changed:

Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ are roots of equation $f(x) \equiv a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n = 0$ $\therefore f(x) \equiv a_0 (x - \alpha_1) (x - \alpha_2) \ldots (x - \alpha_n) = 0$ If we replace x by -x, we get, $f(-x) \equiv a_0 (-1)^n (x + \alpha_1) (x + \alpha_2) \ldots (x + \alpha_n) \ldots (1)$ As $x + \alpha_i = 0 \Rightarrow x = -\alpha_i$ $\therefore -\alpha_1, -\alpha_2, \ldots, -\alpha_n$ are the roots of (1). But f(-x) = 0 gives $a_0 x^n - a_1 x^{n-1} + a_2 x^{n-2} - \ldots + (-1)^n a_n = 0$ which has roots $-\alpha_1, -\alpha_2, \ldots, -\alpha_n$.

Working Rule: To change the roots of given equation, replace x by -x in the given equation and use $(-x)^n = x^n$ if n is even and $(-x)^n = -x^n$ if n is odd. If highest degree term of this transformed equation is negative, then write the equation by changing signs of each terms.

Ex.: Find the equation whose roots are negatives of the roots of $5x^4 + 4x^2 - 7x + 5 = 0$. Solution: Let $5x^4 + 4x^2 - 7x + 5 = 0$ be the given equation.

Replace x by -x, we get, $5(-x)^4 + 4(-x)^2 - 7(-x) + 5 = 0$ i.e. $5x^4 + 4x^2 + 7x + 5 = 0$ be the required equation.

Ex.: Change the signs of the roots of $3x^8 + 5x^5 - 2x^2 + 4 = 0$. Solution: Let $3x^8 + 5x^5 - 2x^2 + 4 = 0$ be the given equation.

> Replace x by -x, we get, $3(-x)^{8} + 5(-x)^{5} - 2(-x)^{2} + 4 = 0$ i.e. $3x^{8} - 5x^{5} - 2x^{2} + 4 = 0$ be the required equation.

Ex.: Find the equation whose roots are equal in magnitude but opposite in signs of the roots of $x^5 + 4x^3 - 6x^2 + 4x - 7 = 0$. (Mar.2019)

Solution: Let $x^5 + 4x^3 - 6x^2 + 4x - 7 = 0$ be the given equation.

Replace x by -x, we get,

$$(-x)^{5} + 4(-x)^{3} - 6(-x)^{2} + 4(-x) - 7 = 0$$

i.e. $-x^{5} - 4x^{3} - 6x^{2} - 4x - 7 = 0$
i.e. $x^{5} + 4x^{3} + 6x^{2} + 4x + 7 = 0$ be the required equation.

II) **Reciprocal Roots:** To find the equation whose roots are reciprocals of the roots of given equation.

Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the roots of equation $f(x) \equiv a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n = 0$

 $\therefore f(x) \equiv a_0 (x - \alpha_1) (x - \alpha_2) \dots (x - \alpha_n) = 0$ If we replace x by $\frac{1}{x}$, we get, $f(\frac{1}{x}) \equiv a_0 (\frac{1}{x} - \alpha_1) (\frac{1}{x} - \alpha_2) \dots (\frac{1}{x} - \alpha_n) = 0 \dots (1)$ As $\frac{1}{x} - \alpha_i = 0 \Rightarrow x = \frac{1}{\alpha_i}$ $\therefore \frac{1}{\alpha_1}, \frac{1}{\alpha_2}, \dots, \frac{1}{\alpha_3} \text{ are the roots of } (1).$ But $f(\frac{1}{x}) \equiv a_0 (\frac{1}{x})^n + a_1 (\frac{1}{x})^{n-1} + a_2 (\frac{1}{x})^{n-2} + \dots + a_n = 0$ $\Rightarrow a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0 \text{ i.e. } a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_0 = 0$ be the required equation whose roots are $\frac{1}{\alpha_1}, \frac{1}{\alpha_2}, \dots, \frac{1}{\alpha_3}$.

Working Rule: Write the given equation in complete form and reverse the order of the coefficients.

Ex.: Transform the equation to the equation whose roots are reciprocals of the roots of $3x^2 + 7x - 13 = 0$.

Solution: The complete form of given equation is $3x^2 + 7x - 13 = 0$

By reversing the order of coefficients 3, 7, -13 as -13, 7, 3, we get,

$$-13x^2 + 7x + 3 = 0$$

i.e. $13x^2 - 7x - 3 = 0$ be the required equation whose roots are reciprocals of the roots of given equation.

Ex.: Transform the equation to the equation whose roots are reciprocals of the roots of $2x^5 - 4x^3 + 6x + 7 = 0$

Solution: The complete form of given equation is $2x^5 + 0x^4 - 4x^3 + 0x^2 + 6x + 7 = 0$ By reversing the order of coefficients 2, 0, -4, 0, 6, 7 as 7, 6, 0, -4, 0, 2, we get, $7x^5 + 6x^4 + 0x^3 - 4x^2 + 0x + 2 = 0$

i.e. $7x^5 + 6x^4 - 4x^2 + 2 = 0$ be the required equation whose roots are reciprocals of the roots of given equation.

Ex.: Find the equation whose roots are the reciprocal of the roots. $x^5 - 4x^3 + 6x^2 - 3x + 2 = 0$ (Mar.2019) Solution: The complete form of given equation is $x^5 + 0x^4 - 4x^3 + 6x^2 - 3x + 2 = 0$ By reversing the order of coefficients 1, 0, -4, 6, -3, 2 as 2, -3, 6, -4, 0, 1, we get, $2x^5 - 3x^4 + 6x^3 - 4x^2 + 0x + 1 = 0$ i.e. $2x^5 - 3x^4 + 6x^3 - 4x^2 + 0x + 1 = 0$

i.e. $2x^5 - 3x^4 + 6x^3 - 4x^2 + 1 = 0$ be the required equation whose roots are reciprocals of the roots of given equation.

III) Multiple Roots: To find the equation whose roots are m times the roots of given eqⁿ. Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the roots of the given equation $f(x) \equiv a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n = 0$ $\therefore f(x) \equiv a_0 (x - \alpha_1) (x - \alpha_2) \dots (x - \alpha_n) = 0$ If we replace x by $\frac{x}{m}$, we get, $f(\frac{x}{m}) \equiv a_0 (\frac{x}{m} - \alpha_1) (\frac{x}{m} - \alpha_2) \dots (\frac{x}{m} - \alpha_n) = 0 \dots (1)$ As $\frac{x}{m} - \alpha_i = 0 \Rightarrow x = m\alpha_i$ $\therefore m\alpha_1, m\alpha_2, \dots, m\alpha_n \text{ are the roots of (1).}$ But $f(\frac{x}{m}) \equiv a_0 (\frac{x}{m})^n + a_1 (\frac{x}{m})^{n-1} + a_2 (\frac{x}{m})^{n-2} + \dots + a_n = 0$ $\Rightarrow a_0 x^n + ma_1 x^{n-1} + m^2 a_2 x^{n-2} + \dots + m^n a_n = 0$ be the required equation whose roots are $m\alpha_1, m\alpha_2, \dots, m\alpha_n$.

Working Rule: Write the given equation in complete form and multiply each term from

 1^{st} to onwards by 1, m, m²,mⁿ respectively.

Remark: i) To make coefficient of highest degree term 1 of an equation

- $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + ... + a_n = 0$, multiply the roots by $a_{0.}$
- ii) To remove fractional coefficients from given equation, choose the least m such that after multiplying roots by m fractional coefficients removed.

Ex.: Find the equation whose roots are three times the roots of $x^3 - 7x^2 + 5x - 1 = 0$. Solution: The complete form of given equation is $x^3 - 7x^2 + 5x - 1 = 0$

By multiplying each term from 1^{st} to onwards by 1, 3, 3^2 , 3^3 respectively, we get, $1(x^3)+3(-7x^2)+3^2(5x)+3^3(-1)=0$

i.e.
$$x^3 - 21x^2 + 45x - 27 = 0$$

be the required equation whose roots are three times the roots of given equation.

Ex.: Obtain the equation whose roots are three times the roots of $3x^4 - 4x^3 + 4x^2 - 2x + 1 = 0$.

Solution: The complete form of given equation is $3x^4 - 4x^3 + 4x^2 - 2x + 1 = 0$ By multiplying each term from 1st to onwards by 1, 3, 3², 3³, 3⁴

respectively, we get,

 $1(3x^4) + 3(-4x^3) + 3^2(4x^2) + 3^3(-2x) + 3^4(1) = 0$

i.e. $3x^4 - 12x^3 + 36x^2 - 54x + 81 = 0$

i.e. $x^4 - 4x^3 + 12x^2 - 18x + 27 = 0$ be the required equation whose roots are three times the roots of given equation.

Ex.: Transform the equation $x^3 - \frac{1}{2}x^2 + \frac{2}{3}x - 1 = 0$ so that roots will become multiple of the roots of the equation and the fractional coefficient will be removed. (Mar.2019) **Solution:** Multiplying the roots of given equation by m, we get transferred equation as,

$$x^{3} + m(-\frac{1}{2}x^{2}) + m^{2}(\frac{2}{3}x) + m^{3}(-1) = 0$$

To remove the fractions we choose m = 6 as a least number,

i.e.
$$x^3 + 6(-\frac{1}{2}x^2) + 36(\frac{2}{3}x) + 216(-1) = 0$$

i.e. $x^3 - 3x^2 + 24x - 216 = 0$ be the required equation.

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER.

3

Ex.: Obtain the equation with multiples of roots of $x^3 - \frac{5}{2}x^2 - \frac{7}{18}x + \frac{1}{108} = 0$ and the fractional coefficient are removed.

Solution: Multiplying the roots of given equation by m, we get transferred equation as,

$$x^{3} + m(-\frac{5}{2}x^{2}) + m^{2}(-\frac{7}{18}x) + m^{3}(\frac{1}{108}) = 0$$

To remove the fractions, we choose m = 6 as a least number,

.e.
$$x^3 + 6(-\frac{5}{2}x^2) + 36((-\frac{7}{18}x) + 216(\frac{1}{108})) = 0$$

i.e. $x^3 - 15x^2 - 14x + 2 = 0$ be the required equation.

Ex.: Transform the equation $5x^3 - \frac{3}{2}x^2 - \frac{3}{4}x + 1 = 0$ to make the roots multiple of the roots of given equation with coefficient of $x^3 = 1$ and removing fractional coefficient.

Solution: The complete form of given equation is $5x^3 - \frac{3}{2}x^2 - \frac{3}{4}x + 1 = 0$.

$$x^{3} - \frac{3}{10}x^{2} - \frac{3}{20}x + \frac{1}{5} =$$

Multiplying the roots of this equation by m, we get transferred equation as,

$$x^{3} + m(-\frac{3}{10}x^{2}) + m^{2}(-\frac{3}{20}x) + m^{3}(\frac{1}{r}) = 0$$

To remove the fractions, we choose m = 10 as a least number,

i.e.
$$x^3 + 10(-\frac{3}{10}x^2) + 100(-\frac{3}{20}x) + 1000(\frac{1}{5}) = 0$$

i.e. $x^{3} - 3x^{2} - 15x + 200 = 0$ be the required equation.

Ex.: Remove the fractional coefficient from the equation $5x^3 + \frac{3}{2}x^2 + \frac{x}{4} - 2 = 0$ and make the coefficient of leading term 1.

Solution: The complete form of given equation is $5x^3 + \frac{3}{2}x^2 + \frac{x}{4} - 2 = 0$.

$$x^{3} + \frac{3}{10}x^{2} + \frac{1}{20}x - \frac{2}{5} = 0$$

Multiplying the roots of this equation by m, we get transferred equation as, $x^{3} + m(\frac{3}{10}x^{2}) + m^{2}(\frac{1}{20}x) + m^{3}(-\frac{2}{5}) = 0$

To remove the fractions, we choose m = 10 as a least number,

i.e.
$$x^3 + 10(\frac{3}{10}x^2) + 100(\frac{1}{20}x) + 1000(-\frac{2}{5}) = 0$$

i.e. $x^3 + 3x^2 + 5x - 400 = 0$ be the required equation.

IV) **To Diminish or Increase the Roots by h:** To obtain an equation whose roots are diminished by h that the roots of given equation.

Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the roots of the given equation

$$f(x) \equiv a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = 0$$

$$\therefore f(\mathbf{x}) \equiv \mathbf{a}_{0} (\mathbf{x} - \boldsymbol{\alpha}_{1}) (\mathbf{x} - \boldsymbol{\alpha}_{2}) \dots (\mathbf{x} - \boldsymbol{\alpha}_{n}) = \mathbf{0}$$

If we replace x by x + h, we get,

 $f(x + h) \equiv a_0 (x + h - \alpha_1) (x + h - \alpha_2) \dots (x + h - \alpha_n) = 0 \dots (1)$ As $x + h - \alpha_i = 0 \Rightarrow x = \alpha_i$ -h $\therefore \alpha_1$ -h, α_2 -h, ..., α_n -h are the roots of (1). But $f(x + h) \equiv a_0 (x + h)^n + a_1 (x + h)^{n-1} + a_2 (x + h)^{n-2} + \dots + a_n = 0$ $\Rightarrow A_0 x^n + A_1 x^{n-1} + A_2 x^{n-2} + \dots + A_n = 0$ say be the required equation whose roots are α_1 -h, α_2 -h, ..., α_n -h. Where $A_0, A_1, A_2, \dots, A_n$ are the remainders obtained by dividing (x-h) successively to the quotients by synthetic division.

Working Rule: Write the given equation in complete form and use synthetic division to find new coefficients $A_0, A_1, A_2, ..., A_n$ by dividing (x-h) successively to the quotients. $A_0x^n + A_1x^{n-1} + A_2x^{n-2} + ... + A_n = 0$ be the required equation whose roots are diminished by h.

- **Ex.:** Find the equation whose roots are the roots of $8x^3 4x^2 + 6x 1 = 0$ each diminished by 2.
- **Solution:** The complete form of given equation is $8x^3 4x^2 + 6x 1 = 0$.

Using synthetic division to divide f(x) and successive quotients by (x-2) as

The required equation whose roots are diminished by 2 that the roots of given equation is

$$A_0x^3 + A_1x^2 + A_2x + A_3 = 0$$

i.e. $8x^3 + 44x^2 + 86x + 59 =$

Ex.: Find the equation whose roots are the roots of $3x^3 - 2x^2 + x - 9 = 0$ each diminished by 3.

0

Solution: The complete form of given equation is $3x^3 - 2x^2 + x - 9 = 0$

Using synthetic division to divide f(x) and successive quotients by (x-3) as

The required equation whose roots are diminished by 3 that the roots of given equation is

 $A_0x^3 + A_1x^2 + A_2x + A_3 = 0$ i.e. $3x^3 + 25x^2 + 70x + 57 = 0$

Ex.: Find the equation whose roots are the roots of $x^5 + 4x^3 - x^2 + 11 = 0$ each diminished by 3.

Solution: The complete form of given equation is $x^5 + 0x^4 + 4x^3 - x^2 + 0x + 11 = 0$

Using synthetic division to divide f(x) and successive quotients by (x-3) as

3	1	0	4	-1	0	11	
		3	9	39	114	342	
	1	3	13	38	114	353 =	= A ₅
		3	18	93	393		in the second
	1	6	31	131	507 =	= A4	The street of the street
		3	27	174			A low
	1	9	58	305 =	$= A_3$	T	याचेत्र 🔊
		3	36	1	20 3		mea en al
	1	12	94 =	\overline{A}_2			9/20
		3	\mathbb{E} /				
	1	15 =	$= A_1$	S.		1	
				S /		11	0
_	1.1				1		

 $|1 = A_0$

The required equation whose roots are diminished by 3 that the roots of given equation is $A_0x^5 + A_1x^4 + A_2x^3 + A_3x^2 + A_4x + A_5 = 0$ i.e. $x^5 + 15x^4 + 94x^3 + 305x^2 + 507x + 353 = 0$.

Ex.: Find the equation whose roots are the roots of $x^4 - x^3 - 10x^2 + 4x + 24 = 0$ increased by 2.

Solution: The complete form of given equation is $x^4 - x^3 - 10x^2 + 4x + 24 = 0$.

Using synthetic division to divide f(x) and successive quotients by (x+2) as

	-2 1	-1	-10	4	24		0.0	1					
	_	-2	6	6 8	-24	ाधव्य	ासाध्द	Id	न्दात	सान	C :[]		
	1	-3	-4	12	0 = A	Λ_4						1	
		-2	10	-12				-	-				
	1	-5	6	0 = A	A ₃								
Ŀ		-2	14										
-	1	-7	20 =	A_2									_
		-2											
	1	-9 =	$= A_1$										
	1 =	$= A_0$											

The required equation whose roots are increased by 2 that the roots of given equation is

$$A_{o}x^{4} + A_{1}x^{3} + A_{2}x^{2} + A_{3}x + A_{4} = 0$$

i.e. $x^{4} - 9x^{3} + 20x^{2} + 0x + 0 = 0$
i.e. $x^{4} - 9x^{3} + 20x^{2} = 0$.

Remark: To remove the second term from the equation $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + ... + a_n = 0$ diminish the roots by $h = -\frac{a_1}{na_0}$.

Ex.: Remove the second term from the equation $x^4 + 8x^3 + x - 5 = 0$ Solution: The complete form of given equation is $x^4 + 8x^3 + 0x^2 + x - 5 = 0$.

To remove the second term from the given equation, diminish the roots by

$$h = -\frac{a_1}{na_0} = -\frac{8}{4(1)} = -2$$

Using synthetic division to divide f(x) and successive quotients by (x+2) as

Ex.: Remove the second term from the equation $x^4 - 12x^3 + 14x - 5 = 0$ Solution: The complete form of given equation is $x^4 - 12x^3 + 0x^2 + 14x - 5 = 0$.

To remove the second term from the given equation diminish the roots by

$$h = -\frac{a_1}{na_0} = -\frac{-12}{4(1)} = 3$$

Using synthetic division to divide f(x) and successive quotients by (x-3) as

3 1	-12 0	14	-5			~		
	3 -27	-81 -2	<u>201 R. R.</u>	रियोध्द	विन्द	त या	नदः।।	
1	-9 -27	-67 -2	$206 = A_4$					_
	3 -18	-135						
1	-6 -45	-202 = 1	A_3					
	3 -9							
1	-3 -54 =	$= A_2$						
	3							
1	$0 = A_1$							
1 =	A_0							
The rec	quired equa	ation who	se second	term is r	emove	ed is		
	$A_1x^3 + A_2$							
i.e. x ⁴ -	$+0x^{3}-54x$	2 - 202x - 2	206 = 0					
i.e. x^4 -	$-54x^2 - 202$	2x - 206 =	0.					

Ex.: Solve the equation $x^3 - 12x^2 + 48x - 72 = 0$ by removing the second term. Solution: The complete form of given equation is $x^3 - 12x^2 + 48x - 72 = 0$.

To remove the second term from the given equation diminish the roots by

 $h = -\frac{a_1}{na_0} = -\frac{-12}{3(1)} = 4$ Using synthetic division to divide f(x) and successive quotients by (x-4) as 4 | 1 -12 48 -72 4 -32 64 $-8 = A_3$ -8 16 | 1 -16 $0 = A_2$ -4 |1 $| 1 0 = A_1$ $|1 = A_0$ The required equation whose second term is removed is $A_{0}x^{3} + A_{1}x^{2} + A_{2}x + A_{3} = 0$ i.e. $x^3 + 0x^2 + 0x - 8 = 0$ i.e. $x^3 - 8 = 0$. \therefore (x-2) (x² + 2x + 4) = 0 $\therefore x = 2, x = \frac{-2 \pm \sqrt{4-16}}{2} = -1 \pm \sqrt{3} i$ be the roots of transferred equation which are less than 4 than the roots of given equation. \therefore The roots of given equation are 2+4, -1+ $\sqrt{3}$ i + 4 and -1- $\sqrt{3}$ i + 4 i.e. 6, $3 + \sqrt{3}$ i and $3 - \sqrt{3}$ i are the roots of given equation.

Ex.: Solve the equation $x^3 + 6x^2 + 12x - 19 = 0$ by removing the second term. Solution: The complete form of given equation is $x^3 + 6x^2 + 12x - 19 = 0$.

To remove the second term from the given equation diminish the roots by

 $h = -\frac{a_1}{na_0} = -\frac{6}{3(1)} = -2$ Using synthetic division to divide f(x) and successive quotients by (x+2) as -2 | 1 6 12 -19 $\frac{-2}{4}$ $\frac{-8}{4}$ $\frac{-8}{-27} = A_3$ $\frac{-2}{2}$ $\frac{-4}{0} = A_2$ | 1 -2 $0 = A_1$ |1 $|1 = A_0$ The required equation whose second term is removed is $A_{0}x^{3} + A_{1}x^{2} + A_{2}x + A_{3} = 0$ i.e. $x^3 + 0x^2 + 0x - 27 = 0$

i.e. $x^3 - 27 = 0$.

$$\therefore (x-3) (x^2 + 3x + 9) = 0$$

 $\therefore x = 3, x = \frac{-3 \pm \sqrt{9} - 36}{2} = -\frac{3}{2} \pm \frac{3\sqrt{3}}{2}i$

be the roots of transferred equation which are greater than 2 than the roots of given equation.

: The roots of given equation are 3-2, $-\frac{3}{2} + \frac{3\sqrt{3}}{2}i - 2$ and $-\frac{3}{2} - \frac{3\sqrt{3}}{2}i - 2$

i.e. $1, -\frac{7}{2} + \frac{3\sqrt{3}}{2}$ i and $-\frac{7}{2} - \frac{3\sqrt{3}}{2}$ i are the roots of given equation.

Ex.: Solve the equation $x^4 + 16x^3 + 83x^2 + 152x + 84 = 0$ by removing the second term. Solution: The complete form of given equation is $x^4 + 16x^3 + 83x^2 + 152x + 84 = 0$.

To remove the second term from the given equation diminish the roots by

 $h = -\frac{a_1}{na_0} = -\frac{16}{4(1)} = -4$ Using synthetic division to divide f(x) and successive quotients by (x+4) as -4 | 1 16 83 152 84 -4 -48 -140 $1 12 35 12 36 = A_4$ -4 -16| 1 4 -13 = A₂ $\begin{array}{c|c} -4 \\ \hline 1 & 0 = A_1 \end{array}$ $|1 = A_0$ The required equation whose second term is removed is $A_0 x^4 + A_1 x^3 + A_2 x^2 + A_3 x + A_4 = 0$ i.e. $x^4 + 0x^3 - 13x^2 + 0x + 36 = 0$ i.e. $x^4 - 13x^2 + 36 = 0$. 1.e. x - 15x + 50 = 0. $\therefore (x^2 - 4) (x^2 - 9) = 0$ $\therefore x = 2, -2, 3, -3$ are the roots of transferred equation which are greater than 4 than the roots of given equation.

: The roots of given equation are 2-4, -2 - 4, 3 - 4 and -3 - 4

i.e. -2, -6, -1 and -7 are the roots of given equation.

Ex.: Solve the equation $x^4 + 20x^3 + 143x^2 + 430x + 462 = 0$ by removing the second term. Solution: The complete form of given equation is $x^4 + 20x^3 + 143x^2 + 430x + 462 = 0$.

To remove the second term from the given equation diminish the roots by

$$h = -\frac{a_1}{na_0} = -\frac{20}{4(1)} = -5$$

Using synthetic division to divide f(x) and successive quotients by (x+5) as

143 430 462 20 -5 | 1 -75 -340 -450 -5 $12 = A_4$ 15 68 90 1 -5 -50 -90 $0 = A_3$ 18 10 1 $\frac{-25}{-7 = A_2}$ 5 1 $0 = A_1$ 1 $| 1 = A_0$ The required equation whose second term is removed is $A_0 x^4 + A_1 x^3 + A_2 x^2 + A_3 x + A_4 = 0$ i.e. $x^4 + 0x^3 - 7x^2 + 0x + 12 = 0$ i.e. $x^4 - 7x^2 + 12 = 0$. \therefore (x² - 4) (x² - 3) = 0 $\therefore x = 2, -2, \sqrt{3}, -\sqrt{3}$ be the roots of transferred equation which are greater than 5 than the roots of given equation. \therefore The roots of given equation are 2-5, -2 - 5, $\sqrt{3} - 5$ and $-\sqrt{3} - 5$ i.e. -3, -7, $\sqrt{3}$ - 5 and $-\sqrt{3}$ - 5 are the roots of given equation. **Cardon's Method of Solving Cubic Equations:** Let $a_0x^3 + a_1x^2 + a_2x + a_3 = 0$ (1) be the given cubic equation. First remove the second term by diminishing the roots by $h = -\frac{a_1}{3a_2}$ and then

multiply the roots by a_0 , we get transformed equation of type say

 $z^3 + 3Hz + G = 0$ (2)

By Carden's method assume $z = m^{1/3} + n^{1/3}$ be the root of (2).

$$\therefore z^{3} = m + n + 3m^{1/3}n^{1/3}(m^{1/3} + n^{1/3})$$

 $\therefore z^3 = m + n + 3(mn)^{1/3}z^{1/3}z^{1/3}$ GURNITE REFERENCE REFERENCE

$$\therefore z^{3} - 3(mn)^{1/3}z - (m+n) = 0 \dots (3)$$

Equation (2) and (3) are identical.

:
$$H = -(mn)^{1/3}$$
 and $G = -(m+n)$

 \therefore mn = - H³ and m + n = - G

Solving these we get values of m and n, from which we can find $m^{1/3}$ and $n^{1/3}$. Using these values, $z_1 = m^{1/3} + n^{1/3}$, $z_2 = m^{1/3}\omega + n^{1/3}\omega^2$ and $z_2 = m^{1/3}\omega^2 + n^{1/3}\omega$ gives the roots of (2).

Where $\omega = \frac{-1+i\sqrt{3}}{2}$ and $\omega^2 = \frac{-1-i\sqrt{3}}{2}$ are the cube root of unity. \therefore The roots of given equation are $x_1 = \frac{z_1}{a_0} + h$, $x_2 = \frac{z_2}{a_0} + h$ and $x_3 = \frac{z_3}{a_0} + h$. **Ex.:** Solve the equation $x^3 + 6x^2 + 9x + 4 = 0$ using Carden's Method. Solution: Let $x^3 + 6x^2 + 9x + 4 = 0$ (1) be the given equation.

First we remove the second term from given equation by diminishing the roots by

$$h = -\frac{a_1}{na_0} = -\frac{a_1}{3(1)} = -2$$
Using synthetic division to divide f(x) and successive quotients by (x+2) as
$$-2 | 1 \quad 6 \quad 9 \quad 4$$

$$\frac{1 \quad -2 \quad -8 \quad -2}{11 \quad 4 \quad 1 \quad 2} = A_3$$

$$\frac{1 \quad -2 \quad -4}{11 \quad 2 \quad -3} = A_2$$

$$\frac{1 \quad -2}{11 \quad 0} = A_1$$

$$\frac{1 \quad$$

Ex.: Solve the equation $x^3 - 3x^2 + 12x + 16 = 0$ using Carden's Method. Solution: Let $x^3 - 3x^2 + 12x + 16 = 0$ (1) be the given equation.

First we remove the second term from given equation by diminishing the roots by $h = -\frac{a_1}{na_0} = -\frac{-3}{3(1)} = 1$ Using synthetic division to divide f(x) and successive quotients by (x-1) as $1 \mid 1 \quad -3 \quad 12 \quad 16$ $\mid 1 \quad -2 \quad 10$

11

Ex.: Solve the equation $x^3 - 15x - 126 = 0$ using Carden's Method. Solution: Let $x^3 - 15x - 126 = 0$ (1) be the given equation with second term absent. By Carden's method assume $z = m^{1/3} + n^{1/3}$ be the root of (2)

By Carden's method assume
$$z = m^{-} + n^{-}$$
 be the root of (2).
 $\therefore z^{3} = m + n + 3m^{1/3}n^{1/3}(m^{1/3} + n^{1/3})$
 $\therefore z^{3} = m + n + 3(mn)^{1/3}z$
 $\therefore z^{3} - 3(mn)^{1/3}z - (m + n) = 0$ (3)
Equation (2) and (3) are identical.
 $\therefore - 3(mn)^{1/3} = -15$ and $-(m + n) = -126$
 $\therefore (mn)^{1/3} = 5$ and $(m + n) = 126$
 $\therefore mn = 125$ and $m + n = 126$
 $\therefore m = 125$ and $n = 1$

 \therefore m^{1/3} = 5 and n^{1/3} = 1 By using cube roots of unity $\omega = \frac{-1+i\sqrt{3}}{2}$ and $\omega^2 = \frac{-1-i\sqrt{3}}{2}$, the roots are $z_1 = m^{1/3} + n^{1/3} = 5 + 1 = 6$, $z_2 = m^{1/3}\omega + n^{1/3}\omega^2 = 5(\frac{-1+i\sqrt{3}}{2}) + (\frac{-1-i\sqrt{3}}{2}) = -3 + 2i\sqrt{3}$ and $z_2 = m^{1/3}\omega^2 + n^{1/3}\omega = = 5(\frac{-1-i\sqrt{3}}{2}) + (\frac{-1+i\sqrt{3}}{2}) = -3-2i\sqrt{3}$ i.e. 6, $-3+2i\sqrt{3}$, $-3-2i\sqrt{3}$ are the roots of given equation. **Ex.:** Solve the equation $x^3 - 18x - 35 = 0$ using Carden's Method. **Solution:** Let $x^3 - 18x - 35 = 0$ (1) be the given equation with second term absent. By Carden's method assume $z = m^{1/3} + n^{1/3}$ be the root of (2). $\therefore z^3 = m + n + 3m^{1/3}n^{1/3}(m^{1/3} + n^{1/3})$ $\therefore z^3 = m + n + 3(mn)^{1/3}z$ $\therefore z^3 - 3(mn)^{1/3}z - (m+n) = 0$ (3) Equation (2) and (3) are identical. \therefore - 3(mn)^{1/3} = -18 and - (m + n) = -35 $(mn)^{1/3} = 6$ and (m + n) = 35 \therefore mn = 216 and m + n = 35 \therefore m = 27 and n = 8 \therefore m^{1/3} = 3 and n^{1/3} = 2 By using cube roots of unity $\omega = \frac{-1+i\sqrt{3}}{2}$ and $\omega^2 = \frac{-1-i\sqrt{3}}{2}$, the roots are $z_1 = m^{1/3} + n^{1/3} = 3 + 2 = 5$ $z_2 = m^{1/3}\omega + n^{1/3}\omega^2 = 3(\frac{-1+i\sqrt{3}}{2}) + 2(\frac{-1-i\sqrt{3}}{2}) = \frac{-5+i\sqrt{3}}{2}$ and $z_2 = m^{1/3}\omega^2 + n^{1/3}\omega = = 3(\frac{-1-i\sqrt{3}}{2}) + 2(\frac{-1+i\sqrt{3}}{2}) = \frac{-5-i\sqrt{3}}{2}$ i.e. 5, $\frac{-5+i\sqrt{3}}{2}$ and $\frac{-5-i\sqrt{3}}{2}$ are the roots of given equation. **Ex.:** Solve the equation $x^3 - 12x - 65 = 0$ using Carden's Method.

Solution: Let $x^3 - 12x - 65 = 0$ (1) be the given equation with second term absent. By Carden's method assume $z = m^{1/3} + n^{1/3}$ be the root of (2). $\therefore z^3 = m + n + 3m^{1/3}n^{1/3}(m^{1/3} + n^{1/3})$ $\therefore z^3 = m + n + 3(mn)^{1/3}z$ $\therefore z^3 - 3(mn)^{1/3}z - (m + n) = 0$ (3) Equation (2) and (3) are identical. $\therefore - 3(mn)^{1/3} = -12$ and -(m + n) = -65 $\therefore (mn)^{1/3} = 4$ and (m + n) = 65 $\therefore mn = 64$ and m + n = 65 $\therefore m = 64$ and m + n = 1

$$\therefore$$
 m^{1/3} = 4 and n^{1/3} = 1

By using cube roots of unity $\omega = \frac{-1+i\sqrt{3}}{2}$ and $\omega^2 = \frac{-1-i\sqrt{3}}{2}$, the roots are $z_1 = m^{1/3} + n^{1/3} = 4 + 1 = 5$, $z_2 = m^{1/3}\omega + n^{1/3}\omega^2 = 4(\frac{-1+i\sqrt{3}}{2}) + (\frac{-1-i\sqrt{3}}{2}) = \frac{-5+3i\sqrt{3}}{2}$ and $z_2 = m^{1/3}\omega^2 + n^{1/3}\omega = = 4(\frac{-1-i\sqrt{3}}{2}) + (\frac{-1+i\sqrt{3}}{2}) = \frac{-5-3i\sqrt{3}}{2}$ i.e. 5, $\frac{-5+3i\sqrt{3}}{2}$ and $\frac{-5-3i\sqrt{3}}{2}$ are the roots of given equation. **Descarte's Rule of Signs:** 1) Descarte's Rule of Signs for Positive Roots of f(x) = 0: If in a given equation f(x) = 0, number of sign changes from + to - and from - to +starting from first term is k, then an equation f(x) = 0 has at most k positive roots. i.e. number of positive roots of an equation f(x) = 0 is $\leq k$. 2) Descarte's Rule of Signs for Negative Roots of f(x) = 0: If in a equation f(-x) = 0, number of sign changes from + to - and from - to +starting from first term is r, then an equation f(x) = 0 has at most r negative roots. i.e. number of negative roots of an equation f(x) = 0 is $\leq r$. e. g. i) The equation $f(x) \equiv x^3 - 6x^2 + 11x - 6 = 0$ has number of positive roots ≤ 3 . : Number of sign changes from + to - and from - to + = 3. The equation $f(x) \equiv x^3 - 6x^2 + 11x - 6 = 0$ has have no negative roots. \therefore f(-x) $\equiv -x^3 - 6x^2 - 11x - 6 = 0$ has no sign changes from + to - and from - to +. ii) The equation $f(x) \equiv x^4 - 9x^2 + 4 = 0$ has number of positive roots ≤ 2 \therefore Number of sign changes from + to – and from – to + = 2. The equation $f(x) \equiv x^4 - 9x^2 + 4 = 0$ has number of negative roots ≤ 2 . \therefore f(-x) \equiv x⁴ - 9x² + 4 = 0 has 2 sign changes from + to - and from - to +. iii) The equation $f(x) \equiv x^4 + 16x^3 + 83x^2 + 152x + 84 = 0$ has no positive roots. : Number of sign changes from + to - and from - to + = 0. The equation $f(x) \equiv x^4 + 16x^3 + 83x^2 + 152x + 84 = 0$ has number of negative roots < 4: $f(-x) \equiv x^4 - 16x^3 + 83x^2 - 152x + 84 = 0$ has 4 sign changes from + to – and from - to +. iv) The equation $f(x) \equiv x^3 - 12x^2 + 48x - 72 = 0$ has number of positive roots ≤ 3 . : Number of sign changes from + to - and from - to + = 3. The equation $f(x) \equiv x^3 - 6x^2 + 11x - 6 = 0$ has have no negative roots. \therefore f(-x) \equiv -x³ - 12x² - 48x - 72 = 0 has no sign changes from + to - and from - to +.

Descarte's Method of Solving Biquadratic Equations:

Let $x^4 + a_2x^2 + a_3x + a_4 = 0$ be the given biquadratic equation in which $a_0 = 1$ and second term is absent, then assume

$$x^{4} + a_{2}x^{2} + a_{3}x + a_{4} = (x^{2} - \lambda x + \mu) (x^{2} + \lambda x + \mu') \dots (2)$$

Equating the coefficients x^2 , x and constant terms, we get,

$$\mu + \mu' \cdot \lambda^2 = a_2 ; \lambda(\mu - \mu') = a_3 \text{ and } \mu\mu' = a_4 \dots (3)$$

To eliminate μ and μ' from (3) consider
 $(\mu + \mu')^2 = (\mu - \mu')^2 + 4 \mu\mu' \text{ i.e. } (\lambda^2 + a_2)^2 = (\frac{a_3}{\lambda})^2 + 4a_4$
which is equation in λ , by inspection find one of the root of it.
Using this root λ , we find μ and μ' . Put these values of μ , μ' and λ in (2),
we get $x^2 - \lambda x + \mu = 0$ and $x^2 + \lambda x + \mu' = 0$.
Solving we get solution of (2).
Ex.: Solve the equation $x^4 - 5x^2 - 6x - 5 = 0$ by using Descarte's Method.
Solution: Let $x^4 - 5x^2 - 6x - 5 = 0 \dots (1)$
be the given biquadratic equation in which $a_0 = 1$ and second term absent.
 \therefore By Descarte's method assume
 $x^4 - 5x^2 - 6x - 5 = (x^2 - \lambda x + \mu)(x^2 + \lambda x + \mu') = 0 \dots (2)$
Equating the coefficients x^2 , x and constant terms, we get,
 $\mu + \mu', \lambda^2 = -5; \lambda(\mu - \mu') = -6$ and $\mu\mu' = -5 \dots (3)$
To eliminate μ and μ' from (3) consider
 $(\mu + \mu')^2 = (\mu - \mu')^2 + 4\mu\mu'$
 $\therefore (\lambda^2 - 5)^2 = (\frac{-6}{\lambda})^2 + 4(-5)$
 $\therefore \lambda^4 - 10 \lambda^4 + 25\lambda^2 = 36 - 20\lambda^2$
 $\therefore \lambda^6 - 10 \lambda^4 + 45\lambda^2 - 36 = 0 \dots (4)$
Here sum of all coefficients $0 \Rightarrow \lambda = 1$ is one of root of (4).
Putting $\lambda = 1$ in (3), we get,
 $\mu + \mu' = -4$ and $\mu - \mu' = -6$
Adding we get, $2\mu = -10 \Rightarrow \mu = -5 \Rightarrow -5 + \mu' = -4 \Rightarrow \mu' = 1$
find μ and μ' Putting these values of μ, μ' and λ in (2)
 $x^4 - 5x^2 - 6x - 5 = (x^2 - x - 5) (x^2 + x + 1) = 0$
 $\therefore x^2 - x - 5 = 0$ or $x^2 + x + 1 = 0$
 $\therefore x^2 - x - 5 = 0$ or $x^2 + x + 1 = 0$
 $\therefore x = \frac{1\pm\sqrt{1+20}}{2}$ or $x = -\frac{1\pm\sqrt{1-4}}{2}$
be the required roots of given equation.

Ex.: Solve the equation $x^4 - 8x^2 - 24x + 7 = 0$ by using Descarte's Method. Solution: Let $x^4 - 8x^2 - 24x + 7 = 0$ (1)

be the given biquadratic equation in which $a_0 = 1$ and second term absent. \therefore By Descarte's method assume $x^4 - 8x^2 - 24x + 7 = (x^2 - \lambda x + \mu) (x^2 + \lambda x + \mu') = 0$ (2) Equating the coefficients x^2 , x and constant terms, we get, $\mu + \mu' - \lambda^2 = -8$; $\lambda(\mu - \mu') = -24$ and $\mu\mu' = 7$ (3)

To eliminate
$$\mu$$
 and μ' from (3) consider
 $(\mu + \mu')^2 = (\mu - \mu')^2 + 4 \mu\mu'$
 $\therefore (\lambda^2 - 8)^2 = (\frac{-24}{\lambda})^2 + 4(7)$
 $\therefore \lambda^4 - 16 \lambda^2 + 64 = \frac{576}{\lambda^2} + 28$
 $\therefore \lambda^6 - 16 \lambda^4 + 64\lambda^2 = 576 + 28\lambda^2$
 $\therefore \lambda^6 - 16 \lambda^4 + 36\lambda^2 - 576 = 0 \dots (4)$
By inspection $\lambda = 4$ is one of root of (4).
Putting $\lambda = 4$ in (3), we get,
 $\mu + \mu' = 8$ and $\mu - \mu' = -6$
Adding we get, $2\mu = 2 \Rightarrow \mu = 1 \Rightarrow 1 + \mu' = 8 \Rightarrow \mu' = 7$
find μ and μ' . Putting these values of μ, μ' and λ in (2)
 $x^4 - 8x^2 - 24x + 7 = (x^2 - 4x + 1)(x^2 + 4x + 7) = 0$
 $\therefore x^2 - 4x + 1 = 0$ or $x^2 + 4x + 7 = 0$
 $\therefore x = \frac{4\pm\sqrt{16-4}}{2}$ or $x = \frac{-4\pm2i\sqrt{3}}{2}$
 $\therefore x = \frac{4\pm2\sqrt{3}}{2}$ or $x = -2\pm i\sqrt{3}$ be the required roots of given equation.

Ex.: Solve $x^4 - 3x^2 - 6x - 2 = 0$ by Descarte's Method. Solution: Let $x^4 - 3x^2 - 6x - 2 = 0$ (1)

> be the given biquadratic equation in which $a_0 = 1$ and second term absent. \therefore By Descarte's method assume $x^4 - 3x^2 - 6x - 2 = (x^2 - \lambda x + \mu) (x^2 + \lambda x + \mu') = 0$ (2) Equating the coefficients x^2 , x and constant terms, we get, $\mu + \mu' - \lambda^2 = -3$; $\lambda(\mu - \mu') = -6$ and $\mu\mu' = -2$ (3) To eliminate μ and μ' from (3) consider $(\mu + \mu')^2 = (\mu - \mu')^2 + 4 \mu\mu'$ $\therefore (\lambda^2 - 3)^2 = (\frac{-6}{\lambda})^2 + 4(-2)$ and μ and μ' for a finite μ and μ' $\therefore \lambda^4 - 6\lambda^2 + 9 = \frac{36}{\lambda^2} - 8$ $\therefore \lambda^6 - 6\lambda^4 + 9\lambda^2 = 36 - 8\lambda^2$ $\therefore \lambda^6 - 6\lambda^4 + 17\lambda^2 - 36 = 0$ (4) By inspection $\lambda = 2$ is one of root of (4). Putting $\lambda = 2$ in (3), we get, $\mu + \mu' = 1$ and $\mu - \mu' = -3$ Adding we get, $2\mu = -2 \Rightarrow \mu = -1 \Rightarrow -1 + \mu' = 1 \Rightarrow \mu' = 2$

find μ and μ' . Putting these values of μ , μ' and λ in (2) $x^4 - 3x^2 - 6x - 2 = (x^2 - 2x - 1)(x^2 + 2x + 2) = 0$

 $\therefore x^2 - 2x - 1 = 0 \text{ or } x^2 + 2x + 2 = 0$

	MIH-202. IHEORI OF EQUATION
: $x = \frac{2 \pm \sqrt{4+4}}{2}$ or $x = \frac{-2 \pm \sqrt{4-8}}{2}$	
: $x = \frac{2 \pm 2\sqrt{2}}{2}$ or $x = \frac{-2 \pm 2i}{2}$	
$\therefore x = 1 \pm \sqrt{2} \text{ or } x = -1 \pm i \text{ be the } i$	required roots of given equation.
MULTIPLE CHOIC	Æ QUESTIONS [MCQ'S]
1) If $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the roots of equat	
roots, of equation	
· · · · · · · · · · · · · · · · · · ·	C) $f(-x) = 0$ D) None of these
	of the roots of $5x^4 + 4x^2 - 7x + 5 = 0$ is
A) $-5x^4 - 4x^2 + 7x - 5 = 0$	
1 2	D) None of these
3) By changing the signs of the roots of eq	
the required equation is	
	B) $3x^8 + 5x^5 - 2x^2 - 4 = 0$
	D) None of these
4) The equation whose roots are negatives	
is	
A) $x^6 - 5x^3 + 7x^2 - 4x - 8 = 0$	B) $x^6 - 5x^3 - 7x^2 - 4x - 8 = 0$
C) $x^{6} + 5x^{3} + 7x^{2} + 4x + 8 = 0$	
	nagnitude but opposite in signs of the roots of
$x^{5} + 4x^{3} - 6x^{2} + 4x - 7 = 0$ is	hagintude but opposite in signs of the roots of
A) $x^5 + 4x^3 + 6x^2 + 4x - 7 = 0$	B) $x^5 - 4x^3 - 6x^2 - 4x - 7 = 0$
C) $x^5 + 4x^3 + 6x^2 + 4x + 7 = 0$	
	ion $a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = 0$, then the
equation whose roots are reciprocals of	
	0 B) $x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n = 0$
C) $a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1} + a_n$	
7) The equation whose roots are reciproca	
, a	B) $13x^2 - 7x - 3 = 0$
	D) None of these
	$\frac{1}{10000000000000000000000000000000000$
A) $8x^3 + 5x^2 - 7x + 1 = 0$ C) $8x^3 - 7x^2 + 5x + 1 = 0$	
	D) None of these ls of the roots of $3x^4 + 4x^3 - 7x^2 + 5x - 1 = 0$
is	$\frac{15}{10} \text{ of the foots of } 5x + 4x + 7x + 5x + -0$
A) $x^4 - 5x^3 + 7x^2 - 4x - 3 = 0$	B) $x^4 + 5x^3 + 7x^2 + 4x + 3 = 0$
C) $3x^4 - 4x^3 - 7x^2 - 5x - 1 = 0$	D) None of these
10) The equation whose roots are reciproc	tals of the roots of $2x^5 - 4x^3 + 6x + 7 = 0$ is
A) $7x^5 + 6x^4 - 4x^2 + 2 = 0$	B) $7x^5 + 6x^4 - 4x^2 + x + 2 = 0$
C) $7x^5 + 6x^4 + 4x^2 + 2 = 0$	D) None of these

11) If $\alpha_1, \alpha_2, \dots, \alpha_n$ are the roots of equation $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_n = 0$, then the equation whose roots are m times the roots of given equation is A) $a_0x^n + ma_1x^{n-1} + m^2a_2x^{n-2} + \dots + m^na_n = 0$ B) $x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_n = 0$ C) $a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1} + a_nx^n = 0$ D) None of these 12) If we multiply the roots of equation $x^3 - 3x^2 - 6x + 8 = 0$ by 2, then the transformed equation will be A) $x^3 - 6x^2 - 12x + 16 = 0$ B) $2x^3 - 6x^2 - 12x + 16 = 0$ C) $x^3 - 6x^2 - 24x + 64 = 0$ D) $2x^3 - 6x^2 - 24x + 64 = 0$ 13) The equation whose roots are three times the roots of $x^3 - 7x^2 + 5x - 1 = 0$ is A) $x^3 - 21x^2 + 45x - 27 = 0$ B) $3x^3 - 21x^2 + 15x - 3 = 0$ C) $x^3 - 21x^2 + 45x + 27 = 0$ D) None of these 14) The equation whose roots are three times the roots of $3x^4 - 4x^3 + 4x^2 - 2x + 1 = 0$ is A) $9x^4 - 12x^3 + 12x^2 - 6x + 3 = 0$ B) $x^4 - 4x^3 + 12x^2 - 18x + 27 = 0$
C) $a_0+a_1x + a_2x^2 + + a_{n-1}x^{n-1} + a_nx^n = 0$ D) None of these 12) If we multiply the roots of equation $x^3 - 3x^2 - 6x + 8 = 0$ by 2, then the transformed equation will be A) $x^3 - 6x^2 - 12x + 16 = 0$ B) $2x^3 - 6x^2 - 12x + 16 = 0$ C) $x^3 - 6x^2 - 24x + 64 = 0$ D) $2x^3 - 6x^2 - 24x + 64 = 0$ 13) The equation whose roots are three times the roots of $x^3 - 7x^2 + 5x - 1 = 0$ is A) $x^3 - 21x^2 + 45x - 27 = 0$ B) $3x^3 - 21x^2 + 15x - 3 = 0$ C) $x^3 - 21x^2 + 45x + 27 = 0$ D) None of these 14) The equation whose roots are three times the roots of $3x^4 - 4x^3 + 4x^2 - 2x + 1 = 0$ is
 12) If we multiply the roots of equation x³ - 3x² - 6x + 8 = 0 by 2, then the transformed equation will be A) x³ - 6x² - 12x + 16 = 0 B) 2x³ - 6x² - 12x + 16 = 0 C) x³ - 6x² - 24x + 64 = 0 D) 2x³ - 6x² - 24x + 64 = 0 13) The equation whose roots are three times the roots of x³ - 7x² + 5x - 1 = 0 is A) x³ - 21x² + 45x - 27 = 0 B) 3x³ - 21x² + 15x - 3 = 0 C) x³ - 21x² + 45x + 27 = 0 D) None of these 14) The equation whose roots are three times the roots of 3x⁴ - 4x³ + 4x² - 2x + 1 = 0 is
equation will be A) $x^3 - 6x^2 - 12x + 16 = 0$ B) $2x^3 - 6x^2 - 12x + 16 = 0$ C) $x^3 - 6x^2 - 24x + 64 = 0$ D) $2x^3 - 6x^2 - 24x + 64 = 0$ 13) The equation whose roots are three times the roots of $x^3 - 7x^2 + 5x - 1 = 0$ is A) $x^3 - 21x^2 + 45x - 27 = 0$ B) $3x^3 - 21x^2 + 15x - 3 = 0$ C) $x^3 - 21x^2 + 45x + 27 = 0$ D) None of these 14) The equation whose roots are three times the roots of $3x^4 - 4x^3 + 4x^2 - 2x + 1 = 0$ is
A) $x^{3} - 6x^{2} - 12x + 16 = 0$ C) $x^{3} - 6x^{2} - 24x + 64 = 0$ B) $2x^{3} - 6x^{2} - 12x + 16 = 0$ D) $2x^{3} - 6x^{2} - 24x + 64 = 0$ B) $2x^{3} - 6x^{2} - 24x + 64 = 0$ 13) The equation whose roots are three times the roots of $x^{3} - 7x^{2} + 5x - 1 = 0$ is A) $x^{3} - 21x^{2} + 45x - 27 = 0$ B) $3x^{3} - 21x^{2} + 15x - 3 = 0$ C) $x^{3} - 21x^{2} + 45x + 27 = 0$ D) None of these 14) The equation whose roots are three times the roots of $3x^{4} - 4x^{3} + 4x^{2} - 2x + 1 = 0$ is
C) $x^{3} - 6x^{2} - 24x + 64 = 0$ 13) The equation whose roots are three times the roots of $x^{3} - 7x^{2} + 5x - 1 = 0$ is A) $x^{3} - 21x^{2} + 45x - 27 = 0$ B) $3x^{3} - 21x^{2} + 15x - 3 = 0$ C) $x^{3} - 21x^{2} + 45x + 27 = 0$ D) None of these 14) The equation whose roots are three times the roots of $3x^{4} - 4x^{3} + 4x^{2} - 2x + 1 = 0$ is
13) The equation whose roots are three times the roots of $x^3 - 7x^2 + 5x - 1 = 0$ is A) $x^3 - 21x^2 + 45x - 27 = 0$ B) $3x^3 - 21x^2 + 15x - 3 = 0$ C) $x^3 - 21x^2 + 45x + 27 = 0$ D) None of these 14) The equation whose roots are three times the roots of $3x^4 - 4x^3 + 4x^2 - 2x + 1 = 0$ is
A) $x^3 - 21x^2 + 45x - 27 = 0$ C) $x^3 - 21x^2 + 45x + 27 = 0$ B) $3x^3 - 21x^2 + 15x - 3 = 0$ D) None of these 14) The equation whose roots are three times the roots of $3x^4 - 4x^3 + 4x^2 - 2x + 1 = 0$ is
C) $x^3 - 21x^2 + 45x + 27 = 0$ 14) The equation whose roots are three times the roots of $3x^4 - 4x^3 + 4x^2 - 2x + 1 = 0$ is
14) The equation whose roots are three times the roots of $3x^4 - 4x^3 + 4x^2 - 2x + 1 = 0$ is
A) $9x - 12x + 12x - 6x + 3 = 0$ B) $x - 4x + 1/x - 18x + 2/ = 0$
15) The equation obtained from the equation $x^3 - \frac{1}{2}x^2 + \frac{2}{3}x - 1 = 0$ by removing
the fractional coefficients is
A) $x^3 - 3x^2 + 4x - 6 = 0$ B) $x^3 - x^2 + 2x - 1 = 0$
C) $x^3 - 3x^2 + 24x - 216 = 0$ D) None of these
16) The equation obtained from the equation $x^3 - \frac{2}{3}x^2 + \frac{1}{2}x - 7 = 0$ by removing
the fractional coefficients is
A) $x^{3} - 4x^{2} + 18x - 1512 = 0$ B) $x^{3} - 2x^{2} + x - 7 = 0$
C) $x^3 - 4x^2 + 3x - 42 = 0$ D) None of these
17) The equation obtained from the equation $x^3 - \frac{5}{2}x^2 - \frac{7}{18}x + \frac{1}{108} = 0$ by removing
the fractional coefficients is
A) $x^3 - 5x^2 - 7x + 1 = 0$ B) $x^3 - 15x^2 - 14x + 2 = 0$
C) $x^3 - 2x^2 - 18x + 108 = 0$ D) None of these
18) To remove the second term from the equation $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_n = 0$,
the roots should be diminished by $h =$
A) $-\frac{a_1}{na_0}$ B) $\frac{a_1}{na_0}$ C) $-\frac{a_1}{a_0}$ D) None of these
19) To remove the second term from the equation $x^4 + 8x^3 + x^2 + x + 3 = 0$, the roots
should be diminished by
A) 2 B) -2 C) 4 D) 5
20) To remove the second term from the equation $x^4 + 8x^3 + x - 5 = 0$, the roots
should be diminished by
A) 2 B) -2 C) 4 D) 5
21) To remove the second term from the equation $x^4 - 8x^3 + x^2 - x + 3 = 0$, the roots
should be diminished by
A) 2 B) -2 C) -4 D) 4
22) To remove the second term from the equation $x^4 + 16x^3 + 83x^2 + 152x + 84 = 0$, the
roots should be diminished by

A) 2	B) -2	C) -4	D) 4
23) To remove the	second term from the	equation $x^4 - 8x^3 + 1$	$x^2 - x + 3 = 0$, the
	e diminished by		
A) 1	B) 2	C) 3	D) None of these
24) To remove the	second term from the	equation $x^3 - 12x^2 +$	-48x - 72 = 0,
the roots should	be diminished by $h =$.		
A) 2	B) 4	C) -4	D) None of these
25) To remove the	second term from the	equation $x^3 + 6x^2 +$	9x + 4 = 0, the roots should
be increased b	у		
A) -2	B) 2	C) 6	D) -6
26) By Descarte's	rule of signs for positiv	ve roots the equation	n,
$f(x) \equiv x^3 - 6x^2$	+ 11x - 6 = 0 has numb	per of positive roots	
A) = 3	$B) \leq 3$	$(C) \ge 3$	D) None of these
27) By Descarte's	rule of signs for negati	ve roots the equation	on,
$f(x) \equiv x^3 - 6x^2$	+ 11x - 6 = 0 has	negative roots.	A.
A) no	B) 2	C) 3	D) None of these
28) By Descarte's	rule of signs for positiv	ve roots the equation	$f(x) \equiv x^4 - 9x^2 + 4 = 0$ has
number of posi		12 0	3
A) =2		$C) \ge 2$	D) None of these
29) Number of neg	sative roots of $f(x) \equiv x^2$	$4^{4} - 9x^{2} + 4 = 0$ is	
A) =2		C) ≥ 2	D) None of these
			$^{3}+83x^{2}+152x+84=0$ is
A) 0	$B) \leq 2$	$C) \ge 2$	D) None of these
	ative roots of the equa		
	$x^3 + 83x^2 + 152x + 84 =$		
A) 4	$B) \leq 4$		D) None of these
· · ·	itive roots of the equat $P_{1} < 2$		
$A) \le 1$	$B) \leq 2$ gative roots of the equa	$C) \leq 3$	D) None of these $122 - 0$ is
A) 0	(arrive roots of the equal $B) \le 1$		$\begin{array}{c} + 40x - 72 = 0 \text{ is } \dots \\ \text{D) None of these} \end{array}$
· ·			$a_{1}x^{2} + a_{2}x + a_{3} = 0$, first we
, .	nd term by diminishing	A .	
	$B)\frac{a_1}{3a_2}$		
0	0	0	
	ethod to solve the cubi	ic equation $z^2 + 3H^2$	z + G = 0, assume
one of root $z = A$) m+n	1/2 1/2	(C) $m^{1/3}$ $n^{1/3}$	D) None of these
,	e root of unity, then ω		D) None of these
· · · · ·	•		
<u> </u>	B) $\frac{-1-i\sqrt{3}}{2}$	C) 0	D) None of these
37) If ω is the cube	e root of unity, then ω^2	· =	

A) $\frac{-1+i\sqrt{3}}{2}$	B) $\frac{-1-i\sqrt{3}}{2}$	C) 0	D) None of these
38) If ω is the cube ro	ot of unity, then 1	$+\omega + \omega^2 = \dots$	
A) 1			D) None of these
39) If $x^4 + a_2x^2 + a_3x +$	$-a_4 = (x^2 - \lambda x + \mu)$	$(x^2 + \lambda x + \mu')$, then a_2	$_2 = \ldots$
A) $\mu + \mu' - \lambda^2$	B) λ(μ - μ')	C) μμ′	D) None of these
40) If $x^4 + a_2x^2 + a_3x +$	$-a_4 = (x^2 - \lambda x + \mu)$	$(x^2 + \lambda x + \mu')$, then a_3	$_{3} = \dots$
A) $\mu + \mu' - \lambda^2$	B) λ(μ - μ')	C) μμ'	D) None of these
		$(x^2 + \lambda x + \mu')$, then a	1
		C) μμ′	
42) If $x^4 - 5x^2 - 6x - 5$	$= (x^2 - \lambda x + \mu) (x^2)$	$(1 + \lambda x + \mu')$, then $\mu + \mu$	$\lambda' - \lambda^2 = \dots$
A) 1		C) -6	
43) If $x^4 - 5x^2 - 6x - 5$		$\lambda^2 + \lambda x + \mu'$, then $\lambda(\mu - \lambda)$	
A) 1		C) -6	
		$\lambda^2 + \lambda x + \mu'$), then $\mu\mu' =$	
		C) -6	
		$x^2 + \lambda x + \mu'$), then $\mu + \mu'$	
	B) -24		D) None of these
		$x^{2} + \lambda x + \mu'$), then $\lambda(\mu$	
	,	C) 7	
		$x^2 + \lambda x + \mu'$), then $\mu\mu'$	
A) -8	B) -24	C) 7	D) None of these

॥ अंतरी पेटवू ज्ञानज्योत ॥

विद्यापीठ गीत

मंत्र असो हा एकच हृदयी 'जीवन म्हणजे ज्ञान' ज्ञानामधूनी मिळो मुक्ती अन मुक्तीमधूनी ज्ञान ॥धृ ॥ कला, ज्ञान, विज्ञान, संस्कृती साधू पुरूषार्थ साफल्यास्तव सदा 'अंतरी पेटवू ज्ञानज्योत' मंगल पावन चराचरातून स्त्रवते अक्षय ज्ञान ॥१ ॥ उत्तम विद्या, परम शक्ति ही आमुची ध्येयासक्ती शील, एकता, चारित्र्यावर सदैव आमुची भक्ती सत्य शिवाचे मंदिर सुंदर, विद्यापीठ महान ॥२ ॥ समता, ममता, स्वातंत्र्याचे नांदो जगी नाते, आत्मबलाने होऊ आम्ही आमुचे भाग्यविधाते, ज्ञानप्रभुची लाभो करूणा आणि पायसदान ॥३ ॥ – कै.प्रा. राजा महाजन

THE NATIONAL INTERGRATION PLEDGE

"I solemnly pledge to work with dedication to preserve and strengthen the freedom and integrity of the nation.

I further affirm that I shall never resort to violence and that all differences and disputes relating to religion, language, region or other political or economic grievance should be settled by peaceful and constitutional means."