

MTH 201: ORDINARY DIFFERENTIAL EQUATIONS	5
Unit-I Differential Equations of First Order and First Degree	No. of Hours: 8
a) Partial derivatives of first order.	
b) Exact differential equations. Condition for exactness.	
c) Integrating factor.	
d) Rules for finding integrating factors.	
e) Linear differential equations.	
f) Bernoulli's Equation. Equation reducible to linear form.	
Unit-II Differential Equations of First Order and Higher Degree	No. of Hours: 7
a) Differential equations of first order and higher degree.	
b) Equation solvable for p.	
c) Equation solvable for y.	
d) Equation solvable for x.	2
e) Clairaut's form.	3
Unit-III Linear Differential Equations with Constant Coefficients	No. of Hours: 8
a) Linear differential equations with constant coefficients.	
b) Complementary functions.	
c) Particular integrals of $f(D)y = X$, where $X = e^{ax}$, $cos(ax)$, $sin(ax)$, x^n , notations.	, e ^{ax} V, xV with usual
Unit-IV Linear Differential Equations with Variable Coefficients	No. of Hours: 7
a) Homogeneous linear differential equations (Cauchy's differential equations)	uations).
b) Example of Homogeneous linear differential equations.	
c) Equations reducible to homogeneous linear differential equations (Le	egendre's equations)
d) Example of Equations reducible to homogeneous linear differential e	equations
Reference Books:	1
1. Introductory Course in Differential Equations, by D. A. Murray, Or	rient Congman
(India) 1967.	
2. Differential Equations, by G. F. Simmons, Tata McGraw Hill, 1972.	
Learning Outcomes:	
After successful completion of this course, the student will be able to:	
a) understand basic concepts in differential equations	

b) understand method of solving differential equations

==x==

UNIT-1: DIFFERENTIAL EQUATIONS OF FIRST ORDER AND FIRST DEGREE

Partial Derivatives: 1) Let f(x,y) be a real valued function. If $\lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$ is exists and finite, then this limit is called partial derivative of f(x, y) w.r.t.x and it is denoted by $f_x(x, y)$ or $\frac{\partial f}{\partial x}$.

2) Let f(x,y) be a real valued function. If $\lim_{k \to 0} \frac{f(x,y+k) - f(x,y)}{k}$ is exists and finite, then this limit is called partial derivative of f(x, y) w.r.t.y and it is denoted by $f_y(x, y)$ or $\frac{\partial f}{\partial y}$.

Remark:1) Partial derivative of f(x, y) w.r.t.x at point (a, b) is given by f(a+h,b)-f(a,b)

 $f_{x}(a, b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$ 2) Partial derivative of f(x, y) w.r.t.y at point (a, b) is given by $f_{y}(a, b) = \lim_{k \to 0} \frac{f(a,b+k) - f(a,b)}{k}$ 3) $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are called first order partial derivatives.
4) $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial x \partial y}, \frac{\partial^{2} f}{\partial y \partial x}$ and $\frac{\partial^{2} f}{\partial y^{2}}$ are called second order partial derivatives.

Ex. If
$$u = xy + e^x$$
 then find $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial^2 u}{\partial x^2}$, $\frac{\partial^2 u}{\partial y^2}$ and $\frac{\partial^2 u}{\partial x \partial y}$

Solution: Let $u = xy + e^x$

$$\therefore \frac{\partial u}{\partial x} = \frac{\partial}{\partial x}(xy + e^{x}) = y + e^{x}$$

$$\therefore \frac{\partial u}{\partial y} = \frac{\partial}{\partial y}(xy + e^{x}) = x + 0 = x$$

$$\therefore \frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial}{\partial x}(\frac{\partial u}{\partial x}) = \frac{\partial}{\partial x}(y + e^{x}) = 0 + e^{x} = e^{x}$$

$$\therefore \frac{\partial^{2} u}{\partial y^{2}} = \frac{\partial}{\partial y}(\frac{\partial u}{\partial y}) = \frac{\partial}{\partial y}(x) = 0$$

$$\therefore \frac{\partial^{2} u}{\partial x \partial y} = \frac{\partial}{\partial x}(\frac{\partial u}{\partial y}) = \frac{\partial}{\partial x}(x) = 1$$

Ex. If $u = x^3 + y^3 + 3xy$ then find $\frac{\partial^2 u}{\partial x^2}$, $\frac{\partial^2 u}{\partial y^2}$ and $\frac{\partial^2 u}{\partial x \partial y}$ Solution: Let $u = x^3 + y^3 + 3xy$ $\therefore \frac{\partial u}{\partial x} = \frac{\partial}{\partial x}(x^3 + y^3 + 3xy) = 3x^2 + 0 + 3y = 3x^2 + 3y$ $\therefore \frac{\partial u}{\partial y} = \frac{\partial}{\partial y}(x^3 + y^3 + 3xy) = 0 + 3y^2 + 3x = 3y^2 + 3x$ $\therefore \frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x}(\frac{\partial u}{\partial x}) = \frac{\partial}{\partial x}(3x^2 + 3y) = 6x + 0 = 6x$ $\therefore \frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y}(\frac{\partial u}{\partial y}) = \frac{\partial}{\partial y}(3y^2 + 3x) = 6y + 0 = 6y$ $\therefore \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial}{\partial x}(\frac{\partial u}{\partial y}) = \frac{\partial}{\partial x}(3y^2 + 3x) = 0 + 3 = 3$ Ex. If $u = e^x \sin xy$ then find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ at (0, 0). Solution: Let $u = e^x \sin xy$ $\therefore \frac{\partial u}{\partial x} = e^x \sin xy + ye^x \cos xy$ and $\frac{\partial u}{\partial y} = xe^x \cos xy$ \therefore At point (0, 0). $\frac{\partial u}{\partial x} = 0$ and $\frac{\partial u}{\partial y} = 0$ Ex. If $u = x^2y + y^2z + z^2x$ then find $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ and $\frac{\partial u}{\partial z}$ at (1, 1, 1). Solution: Let $u = x^2y + y^2z + z^2x$ $\therefore \frac{\partial u}{\partial x} = 2xy + 0 + z^2 = 2xy + z^2$ $\frac{\partial u}{\partial y} = x^2 + 2yz + 0 = x^2 + 2yz$ and $\frac{\partial u}{\partial z} = 0 + y^2 + 2zx = y^2 + 2zx$ \therefore At point (1, 1, 1). $\frac{\partial u}{\partial x} = 2 + 1 = 3$, $\frac{\partial u}{\partial y} = 1 + 2 = 3$ and $\frac{\partial u}{\partial z} = 1 + 2 = 3$

Ex. If $u = x^3z + y^2x - 2yz$ then find $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ and $\frac{\partial u}{\partial z}$ at (1, 2, 3). Solution: Let $u = x^3z + y^2x - 2yz$ $\therefore \frac{\partial u}{\partial x} = 3x^2z + y^2 - 0 = 3x^2z + y^2$ $\frac{\partial u}{\partial y} = 0 + 2yx - 2z = 2yx - 2z$ and $\frac{\partial u}{\partial z} = x^3 + 0 - 2y = x^3 - 2y$ \therefore At point (1, 2, 3). $\frac{\partial u}{\partial x} = 9 + 4 = 13$ $\frac{\partial u}{\partial y} = 4 - 6 = -2$ and $\frac{\partial u}{\partial z} = 1 - 4 = -3$

Ex. If $u = \log(\tan x + \tan y + \tan z)$, show that $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = 2$ **Proof:** Let $u = \log(\tan x + \tan y + \tan z)$

$$\therefore \frac{\partial u}{\partial x} = \frac{1}{\tan x + \tan y + \tan z} \left(\sec^2 x + 0 + 0 \right) = \frac{\sec^2 x}{\tan x + \tan y + \tan z}$$
$$\therefore \sin 2x \frac{\partial u}{\partial x} = \frac{\sin 2x(\sec^2 x)}{\tan x + \tan y + \tan z} = \frac{2\sin x \cos x}{\tan x + \tan y + \tan z} \left(\frac{1}{\cos^2 x} \right) = \frac{2\tan x}{\tan x + \tan y + \tan z}$$
$$\therefore \sin 2x \frac{\partial u}{\partial x} = \frac{2\tan x}{\tan x + \tan y + \tan z}$$

department of mathematics - karm. A. M. Patil Arts, commerce and kal Annasaheb n. K. Patil Science Sr. college, pimpalner 2

Similarly $\sin 2y \frac{\partial u}{\partial y} = \frac{2tany}{\tan x + \tan y + \tan z}$ and $\sin 2z \frac{\partial u}{\partial z} = \frac{2tanz}{\tan x + \tan y + \tan z}$ \therefore By adding, we get, $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z}$ $=\frac{2tanx}{\tan x + \tan y + \tan z} + \frac{2tany}{\tan x + \tan y + \tan z} + \frac{2tanz}{\tan x + \tan y + \tan z}$ $=\frac{2tanx + 2tany + 2tanz}{tanx + tany + tanz}$ = 2Hence proved. **Ex.** If $u = (x^2 + y^2 + z^2)^{-1/2}$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = -u$ **Proof:** Let $u = (x^2 + y^2 + z^2)^{-1/2}$ $\therefore \frac{\partial u}{\partial x} = -\frac{1}{2}(x^2 + y^2 + z^2)^{-3/2} (2x + 0 + 0)$ $\therefore x \frac{\partial u}{\partial x} = -x^2 (x^2 + y^2 + z^2)^{-3/2}$ Similarly $y \frac{\partial u}{\partial y} = -y^2 (x^2 + y^2 + z^2)^{-3/2}$ and $z \frac{\partial u}{\partial z} = -z^2 (x^2 + y^2 + z^2)^{-3/2}$ \therefore By adding, we get, $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = -(x^2 + y^2 + z^2) (x^2 + y^2 + z^2)^{-3/2} = -(x^2 + y^2 + z^2)^{-1/2} = -u$ Hence proved.

Ex. If
$$u = log(x^3 + y^3 - x^2y - xy^2)$$
, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = \frac{2}{x+y}$
Proof: Let $u = log(x^3 + y^3 - x^2y - xy^2)$
 $\therefore \frac{\partial u}{\partial x} = \frac{1}{x^3 + y^3 - x^2y - xy^2}(3x^2 + 0 - 2xy - y^2) = \frac{3x^2 - 2xy - y^2}{x^3 + y^3 - x^2y - xy^2}$
and $\frac{\partial u}{\partial y} = \frac{1}{x^3 + y^3 - x^2y - xy^2}(0 + 3y^2 + 0 - x^2 - 2xy) = \frac{3y^2 - 2xy - x^2}{x^3 + y^3 - x^2y - xy^2}$
 \therefore By adding, we get,
 $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = \frac{3x^2 - 2xy - y^2 + 3y^2 - 2xy - x^2}{x^3 + y^3 - x^2y - xy^2}$
 $= \frac{2x^2 - 4xy + 2y^2}{x^3 + y^3 - x^2y - xy^2}$
 $= \frac{2(x^2 - 2xy + y^2)}{(x+y)(x^2 - 2xy + y^2)}$
 $\therefore \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = \frac{2}{x+y}$
Hence proved.

- **Differential equation:** An equation which contains the terms of derivatives is called differential equation.
- **Order of Differential equation:** An order of the highest ordered derivatives occurring in the equation is called the order of a differential equation.
- **Degree of Differential equation:** Power of the highest ordered derivative occurring in the differential equation when it is free from radical signs and fractional indices is called the degree of a differential equation.
- **Homogeneous Function:** A function f(x, y) is said to be homogeneous function of degree 'n' if $f(x, y) = x^n F(\frac{y}{x})$
- **Differential equation of First Order and First Degree:** If M and N are functions of variables x and y then Mdx + Ndy = 0 is called differential equation of first order and first degree.
- **Homogeneous Differential equation:** If M and N are homogeneous functions of variables x and y of same degree then Mdx + Ndy = 0 or $\frac{dy}{dx} = \frac{M(x,y)}{N(x,y)}$ is called homogeneous differential equation.
- **Exact Differential equation:** A differential equation of type Mdx + Ndy = 0 is called exact differential equation if there exist a function u(x, y) such that Mdx + Ndy = du.

e.g. As
$$2xy^2dx + 2x^2ydy = d(x^2y^2)$$

 $\therefore 2xy^2dx + 2x^2ydy = 0$ is an exact differential equation.

Theorem: A necessary and sufficient condition for differential equation

Mdx + Ndy = 0 to be exact is that
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Proof: Necessary condition: Suppose Mdx + Ndy = 0 is exact.

: there exist a function u(x, y) such that Mdx + Ndy = du ...(1)

But by total differentiation $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy...(2)$

From equation (1) and (2), we have

M =
$$\frac{\partial u}{\partial x}$$
 and N = $\frac{\partial u}{\partial y}$

$$\frac{\partial M}{\partial M} = \frac{\partial^2 u}{\partial M}$$
 and $\frac{\partial N}{\partial M} = \frac{\partial^2 u}{\partial M}$

$$\partial y \quad \partial y \partial x$$
 and $\partial x \quad \partial x \partial y$

But
$$\frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y}$$

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial u}$$

Sufficient condition: Suppose Mdx + Ndy = 0 be a differential equation such that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ Let us define $f(x, y) = \int_{y-constant}^{\cdot} Mdx$ $\therefore M = \frac{\partial f}{\partial x}$

$$\therefore \frac{\partial M}{\partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

$$\therefore \frac{\partial M}{\partial y} = \frac{\partial^2 f}{\partial x \partial y}$$

$$\therefore \frac{\partial N}{\partial x} = \frac{\partial^2 f}{\partial x \partial y} \text{ since } \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\therefore \frac{\partial N}{\partial x} - \frac{\partial^2 f}{\partial x \partial y} = 0$$

$$\therefore \frac{\partial}{\partial x} (N - \frac{\partial f}{\partial y}) = 0$$

Integrating both sides w.r.t. x, keeping y constant, we get,

N-
$$\frac{\partial f}{\partial y} = g(y)$$
, a function of y only.
∴ N = $\frac{\partial f}{\partial y} + g(y)$
∴ Mdx + Ndy = $\frac{\partial f}{\partial x} dx + [\frac{\partial f}{\partial y} + g(y)]dy$
= d[f + $\int g(y)dy$]
∴ Mdx + Ndy = 0 is an exact differential equation.

Remark: A general solution of exact differential equation Mdx + Ndy = 0 is $\int_{y-constant}^{\cdot} Mdx + \int (terms in N not containing x)dy] = c$

Ex. Solve
$$(2x^3 + 3y)dx + (3x + y - 1)dy = 0$$

Solution: Let $(2x^3 + 3y)dx + (3x + y - 1)dy = 0$ be the given differential
equation, comparing it with Mdx + Ndy = 0, we get,
 $M = 2x^3 + 3y$ and $N = 3x + y - 1$
 $\therefore \frac{\partial M}{\partial y} = 3$ and $\frac{\partial N}{\partial x} = 3$
 $\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$
 \therefore Given differential equation is exact C for drift HHT
 \therefore It's general solution is
 $\int_{y-constant}^{y} Mdx + \int (terms of N not containing x)dy] = c$
 $\therefore \int_{y-constant}^{y} (2x^3 + 3y)dx + \int (y - 1)dy] = c$
 $\therefore \frac{1}{2}x^4 + 3xy + \frac{1}{2}y^2 - y = c.$

Ex. Solve $(y^2 - 2xy + 6x)dx - (x^2 - 2xy + 2)dy = 0$ Solution: Let $(y^2 - 2xy + 6x)dx - (x^2 - 2xy + 2)dy = 0$ be the given differential equation, comparing it with Mdx + Ndy = 0, we get, $M = y^2 - 2xy + 6x$ and $N = -x^2 + 2xy - 2$ $\therefore \frac{\partial M}{\partial y} = 2y - 2x$ and $\frac{\partial N}{\partial x} = -2x + 2y$

$$\therefore \frac{1}{\partial y} = \frac{1}{\partial x}$$

$$\therefore \text{ Given differential equation is exact.}$$

$$\therefore \text{ It's general solution is}$$

$$\int_{y-constant}^{\cdot} Mdx + \int (terms \ of \ N \ not \ containing \ x)dy] = c$$

$$\therefore \int_{y-constant}^{\cdot} (y^2 - 2xy + 6x)dx + \int (-2)dy] = c$$

$$\therefore xy^2 - x^2y + 3x^2 - 2y = c.$$

Ex. Solve $3yx^2dx + (x^3 + 8y)dy = 3ydx + 3xdy$ given that for x = 0, y = 1. Solution: Let $3yx^2dx + (x^3 + 8y)dy = 3ydx + 3xdy$ i.e. $(3yx^2 - 3y)dx + (x^3 + 8y - 3x)dy = 0$ be the given differential equation, comparing it with Mdx + Ndy = 0, we get, $M = 3yx^2 - 3y$ and $N = x^3 + 8y - 3x$ $\therefore \frac{\partial M}{\partial y} = 3x^2 - 3$ and $\frac{\partial N}{\partial x} = 3x^2 - 3$ $\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$: Given differential equation is exact. \therefore It's general solution is $\int_{y-constant}^{\cdot} Mdx + \int (terms \ of \ N \ not \ containing \ x) dy] = c$ $\therefore \int_{y-constant}^{\cdot} (3yx^2 - 3y)dx + \int (8y)dy] = c$ $\therefore yx^3 - 3xy + 4y^2 = c$ Given that for x = 0, y = 1: 0 - 0 + 4 = c $\therefore c = 4$ ∴ Particular solution of given equation is $yx^{3} - 3xy + 4y^{2} = 4$

Ex. Solve $(\sin x.\cos y+e^{2x})dx+(\cos x.\sin y+\tan y)dy = 0$ Solution: Let $(\sin x.\cos y+e^{2x})dx+(\cos x.\sin y+\tan y)dy = 0$ be the given differential

equation, comparing it with Mdx + Ndy = 0, we get, M = sinx.cosy+e^{2x} and N = cosx.siny+tany

$$\therefore \frac{\partial M}{\partial y} = - \text{ sinx.siny and } \frac{\partial N}{\partial x} = -\text{sinx.siny}$$

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

∂М

∂N

 \therefore Given differential equation is exact .

 \therefore It's general solution is

$$\int_{y-constant}^{\cdot} Mdx + \int (terms \ of \ N \ not \ containing \ x)dy] = c$$

$$\therefore \int_{y-constant}^{\cdot} (\sin x. \cos y + e^{2x})dx + \int \tan ydy] = c$$

$$\therefore -\cos x. \cos y + \frac{1}{2}e^{2x} + \log \ \sec y = c.$$

Ex. Solve $(\cos 2y - 3x^2y^2)dx + (\cos 2y - 2x\sin 2y - 2x^3y)dy = 0$ Solution: Let $(\cos 2y - 3x^2y^2)dx + (\cos 2y - 2x\sin 2y - 2x^3y)dy = 0$ be the given differential equation, comparing it with Mdx + Ndy = 0, we get, $M = \cos 2y - 3x^2y^2$ and $N = \cos 2y - 2x\sin 2y - 2x^3y$ $\therefore \frac{\partial M}{\partial y} = -2\sin 2y - 6x^2y$ and $\frac{\partial N}{\partial x} = -2\sin 2y - 6x^2y$ $\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ \therefore Given differential equation is exact . \therefore It's general solution is $\int_{y-constant} Mdx + \int (terms of N not containing x)dy] = c$ $\therefore \int_{y-constant} (\cos 2y - 3x^2y^2)dx + \int \cos 2ydy] = c$ $\therefore x.\cos 2y - x^3y^2 + \frac{1}{2}\sin 2y = c.$

Integrating Factor: A function u(x, y) is said to be an integrating factor (I.F.) of non-exact differential equation Mdx + Ndy = 0 if Mudx + Nudy = 0 is exact. **Rules of finding I.F.:**

Rule-I: If the differential equation Mdx + Ndy = 0 is homogeneous then $\frac{1}{Mx + Ny}$ is

an I.F. if
$$Mx + Ny \neq 0$$

Proof: Let $Mdx + Ndy = 0$ is homogeneous differential equation.
 \therefore M and N are homogeneous functions of same degree say n.
 \therefore By Eulers theorem
 $x \frac{\partial M}{\partial x} + y \frac{\partial M}{\partial y} = nM$ and $x \frac{\partial N}{\partial x} + y \frac{\partial N}{\partial y} = nN$ (1)
Given that $Mx + Ny \neq 0$
 \therefore Multipling by $\frac{1}{Mx + Ny}$ to given equation, we get,
 $\frac{M}{Mx + Ny} dx + \frac{N}{Mx + Ny} dy = 0$
i.e. $M_1 dx + N_1 dy = 0$ where $M_1 = \frac{M}{Mx + Ny}$, $N_1 = \frac{N}{Mx + Ny}$
 $\therefore \frac{\partial M_1}{\partial y} = \frac{(Mx + Ny)\frac{\partial M}{\partial x} - N(M + x\frac{\partial M}{\partial x} + y\frac{\partial N}{\partial x})}{(Mx + Ny)^2} = \frac{Ny\frac{\partial M}{\partial y} - MN - My\frac{\partial N}{\partial y}}{(Mx + Ny)^2}$
and $\frac{\partial N_1}{\partial x} = \frac{(Mx + Ny)\frac{\partial N}{\partial x} - N(M + x\frac{\partial M}{\partial x} + y\frac{\partial N}{\partial x})}{(Mx + Ny)^2} = \frac{Mx\frac{\partial N}{\partial x} - MN - Mx\frac{\partial M}{\partial x}}{(Mx + Ny)^2}$
 $\therefore \frac{\partial M_1}{\partial y} - \frac{\partial N_1}{\partial x} = \frac{Ny\frac{\partial M}{\partial y} - MN - My\frac{\partial N}{\partial y} - M(x\frac{\partial N}{\partial x} + y\frac{\partial N}{\partial y})}{(Mx + Ny)^2}$
 $= \frac{N(x\frac{\partial M}{\partial x} + y\frac{\partial M}{\partial y}) - M(x\frac{\partial N}{\partial x} + y\frac{\partial N}{\partial y})}{(Mx + Ny)^2}$
 $= \frac{N(x\frac{\partial M}{\partial x} + y\frac{\partial M}{\partial y}) - M(x\frac{\partial N}{\partial x} + y\frac{\partial N}{\partial y})}{(Mx + Ny)^2}$ by (1)
 $= 0$
 $\therefore \frac{\partial M_1}{\partial y} = \frac{\partial N_1}{\partial x}$
 $\therefore M_1 dx + N_1 dy = 0$ is exact.
 $\therefore \frac{1}{Mx + Ny}$ is an I.F.of given equation is proved.

Ex. Solve (x + y)dx + (y - x)dy = 0**Solution:** Let (x + y)dx+(y - x)dy = 0 be the given differential equation, comparing it with Mdx + Ndy = 0, we get, M = x + y and N = y - x $\therefore \frac{\partial M}{\partial y} = 1$ and $\frac{\partial N}{\partial x} = -1$ $\therefore \frac{\partial M}{\partial v} \neq \frac{\partial N}{\partial x}$: Given differential equation is not exact. But the given differential equation is homogeneous with $Mx + Ny = (x + y)x + (y - x)y = x^{2} + yx + y^{2} - xy = x^{2} + y^{2} \neq 0$ $\therefore \text{ I.F.} = \frac{1}{Mx + Ny} = \frac{1}{x^{2} + y^{2}}$ Multiplying given equation by $\frac{1}{x^2+v^2}$, we get, $\frac{x+y}{x^2+y^2} dx + \frac{y-x}{x^2+y^2} dy = 0$ which is exact : It's general solution is $\int_{y-constant}^{\cdot} \frac{x+y}{x^2+y^2} dx + \int 0 dy = c$ $\therefore \int_{y-constant}^{\cdot} \frac{x}{x^2+y^2} dx + y \int_{y-constant}^{\cdot} \frac{1}{x^2+y^2} dx = c$ $\therefore \frac{1}{2} \int_{y-constant}^{\cdot} \frac{2x}{x^2 + y^2} dx + y \int_{y-constant}^{\cdot} \frac{1}{x^2 + y^2} dx = c$ $\therefore \frac{1}{2} log(x^2 + y^2) + y \cdot \frac{1}{y} \tan^{-1}(\frac{x}{y}) = c$ i.e $\frac{1}{2}log(x^2 + y^2) + tan^{-1}(\frac{x}{y}) = c$ **Ex.** Solve $(xy - y^2)dx - x^2dy = 0$ **Solution:** Let $(xy - y^2)dx - x^2dy = 0$ be the given differential equation, comparing it with Mdx + Ndy = 0, we get, $M = xy - y^2$ and $N = -x^2$ $\therefore \frac{\partial M}{\partial y} = x - 2y$ and $\frac{\partial N}{\partial x} = -2x$ $\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$: Given differential equation is not exact. But the given differential equation is homogeneous with $Mx + Ny = (xy - y^{2})x + (-x^{2})y = x^{2}y - y^{2}x - x^{2}y = -xy^{2} \neq 0$ $\therefore \text{ I.F.} = \frac{1}{Mx + Ny} = \frac{1}{-xy^{2}}$ Multiplying given equation by $\frac{-1}{rv^2}$, we get, $\frac{-1}{xy^2}(xy - y^2)dx + \frac{1}{xy^2}x^2 dy = 0$ i.e. $\left(\frac{1}{x} - \frac{1}{y}\right)dx + \frac{x}{y^2}dy = 0$ which is exact \therefore It's general solution is $\int_{y-constant}^{\cdot} \left(\frac{1}{x} - \frac{1}{y}\right) dx + \int 0 dy = c$ $\therefore \log x - \frac{x}{y} = c$

Ex. Solve $x^2ydx - (x^3+y^3)dy = 0$ Solution: Let $x^2ydx - (x^3+y^3)dy = 0$ be the given differential equation, comparing it with Mdx + Ndy = 0, we get, $M = x^2y$ and $N = -x^3 - y^3$ $\therefore \frac{\partial M}{\partial y} = x^2$ and $\frac{\partial N}{\partial x} = -3x^2$ $\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ \therefore Given differential equation is not exact. But the given differential equation is homogeneous with $Mx + Ny = (x^2y)x + (-x^3 - y^3)y = x^3y - x^3y - y^4 = -y^4 \neq 0$ \therefore I.F. $= \frac{1}{Mx + Ny} = \frac{1}{-y^4}$ Multiplying given equation by $\frac{-1}{y^4}$, we get, $\frac{-1}{y^4}x^2ydx + \frac{1}{y^4}(x^3+y^3)dy = 0$ i.e. $(-\frac{x^2}{y^3})dx + (\frac{x^3}{y^4} + \frac{1}{y}) dy = 0$ which is exact \therefore It's general solution is $\int_{y-constant}(-\frac{x^2}{y^3})dx + \int \frac{1}{y}dy = c$ $\therefore (-\frac{x^3}{3y^3}) + \log y = c$

Rule-II: If the differential equation Mdx + Ndy = 0 is of type $f_1(xy)ydx+f_2(xy)xdy=0$ then $\frac{1}{Mx-Ny}$ is an I.F. if $Mx - Ny \neq 0$ **Proof:** Let given differential equation Mdx + Ndy = 0 is of type $f_1(xy)ydx+f_2(xy)xdy=0$ Given that $Mx - Ny \neq 0$ \therefore Multipling by $\frac{1}{Mx-Ny}$ to given equation, we get, $\frac{M}{Mx-Ny} dx + \frac{N}{Mx-Ny} dy = 0$ i.e. $M_1dx + N_1dy = 0$ where $M_1 = \frac{M}{Mx-Ny} = \frac{f_1(xy)y}{f_1(xy)yx-f_2(xy)xy} = \frac{f_1}{x(f_1-f_2)}$ and $N_1 = \frac{N}{Mx+Ny} = \frac{f_2(xy)x}{f_1(xy)yx-f_2(xy)xy} = \frac{f_2}{y(f_1-f_2)}$ $\therefore \frac{\partial M_1}{\partial y} = \frac{1}{x} [\frac{(f_1-f_2)(xf'_1) - f_1(xf'_1 - xf'_2)}{(f_1-f_2)^2} = \frac{-f_2f'_1 + f_1f'_2}{(f_1-f_2)^2} = \frac{f_1f'_2 - f_2f'_1}{(f_1-f_2)^2}$ and $\frac{\partial N_1}{\partial x} = \frac{1}{y} [\frac{(f_1-f_2)(yf'_2) - f_2(yf'_1 - yf'_2)}{(f_1-f_2)^2} = \frac{f_1f'_2 - f_2f'_1}{(f_1-f_2)^2}$ $\therefore \frac{\partial M_1}{\partial y} - \frac{\partial N_1}{\partial x} = \frac{f_1f'_2 - f_2f'_1 - f_1f'_2 + f_2f'_1}{(f_1-f_2)^2}$ = 0 $\therefore \frac{\partial M_1}{\partial y} = \frac{\partial N_1}{\partial x}$ $\therefore M_1dx + N_1dy = 0$ is exact. $\therefore \frac{1}{Mx-Ny}$ is an I.F.of given equation is proved. Ex. Solve $y(xy+1)dx + (x^2y^2+xy+1)xdy = 0$ Solution: Let $y(xy+1)dx + (x^2y^2+xy+1)xdy = 0$ be the given differential equation of type $f_1(xy)ydx+f_2(xy)xdy=0$ with M = (xy+1)y and $N = (x^2y^2+xy+1)x$ \therefore Mx-Ny $=(xy+1)yx-(x^2y^2+xy+1)xy=x^2y^2+xy-x^3y^3-x^2y^2-xy=-x^3y^3\neq 0$ \therefore I.F. $= \frac{1}{Mx-Ny} = \frac{1}{-x^3y^3}$ Multiplying given equation by $\frac{-1}{x^3y^3}$, we get, $\frac{-1}{x^3y^3}y(xy+1)dx - \frac{1}{x^3y^3}(x^2y^2+xy+1)xdy = 0$ i.e. $(-\frac{1}{x^2y} - \frac{1}{x^3y^2})dx + (-\frac{1}{y} - \frac{1}{x^2y^2} - \frac{1}{x^2y^3})dy = 0$ which is exact \therefore It's general solution is $\int_{y-constant}^{y} (-\frac{1}{x^2y} - \frac{1}{x^3y^2})dx + \int (-\frac{1}{y})dy = c$ $\therefore \frac{1}{xy} + \frac{1}{2x^2y^2} - \log y = c$

Ex. Solve $(\frac{1}{x} + y)dx + (\frac{1}{y} - x)dy = 0$ Solution: Let $(\frac{1}{x} + y)dx + (\frac{1}{y} - x)dy = 0$ i.e.(1+xy)ydx + (1-xy)xdy = 0 be the given differential equation of type $f_1(xy)ydx+f_2(xy)xdy=0$ with M = (1+xy)y and N = (1-xy)x \therefore Mx-Ny = $(1+xy)yx-(1-xy)xy=xy+x^2y^2-xy+x^2y^2=2x^2y^2\neq 0$

10

$$\therefore I.F. = \frac{1}{Mx - Ny} = \frac{1}{2x^2y^2}$$
Multiplying given equation by $\frac{1}{2x^2y^2}$, we get,
 $\frac{1}{2x^2y^2} (1 + xy)ydx + \frac{1}{2x^2y^2} (1 - xy)xdy = 0$
i.e. $(\frac{1}{2x^2y} + \frac{1}{2x})dx + (\frac{1}{2xy^2} - \frac{1}{2y})dy = 0$ which is exact
 \therefore It's general solution is
 $\int_{y-constant} (\frac{1}{2x^2y} + \frac{1}{2x})dx + \int (-\frac{1}{2y})dy = c_1$
 $\therefore \frac{-1}{2xy} + \frac{1}{2} \log x - \frac{1}{2} \log y = c_1$ i.e. $\log(\frac{x}{y}) - \frac{1}{xy} = c$ where $2c_1 = c$
Rule-III: If $\frac{1}{N} [\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}]$ is a function of x alone, say f(x) then $e^{fl(x)dx}$ I.F. of
equation Mdx + Ndy = 0.
Proof: Given differential equation is Mdx + Ndy = 0(1)
such that $\frac{1}{N} [\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}] = f(x)$
 $\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} + Nf(x)(2)$
 \therefore Multipling by $e^{fl(x)dx}$ to given equation, we get,
 $e^{fl(x)dx}Mdx + e^{fl(x)dx}Ndy = 0$
i.e. $M_1dx + N_1dy = 0$ where $M_1 = e^{fl(x)dx}M$ and $N_1 = e^{fl(x)dx}N$
 $\therefore \frac{\partial M_1}{\partial x} = e^{fl(x)dx}\frac{\partial M}{\partial x}$ and
 $\frac{\partial N_4}{\partial x} = e^{fl(x)dx}\frac{\partial M}{\partial x} + f(x)e^{fl(x)dx}N = e^{fl(x)dx}M$ and $N_1 = e^{fl(x)dx}N$
 $\therefore \frac{\partial M_1}{\partial x} = e^{fl(x)dx}\frac{\partial M}{\partial x}$ by(2)
 $\therefore \frac{\partial M_1}{\partial x} = e^{fl(x)dx}\frac{\partial M}{\partial x}$
 $\therefore M_1dx + N_1dy = 0$ is exact, **Hyperid Funct** for **Hyperid**.

Ex. Solve $(x - y^2)dx + 2xydy = 0$

Solution: Let $(x - y^2)dx + 2xydy = 0$ be the given differential equation, comparing it with Mdx + Ndy = 0, we get,

$$M = x - y^{2} \text{ and } N = 2xy$$

$$\therefore \frac{\partial M}{\partial y} = -2y \text{ and } \frac{\partial N}{\partial x} = 2y$$

$$\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$$

$$\therefore \text{ Given differential equation is not exact.}$$

But
$$\frac{1}{N} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right] = \frac{1}{2xy} \left[-2y - 2y \right] = \frac{-2}{x} = f(x)$$

$$\therefore \text{ I.F.} = e^{\int f(x)dx} = e^{-2\log x} = x^{-2} = \frac{1}{x^2}$$

Multiplying given equation by $\frac{1}{x^2}$, we get,
 $\frac{1}{x^2}(x - y^2)dx + \frac{1}{x^2}(2xy)dy = 0$
i.e. $(\frac{1}{x} - \frac{y^2}{x^2})dx + \frac{2y}{x}dy = 0$ which is exact
 $\therefore \text{ It's general solution is}$
 $\int_{y-constant}^{y} (\frac{1}{x} - \frac{y^2}{x^2})dx + \int 0dy = c$
 $\therefore \log x + \frac{y^2}{x} = c$

Ex. Solve $(x^2 + y^2 + x)dx + xydy = 0$ **Solution:** Let $(x^2 + y^2 + x)dx + xydy = 0$ be the given differential equation, comparing it with Mdx + Ndy = 0, we get, $M = x^2 + y^2 + x$ and N = xy $\therefore \frac{\partial M}{\partial y} = 2y$ and $\frac{\partial N}{\partial x} = y$ $\therefore \frac{\partial M}{\partial v} \neq \frac{\partial N}{\partial x}$ \therefore Given differential equation is not exact. But $\frac{1}{N} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right] = \frac{1}{xy} \left[2y - y \right] = \frac{1}{x} = f(x)$ \therefore I.F. = $e^{\int f(x)dx} = e^{\log x} = x$ Multiplying given equation by x, we get, $x(x^2+y^2+x)dx + x(xy)dy = 0$ i.e. $(x^3 + xy^2 + x^2)dx + x^2y dy = 0$ which is exact .: It's general solution is $\int_{y-constant}^{b} (x^{3} + xy^{2} + x^{2}) dx + \int 0 dy = c_{1}$ $\therefore \frac{1}{4}x^4 + \frac{1}{2}x^2y^2 + \frac{1}{2}x^3 = c_1 + 4x + 12x^2$ (4) $C_1 = C_1 + C_2$ i.e. $3x^4 + 6x^2y^2 + 4x^3 = c$ where $c = 12c_1$

Ex. Solve $(2y^2 + 3xy - 2y + 6x)dx + (x^2 + 2xy - x)dy = 0$ **Solution:** Let $(2y^2 + 3xy - 2y + 6x)dx + (x^2 + 2xy - x)dy = 0$ be the given differential equation, comparing it with Mdx + Ndy = 0, we get, $M = 2y^2 + 3xy - 2y + 6x$ and $N = x^2 + 2xy - x$ $\therefore \frac{\partial M}{\partial y} = 4y + 3x - 2$ and $\frac{\partial N}{\partial x} = 2x + 2y - 1$ $\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ \therefore Given differential equation is not exact.

But
$$\frac{1}{N} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right] = \frac{1}{(x^2 + 2xy - x)} \left[4y + 3x - 2 - 2x - 2y + 1 \right]$$

12

$$= \frac{(x+2y-1)}{x(x+2y-1)} = \frac{1}{x} = f(x)$$

$$\therefore I.F. = e^{f(x)dx} = e^{\log x} = x$$

Multiplying given equation by x, we get,
 $x(2y^2 + 3xy - 2y + 6x)dx + x(x^2 + 2xy - x)dy = 0$
i.e. $(2xy^2 + 3x^2y - 2xy + 6x^2)dx + (x^3 + 2x^2y - x^2) dy = 0$ which is exact
 \therefore It's general solution is
 $\int_{y-constant} (2xy^2 + 3x^2y - 2xy + 6x^2)dx + \int 0dy = c$
 $\therefore x^2y^2 + x^3y - x^2y + 2x^3 = c$
Rule-IV: If $\frac{1}{M} [\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}]$ is a function of y alone, say f(y) then $e^{f(y)dy}$ I.F. of
equation Mdx + Ndy = 0.
Proof: Given differential equation is Mdx + Ndy = 0(1)
such that $\frac{1}{M} [\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}] = f(y)$
 $\therefore \frac{\partial N}{\partial x} = \frac{\partial M}{\partial y} + Mf(y)(2)$
 \therefore Multipling by $e^{f(y)dy}$ to given equation, we get,
 $e^{f(y)dy}Mdx + e^{f(y)dy}Ndy = 0$
i.e. $M_1dx + N_1dy = 0$ where $M_1 = e^{f(y)dy}M$ and $N_1 = e^{f(y)dy}N$
 $\therefore \frac{\partial M_1}{\partial y} = e^{f(y)dy}\frac{\partial M}{\partial x}$ by (2)
and $\frac{\partial N_1}{\partial y} = e^{f(y)dy}\frac{\partial N}{\partial x}$ by (2)
and $\frac{\partial M_1}{\partial y} = e^{f(y)dy}\frac{\partial N}{\partial x}$
 $\therefore M_1dx + N_1dy = 0$ is exact.
 $\therefore e^{f(y)dy}$ is an I.F.of given equation is proved. The Here II

Ex. Solve $(y^4 + 2y)dx + (xy^3 + 2y^4 - 4x)dy = 0$ Solution: Let $(y^4 + 2y)dx + (xy^3 + 2y^4 - 4x)dy = 0$ be the given differential equation, comparing it with Mdx + Ndy = 0, we get, $M = y^4 + 2y$ and $N = xy^3 + 2y^4 - 4x$ $\therefore \frac{\partial M}{\partial y} = 4y^3 + 2$ and $\frac{\partial N}{\partial x} = y^3 - 4$ $\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ \therefore Given differential equation is not exact. But $\frac{1}{M} [\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}] = \frac{1}{(y^4 + 2y)} [y^3 - 4 - 4y^3 - 2]$ $= \frac{(-3y^3 - 6)}{y(y^3 + 2)} = \frac{-3}{y} = f(y)$

$$\therefore \text{ I.F.} = e^{\int f(y)dy} = e^{-3\log y} = y^{-3} = \frac{1}{y^3}$$

Multiplying given equation by $\frac{1}{y^3}$, we get,
 $\frac{1}{y^3}(y^4 + 2y)dx + \frac{1}{y^3}(xy^3 + 2y^4 - 4x)dy = 0$
i.e. $(y + \frac{2}{y^2})dx + (x + 2y - \frac{4x}{y^3}) dy = 0$ which is exact
 $\therefore \text{ It's general solution is}$
 $\int_{y-constant}^{\cdot} (y + \frac{2}{y^2})dx + \int 2ydy = c$
 $\therefore (y + \frac{2}{y^2})x + y^2 = c$

Ex. Solve
$$(3x^2y^4 + 2xy)dx + (2x^3y^3 - x^2)dy = 0$$

Solution: Let $(3x^2y^4 + 2xy)dx + (2x^3y^3 - x^2)dy = 0$ be the given differential equation,
comparing it with Mdx + Ndy = 0, we get,
 $M = 3x^2y^4 + 2xy$ and $N = 2x^3y^3 - x^2$
 $\therefore \frac{\partial M}{\partial y} = 12x^2y^3 + 2x$ and $\frac{\partial N}{\partial x} = 6x^2y^3 - 2x$
 $\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
 \therefore Given differential equation is not exact.
But $\frac{1}{M} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] = \frac{1}{(3x^2y^4 + 2xy)} \left[6x^2y^3 - 2x - 12x^2y^3 - 2x \right]$
 $= \frac{(-6x^2y^3 - 4x)}{y(3x^2y^3 + 4x)} = \frac{-2}{y} = f(y)$
 \therefore I.F. $= e^{f(y)dy} = e^{2\log y} = y^{-2} = \frac{1}{y^2}$
Multiplying given equation by $\frac{1}{y^2}$, we get,
 $\frac{1}{y^2}(3x^2y^4 + 2xy)dx + \frac{1}{y^2}(2x^3y^3 - x^2)dy = 0$
i.e. $(3x^2y^2 + \frac{2x}{y})dx + (2x^3y - \frac{x^2}{y^2})dy = 0$ which is exact
 \therefore It's general solution is
 $\int_{y-constant} (3x^2y^2 + \frac{2x}{y})dx + \int 0dy = c$
 $\therefore x^3y^2 + \frac{x^2}{y} = c$

Linear Differential Equation: A differential equation of type $\frac{dy}{dx}$ + Py = Q where P and Q are functions of x alone is called linear differential equation. **Method of Solving Linear Differential Equation:**

Let $\frac{dy}{dx}$ + Py = Q i.e. (Py - Q)dx + dy = 0.....(1) be a linear differential equation M = (Py - Q) and N = 1

Where P and Q are functions of x alone.

$$\therefore \frac{\partial M}{\partial y} = P \text{ and } \frac{\partial N}{\partial x} = 0$$

$$\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$$

$$\therefore \text{ Given differential equation is not exact.}$$

But $\frac{1}{N} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right] = P = f(x)$

$$\therefore \text{ I.F. = } e^{f(x)dx} = e^{fPdx}$$

Multiplying equation (1) by e^{fPdx} , we get,
 $e^{fPdx}(Py - Q) dx + e^{fPdx}dy = 0$
which is exact

$$\therefore \text{ It's general solution is}$$

 $\int_{y-constant}^{y} e^{fPdx}(Py - Q) dx + \int 0 dy = c$

$$\therefore y \int e^{fPdx}Pdx - \int e^{fPdx}Qdx = c$$

$$\therefore y e^{fPdx} = \int e^{fPdx}Qdx + c$$

be the general solution of linear differential equation.

Remark: If linear differential equation is of type $\frac{dx}{dy} + Px = Q$ where P and Q are functions of y alone, then it's G. S. is $xe^{\int Pdy} Qdy + c$

Ex. Solve
$$\frac{dy}{dx} + 2y\tan x = \sin x$$

Solution: Let $\frac{dy}{dx} + 2y\tan x = \sin x$ be the given differential equation, which is linear
differential equation, with P = 2tanx and Q = sinx
 \therefore I.F. = $e^{\int Pdx} = e^{\int 2tanxdx} = = e^{2\log \sec x} = \sec^2 x$
 \therefore General solution of given equation is
 $ye^{\int Pdx} = \int e^{\int Pdx}Qdx + c$
i.e. $ysec^2x = \int sec^2 x \cdot sinxdx + c$
 $\int secx \cdot tanxdx + c$
 $\therefore ysec^2x = secx + c$

Ex. Solve
$$\frac{dy}{dx} + \frac{y}{tanx} = 2$$
sinx.cosx, given that $y = 0$ when $x = \frac{\pi}{2}$
Solution: Let $\frac{dy}{dx} + \frac{y}{tanx} = 2$ sinx.cosx be the given differential equation,
which is linear differential equation,
with $P = \frac{1}{tanx} =$ cotx and $Q = 2$ sinx.cosx
 \therefore I.F. $= e^{\int Pdx} = e^{\int cotxdx} = = e^{\log \sin x} = \sin x$
 \therefore General solution of given equaion is
 $ye^{\int Pdx} = \int e^{\int Pdx}Qdx + c$
i.e. $ysinx = \int sinx. 2sinx. cosxdx + c$

$$= 2\int \sin^{2}x \cdot \cos x dx + c$$

$$\therefore y \sin x = \frac{2}{3} \sin^{3}x + c$$

Given that $y = 0$ when $x = \frac{\pi}{2}$

$$\therefore 0 = \frac{2}{3} + c$$
 i.e. $c = -\frac{2}{3}$

$$\therefore$$
 Particular solution of given equaion is
 $y \cdot \sin x = \frac{2}{3} \sin^{3}x - \frac{2}{3}$

Ex. Solve x.cosx.
$$\frac{dy}{dx}$$
 + (xsinx+cosx)y = 1
Solution: Let x.cosx. $\frac{dy}{dx}$ + (xsinx+cosx)y = 1
i.e. $\frac{dy}{dx}$ + ($tanx + \frac{1}{x}$) y = $\frac{secx}{x}$ be the given differential equation,
which is linear differential equation, with P = $tanx + \frac{1}{x}$ and Q = $\frac{secx}{x}$
NowJPdx = $\int (tanx + \frac{1}{x}) dx$ = logsecx+logx=logxsecx
 \therefore I.F. = $e^{\int Pdx} = e^{\log xecx} = xsecx$
 \therefore General solution of given equaion is
 $ye^{\int Pdx} = \int e^{\int Pdx}Qdx + c$
i.e. $yxsecx = \int xsecx. \frac{secx}{x} dx + c$
 $= \int sec^2x dx + c$
 \therefore xysecx = tanx + c

Ex. Solve $\frac{dy}{dx} + x^2y = x^5$ Solution: Let $\frac{dy}{dx} + x^2y = x^5$ be the given differential equation, which is linear differential equation, with $P = x^2$ and $Q = x^5$ Now $\int P dx = \int x^2 dx = \frac{1}{3}x^3$ \therefore I.F. = $e^{\int P dx} = e^{\frac{1}{3}x^3}$ \therefore General solution of given equaion is $ye^{\int P dx} = \int e^{\int P dx} Q dx + c$ i.e. $ye^{\frac{1}{3}x^3} = \int e^{\frac{1}{3}x^3} \cdot x^5 dx + c$ In integration put $\frac{1}{3}x^3 = t \therefore x^3 = 3t \therefore 3x^2 dx = 3dt$ i.e. $x^2 dx = dt$ $\therefore ye^{\frac{1}{3}x^3} = \int e^t \cdot 3tdt + c$ $= 3[te^t - \int e^t dt] + c$ $= 3[te^t - e^t] + c$ $= e^t[3t - 3] + c$ $\therefore ye^{\frac{1}{3}x^3} = e^{\frac{1}{3}x^3}(x^3 - 3) + c$

16

Ex. Solve $(1+x^2)\frac{dy}{dx} + 2xy - 1 = 0$ Solution: Let $(1+x^2)\frac{dy}{dx} + 2xy - 1 = 0$ i.e. $\frac{dy}{dx} + \frac{2x}{1+x^2}y = \frac{1}{1+x^2}$ be the given differential equation, which is linear differential equation, with $P = \frac{2x}{1+x^2}$ and $Q = \frac{1}{1+x^2}$ Now $\int Pdx = \int \frac{2x}{1+x^2} dx = \log(1+x^2)$ \therefore I.F. $= e^{\int Pdx} = e^{\log(1+x^2)} = 1+x^2$ \therefore General solution of given equaion is $ye^{\int Pdx} = \int e^{\int Pdx}Qdx + c$ i.e. $y(1 + x^2) = \int (1 + x^2) \cdot \frac{1}{1+x^2} dx + c$ $= \int dx + c$ $\therefore y(1 + x^2) = x + c$

Bernoulli's Differential Equation: A differential equation of type $\frac{dy}{dx} + Py = Qy^n$ where P and Q are functions of x alone is called Bernoulli's differential equation. **Method of Solving Bernoulli's Differential Equation:**

Consider the Bernoulli's equation

where P and Q are functions of x alone Multiplying equation (1) by y⁻ⁿ we get,

$$y^{-n}\frac{dy}{dx} + Py^{-n} = Q$$

Put $y^{1-n} = v$ \therefore $(1-n)y^{-n}\frac{dy}{dx} = \frac{dv}{dx}$ i.e. $y^{-n}\frac{dy}{dx} = \frac{1}{(1-n)}\frac{dv}{dx}$
 $\therefore \frac{1}{(1-n)}\frac{dv}{dx} + Pv = Q$

$$\frac{dv}{dx} + (1 - n)Pv = (1 - n)Q$$
 with Right and $\frac{dv}{dx} + P_1v = Q_1$

Which is linear differential equation, where $P_1 = (1 - n)P$ and $Q_1 = (1 - n)Q$ $\therefore I.F. = e^{\int P_1 dx}$

∴ General solution of given equaion is

$$ve^{\int P_1 dx} = \int e^{\int P_1 dx} Q_1 dx + c$$

i.e. $y^{1-n} e^{(1-n)\int P dx} = \int e^{(1-n)\int P dx} (1-n)Q dx + c$

Remark:1) Bernoulli's differential equation may be is of type $\frac{dx}{dy} + Px = Qx^n$ where P and Q are functions of y alone.

2) If given differential equation is of type $f'(y)\frac{dy}{dx} + Pf(y) = Q$

17

where P and Q are functions of x alone, then to reduce it into linear differential equation by putting f(y) = v and then solve.

3) If given differential equation is of type $f'(x)\frac{dx}{dy} + Pf(x) = Q$

where P and Q are functions of y alone, then to reduce it into linear differential equation by putting f(x) = v and then solve.

Ex. Solve $xy - \frac{dy}{dx} = y^3 e^{-x^2}$ Solution: Let $xy - \frac{dy}{dx} = y^3 e^{-x^2}$ i.e. $\frac{dy}{dx} - xy = -y^3 e^{-x^2}$ be the given differential equation, which is in the form of Bernoulli's equation. Multiplying equation (1) by y^{-3} we get, $y^{-3} \frac{dy}{dx} - xy^{-2} = -e^{-x^2}$

Put
$$y^{-2} = v$$
 $\therefore -2y^{-3}\frac{dy}{dx} = \frac{dv}{dx}$ i.e. $y^{-3}\frac{dy}{dx} = \frac{-1}{2}\frac{dv}{dx}$
 $\therefore \frac{-1}{2}\frac{dv}{dx} - xv = -e^{-x^2}$
 $\therefore \frac{dv}{dx} + 2xv = 2e^{-x^2}$

Which is linear differential equation, with P = 2x and $Q = 2e^{-x^2}$

- $\therefore \text{ I.F.} = e^{\int P dx} = e^{\int (2x) dx} = e^{x^2}$
- ∴ General solution of given equaion is $ve^{\int Pdx} = \int e^{\int Pdx}Qdx + c$ i.e. $y^{-2} e^{x^2} = \int e^{x^2}(2e^{-x^2})dx + c$ = 2x + c

$$e^{x^2} = 2xy^2 + cy^2$$

Ex. Solve $\frac{dy}{dx}$ - ytanx+y²secx = 0

Solution: Let $\frac{dy}{dx}$ - ytanx+y²secx = 0 i.e. $\frac{dy}{dx}$ - ytanx = -y²secx be the given differential equation, which is in the form of Bernoulli's equation. Multiplying equation (1) by y⁻² we get,

$$y^{2} \frac{dy}{dx} - y^{-1} \tan x = -\sec x$$
Put $y^{-1} = v \quad \therefore -y^{-2} \frac{dy}{dx} = \frac{dv}{dx}$
 $i.e.y^{-2} \frac{dy}{dx} = -\frac{dv}{dx}$
 $\therefore -\frac{dv}{dx} - v \tan x = -\sec x$
 $\therefore \frac{dv}{dx} + v \tan x = \sec x$
Which is linear differential equation, with P = tanx and Q = secx
 $\therefore I.F. = e^{\int Pdx} = e^{\int (tanx)dx} = e^{\log secx} = \sec x$
 \therefore General solution of given equation is
 $ve^{\int Pdx} = \int e^{\int Pdx}Qdx + c$
 $i.e. y^{-1} \sec x = \int \sec x(secx)dx + c$
 $i.e. y^{-1} \sec x = tanx + c$
 $\therefore y^{-1} \sec x = tanx + c$
 $\therefore secx = (tanx + c)y$

Ex. Solve $\tan y \frac{dy}{dx} + \tan x = \cos y \cos^2 x$ Solution: Let $\tan y \frac{dy}{dx} + \tan x = \cos y \cos^2 x$ i.e.secytany $\frac{dy}{dx} + \operatorname{secytan} x = \cos^2 x$ be the given differential equation in the form $f'(y)\frac{dy}{dx} + Pf(y) = Q$ with $f(y) = \operatorname{secy}$. \therefore Put f(y) = v i.e. $\operatorname{secy} = v$ \therefore $\operatorname{secytan} y \frac{dy}{dx} = \frac{dv}{dx}$ $\therefore \frac{dv}{dx} + \operatorname{vtan} x = \cos^2 x$

Which is linear differential equation in v and x, with $P = \tan x$ and $Q = \cos^2 x$ \therefore I.F. = $e^{\int Pdx} = e^{\int tanxdx} = e^{\log secx} = secx$ \therefore General solution of given equaion is $ve^{\int Pdx} = \int e^{\int Pdx}Qdx + c$ i.e.secy secx= $\int \sec(\cos^2 x) dx + c$ $= \int \cos x dx + c$ \therefore secy secx = sinx + c **Ex.** Solve $\frac{dy}{dx} - \frac{\tan y}{1+x} = (1+x)e^x \sec y$ **Solution:** Let $\frac{dy}{dx} - \frac{\tan y}{1+x} = (1+x)e^x$ secy i.e. $\cos y \frac{dy}{dx} - \frac{\sin y}{1+x} = (1+x)e^x$ be the given differential equation in the form $f'(y)\frac{dy}{dx} + Pf(y) = Q$ with f(y) = siny. $\therefore \text{ Put } f(y) = v \text{ i.e. } \sin y = v \qquad \therefore \cos y \frac{dy}{dx} = \frac{dv}{dx}$ $\therefore \frac{dv}{dx} - \frac{v}{1+x} = (1+x)e^x$ Which is linear differential equation in v and x, with $P = \frac{-1}{1+x}$ and $Q = (1+x)e^{x}$ $\therefore \text{ I.F.} = e^{\int P dx} = e^{\int \frac{-1}{1+x} dx} = e^{-\log(1+x)} = \frac{1}{(1+x)}$ ∴ General solution of given equaion is $ve^{\int Pdx} = \int e^{\int Pdx} Qdx + c$ i.e. $\frac{\sin y}{(1+x)} = \int \frac{1}{(1+x)} (1+x) e^{x} dx + c$ $= \int e^{x} dx + c$ $\therefore \frac{\sin y}{(1+r)} = e^{x} + c$ **MULTIPLE CHOICE QUESTIONS** 1) If $\lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$ is exists, then it is denoted by ... B) $f_y(x, y)$ C) $f_x(a, b)$ D) $f_y(a, b)$ A) $f_x(x, y)$ 2) If $\lim_{k \to 0} \frac{f(x, y+k) - f(x, y)}{k}$ is exists, then it is denoted by ...

A) $f_x(x, y)$ B) $f_y(x, y)$ C) $f_x(a, b)$ D) $f_y(a, b)$ 3) Partial derivative of f(x, y) w.r.t.x at point (a, b) is given by $f_x(a, b) = ...$ A) $\lim_{k \to 0} \frac{f(a, b+k)-f(a, b)}{k}$ B) $\lim_{h \to 0} \frac{f(a+h, b)-f(a, b)}{k}$ C) $\lim_{h \to 0} \frac{f(a+h, b)-f(a, b)}{h}$ D) $\lim_{k \to 0} \frac{f(a, b+k)-f(a, b)}{h}$ 4) Partial derivative of f(x, y) w.r.t.y at point (a, b) is given by $f_y(a, b) = ...$ A) $\lim_{k \to 0} \frac{f(a, b+k)-f(a, b)}{k}$ B) $\lim_{h \to 0} \frac{f(a+h, b)-f(a, b)}{h}$

DEPARTMENT OF MATHEMATICS - KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER

$f(a \perp b \mid b)$	f(a, b)	$f(a \ h \perp k)$	-f(a, b)
C) $\lim_{h \to 0} \frac{f(a+h, b)}{k}$		D) $\lim_{k \to 0} \frac{f(a, b+k)}{h}$	- <u>j (u, b)</u>
5) If $u = e^x \text{ sinxy then } \frac{\partial u}{\partial x} \text{ at } (0, 0) \text{ is } \dots$			
A) -1	B) 1	C) 0	D) $\frac{\pi}{2}$
6) If $u = e^x \text{ sinxy then } \frac{\partial u}{\partial y} \text{ at } (0, 0) \text{ is } \dots$			
A) -1	B) 1	C) 0	D) $\frac{\pi}{2}$
7) If $u = x^2y + y^2z + z^2x$ then $\frac{\partial u}{\partial x}$ at $(1, 1, 1)$ is			
A) 5	B) 4	C) 3	D) 2
8) If $u = x^2y + y^2z + z^2x$	then $\frac{\partial u}{\partial y}$ at $(1, 1, 1)$) is	
A) 5	B) 4 fine	C) 3	D) 2
9) If $u = x^2y + y^2z + z^2x$	then $\frac{\partial u}{\partial z}$ at $(1, 1, 1)$) is	
A) 5	B) 4	C) 3	D) 2
10) If $u = x^3 z + y^2 x - 2yz$	z then $\frac{\partial u}{\partial x}$ at $(1, 2, 3)$	3) is	
A) 11		C) 13	D) 14
11) If $u = x^3 z + y^2 x - 2yz$ then $\frac{\partial u}{\partial y}$ at (1, 2, 3) is			
A) 1	B) -2	C) 13	D) 4
12) If $u = x^3 z + y^2 x - 2yz$ then $\frac{\partial u}{\partial z}$ at (1, 2, 3) is			
A) -3	B) -2	C) 13	D) 4
13) If $u = xy + e^x$ then $\frac{\partial u}{\partial x}$	$\frac{u}{r}$ is	Kill a	
A) $xy + e^x$		C) x	D) 0
14) If $u = xy + e^x$ then $\frac{\partial u}{\partial y}$ is			
A) $xy + e^x$	B) $y + e^x$	िंद येन्द्रति मानवः	D) 0
A) $xy + e^{x}$ 15) If $u = xy + e^{x}$ then $\frac{\partial^{2}}{\partial x}$	$\frac{2^2 u}{x^2}$ is	ned to due antes	
A) $xy + e^x$	B) $y + e^x$	C) e ^x	D) 0
16) If $u = xy + e^x$ then $\frac{\partial^2 u}{\partial y^2}$ is			
	$(B) y + e^x$	C) x	D) y
17) If $u = xy + e^x$ then $\frac{\partial^2 u}{\partial x \partial y}$ is			
A) 0	B) 1	C) x	D) y
18) If $u = xy + e^x$ then $\frac{\partial^2 u}{\partial y \partial x}$ is			
A) 0	B) 1	C) y+e ^x	D) e^x
19) If $u = \log(\tan x + \tan y + \tan z)$ then $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = \dots$			
A) -1	B) 0	C) 1	D) 2

DEPARTMENT OF MATHEMATICS - KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 21

	MIH-ZUI: UKDINAKI DIFFEKENIIAL EQUATIONS		
20) If $u = (x^2 + y^2 + z^2)^{-1/2}$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = \dots$			
A) -u B) u	C) 0 D) 1		
21) If $u = log(x^3 + y^3 - x^2y - xy^2)$, then $\frac{\partial u}{\partial x}$ +	$-\frac{\partial u}{\partial y} = \dots$		
A) $\frac{-2}{x+y}$ B) $\frac{2}{x+y}$			
22) If M and N are the functions of variabl	es x, y then a differential equation		
Mdx + Ndy = 0 is called differential equation			
A) first order and first degree	B) first order and higher degree		
C) second order and first degree	D) None of these		
23) If M and N are the homogeneous functions of variables x, y of same degree then			
a differential equation $Mdx + Ndy = 0$ is called differential equation			
A) non-homogeneous			
	D) None of these		
24) A differential equation $Mdx + Ndy = 0$ is exact, if there exist function $u(x, y)$			
such that	The the		
A) $Mdx + Ndy = x$	$\begin{array}{c} B) Mdx + Ndy = y \\ D) Mdx + Ndy = du \end{array}$		
25) A differential equation $Mdx + Ndy = 0$ is exact if			
A) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$ B) $\frac{\partial M}{\partial x} \neq \frac{\partial N}{\partial y}$	C) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$ D) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$		
26) A differential equation $Mdx + Ndy = 0$ is homogeneous differential equation			
then I.F. is			
A) $\frac{1}{Mr - Ny}$ B) $\frac{1}{Mr + Ny}$	C $\frac{1}{D}$ D $\frac{1}{D}$		
27) A differential equation Mdx + Ndy = 0 is of type $f_1(xy)ydx + f_2(xy)xdy = 0$			
then I.F. is			
A) $\frac{1}{Mx - Ny}$ (Rec B) $\frac{1}{Mx + Ny}$ (R	(C) $\frac{1}{My - Nx}$ HFIC: D) $\frac{1}{My + Nx}$		
28) If $\frac{1}{N} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right]$ is a function of x alone, say f(x) then I.F. of equation			
$M dx + N dy = 0 \text{ is } \dots$			
A) $e^{\int f(y)dy}$ B) $e^{\int f(x)dx}$	$C)e^{\int f(z)dz}$ $D) e^{\int f(x)dy}$		
29) If $\frac{1}{M} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right]$ is a function of y alone, say f(y) then I.F. of equation			
Mdx + Ndy = 0 is			
A) $e^{f(y)dy}$ B) $e^{f(x)dx}$	C) $e^{f(z)dz}$ D) $e^{f(y)dx}$		
30) A differential equation of type $\frac{dy}{dx}$ + Py = Q where P and Q are functions of x			
alone is called			
A) non-linear differential equation	B) homogeneous differential equation		
C) linear differential equation	D) Bernoulli's equation		

x = Q where P and Q are functions of y			
alone is calledB) homogeneous differential equationA) non-linear differential equationB) homogeneous differential equation			
C) linear differential equation D) Bernoulli's equation			
32) A differential equation of type $\frac{dy}{dx} + Py = Q.y^n$ where P and Q are functions of x			
A) non-linear differential equation B) homogeneous differential equation			
D) Bernoulli's equation			
33) A differential equation of type $\frac{dx}{dy} + Px = Q.x^n$ where P and Q are functions of y			
A) non-linear differential equation B) homogeneous differential equation			
D) Bernoulli's equation			
34) I.F. of a linear differential equation of type $\frac{dy}{dx} + Py = Q$ where P and Q are			
C) $e^{\int P dz}$ D) $e^{\int Q dx}$			
35) I.F. of a linear differential equation of type $\frac{dx}{dy} + Px = Q$ where P and Q are			
2 a			
C) $e^{\int P dz}$ D) $e^{\int Q dy}$			
36) I.F. of differential equation $(x + y)dx + (y - x) dy = 0$ is A) $\frac{1}{x^2 + y^2}$ B) $\frac{1}{x^2 - y^2}$ C) $\frac{1}{x + y}$ D) 1			
37) I.F. of differential equation $\frac{dy}{dx} + 2y \tan x = \sin x$ is			
C) tanx D) sinx			
³ is			
$(C) \frac{1}{x}$ वेन्द्ति सानवः D) $\frac{1}{x}$			
X			
e f'(y) $\frac{dy}{dx}$ + Pf(y) = Q where P and Q are			
C) $f(y) = v$ D) $f'(y) = v$			
40) To solve a differential equation of type $f'(x) \frac{dx}{dy} + Pf(x) = Q$ where P and Q are			
C) $f(y) = v$ D) $f'(y) = v$			

23

UNIT-2: DIFFERENTIAL EQUATIONS OF FIRST ORDER AND HIGHER DEGREE

Definition: An equation $F(x, y, p) = p^n + A_1p^{n-1} + A_2p^{n-2} + \dots + A_{n-1}p + A_n = 0$ is called differential equations of first order and higher degree.

Where $A_1, A_2, \ldots, A_{n-1}, A_n$ are functions of x and y and $p = \frac{dy}{dx}$

Equation Solvable for p:

An equation $F(x, y, p) = p^n + A_1p^{n-1} + A_2p^{n-2} + ... + A_{n-1}p + A_n = 0$ is said to be solvable for p if it factorized into n linear factors.

Method of finding the solution of equation solvable for p:

Let an equation $F(x, y, p) = p^n + A_1 p^{n-1} + A_2 p^{n-2} + ... + A_{n-1} p + A_n = 0$ is solvable for p. \therefore F(x, y, p) is factorized into n linear factors say $F(x, y, p) = (p-f_1)(p-f_2)\dots(p-f_n)$ where f_1, f_2, \dots, f_n are functions of x, y \therefore From given equation, we have, $(p-f_1)(p-f_2)....(p-f_n) = 0$ \Rightarrow p-f₁ = 0 or p-f₂ = 0 or, p-f_n = 0 $\Rightarrow \frac{dy}{dx} - f_1 = 0, \frac{dy}{dx} - f_2 = 0, \dots, \frac{dy}{dx} - f_n = 0$ $\Rightarrow \frac{dy}{dx} = f_1(x, y), \frac{dy}{dx} = f_2(x, y), \dots, \frac{dy}{dx} = f_n(x, y)$ be the differential equations of first order and first degree. Solving these equations, we get general solutions as $\phi_1(x, y, c_1) = 0, \phi_2(x, y, c_2) = 0, \dots, \phi_n(x, y, c_n) = 0.$ As order of given equation is one, \therefore replace arbitrary constants c_1, c_2, \dots, c_n by single constant c. $\phi_1(x, y, c) = 0, \phi_2(x, y, c) = 0, \dots, \phi_n(x, y, c_n) = 0$ be the general solutions of linear factors. : General solution of given equation is $\phi_1(\mathbf{x}, \mathbf{y}, \mathbf{c})\phi_2(\mathbf{x}, \mathbf{y}, \mathbf{c})\dots\phi_n(\mathbf{x}, \mathbf{y}, \mathbf{c}) = 0.$

Ex. Solve $p^2 - 8p + 12 = 0$ Solution: Let $p^2 - 8p + 12 = 0$ i.e. (p - 2)(p - 6) = 0be the given differential equation, which is solvable for p $\therefore p - 2 = 0$ or p - 6 = 0i.e. $\frac{dy}{dx} - 2 = 0$ or $\frac{dy}{dx} - 6 = 0$ $\therefore dy = 2dx$ or dy = 6dxIntegrating, we get, y = 2x + c or y = 6x + c

i.e. 2x - y + c = 0 or 6x - y + c = 0 \therefore The G. S. of given equation is (2x - y + c)(6x - y + c) = 0**Ex.** Solve $p^2 - 7p + 10 = 0$ **Solution:** Let $p^2 - 7p + 10 = 0$ i.e. (p - 2)(p - 5)=0be the given differential equation, which is solvable for p : p - 2 = 0 or p - 5 = 0i.e. $\frac{dy}{dx} - 2 = 0$ or $\frac{dy}{dx} - 5 = 0$ \therefore dy = 2dx or dy = 5dx Integrating, we get, y = 2x + c or y = 5x + ci.e. 2x - y + c = 0 or 5x - y + c = 0 \therefore The G. S. of given equation is (2x - y + c)(5x - y + c) = 0**Ex.** Solve p(p-y) = x(x+y)**Solution:** Let p(p-y) = x(x+y)i.e. $p^2 - py - x(x+y) = 0$ i.e. (p+x)(p-x-y) = 0be the given differential equation, which is solvable for p \therefore p + x = 0 or p - x - y = 0 i.e. $\frac{dy}{dx} + x = 0$ or $\frac{dy}{dx} - x - y = 0$ i) Consider $\frac{dy}{dx} + x = 0$ dy + xdx = 0Integrating, we get, $y + \frac{1}{2}x + c_1 = 0$ i.e. 2y + x + c = 0.....(1) where $2c_1 = c$ ii) Consider $\frac{dy}{dx} - y = x$ Which is linear differential equation with P = -1 and Q = x having G.S. $ve^{\int Pdx} = \int e^{\int Pdx} Qdx + c$ i.e. $ye^{\int (-1)dx} = \int e^{\int (-1)dx} x dx + c$ \therefore y $e^{-x} = \int e^{-x} x dx + c$ $\therefore ye^{-x} = -xe^{-x} - \int (-e^{-x})dx + c$ $\therefore \mathbf{y}e^{-\mathbf{x}} = -\mathbf{x}e^{-\mathbf{x}} - e^{-\mathbf{x}} + \mathbf{c}$ \therefore y = -x-1 + ce^x \therefore x+y+1- c $e^{x} = 0$ (2) From equation (1), (2) the G. S. of given equation is $(x + 2y + c) (x+y+1-ce^{x}) = 0$

Ex. Solve $\frac{1}{n} - p = \frac{y}{x} - \frac{x}{y}$ **Solution:** Let $\frac{1}{p} - p = \frac{y}{x} - \frac{x}{y}$ i.e. $\frac{1-p^2}{n} = \frac{y^2 - x^2}{xy}$ i.e. $\frac{p^2 - 1}{n} = \frac{x^2 - y^2}{ry}$ i.e. $xyp^2 - xy - (x^2 - y^2)p = 0$ i.e. $xyp^2 - x^2p + y^2p - xy = 0$ i.e. (yp-x)(xp+y) = 0be the given differential equation, which is solvable for p \therefore yp - x = 0 or xp + y = 0 i) Consider yp - x = 0 i.e.y $\frac{dy}{dx} - x = 0$ \therefore ydy - xdx = 0 Integrating, we get, $\frac{1}{2}y^2 - \frac{1}{2}x^2 = c_1$ i.e. $y^2 - x^2 - c = 0$(1) where $2c_1 = c$ ii) Consider xp + y = 0 i.e. $x \frac{dy}{dx} + y = 0$ $\therefore \frac{dy}{y} + \frac{dx}{z} = 0$ Integrating, we get, logy + logx = logc $\therefore \log(xy) = \log c$ $\therefore xy = c$ \therefore xy - c = 0 (2) From equation (1), (2) the G. S. of given equation is $(y^2 - x^2 - c) (xy - c) = 0$ **Ex.** Solve $x^2 \left(\frac{dy}{dx}\right)^2 + xy \frac{dy}{dx} - 6y^2 = 0$ **Solution:** Let $x^2 \left(\frac{dy}{dx}\right)^2 + xy \frac{dy}{dx} - 6y^2 = 0$ i.e. $x^2p^2 + xyp - 6y^2 = 0$ i.e. (xp-2y)(xp+3y) = 0be the given differential equation, which is solvable for p $\therefore xp - 2y = 0 \text{ or } xp + 3y = 0$ i) Consider xp - 2y = 0 i.e. $x \frac{dy}{dx} - 2y = 0$ $\therefore \frac{dy}{y} - 2\frac{dx}{x} = 0$ Integrating, we get, $\log y - 2 \log x = \log c$

$$\therefore \log \frac{y}{x^2} = \log c$$

$$\therefore \frac{y}{x^2} = c$$

$$\therefore y - cx^2 = 0 \dots (1)$$

ii) Consider xp + 3y = 0 i.e. $x \frac{dy}{dx} + 3y = 0$

$$\therefore \frac{dy}{y} + 3 \frac{dx}{x} = 0$$

Integrating, we get,

$$\log y + 3\log x = \log c$$

$$\therefore \log(x^3y) = \log c$$

$$\therefore x^3y = c$$

$$\therefore x^3y - c = 0 \dots (2)$$

From equation (1), (2) the G. S. of given equation is
 $(y - cx^2) (x^3y - c) = 0$

Equation Solvable for y: An equation F(x, y, p) = 0, where $p = \frac{dy}{dx}$ is said to be solvable for y if it can be expressed as y = f(x, p).

Method of finding the solution of equation solvable for y:

Let an equation F(x, y, p) = 0 (1) is solvable for y.

 \therefore it expressed as $y = f(x, p) \dots (2)$

Differentiating equation (2) w.r.t. x, we get,

 $\frac{dy}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial p} \frac{dp}{dx}$ $\therefore p = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial p} \frac{dp}{dx} \dots (3)$

Equation (3) is the differential equation of first order and first degree in p and x. Solving it, we get general solution as

 $\phi(x, p, c) = 0 \dots (4)$

Eliminating p from given equations (1) and (4) we get required general solution of equation (1).

If elimination of p from given equations (1) and (4) is not possible, then equations (1) and (4) represent general solution of equation (1) with p as parameter.

Ex. Solve $px - x^4 p^2 = -y$ Solution: Let $px - x^4 p^2 = -y$ i.e. $y = -px + x^4 p^2$ (1) be the given differential equation, which is solvable for y. Differentiating equation (1) w.r.t. x, we get, $\frac{dy}{dx} = -p - x \frac{dp}{dx} + 4x^3p^2 + 2x^4p \frac{dp}{dx}$ $\therefore p = -p + 4x^3p^2 - x \frac{dp}{dx} (1 - 2x^3p)$ $\therefore 2p - 4x^3p^2 + x \frac{dp}{dx} (1 - 2x^3p) = 0$

$$\begin{array}{l} \therefore 2p(1-2x^{3}p) + x\frac{dp}{dx}(1-2x^{3}p) = 0 \\ \therefore (1-2x^{3}p)(2p+x\frac{dp}{dx}) = 0 \\ \\ \text{We reject the factor } (1-2x^{3}p) \text{ which does not contain } \frac{dp}{dx}. \\ \therefore \text{ Consider } (2p+x\frac{dp}{dx}) = 0 \\ \therefore 2\frac{dx}{x} + \frac{dp}{p} = 0 \\ \text{Integrating, we get,} \\ 2\log x + \log p = \log c \\ \hline x^{2}p = c \\ \hline p = \frac{c}{x^{2}} \dots (2) \\ \text{Eliminating p from given equations (1) and (2), we get,} \\ y = -x(\frac{c}{x^{2}}) + x^{4}(\frac{c}{x^{2}}) \text{ i.e. } y = -\frac{c}{x} + c^{2} \\ \text{be the required general solution of equation (1).} \\ \text{Ex. Solve } y = 2px + x^{2}p^{4} \\ \text{Solution: Let } y = 2px + x^{2}p^{4} \\ \text{Solution: Let } y = 2px + x^{2}p^{4} + 4x^{2}p^{3}\frac{dp}{dx} = p \\ \therefore p + 2xp^{4} + 2xp^{4} + 4x^{2}p^{3}\frac{dp}{dx} = 0 \\ \therefore p(1+2xp^{3})(p+2x\frac{dp}{dx}) = 0 \\ \hline (1+2xp^{3})(p+2x\frac{dp}{dx}) = 0 \\ \therefore p(1+2xp^{3})(p+2x\frac{dp}{dx}) = 0 \\ \text{We reject the factor } (1+2xp^{3}) \text{ which does not contain } \frac{dp}{dx} \\ \therefore \text{ Consider } (p+2x\frac{dp}{dx}) = 0 \\ \text{Integrating, we get,} \\ \log x + 2\log p = \log c \\ \therefore xp^{2} = c \\ \therefore p^{2} = \frac{c}{x} \\ \therefore p = \sqrt{\frac{c}{x}} \\ \therefore p = \sqrt{\frac{c}{x}} \\ \therefore p = \sqrt{\frac{c}{x}} \\ x = 2 \\ \text{We reject the factor (1+2xp^{3}) \text{ which does not contain } \frac{dp}{dx} \\ \text{How the theorem (1) is the top the top theorem (1) \\ \text{How the top theorem (1) } 1 \\ \text{How theorem (1) } 1 \\ \text{How the top theorem (1) } 1 \\ \text{We reject the factor (1+2xp^{3}) \text{ which does not contain } \frac{dp}{dx} \\ \text{How the top theorem (1) } 2 \\ \text{Himmating p from given equations (1) and (2), we get,} \\ 1 \\ y = 2x\sqrt{\frac{c}{x}} + x^{2}(\frac{c^{2}}{x^{2}}) \\ \text{i.e. } y = 2\sqrt{cx} + c^{2} \\ \text{be the required general solution of equation (1). \\ \end{array}$$

=:

Ex. Solve $y - 2px = f(xp^2)$ **Solution:** Let $y - 2px = f(xp^2)$ i.e. $y = 2px + f(xp^2) \dots (1)$ be the given differential equation, which is solvable for y. Differentiating equation (1) w.r.t. x, we get, $\frac{dy}{dx} = 2p + 2x\frac{dp}{dx} + f'(xp^2) \cdot [p^2 + 2xp\frac{dp}{dx}]$ $\therefore 2p + 2x \frac{dp}{dx} + f'(xp^2) \cdot [p^2 + 2xp \frac{dp}{dx}] = p$ $\therefore \mathbf{p} + \mathbf{p}^2 \mathbf{f}'(\mathbf{x}\mathbf{p}^2) + 2\mathbf{x} \frac{dp}{dx} + 2\mathbf{x}\mathbf{p} \mathbf{f}'(\mathbf{x}\mathbf{p}^2) \frac{dp}{dx} = 0$ $\therefore p[1 + pf'(xp^2)] + 2x \frac{dp}{dx} [1 + pf'(xp^2)] = 0$ $\therefore [1 + pf'(xp^2)](p + 2x\frac{dp}{dx}) = 0$ We reject the factor $[1 + pf'(xp^2)]$ which does not contain $\frac{dp}{dx}$. \therefore Consider $(p + 2x \frac{dp}{dx}) = 0$ $\therefore \frac{dx}{x} + 2 \frac{dp}{p} = 0$ Integrating, we get, $\log x + 2\log p = \log c$ $\therefore xp^2 = c$ $\therefore p^2 = \frac{c}{r}$ $\therefore \mathbf{p} = \sqrt{\frac{c}{x}}$ (2) Eliminating p from given equations (1) and (2), we get, $y = 2x \sqrt{\frac{c}{x} + f(x,\frac{c}{x})}$ i.e. $y = 2\sqrt{cx} + f(c)$ be the required general solution of equation (1). **Ex.** Solve $y + p^2 = 2px$ **Solution:** Let $y + p^2 = 2px$ i.e. $y = 2px - p^2$ (1)

be the given differential equation, which is solvable for y.

Differentiating equation (1) w.r.t. x, we get,

$$\frac{dy}{dx} = 2p + 2x \frac{dp}{dx} - 2p \frac{dp}{dx}$$
$$\therefore 2p + 2x \frac{dp}{dx} - 2p \frac{dp}{dx} = p$$
$$\therefore p + 2 \frac{dp}{dx} (x - p) = 0$$
$$\therefore p \frac{dx}{dp} + 2x - 2p = 0$$
$$\therefore p \frac{dx}{dp} + 2x = 2p$$

$$\therefore \quad \frac{dx}{dp} + \frac{2}{p} x = 2$$

Which is linear differential equation in x and p with $P = \frac{2}{n}$ and Q = 2.

: It's G. S. is $xe^{\int Pdp} = \int e^{\int Pdp} Qdp + c$ i.e. $xe^{\int (\frac{2}{p})dp} = \int e^{\int (\frac{2}{p})dp} 2dp + c$: $xe^{2logp} = 2\int e^{2logp}dp + c$: $xp^2 = 2\int p^2dp + c$: $xp^2 = \frac{2}{3}p^3 + c$ (2) Elimination of p from given equations (1) and (2) is not possible. : equations (1) and (2) represents G. S. of equation (1) with p as parameter.

Ex. Solve $y = (1+p)x + e^p$ Solution: Let $y = (1+p)x + e^p$ (1) be the given differential equation, which is solvable for y. Differentiating equation (1) w.r.t. x, we get, $\frac{dy}{dx} = (1+p) + x \frac{dp}{dx} + e^p \frac{dp}{dx}$ $\therefore 1 + p + \frac{dp}{dx} (x + e^p) = p$ $\therefore 1 + \frac{dp}{dx} (x + e^p) = 0$ $\therefore \frac{dx}{dp} + (x + e^p) = 0$ $\therefore \frac{dx}{dp} + x = -e^p$ Which is linear differential equation in x and p with P = 1 and Q = -e^p.

: It's G. S. is keen will an word function for the formula $xe^{\int Pdp} = \int e^{\int Pdp} Qdp + c$ i.e. $xe^{\int (1)dp} = \int e^{\int (1)dp} (-e^p)dp + c$: $xe^p = -\int e^p e^p dp + c$: $xe^p = -\int e^{2p}dp + c$: $xe^p = -\frac{1}{2}e^{2p} + c$ (2) Eliminating p from given equations (1) and (2) is not possible.

 \therefore equations (1) and (2) represents G. S. of equation (1) with p as parameter.

Equation Solvable for x: An equation F(x, y, p) = 0, where $p = \frac{dy}{dx}$ is said to be solvable for x if it can be expressed as x = f(y, p).

Method of finding the solution of equation solvable for x:

Let an equation $F(x, y, p) = 0 \dots (1)$ is solvable for x.

 \therefore it expressed as $x = f(y, p) \dots (2)$

Differentiating equation (2) w.r.t. y, we get,

$$\frac{dx}{dy} = \frac{\partial f}{\partial y} + \frac{\partial f}{\partial p} \frac{dp}{dy}$$
$$\therefore \frac{1}{p} = \frac{\partial f}{\partial y} + \frac{\partial f}{\partial p} \frac{dp}{dy} \dots (3)$$

Equation (3) is the differential equation of first order and first degree in p and y. Solving it, we get general solution as

 $\phi(y, p, c) = 0$ (4)

Eliminating p from given equations (1) and (4) we get required general solution of equation (1).

If elimination of p from given equations (1) and (4) is not possible, then equations (1) and (4) represent general solution of equation (1) with p as parameter.

Ex. Solve $y = 2px + yp^2$

Solution: Let $y = 2px + yp^2$ i.e. $2px = y - yp^2$ i.e. $2x = \frac{y}{p} - yp$ (1)

be the given differential equation, which is solvable for x. Differentiating equation (1) w.r.t. y, we get,

$$2 \frac{dx}{dy} = \frac{1}{p} - \frac{y}{p^2} \frac{dp}{dy} - p - y \frac{dp}{dy}$$

$$\therefore \frac{2}{p} = \frac{1}{p} - p - y \frac{dp}{dy} (\frac{1}{p^2} + 1)$$

$$\therefore \frac{1}{p} + p + y \frac{dp}{dy} (\frac{1}{p^2} + 1) = 0$$

$$\therefore p(\frac{1}{p^2} + 1) + y \frac{dp}{dy} (\frac{1}{p^2} + 1) = 0$$

$$\therefore (\frac{1}{p^2} + 1) (p + y \frac{dp}{dy}) = 0$$

We reject the factor $(\frac{1}{p} + 1)$ which does not contain

We reject the factor
$$(\frac{1}{p^2} + 1)$$
 which does not contain $\frac{dp}{dy}$

$$\therefore \text{ Consider } (p + y \frac{dp}{dy}) = 0$$

$$\frac{dy}{v} + \frac{dp}{p} = 0$$

Integrating, we get,

logy + logp = logc

$$\therefore$$
 yp = c

$$\therefore \mathbf{p} = \frac{c}{v} \dots \dots (2)$$

Eliminating p from given equations (1) and (2), we get,

$$y = 2x(\frac{c}{y}) + y(\frac{c^2}{y^2})$$

i.e. $y^2 = 2cx + c^2$ is the required general solution of equation (1).

Ex. Solve
$$p^3 - 4xyp + 8y^2 = 0$$

Solution: Let $p^3 - 4xyp + 8y^2 = 0$ i.e. $p^3 + 8y^2 = 4xyp$ i.e. $4x = \frac{8y}{p} + \frac{p^2}{y}$ (1)
be the given differential equation, which is solvable for x.
Differentiating equation (1) w.r.t. y, we get,
 $4\frac{dx}{dx} = \frac{8}{p} - \frac{p^2}{p^2}\frac{dy}{dy} - \frac{p^2}{p^2} + \frac{2p}{y}\frac{dp}{dy}$
 $\therefore \frac{4}{p} - \frac{p}{p^2} - \frac{8y}{p^2}\frac{dp}{dy} + \frac{2p}{y}\frac{dp}{dy}$
 $\therefore \frac{4}{p} - \frac{p^2}{p^2} - \frac{8y}{p^2}\frac{dp}{dy} + \frac{2p}{y}\frac{dp}{dy} = 0$
 $\therefore (\frac{4}{p} - \frac{p^2}{y^2}) - \frac{2p}{p^2}\frac{dp}{dy}(\frac{4}{p} - \frac{p^2}{y^2}) = 0$
 $\therefore (\frac{4}{p} - \frac{p^2}{y^2}) (1 - \frac{2y}{p}\frac{dp}{dy}) = 0$
We reject the factor $(\frac{4}{p} - \frac{p^2}{y^2})$ which does not contain $\frac{dp}{dy}$.
 $\therefore \text{ Consider } 1 - \frac{2y}{p}\frac{dp}{dy} = 0$
 $\therefore \frac{2}{p}\frac{dp}{p} - \frac{dy}{dy} = 0$
Integrating, we get,
2logp - logy = logc
 $\therefore \frac{p^2}{p} - cy$
 $\therefore p = \sqrt{cy}$ (2)
Eliminating p from given equations (1) and (2), we get.
 $(\sqrt{cy})^3 - 4xy\sqrt{cy} + 8y^2 = 0$
i.e. $c\sqrt{c} - 4x\sqrt{c} + 8\sqrt{y} = 0$ is the required general solution of equation (1).
Ex. Solve $4(xp^2 + yp) = y^4$
Solution: Let $4(xp^2 + yp) = y^4$ i.e. $4xp^2 = y^4 - 4yp$ i.e. $4x = \frac{y^4}{p^2} - \frac{4y}{p}$ (1)
be the given differential equation (1) w.r.t. y, we get,
 $4\frac{dx}{dy} = \frac{4y^3}{p^2} - \frac{2y^4}{p^3}\frac{dp}{dy} - \frac{4y}{p^2}\frac{dp}{dy}$
 $\therefore \frac{4}{p} - \frac{4}{p^3} + \frac{4y^3}{p^3}\frac{dp}{dy} - \frac{4y}{p^2}\frac{dp}{dy}$
 $\therefore \frac{4}{p} - \frac{4}{p^3} + \frac{2y^4}{p^3}\frac{dp}{dy} - \frac{4y}{p^2}\frac{dp}{dy}$
 $\therefore \frac{4}{p} - \frac{4}{p^3} + \frac{2y^4}{p^3}\frac{dp}{dy} + \frac{4y}{p^2}\frac{dp}{dy}$
 $\therefore \frac{4}{p} = -\frac{4}{p} + \frac{4y^3}{q^3} - \frac{2y^4}{p^3}\frac{dp}{dy} + \frac{4y}{q^3}\frac{dp}{dy}$
 $\therefore \frac{8}{p} - \frac{4y^3}{p^2} - \frac{2y^4}{p^3}\frac{dp}{dy} + \frac{4y}{p^2}\frac{dp}{dy}$
 $\therefore \frac{8}{p} - \frac{4y^3}{p^2} - \frac{2y^4}{p^3}\frac{dp}{dy} + \frac{4y}{p^2}\frac{dp$

We reject the factor $(\frac{4}{p} - \frac{2y^3}{p^2})$ which does not contain $\frac{dp}{dy}$ \therefore Consider $2 - \frac{y}{p} \frac{dp}{dy} = 0$ $\therefore 2 \frac{dy}{v} - \frac{dp}{p} = 0$ $\therefore \frac{dp}{n} - 2\frac{dy}{y} = 0$ Integrating, we get, logp - 2logy = logc $\therefore \frac{p}{v^2} = c$ $\therefore \mathbf{p} = cy^2 \dots (2)$ Eliminating p from given equations (1) and (2), we get, $4(xc^2y^4 + cy^3) = y^4$ i.e. 4c(cxy + 1) = y is the required general solution of equation (1). **Ex.** Solve $\left(\frac{dy}{dx}\right)^2 - 2x \frac{dy}{dx} + y = 0$ **Solution:** Let $(\frac{dy}{dx})^2 - 2x \frac{dy}{dx} + y = 0$ i.e. $p^2 - 2xp + y = 0$ i.e. $p^2 + y = 2xp$ i.e. $2x = p + \frac{y}{p}$ be the given differential equation, which is solvable for x. Differentiating equation (1) w.r.t. y, we get, $2\frac{dx}{dy} = \frac{dp}{dy} + \frac{1}{p} - \frac{y}{p^2}\frac{dp}{dy}$ $\therefore \frac{2}{p} = \frac{1}{p} + \frac{dp}{dy}\left(1 - \frac{y}{p^2}\right)$ $\therefore \frac{1}{p} - \frac{dp}{dy} \left(1 - \frac{y}{p^2}\right) = 0$ $\therefore \frac{dy}{dn} - p(1 - \frac{y}{n^2}) = 0$ $\frac{dy}{dp} - p + \frac{y}{p} = 0$ $\therefore \frac{dy}{dn} + \frac{y}{n} = p$ Which is linear differential equation in y and p with $P = \frac{1}{n}$ and Q = p \therefore It's G. S. is $ye^{\int Pdp} = \int e^{\int Pdp} Qdp + c$ i.e. $ye^{\int (\frac{1}{p})dp} = \int e^{\int (\frac{1}{p})dp} (p)dp + c$ \therefore v $e^{\text{logp}} = \int e^{\text{logp}} p dp + c$ \therefore yp = $\int p^2 dp + c$ \therefore yp = $\frac{1}{2}$ p³ + c (2) Eliminating p from given equations (1) and (2) is not possible. \therefore equations (1) and (2) represents G. S. of equation (1) with p as parameter. **Clairaut's Equation:** A differential equation of type y = px + f(p), where $p = \frac{dy}{dx}$ is said to be Clairut's equation.

Method of solving the Clairaut's equation:

Let $y = px + f(p) \dots (1)$ be the Clairut's equation, where $p = \frac{dy}{dx}$ Which is solvable for y. \therefore Differentiating equation (1) w.r.t. x, we get, $\frac{dy}{dx} = p + x\frac{dp}{dx} + f'(p)\frac{dp}{dx}$ $\therefore p = p + x\frac{dp}{dx} + f'(p)\frac{dp}{dx}$ $\therefore \frac{dp}{dx} [x + f'(p)] = 0$ We reject the factor [x + f'(p)] which does not contain $\frac{dp}{dx}$. \therefore Consider $\frac{dp}{dx} = 0$ \therefore dp = 0 Integrating, we get, p = c.....(2)Eliminating p from given equations (1) and (2), we get, y = cx + f(c) is the required general solution of Clairaut's equation.

Remark: The G.S. of Clairaut's equation y = px + f(p) is obtained by putting p = c.

Ex. Solve $y = px + p - p^2$ Solution: Let $y = px + p - p^2$ (1) be the given differential equation, which is in Clairaut's form. \therefore It's G.S. is obtained by putting p = c in equation (1) as $y = cx + c - c^2$ Ex. Solve $y = px + \sqrt{4 + p^2}$ Solution: Let $y = px + \sqrt{4 + p^2}$ (1) be the given differential equation, which is in Clairaut's form. \therefore It's G.S. is obtained by putting p = c in equation (1) as $y = cx + \sqrt{4 + c^2}$

Ex. Solve $y = px + \sqrt{a^2p^2 + b}$ **Solution:** Let $y = px + \sqrt{a^2p^2 + b}$ (1) be the given differential equation, which is in Clairaut's form. \therefore It's G.S. is obtained by putting p = c in equation (1) as $y = cx + \sqrt{a^2c^2 + b}$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER, 11

Ex. Solve $yp = a + xp^2$ Solution: Let $yp = a + xp^2$ i.e. $y = px + \frac{a}{p}$ (1) be the given differential equation, which is in Clairaut's form. \therefore It's G.S. is obtained by putting p = c in equation (1) as $y = cx + \frac{a}{c}$ Ex. Solve $y - a\sqrt{1 + p^2} - px = 0$ Solution: Let $y - a\sqrt{1 + p^2} - px = 0$ i.e. $y = px + a\sqrt{1 + p^2}$ (1) be the given differential equation, which is in Clairaut's form.

 \therefore It's G.S. is obtained by putting p = c in equation (1) as

 $y = cx + a\sqrt{1 + c^2}$

Ex. Solve p = cot(px - y)

Solution: Let $p = \cot(px - y)$ i.e. $\cot^{-1}p = px - y$ i.e. $y = px - \cot^{-1}p$ (1) be the given differential equation, which is in Clairaut's form.

 \therefore It's G.S. is obtained by putting p = c in equation (1) as

 $y = cx - cot^{-1}c$

Ex. Solve p = sin(y - px)

Solution: Let p = sin(y - px) i.e. $y - px = sin^{-1}p$ i.e. $y = px + sin^{-1}p$ (1) be the given differential equation, which is in Clairaut's form. \therefore It's G.S. is obtained by putting p = c in equation (1) as $y = cx + sin^{-1}c$

Ex. Solve p = log(y - px) **Solution:** Let p = log(y - px) i.e. $y - px = e^p$ i.e. $y = px + e^p$ (1) be the given differential equation, which is in Clairaut's form. \therefore It's G.S. is obtained by putting p = c in equation (1) as $y = cx + e^c$

Ex. Solve (y - px)(p - 1) + p = 0 **Solution:** Let (y - px)(p - 1) + p = 0 i.e. $y - px = \frac{-p}{p-1}$ i.e. $y = px + \frac{p}{1-p}$ (1) be the given differential equation, which is in Clairaut's form. \therefore It's G.S. is obtained by putting p = c in equation (1) as $y = cx + \frac{c}{1-c}$ Ex. Solve $cospx.cosy = p^2 - sinpx.siny$ Solution: Let $cospx.cosy = p^2 - sinpx.siny$ i.e. $cospx.cosy+ sinpx.siny = p^2$ i.e. $cos(y - px) = p^2$ i.e. $y - px = cos^{-1}p^2$ i.e. $y = px + cos^{-1}p^2$ (1) be the given differential equation, which is in Clairaut's form. \therefore It's G.S. is obtained by putting p = c in equation (1) as $y = cx + cos^{-1}c^2$

Ex. Solve sinpx.cosy - cospx.siny - p = 0 **Solution:** Let sinpx.cosy - cospx.siny - p = 0 i.e. sin(px - y) = pi.e. $px - y = sin^{-1}p$ i.e. $y = px - sin^{-1}p$ (1) be the given differential equation, which is in Clairaut's form. \therefore It's G.S. is obtained by putting p = c in equation (1) as $y = cx - sin^{-1}c$

Ex. Solve $y = x(\frac{dy}{dx}) + (\frac{dy}{dx})^2$ **Solution:** Let $y = x(\frac{dy}{dx}) + (\frac{dy}{dx})^2$ i.e. $y = px + p^2$ (1) where $p = \frac{dy}{dx}$ be the given differential equation, which is in Clairaut's form. \therefore It's G.S. is obtained by putting p = c in equation (1) as $y = cx + c^2$

Ex. Solve $y = x\frac{dy}{dx} + a(\frac{dy}{dx})(1 - \frac{dy}{dx})$ more in reference in reference in the second se

Equations reducible to Clairaut's form: By using some proper substitution given differential equation can be reduced to Clairut's form and it's G.S. is obtained by putting p = c and resubstituting the values.

Ex. Solve $e^{4x} (p - 1) + e^{2y} p^2 = 0$ by putting $e^{2x} = u$ and $e^{2y} = v$. Solution: Let $e^{4x} (p - 1) + e^{2y} p^2 = 0$(1)

be the given differential equation,

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER. 13

Putting
$$e^{2x} = u$$
 and $e^{2y} = v$, we get,
 $2e^{2x}dx = du$ and $2e^{2y}dy = dv$
 $\therefore \frac{2e^{2x}dx}{2e^{2x}dx} = \frac{dv}{du}$
 $\frac{2e^{2x}dy}{dx} = \frac{e^{2x}}{e^{2y}}\frac{du}{du} = \frac{u}{v}\frac{dv}{du}$
i.e. $p = \frac{u}{v}P$ where $P = \frac{dv}{du}$
 \therefore Putting this values in (1), we get,
 $u^2(\frac{u}{v}P - 1) + v(\frac{u}{v}P^2) = 0$
i.e. $\frac{u^2}{v}(Pu - v) + \frac{u^2}{v}P^2 = 0$
i.e. $Pu - v + P^2 = 0$
i.e. $v = Pu + P^2$
which is in Clairaut's form.
 \therefore It's G.S. is obtained by putting $P = c$ as
 $v = cu + c^2$
 $\therefore e^{2y} = ce^{2x} + c^2$ is the G. S. of equation (1).
Ex. Solve $(x - py) (px - y) = 2p$ by putting $x^2 = u$ and $y^2 = v$.
Solution: Let $(x - py) (px - y) = 2p$ by nutting $x^2 = u$ and $y^2 = v$.
Solution: Let $(x - py) (px - y) = 2p$(1)
be the given differential equation,
Putting $x^2 = u$ and $2ydy = dv$
 $\therefore \frac{2ydy}{2xdx} = \frac{du}{du}$
 $\therefore \frac{du}{2xdx} = \frac{x}{y} \frac{du}{dv} = \frac{\sqrt{u}}{\sqrt{v}} \frac{du}{du}$
i.e. $p = \sqrt{\frac{u}{\sqrt{v}}} P$ where $P = \frac{du}{du}$
 $\therefore Putting this values in (1), we get,$
 $(\sqrt{u} - \frac{\sqrt{u}}{\sqrt{v}} P\sqrt{v})(\sqrt{\frac{u}{v}} P\sqrt{u} - \sqrt{v}) = 2\frac{\sqrt{u}}{\sqrt{v}} P$
i.e. $(P - 1) (v - Pu) = 2P$
i.e. $v = Pu + \frac{2P}{P-1}$
which is in Clairaut's form.
 \therefore It's G.S. is obtained by putting $P = c$ as

v = cu +
$$\frac{2c}{c-1}$$

∴ y² = cx² + $\frac{2c}{c-1}$ is the G. S. of equation (1).

Ex. Solve $(x + py) (px - y) = \lambda^2 p$ by putting $x^2 = u$ and $y^2 = v$. **Solution:** Let $(x + py) (px - y) = \lambda^2 p.....(1)$ be the given differential equation, Putting $x^2 = u$ and $y^2 = v$, we get, 2xdx = du and 2ydy = dv $\therefore \frac{2ydy}{2xdx} = \frac{dv}{du}$ $\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{v} \frac{\mathrm{d}v}{\mathrm{d}u} = \frac{\sqrt{u}}{\sqrt{v}} \frac{\mathrm{d}v}{\mathrm{d}u}$ i.e. $p = \frac{\sqrt{u}}{\sqrt{v}} P$ where $P = \frac{dv}{du}$ \therefore Putting this values in (1), we get, $(\sqrt{u} + \frac{\sqrt{u}}{\sqrt{n}} P \sqrt{v}) (\frac{\sqrt{u}}{\sqrt{n}} P \sqrt{u} - \sqrt{v}) = \lambda^2 \frac{\sqrt{u}}{\sqrt{n}} P$ i.e. $\frac{\sqrt{u}}{\sqrt{v}}(1 + P) (Pu - v) = \lambda^2 \frac{\sqrt{u}}{\sqrt{v}} P$ i.e. $(1 + P) (Pu - v) = \lambda^2 P$ i.e. Pu - v = $\frac{\lambda^2 P}{1+P}$ i.e. $v = Pu - \frac{\lambda^2 P}{1+P}$ which is in Clairaut's form. \therefore It's G.S. is obtained by putting P = c as $v = cu - \frac{\lambda^2 c}{1+c}$ $\therefore y^2 = cx^2 - \frac{\lambda^2 c}{1+c}$ is the G. S. of equation (1). **Ex.** Solve xy(y - px) = (x + py), using $x^2 = u$ and $y^2 = v$. **Solution:** Let xy(y - px) = (x + py).....(1)be the given differential equation, Putting $x^2 = u$ and $y^2 = v$, we get, 2xdx = du and 2ydy = dv $\frac{2xdx}{dx} = \frac{1}{y} \frac{dv}{du} = \frac{\sqrt{u}}{\sqrt{v}} \frac{dv}{du}$ i.e. $p = \frac{\sqrt{u}}{\sqrt{v}} P$ where $P = \frac{dv}{du}$ \therefore Putting this values in (1), we get, $\sqrt{u} \sqrt{v} (\sqrt{v} - \frac{\sqrt{u}}{\sqrt{v}} P \sqrt{u}) = (\sqrt{u} + \frac{\sqrt{u}}{\sqrt{v}} P \sqrt{v})$ i.e. $\sqrt{u}(v - Pu) = \sqrt{u}(1+P)$ i.e. (v - Pu) = 1 + P

i.e. v = Pu + 1 + P

which is in Clairaut's form.

 \therefore It's G.S. is obtained by putting P = c as

$$v = cu + 1 + c$$

 \therefore y² = cx² + 1+ c is the G. S. of equation (1).

Ex. Solve $y^2 = pxy + f(p, \frac{y}{x})$, using $x^2 = u$ and $y^2 = v$. Solution: Let $y^2 = pxy + f(p, \frac{y}{x})$ (1) be the given differential equation, Putting $x^2 = u$ and $y^2 = v$, we get, 2xdx = du and 2ydy = dv $\therefore \frac{2ydy}{2xdx} = \frac{dv}{du}$ $\therefore \frac{dy}{2xdx} = \frac{x}{y}\frac{dv}{du} = \frac{\sqrt{u}}{\sqrt{v}}\frac{dv}{du}$ i.e. $p = \frac{\sqrt{u}}{\sqrt{v}} P$ where $P = \frac{dv}{du}$ \therefore Putting this values in (1), we get, $v = \frac{\sqrt{u}}{\sqrt{v}} P\sqrt{u}\sqrt{v} + f(\frac{\sqrt{u}}{\sqrt{v}} P, \frac{\sqrt{v}}{\sqrt{u}})$ i.e. v = Pu + f(P)which is in Clairaut's form. \therefore It's G.S. is obtained by putting P = c as v = cu + f(c) $\therefore y^2 = cx^2 + f(c)$ is the G. S. of equation (1).

MULTIPLE CHOICE QUESTIONS (MCQ'S)

1) If A ₁ , A ₂ ,, A _{n-1} , A _n are functions of x and y and $p = \frac{dy}{dx}$, then an equation	
$F(x, y, p) = p^{n} + A_{1}p^{n-1} + A_{2}p^{n-2} + \dots + A_{n-1}p + A_{n} = 0$ is called differential equations	
of	
A) first order and first degree	B) first order and higher degree
C) higher order and first degree	D) None of these
2) The differential equation $F(x, y, p) = 0$ is factorized into linear factors then it said	
to be	सध्द विन्दात मानवः।।
A) solvable for p	B) solvable for y
C) solvable for x	D) None of these
3) The differential equation $p^2 - 7p + 10 = 0$ is	
A) solvable for x	B) solvable for y
C) solvable for p	D) None of these
4) The differential equation $p^2 - 8p + 12 = 0$ is	
A) solvable for x	B) solvable for p
C) solvable for y	D) None of these
5) The differential equation $p^2 + 6p + 8 = 0$ is	
A) solvable for x	B) solvable for y
C) solvable for p	D) None of these

```
DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER, 16
```

6) The differential equation $p(p - y) = x($		
A) solvable for p	B) solvable for y	
C) solvable for x $1 $ $y $ x	D) None of these	
7) The differential equation $\frac{1}{p} - p = \frac{y}{x} - \frac{x}{y}$ is		
A) solvable for p	B) solvable for y	
C) solvable for x	D) None of these	
8) The differential equation $x^2 \left(\frac{dy}{dx}\right)^2 - xy\frac{dy}{dx} - 6y^2 = 0$ is		
A) solvable for x	B) solvable for y	
C) solvable for p	D) None of these	
9) The differential equation $F(x, y, p) = 0$ is solvable for y if it can be expressed as		
A) $y = f(x, p)$ B) $x = f(y, p)$	C) $p = f(x, y)$ D) None of these	
10) If the differential equation $F(x, y, p) = 0$ is expressed as $y = f(x, p)$ then it said to		
be	A 100 M	
A) solvable for p	B) solvable for y	
C) solvable for x	D) None of these	
11) The differential equation $y = 2px + 1$	$f(xp^2)$ is	
A) solvable for x	B) solvable for y	
C) solvable for p	D) None of these	
12) The differential equation $y = 2px + x^2p^4$ is		
A) solvable for p	B) solvable for y	
C) solvable for x	D) None of these	
13) The differential equation $4y = x^2 + p^2$ is		
A) solvable for y	B) solvable for x	
C) solvable for p	D) None of these	
14) The differential equation $y + p^2 = 2px^2$ is		
A) solvable for x	B) solvable for y	
C) solvable for p	D) None of these	
15) The differential equation $F(x, y, p) =$	= 0 is solvable for x if it can be expresed as	
A) $y = f(x, p)$ B) $x = f(y, p)$	C) $p = f(x, y)$ D) None of these	
16) If the differential equation $F(x, y, p)$	= 0 is expressed as $x = f(y, p)$,	
then it said to be		
A) solvable for p	B) solvable for y	
C) solvable for x	D) None of these	
17) The differential equation $y = 2px + y^3p^2$ is		
A) solvable for p	B) solvable for y	
C) solvable for x	D) None of these	
18) The differential equation $y = 2px + y^2p^3$ is		
A) solvable for x	B) solvable for y	
C) solvable for p	D) None of these	

19) The differential equation $p^3 - 4xyp + 8y^2 = 0$ is A) solvable for p B) solvable for x C) solvable for y D) None of these 20) The differential equation $4(xp^2 + yp) = y^4$ is A) solvable for x B) solvable for y D) None of these C) solvable for p 21) The differential equation $\left(\frac{dy}{dx}\right)^2 y^2 - 2x\frac{dy}{dx} + y = 0$ is A) solvable for x B) solvable for y C) solvable for p D) None of these 22) The differential equation $\frac{1}{p} = \cot(x - \frac{p}{1+p^2})$ is A) solvable for p B) solvable for x D) None of these C) solvable for y 23) The equation of type y = px + f(p), where $p = \frac{dy}{dx}$ is called B) Linear equation A) Clairaut's equation D) None of these C) Bernoulli's equation 24) The solution of Clairaut's equation y = px + f(p) is obtained by putting $p = \dots$ A) y C) c B) x D) None of these 25) The solution of Clairaut's equation y = px + f(p) is A) y = cx + f(c) B) $y = pc + e^{c}$ C) y = px - f(c) D) None of these 26) The solution of differential equation p = cot(px - y) is A) $y = cx - cot^{-1}c$ B) y = cx - cotp C) y = cx + cotp D) None of these 27) The solution of differential equation $p = \log(y - px)$ is A) $y = \log(y - cx)$ B) $y = cx + e^{c}$ C) $y = pc - e^{c}$ D) None of these 28) The solution of differential equation (y - px)(p - 1) + p = 0 is A) $x = cy - \frac{c}{1-c}$ B) $y = cx - \frac{c}{1-c}$ C) $y = cx + \frac{c}{1-c}$ D) None of these 29) The solution of differential equation (y - px)(p - 1) = p is A) $y = cx + \frac{c}{c-1}$ B) $y = cx + \frac{c}{1-c}$ C) $y = cx + \frac{c}{1-c}$ D) None of these 30) The solution of differential equation y - $a\sqrt{1 + p^2}$ - px = 0 is A) $y = a\sqrt{1 + p^2} - cx$ B) $y = a\sqrt{1 + p^2} - px$ C) $y = cx + a\sqrt{1 + c^2}$ D) None of these 31) The solution of differential equation $yp = a + xp^2$ is A) $yp = a + c^{2}x$ B) $y = \frac{a}{c} + cx$ C) $cy = a + xp^{2}$ D) None of these 32) The solution of differential equation $y = x(\frac{dy}{dx}) + (\frac{dy}{dx})^2$ is A) $y = cx - c^2$ B) $y = -cx + c^2$ C) $y = cx + c^2$ D) None of these 33) The solution of differential equation $y = x \frac{dy}{dx} + a \frac{dy}{dx} (1 - \frac{dy}{dx})$ is B) y = cx - ac(1 - c)A) y = cx + ac(1 - c)D) None of these C) y = -cx + ac(1 - c)

UNIT-3: LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER AND HIGHER DEGREE

Linear Differential Equation with Constant Coefficients: A differential equation of the form $\frac{d^n y}{dx^n} + p_1 \frac{d^{n-1} y}{dx^{n-1}} + p_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + p_{n-1} \frac{dy}{dx} + p_n y = X$ i.e. f(D)y = X,

where $D \equiv \frac{d}{dx}$; $p_1, p_2, ..., p_n$ are constants and X is a function of x only, is called a

linear differential equation with constant co-efficients.

Associated Equation of the Linear Differential Equation: If f(D)y = X

is the linear differential equation with constant co-efficients, then f(D)y = 0 is called its associated equation.

Auxiliary Equation of the Linear Differential Equation: If f(D)y = X

is the linear differential equation with constant co-efficients, then f(D) = 0 is called its auxiliary equation (A.E.).

Complementary Function (C.F.): The part of G.S. which is solution of the associated equation f(D)y = 0 containing arbitrary constants is called Complementary Function (C.F.). **Particular Integral (P.I.)** The part of G.S. which is solution of f(D)y = X not involving arbitrary constants is called Particular Integral (P.I.) and denoted by P.I. $= \frac{1}{f(D)}X$

Remark: i) If y = u is the Complementary Function (C.F.) and y = v is Particular Integral

(P.I.) of LDE f(D)y = X, then y = u + v is the General Solution (G.S.) of it.

- ii) If operator $D \equiv \frac{d}{dx}$, then 1) $D^r y = \frac{d^r y}{dx^r}$, 2) $D^r D^k = D^{r+k}$, 3) $[f(x) D^r] y = f(x) \cdot D^r y$
- 4) $[f(x) + g(x)] D^{n} = f(x).D^{n} + g(x).D^{n}$, 5) $f(x)[D^{m} + D^{n}] = f(x).D^{m} + f(x).D^{n}$
- 6) $f_1(D)$ and $f_2(D)$ be operational factors, then $[f_1(D).f_2(D)]y = f_1(D)[f_2(D)y]$

7) If in LDE f(D)y = X, X = 0, then P.I. = 0 i.e. G.S. = C.F.

8) $\frac{1}{f(D)}$ is called inverse operator of f(D).

Process of Finding Complementary Function (C.F.):

- i) If an A.E. f(D) = 0 of LDE f(D)y = X has n distinct roots $m_1, m_2, m_3, ..., m_n$, then C.F.= $C_1 e^{m_1 x} + C_2 e^{m_2 x} + ... + C_n e^{m_n x}$
- ii) If an A.E. f(D) = 0 of LDE f(D)y = X has root m, repeated k times, then C.F.= $(C_1 + C_2x + C_3x^2 + ... + C_kx^{k-1})e^{mx}$
- iii) If an A.E. f(D) = 0 of LDE f(D)y = X has complex roots $\alpha \pm i\beta$, then C.F.= $e^{\alpha x}(C_1 \cos\beta x + C_2 \sin\beta x)$
- iv) If an A.E. f(D) = 0 of LDE f(D)y = X has complex roots $\alpha \pm i\beta$ occurs twice, then C.F.= $e^{\alpha x}[(C_1 + C_2 x)\cos\beta x + (C_3 + C_4 x)\sin\beta x]$

Properties of Inverse operator $\frac{1}{f(D)}$:

i)
$$\frac{1}{f(D)}[C_1X_1 + C_2X_2] = C_1\frac{1}{f(D)}X_1 + C_2\frac{1}{f(D)}X_2$$
 where C_1 and C_2 are constants.
ii) $\frac{1}{(D-\alpha)(D-\beta)} = \frac{1}{(\alpha-\beta)}[\frac{1}{(D-\alpha)} - \frac{1}{(D-\beta)}]$

Ex.: Solve
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} - 7y = 0$$

Solution: Let $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} - 7y = 0$
i.e. $(D^2 + 6D - 7)y = 0$ be the given LDE with constant coefficients,
Its A.E. is $D^2 + 6D - 7 = 0$
i.e. $(D - 1) (D + 7) = 0$
 $\therefore D = 1, -7$ are the distinct roots of an A.E.
 $\therefore C.F. = C_1 e^x + C_2 e^{-7x}$
Here $X = 0 \therefore P.I. = 0$.
 $\therefore G.S. = C.F. + P.I. = C.F.$
i.e. $y = C_1 e^x + C_2 e^{-7x}$
be the required G.S. of given equation

Ex.: Solve $\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 12y = 0$ Solution: Let $\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 12y = 0$ i.e. $(D^2 - 7D + 12)y = 0$ be the given LDE with constant coefficients, Its A.E. is $D^2 - 7D + 12 = 0$ i.e. (D - 3) (D - 4) = 0 $\therefore D = 3, 4$ are the distinct roots of an A.E. $\therefore C.F. = C_1 e^{3x} + C_2 e^{4x}$ Here $X = 0 \therefore P.I. = 0$. $\therefore G.S. = C.F. + P.I. = C.F.$ i.e. $y = C_1 e^{3x} + C_2 e^{4x}$ be the required G.S. of given equation.

Ex.: Solve $2\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 12y = 0$ Solution: Let $2\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 12y = 0$ i.e. $(2D^2 + 5D - 12)y = 0$ be the given LDE with constant coefficients, Its A.E. is $2D^2 + 5D - 12 = 0$ i.e. $2D^2 + 8D - 3D - 12 = 0$ i.e. 2D(D + 4) - 3(D + 4) = 0i.e. (D + 4) (2D - 3) = 0 $\therefore D = -4, \frac{3}{2}$ are the distinct roots of an A.E. $\therefore C.F. = C_1 e^{-4x} + C_2 e^{\frac{3}{2}x}$ Here $X = 0 \therefore P.I. = 0$. $\therefore G.S. = C.F. + P.I. = C.F.$ i.e. $y = C_1 e^{-4x} + C_2 e^{\frac{3}{2}x}$ be the required G.S. of given equation.

Ex.: Find the complementary function of $2\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2y = 0$

Solution: Let
$$2\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2y = 0$$

i.e. $(2D^2 + 3D - 2)y = 0$ be the given LDE with constant coefficients,
Its A.E. is $2D^2 + 3D - 2 = 0$
i.e. $2D^2 + 4D - D - 2 = 0$
i.e. $2D(D + 2) - (D + 2) = 0$
i.e. $(D + 2)(2D - 1) = 0$
 $\therefore D = -2, \frac{1}{2}$ are the distinct roots of an A.E.
 $\therefore C.F. = C_1 e^{-2x} + C_2 e^{\frac{1}{2}x}$

Ex.: Solve $(D^3 + 3D^2 - D - 3)y = 0$

Solution: Let $(D^3 + 3D^2 - D - 3)y = 0$ be the given LDE with constant coefficients,

Its A.E. is $D^3 + 3D^2 - D - 3 = 0$ i.e. $D^2 (D + 3) - (D + 3) = 0$ i.e. $(D + 3)(D^2 - 1) = 0$ i.e. (D + 3)(D - 1) (D + 1) = 0 $\therefore D = -3, 1, -1$ are the roots of an A.E. $\therefore C.F. = C_1 e^{-3x} + C_2 e^x + C_3 e^{-x}$ Here $X = 0 \therefore P.I. = 0$. $\therefore G.S. = C.F. + P.I. = C.F.$ i.e. $y = C_1 e^{-3x} + C_2 e^x + C_3 e^{-x}$ be the required G.S. of given equation. **Ex.:** Solve $4\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + y = 0$ Solution: Let $4\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + y = 0$ i.e. $(4D^2 - 4D + 1)y = 0$ be the given LDE with constant coefficients, Its A.E. is $4D^2 - 4D + 1 = 0$ i.e. $(2D-1)^2 = 0$ \therefore D = $\frac{1}{2}$, $\frac{1}{2}$ (repeated two times) are the roots of an A.E. $\therefore \text{ C.F.} = (\text{C}_1 + \text{C}_2 \text{x}) e^{\frac{1}{2} \text{x}}$ Here $X = 0 \therefore P.I. = 0$. : G.S. = C.F. i.e. $y = (C_1 + C_2 x)e^{\frac{1}{2}x}$ be the required G.S. of given equation. **Ex.:** Solve $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} - \frac{dy}{dx} - y = 0$ Solution: Let $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} - \frac{dy}{dx} - y = 0$ i.e. $(D^3 + D^2 - D - 1)y = 0$ be the given LDE with constant coefficients, Its A.E. is $D^3 + D^2 - D - 1 = 0$ i.e. $D^2 (D + 1) - (D + 1) = 0$ i.e. $(D + 1) (D^2 - 1) = 0$ i.e. $(D-1)(D+1)^2 = 0$ \therefore D = 1, D = -1, -1 (repeated two times) are the roots of an A.E. \therefore C.F. = C₁e^x + (C₂ + C₃x)e^{-x} Here $X = 0 \therefore P.I. = 0$. \therefore G.S. = C.F. + P.I. = C.F. i.e. $y = C_1 e^x + (C_2 + C_3 x) e^{-x}$ be the required G.S. of given equation. **Ex.:** Find the complementary function of $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = e^x$ **Solution:** Let $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = e^x$ i.e. $(D^3 + 2D^2 + D)y = e^x$ be the given LDE with constant coefficients, Its A.E. is $D^3 + 2D^2 + D = 0$ i.e. $D(D^2 + 2D + 1) = 0$ i.e. $D(D + 1)^2 = 0$ \therefore D = 0, D = -1, -1 (repeated two times) are the roots of an A.E. \therefore C.F. = C₁e^{0x}+ (C₂ + C₂x)e^{-x} $= C_1 + (C_2 + C_3 x)e^{-x}$

Ex.: Solve $(D - 1)^2 (D^2 - 1)y = 0$ Solution: Let $(D - 1)^2 (D^2 - 1)y = 0$ be the given LDE with constant coefficients, Its A.E. is $(D - 1)^2 (D^2 - 1) = 0$ i.e. $(D + 1) (D - 1)^3 = 0$ $\therefore D = -1, D = 1, 1, 1$ (repeated three times) are the roots of an A.E. $\therefore C.F. = C_1 e^{-x} + (C_2 + C_3 x + C_4 x^2) e^x$ Here $X = 0 \therefore P.I. = 0$. $\therefore G.S. = C.F. + P.I. = C.F.$ i.e. $y = C_1 e^{-x} + (C_2 + C_3 x + C_4 x^2) e^x$ be the required G.S. of given equation.

Ex.: Solve $(D - 1)^2 (D^2 + 1)y = 0$

Solution: Let $(D-1)^2 (D^2 + 1)y = 0$ be the given LDE with constant coefficients,

Its A.E. is $(D - 1)^2 (D^2 + 1) = 0$ $\therefore D = 1, 1, \pm i$ are the roots of an A.E. $\therefore C.F. = (C_1 + C_2x)e^x + e^{0x}(C_3 \cos x + C_4 \sin x)$ $= (C_1 + C_2x)e^x + C_3 \cos x + C_4 \sin x$ Here $X = 0 \therefore P.I. = 0$. $\therefore G.S. = C.F.+ P.I. = C.F.$ i.e. $y = (C_1 + C_2x)e^x + C_3 \cos x + C_4 \sin x$ be the required G.S. of given equation.

Ex.: Solve $(D^2 - 6D + 13)y = 0$ Solution: Let $(D^2 - 6D + 13)y = 0$ be the given LDE with constant coefficients, Its A.E. is $D^2 - 6D + 13 = 0$ $\therefore D = \frac{6\pm\sqrt{36-52}}{2} = 3\pm2i$ are the roots of an A.E. $\therefore C.F. = e^{3x}(C_1\cos 2x + C_2\sin 2x)$

Here $X = 0 \therefore P.I. = 0$.

 $\therefore \text{ G.S.} = \text{C.F.} + \text{P.I.} = \text{C.F.}$

i.e. $y = e^{3x}(C_1 \cos 2x + C_2 \sin 2x)$

be the required G.S. of given equation.

Ex.: Solve
$$\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 8y = 0$$

Solution: Let $\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 8y = 0$
i.e. $(D^3 - 2D^2 + 4D - 8)y = 0$ be the given LDE with constant coefficients,
Its A.E. is $D^3 - 2D^2 + 4D - 8 = 0$
i.e. $D^2 (D-2) + 4(D-2) = 0$
i.e. $(D-2) (D^2 + 4) = 0$
 $\therefore D = 2, \pm 2i$ are the roots of an A.E.
 $\therefore C.F. = C_1e^{2x} + e^{0x} (C_2 \cos 2x + C_3 \sin 2x)$
 $= C_1e^{2x} + C_2 \cos 2x + C_3 \sin 2x$
Here $X = 0 \therefore P.I. = 0$.
 $\therefore G.S. = C.F. + P.I. = C.F.$
i.e. $y = C_1e^{2x} + C_2 \cos 2x + C_3 \sin 2x$
be the required G.S. of given equation.
Ex.: Solve $(D^4 + 18D^2 + 81)y = 0$

Solution: Let $(D^4 + 18D^2 + 81)y = 0$ be the given LDE with constant coefficients, Its A.E. is $D^4 + 18D^2 + 81 = 0$ i.e. $(D^2 + 9)^2 = 0$ $\therefore D = \pm 3i$ (repeated two times) are the roots of an A.E. $\therefore C.F. = e^{0x}[(C_1 + C_2x)\cos 3x + (C_3 + C_4x)\sin 3x]$ $= (C_1 + C_2x)\cos 3x + (C_3 + C_4x)\sin 3x$ Here $X = 0 \therefore P.I. = 0$. $\therefore G.S. = C.F. + P.I. = C.F.$ i.e. $y = (C_1 + C_2x)\cos 3x + (C_3 + C_4x)\sin 3x$ be the required G.S. of given equation.

Ex.: Solve $D^2(D^2 + 3)^2 y = 0$ Solution: Let $D^2(D^2 + 3)^2 y = 0$ be the given LDE with constant coefficients, Its A.E. is $D^2(D^2 + 3)^2 = 0$ $\therefore D = 0, 0, \pm \sqrt{3}i, \pm \sqrt{3}i$ (repeated two times) are the roots of an A.E. $\therefore C.F. = (C_1 + C_2 x)e^{0x} + e^{0x}[(C_3 + C_4 x)\cos\sqrt{3}x + (C_5 + C_6 x)\sin\sqrt{3}x]$ $= C_1 + C_2 x + (C_3 + C_4 x)\cos\sqrt{3}x + (C_5 + C_6 x)\sin\sqrt{3}x$

Here $X = 0 \therefore P.I. = 0$. \therefore G.S. = C.F.+ P.I. = C.F. i.e. $y = C_1 + C_2 x + (C_3 + C_4 x) \cos \sqrt{3} x + (C_5 + C_6 x) \sin \sqrt{3} x$ be the required G.S. of given equation. **General Method of Finding P.I.: Theorem:** If $D \equiv \frac{d}{dx}$ and X is function of x, then $\frac{1}{D-m}X = e^{mx}\int Xe^{-mx}dx$ **Proof:** Let $y = \frac{1}{D-m} X \Rightarrow (D-m)y = X \Rightarrow \frac{dy}{dx} - my = X$ (1) Which is linear differential equation of first order with P = -m and Q = X. $\therefore I.F. = e^{\int P \, dx} = e^{\int (-m) \, dx} = e^{-mx}$ G.S. of linear differential equation is $y(I.F.) = \int (I.F)Q dx + c$ \therefore v(e^{-mx}) = $\int (e^{-mx}) X dx + c$ \therefore y = ce^{mx} + e^{mx} $\int (e^{-mx}) X dx$ As G.S. = C.F.+ P.I. and C.F. of equation (1) is $C.F. = ce^{mx}$ \therefore P.I. = $e^{mx} \int (e^{-mx}) X dx$ $\therefore \frac{1}{D-m} X = e^{mx} \int X e^{-mx} dx$

P.I. of Some Standard Functions:

Type-I: When X = e^{ax} where a is constant. **Theorem:** If D $\equiv \frac{d}{dx}$ and f(D) is polynomial in D with f(a) $\neq 0$, then $\frac{1}{f(D)}e^{ax} = \frac{e^{ax}}{f(a)}$ **Proof:** Let f(D)y = e^{ax} be a LDE with f(D) = Dⁿ + P_1Dⁿ⁻¹ + P_2Dⁿ⁻² + ... + P_{n-1}D + P_n As D $e^{ax} = ae^{ax}$, D² $e^{ax} = a^2e^{ax}$, ..., D^r $e^{ax} = a^re^{ax} \forall r \in N$ \therefore f(D) $e^{ax} = [D^n + P_1D^{n-1} + P_2D^{n-2} + ... + P_{n-1}D + P_n]e^{ax}$ $= D^n e^{ax} + P_1 D^{n-1}e^{ax} + P_2 D^{n-2}e^{ax} + ... + P_{n-1}D e^{ax} + P_n e^{ax}$ $= a^n e^{ax} + P_1 a^{n-1}e^{ax} + P_2 a^{n-2}e^{ax} + ... + P_{n-1}ae^{ax} + P_n e^{ax}$ $= [a^n + P_1 a^{n-1} + P_2 a^{n-2} + ... + P_{n-1}a + P_n]e^{ax}$ \therefore f(D) $e^{ax} = f(a)e^{ax}$ \therefore \therefore $(f(D)e^{ax} = f(a)e^{ax}$ \therefore \therefore $(f(D)e^{ax} = f(a)e^{ax}$ \therefore $(f(D)e^{ax} = f(a)e^{ax})$ $(f(D)e^{ax} = f(a)e^{ax})$ $(f(D)e^{ax} = f(a)e$

Theorem: If
$$D \equiv \frac{d}{dx}$$
, then $\frac{1}{(D-a)^r} e^{ax} = \frac{x^r}{r!} e^{ax}$
Proof: We prove $\frac{1}{(D-a)^r} e^{ax} = \frac{x^r}{r!} e^{ax}$ by mathematical induction.
For $r = 1, \frac{1}{D-a} e^{ax} = e^{ax} \int 1dx$
 $= xe^{ax}$
 $= xe^{ax}$
 $= xe^{ax}$
 $= xe^{ax}$
 $= xe^{ax}$
 $= xe^{ax}$
 $= \frac{x^i}{1} e^{ax}$
i.e. result is true for $r = 1$.
Suppose result is true for $r = k$
i.e. $result$ is true for $r = k$
 $= \frac{1}{(D-a)^k k^a} e^{ax} = \frac{1}{(D-a)^k [\frac{1}{b}e^{ax}]} e^{ax}$
 $= \frac{1}{(D-a)^k k^a} e^{ax} = \frac{1}{(D-a)^k [\frac{1}{b}e^{ax}]} e^{ax}$
 $= e^{ax} \int (\frac{x^k}{k!} e^{ax}) e^{-ax} dx$
 $= e^{ax} \int (\frac{x^k}{k!} e^{ax}) e^{-ax} dx$
 $= e^{ax} \int (\frac{x^k}{k!} e^{ax}) e^{-ax} dx$
 $= e^{ax} \int (\frac{x^k}{k!} dx) e^{-ax} dx$
 $= \frac{x^k}{(k+1)} e^{ax}$
i.e. result is true for $r = k \Rightarrow$ result is true for $r = k+1$
 \therefore by mathematical induction the result is true for any natural number r .
i.e. $\frac{1}{(D-a)^r} e^{ax} = \frac{x^k}{r!} e^{ax} \forall r \in \mathbb{N}$.
Theorem: If $D \equiv \frac{d}{dx}$ and f(D) is polynomial in D with f(D) = (D - a)^r \varphi(D) and $\varphi(a) \neq 0$,
then $\frac{1}{(D-a)^r \varphi(D)} e^{ax} = \frac{x^k e^{ax}}{r! \varphi(a)}$
Proof: Let f(D) = (D - a)^p \varphi(D) and $\varphi(D) \neq 0$
Consider $\frac{1}{(D-a)^r \varphi(D)} e^{ax} = \frac{1}{(D-a)^r} [\frac{1}{(D-a)^r} e^{ax}]$
 $= \frac{1}{(p(-a)^r} [\frac{e^{ax}}{p(a)}] \Rightarrow \varphi(a) \neq 0$
 $= \frac{1}{(p(-a)^r} [\frac{e^{ax}}{r! \varphi(a)}]$

DEPARTMENT OF MATHEMATICS, KARM. A. M. PATIL ARTS, COMMERCE AND KAL ANNASAHEB N. K. PATIL SCIENCE SR. COLLEGE, PIMPALNER 8

Ex.: Find the particular integral of LDE $(D^2 - 3D + 2)y = e^{5x}$ Solution: Let $(D^2 - 3D + 2)y = e^{5x}$

be the given LDE with constant coefficients,

comparing it with f(D)y = X, we get,

 $f(D) = D^{2} - 3D + 2 = (D - 1)(D - 2) \text{ and } X = e^{5x}$ Now P.I. = $\frac{1}{f(D)} X$ = $\frac{1}{(D - 1)(D - 2)} e^{5x}$ = $\frac{e^{5x}}{(5 - 1)(5 - 2)}$ = $\frac{e^{5x}}{12}$

Ex.: Find the particular integral of LDE $(D^3 - 5D^2 + 8D - 4)y = e^{2x} + 3e^{x}$ Solution: Let $(D^3 - 5D^2 + 8D - 4)y = e^{2x} + 3e^{x}$

be the given LDE with constant coefficients, comparing it with f(D)y = X, we get, $f(D) = D^3 - 5D^2 + 8D - 4 = (D - 1)(D - 2)^2$ and $X = e^{2x} + 3e^x$ Now P.I. $= \frac{1}{f(D)}X = \frac{1}{(D-1)(D-2)^2}(e^{2x} + 3e^x)$ $= \frac{1}{(D-1)(D-2)^2}e^{2x} + \frac{1}{(D-1)(D-2)^2}3e^x$ $= \frac{x^2e^{2x}}{2!(2-1)} + \frac{3xe^x}{1!(1-2)^2}$ $= \frac{1}{2}x^2e^{2x} + 3xe^x$

Ex.: Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{2x}$ Solution: Let $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{2x}$ i.e. $(D^2 + 4D + 4)y = e^{2x}$ be the given LDE with constant coefficients, comparing it with f(D)y = X, we get, $f(D) = D^2 + 4D + 4 = (D + 2)^2$ and $X = e^{2x}$ \therefore It's A.E. is f(D) = 0i.e. $(D + 2)^2 = 0$ $\therefore D = -2, -2$ (repeated two times) are the roots of an A.E.

$$\begin{array}{l} \stackrel{\cdot}{\cdot} C.F. = (C_{1} + C_{2}x)e^{-2x} \\ \text{Now P.I.} = \frac{1}{f(D)}X \\ = \frac{1}{(D+2)^{2}}e^{2x} \\ = \frac{e^{2x}}{(2+2)^{2}} \\ = \frac{1}{(2+2)^{2}} \\ = \frac{1}{16}e^{2x} \\ \stackrel{\cdot}{\cdot} G.S. = C.F. + P.I. \\ \text{i.e. } y = (C_{1} + C_{1}x)e^{-2x} + \frac{1}{16}e^{2x} \\ \text{be the required G.S. of given differential equation.} \end{array}$$

$$\begin{array}{l} \textbf{Ex.: Solve (D^{2} - 3D + 2)y = coshx} \\ \text{be the given LDE with constant coefficients,} \\ \text{comparing it with f(D) y = X, we get,} \\ f(D) = D^{2} - 3D + 2 = (D - 1)(D - 2) \\ \text{and } X = coshx = \frac{e^{x} + e^{-x}}{2} \\ \stackrel{\cdot}{\cdot} It's A.E. \text{ is } f(D) = 0 \\ \text{i.e. } (D - 1)(D - 2) = 0 \\ \stackrel{\cdot}{\cdot} D = 1, 2 \text{ are the roots of an A.E.} \\ \stackrel{\star}{\cdot} C.F. = C_{1}e^{x} + C_{2}e^{2x} \\ \text{Now P.I.} = \frac{1}{t(D)}X \\ = \frac{1}{2(D-1)(D-2)}e^{x} + \frac{1}{2(D-1)(D-2)}e^{-x} \\ = \frac{1}{2(U(1-2))}e^{x} + \frac{1}{2(D-1)(D-2)}e^{-x} \\ = \frac{1}{2(U(1-2))}e^{x} + \frac{1}{2(D-1)(D-2)}e^{-x} \\ = \frac{1}{2(U(1-2))}e^{-x} + \frac{1}{12}e^{-x} \end{array}$$

be the required G.S. of given differential equation.

Ex.: Solve $(D^3 + 3D^2 + 3D + 1)y = e^{-x}$ **Solution:** Let $(D^3 + 3D^2 + 3D + 1)y = e^{-x}$ be the given LDE with constant coefficients, comparing it with f(D)y = X, we get, $f(D) = D^3 + 3D^2 + 3D + 1 = (D + 1)^3$ and $X = e^{-x}$ \therefore It's A.E. is f(D) = 0i.e. $(D + 1)^3 = 0$ \therefore D = -1, -1, -1 (repeated three times) are the roots of an A.E. \therefore C.F. = (C₁ + C₂x + C₃x²)e^{-x} Now P.I. $=\frac{1}{f(D)}X = \frac{1}{(D+1)^3}e^{-x}$ $=\frac{1}{6}x^{3}e^{-x}$ \therefore G.S. = C.F. + P.I. i.e. $y = (C_1 + C_2 x + C_3 x^2)e^{-x} + \frac{1}{2}x^3 e^{-x}$ be the required G.S. of given differential equation. **Ex.:** Solve $(D^3 - 1)y = (e^x + 1)^2$ **Solution:** Let $(D^3 - 1)v = (e^x + 1)^2$ be the given LDE with constant coefficients, comparing it with f(D)y = X, we get, $f(D) = D^3 - 1 = (D - 1) (D^2 + D + 1)$ and $X = (e^{x} + 1)^{2} = e^{2x} + 2e^{x} + 1$ \therefore It's A.E. is f(D) = 0i.e. $(D - 1) (D^2 + D + 1) = 0$ \therefore D = 1 or D = $\frac{-1\pm\sqrt{1-4}}{2} = \frac{-1}{2} \pm \frac{\sqrt{3}}{2}$ i are the roots of an A.E. $\therefore \text{ C.F.} = \text{C}_{1} e^{x} + e^{-\frac{1}{2}x} (\text{C}_{2} \cos \frac{\sqrt{3}}{2}x + \text{C}_{3} \sin \frac{\sqrt{3}}{2}x)$ Now P.I. $=\frac{1}{f(D)}X$ $=\frac{1}{(D-1)(D^2+D+1)}(e^{2x}+2e^x+1)$

$$= \frac{1}{(D-1)(D^{2}+D+1)} e^{2x} + \frac{2}{(D-1)(D^{2}+D+1)} e^{x} + \frac{1}{(D-1)(D^{2}+D+1)} e^{0x}$$

$$= \frac{e^{2x}}{(2-1)(4+2+1)} + \frac{2xe^{x}}{1!(1^{2}+1+1)} + \frac{e^{0x}}{(0-1)(0+0+1)}$$

$$= \frac{1}{7} e^{2x} + \frac{2}{3} xe^{x} - 1$$

$$\therefore G.S. = C.F. + P.I.$$
i.e. $y = C_{1}e^{x} + e^{-\frac{1}{2}x} (C_{2} \cos \frac{\sqrt{3}}{2}x + C_{3}\sin \frac{\sqrt{3}}{2}x) + \frac{1}{7} e^{2x} + \frac{2}{3} xe^{x} - 1$
be the required G.S. of given differential equation.
Type-II: When X = x^m or polynomial in x.
Let f(D)y = x^m be the given LDE with constant coefficients,
If g(D) is the lowest degree term in f(D), then
f(D) = g(D).[1\pm \varphi(D)]
$$\therefore P.I. = \frac{1}{(D)} x^{m} = \frac{1}{g(D)[1\pm \varphi(D)]} x^{m} = = \frac{1}{g(D)} [1 \pm \varphi(D)]^{-1} x^{m}$$
and use results
i) $\frac{1}{1+x} = (1 + x)^{-1} = 1 - x + x^{2} - x^{3} +$
i.e. $\frac{1}{1+\varphi(D)} = [1 + \varphi(D)]^{-1} = 1 + \varphi(D) + [\varphi(D)]^{2} - [\varphi(D)]^{3} +$
ii) $\frac{1}{1-x} = (1 - x)^{-1} = 1 + x + x^{2} + x^{3} +$

Ex.: Solve
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = x^2$$
 and a word Rife diagonality of the second second

Solution: Let
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = x^2$$

i.e. $(D^2 - 2D + 5)y = x^2$
be the given LDE with constant coefficients,
comparing it with $f(D)y = X$, we get,
 $f(D) = D^2 - 2D + 5$ and $X = x^2$
 \therefore It's A.E. is $f(D) = 0$
i.e. $D^2 - 2D + 5 = 0$
 $\therefore D = \frac{2\pm\sqrt{4-20}}{2} = 1 \pm 2i$ are the roots of an A.E.

$$\begin{array}{l} \therefore \mathrm{C.F.} = \mathrm{e}^{\mathrm{v}}(\mathrm{C_{1}cos}2x + \mathrm{C_{2}sin}2x)\\ \mathrm{Now} \mathrm{P.I.} = \frac{1}{t(0)} \ \mathrm{X} = \frac{1}{\mathrm{p}^{2} - 2\mathrm{p} + \mathrm{s}} x^{2}\\ = \frac{1}{\mathrm{sin} - (\frac{2}{\mathrm{s}}\mathrm{D} - \frac{1}{\mathrm{s}}\mathrm{D}^{2})]^{-1} x^{2}\\ = \frac{1}{\mathrm{sin} [1 - (\frac{2}{\mathrm{s}}\mathrm{D} - \frac{1}{\mathrm{s}}\mathrm{D}^{2})]^{-1} x^{2}\\ = \frac{1}{\mathrm{s}} [1 - (\frac{2}{\mathrm{s}}\mathrm{D} - \frac{1}{\mathrm{s}}\mathrm{D}^{2})]^{-1} x^{2}\\ = \frac{1}{\mathrm{s}} [1 + (\frac{2}{\mathrm{s}}\mathrm{D} - \frac{1}{\mathrm{s}}\mathrm{D}^{2}) + (\frac{2}{\mathrm{s}}\mathrm{D} - \frac{1}{\mathrm{s}}\mathrm{D}^{2})^{2} + ...] x^{2}\\ = \frac{1}{\mathrm{s}} [1 + (\frac{2}{\mathrm{s}}\mathrm{D} - \frac{1}{\mathrm{s}}\mathrm{D}^{2}) + (\frac{2}{\mathrm{s}}\mathrm{D} - \frac{1}{\mathrm{s}}\mathrm{D}^{2})^{2} + ...] x^{2}\\ = \frac{1}{\mathrm{s}} [1 + \frac{2}{\mathrm{s}}\mathrm{D} - \frac{1}{\mathrm{s}}\mathrm{D}^{2} + \frac{4}{\mathrm{s}}\mathrm{D}^{2} - \frac{4}{2\mathrm{s}}\mathrm{D}^{2} - \frac{4}{2\mathrm{s}}\mathrm{D}^{2} + ...] x^{2}\\ = \frac{1}{\mathrm{s}} [x^{2} + \frac{4}{\mathrm{s}}\mathrm{x} - \frac{2}{\mathrm{s}}\mathrm{c}]\\ + \frac{1}{\mathrm{s}} (2) + \frac{4}{\mathrm{s}}(2) - 0]\\ = \frac{1}{\mathrm{s}} [x^{2} + \frac{4}{\mathrm{s}}\mathrm{x} - \frac{2}{\mathrm{s}}\mathrm{c}]\\ \div \mathrm{G.S.} = \mathrm{C.F.} + \mathrm{P.I.}\\ \mathrm{i.c.} \ \mathrm{y} = \mathrm{e}^{\mathrm{v}}(\mathrm{C}(\mathrm{cos}2\mathrm{x} + \mathrm{C}\mathrm{sin}2\mathrm{x}) + \frac{1}{\mathrm{s}} (\mathrm{x}^{2} + \frac{4}{\mathrm{s}}\mathrm{x} - \frac{2}{\mathrm{c}}\mathrm{s})\\ \mathrm{be } \ \mathrm{the required } \mathrm{G.S.} \ \mathrm{of given differential equation.} \end{array}$$

Ex.: Solve $\frac{\mathrm{d}^{3}\mathrm{y}}{\mathrm{d}\mathrm{x}^{3}} + 3 \frac{\mathrm{d}^{3}\mathrm{y}}{\mathrm{d}\mathrm{x}^{2}} + 2 \frac{\mathrm{d}\mathrm{y}}{\mathrm{d}\mathrm{x}} = x^{2}\\ \mathrm{i.e.} (\mathrm{D}^{3} + 3\mathrm{D}^{2} + 2\mathrm{D})\mathrm{y} = x^{2}\\ \mathrm{be } \ \mathrm{the given 1DE \ with constant coefficients, comparing it with f(\mathrm{D}) = X, we get, f(\mathrm{D}) = \mathrm{D}^{3} + 3\mathrm{D}^{2} + 2\mathrm{D} = \mathrm{D}(\mathrm{D} + 1)(\mathrm{D} + 2)\\ \mathrm{and} \mathrm{X} = x^{2}\\ \therefore \mathrm{H}^{\mathrm{i}}\mathrm{S} \mathrm{AE} \ \mathrm{i}\mathrm{s} \mathrm{f}(\mathrm{D}) = 0 \ \mathrm{OIII} \ \mathrm$

$$\begin{aligned} = \frac{1}{20} [1 + (\frac{3}{2}D + \frac{1}{2}D^2)]^{-1}x^2 \\ = \frac{1}{20} [1 - (\frac{3}{2}D + \frac{1}{2}D^2) + (\frac{3}{2}D + \frac{1}{2}D^2)^2 + ...]x^2 \\ = \frac{1}{20} [1 - \frac{3}{2}D - \frac{1}{2}D^2 + \frac{9}{4}D^2 + \frac{3}{2}D^3 + ...]x^2 \\ = \frac{1}{20} [x^2 - \frac{3}{2}(2x) - \frac{1}{2}(2) + \frac{9}{4}(2) + 0] \\ = \frac{1}{20} [x^2 - 3x + \frac{7}{2}] \\ = \frac{1}{2} \int [x^2 - 3x + \frac{7}{2}] \\ = \frac{1}{2} \int [x^2 - 3x + \frac{7}{2}] \\ = \frac{1}{2} \int [x^2 - 3x + \frac{7}{4}x] \\ \therefore G.S. = C.F. + P.I. \\ i.e. y = C_1 + C_2e^x + C_3e^{2x} + \frac{1}{6}x^2 - \frac{3}{4}x^2 + \frac{7}{4}x \\ be the required G.S. of given differential equation. \end{aligned}$$

Ex.: Solve (D² + 2D + 3)y = x - 2x² \\ be the given LDE with constant coefficients, comparing it with f(D)y = X, we get, f(D) = D² + 2D + 3 \\ and X = x - 2x² \\ \therefore Hr s A.E. is f(D) = 0 \\ i.e. D² + 2D + 3 = 0 \\ \therefore D = \frac{-2t\sqrt{4-12}}{2} = -1 \pm \sqrt{2}t \text{ are the roots of an A.E. With a start of the equival start of the equivalence start of the equival start of the equival start o

$$= \frac{1}{3} \left[1 - \left(\frac{2}{3}D + \frac{1}{3}D^2 \right) + \left(\frac{2}{3}D + \frac{1}{3}D^2 \right)^2 + \cdots \right] (x - 2x^2)$$

$$\begin{aligned} &= \frac{1}{3} \left[1 - \frac{2}{3} D - \frac{1}{3} D^2 + \frac{4}{9} D^2 + \frac{4}{9} D^3 + \dots \right] (x - 2x^2) \\ &= \frac{1}{3} \left[(x - 2x^2) - \frac{2}{3} (1 - 4x) - \frac{1}{3} (-4) + \frac{4}{9} (-4) + 0 \right] \\ &= \frac{1}{3} \left[x - 2x^2 - \frac{2}{3} + \frac{8}{3} x + \frac{4}{3} - \frac{16}{9} \right] \\ &= \frac{1}{3} \left[-2x^2 + \frac{11}{3} x - \frac{10}{9} \right] \\ &= -\frac{2}{3} x^2 + \frac{11}{9} x - \frac{10}{27} \\ \therefore G.S. = C.F. + P.I. \\ i.e. y = e^{-x} \left[C \left[\cos \sqrt{2}x + C_2 \sin \sqrt{2}x \right] - \frac{2}{3} x^2 + \frac{11}{9} x - \frac{10}{27} \right] \\ be the required G.S. of given differential equation. \end{aligned}$$

Ex.: Solve (D³ + 2D² + D)y = e^{2x} + x² + x \\ Solution: Let (D³ + 2D² + D)y = e^{2x} + x² + x \\ be the given LDE with constant coefficients, comparing it with f(D)y = X, we get, f(D) = D³ + 2D² + D = D(D+1)^2 \\ and X = e^{2x} + x² + x \\ \therefore It's A.E. is f(D) = 0 \\ i.e. D(D+1)^2 = 0 \\ \therefore D = 0, -1, -1 are the roots of an A.E. $\therefore C.F. = C_1e^{0x} + (C_2 + C_3x)e^x \\ = \frac{1}{2} \frac{1}{e^{1x} + 2e^{1x} + e} \left[e^{2x} + x^2 + x \right] \text{ for first formed for Hindel} \\ = \frac{1}{e^{1x} + 2e^{1x} + e} \left[e^{2x} + \frac{1}{e^{1x} + 2e^{2x} + e} \right] (x^2 + x) \\ = \frac{e^{3x}}{8 + 8x^2 + e} \frac{1}{e^{11} ((2D + D^2))^{-1} (x^2 + x)$
 $= \frac{e^{2x}}{18} + \frac{1}{p} \left[1 - (2D + D^2) + (2D + D^2)^2 - \cdots \right] (x^2 + x)$
 $= \frac{e^{2x}}{18} + \frac{1}{p} \left[x^2 + x \right] - 2(2x + 1) - (2) + 4(2) + 0 \right]$

$$=\frac{e^{2x}}{18} + \frac{1}{p} [x^2 - 3x + 4]$$

$$=\frac{e^{2x}}{18} + \int [x^2 - 3x + 4] dx$$

$$=\frac{e^{2x}}{18} + \frac{1}{3^2} - \frac{3x^2}{2} + 4x$$

$$=\frac{1}{18} e^{2x} + \frac{1}{3}x^3 - \frac{3}{2}x^2 + 4x$$

$$=\frac{1}{18} e^{2x} + \frac{1}{3}x^3 - \frac{3}{2}x^2 + 4x$$

$$\therefore G.S. = C.F. + P.I.$$
i.e. $y = C_1 + (C_2 + C_3x)e^x + \frac{1}{18} e^{2x} + \frac{1}{3}x^3 - \frac{3}{2}x^2 + 4x$
be the required G.S. of given differential equation.
Type-III: When X = sin(ax+b) or cos(ax+b)
Theorem: If $f(D^2)$ is polynomial in D² with constant coefficients and $f(-a^2) \neq 0$, then
a) $\frac{1}{f(D^2)} cos(ax+b) = \frac{cos(ax+b)}{f(-a^2)} = b) \frac{1}{f(D^2)} sin(ax+b) = \frac{sin(ax+b)}{f(-a^2)}$
Proof: a) By taking successive derivatives, we get,
Dcos(ax+b) = -asin(ax+b),
D²cos(ax+b) = (-a^2)(cos(ax+b))
i.e. D²cos(ax+b) = (-a^2)(cos(ax+b))
i.e. D²cos(ax+b) = (-a^2)(cos(ax+b))
Similarly, $(D^2)^3 cos(ax+b) = (-a^2)^2 cos(ax+b)$
where $f(D^2)$ is polynomial in D² with constant coefficients and $f(-a^2) \neq 0$
 $\therefore cos(ax+b) = \frac{f(a^2)cos(ax+b)}{f(-a^2)} \Rightarrow f(-a^2) \neq 0$
Operating $\frac{1}{f(D^2)}$ on both sides, we get,
 $\therefore \frac{1}{f(D^2)} cos(ax+b) = \frac{cos(ax+b)}{f(-a^2)}$
Hence proved.
b) By taking successive derivatives, we get,
Disin(ax+b) = acos(ax+b),
D²sin(ax+b) = (-a^2)sin(ax+b)

D³sin(ax+b) = (-a²).acos(ax+b)
D⁴sin(ax+b) = (-a²).a.(-a)sin(ax+b)
i.e. (D²)²sin(ax+b) = (-a²)²sin(ax+b)
Similarly, (D²)³sin(ax+b) = (-a²)³sin(ax+b)
and so on, in general,
(D²)^r sin(ax+b) = (-a²)^rsin(ax+b) ∀ r ∈ N

$$\therefore$$
 f(D²) sin(ax+b) = f(-a²)sin(ax+b)
where f(D²) is polynomial in D² with constant coefficients and f(-a²) ≠ 0
 \therefore sin(ax+b) = $\frac{f(D^2)sin(ax+b)}{f(-a^2)}$ \therefore f(-a²) ≠ 0
Operating $\frac{1}{f(D^2)}$ on both sides, we get,
 $\therefore \frac{1}{f(D^2)} sin(ax+b) = \frac{sin(ax+b)}{f(-a^2)}$ Hence proved.
Theorem: a) $\frac{1}{(D^2+a^2)^r} cos(ax) = \frac{(-1)^r x^r cos(ax+\frac{\pi}{2}r)}{r!(2a)^r} b) \frac{1}{(D^2+a^2)^r} sin(ax) = \frac{(-1)^r x^r sin(ax+\frac{\pi}{2}r)}{r!(2a)^r}$
Proof: Consider $\frac{1}{(D^2+a^2)^r} e^{iax} = \frac{1}{(D+ai)^r(D-ai)^r} e^{iax}$
 $= \frac{x^r e^{iax}}{r!(2a)^r} \because \frac{1}{i} = -i$
 $= \frac{(-1)^r x^r e^{iax}}{r!(2a)^r}$ $\because \frac{1}{i} = -i$
 $= \frac{(-1)^r x^r e^{iax}}{r!(2a)^r}$ $\because \frac{1}{i} = -i$
 $= \frac{(-1)^r x^r e^{iax}}{r!(2a)^r}$
 $\therefore \frac{1}{(D^2+a^2)^r} [cos(ax)+isin(ax)] = \frac{(-1)^r x^r}{r!(2a)^r} [cos(ax+\frac{\pi}{2}r)+isin(ax+\frac{\pi}{2}r)]$

Equating real and imaginary parts, we get,

a)
$$\frac{1}{(D^2 + a^2)^r} \cos(ax) = \frac{(-1)^r x^r \cos(ax + \frac{\pi}{2}r)}{r!(2a)^r}$$

b) $\frac{1}{(D^2 + a^2)^r} \sin(ax) = \frac{(-1)^r x^r \sin(ax + \frac{\pi}{2}r)}{r!(2a)^r}$

π

Note: 1) For r = 1, we get, a)
$$\frac{1}{D^2+a^2} \cos(ax) = \frac{x\sin(ax)}{2a}$$
, b) $\frac{1}{D^2+a^2} \sin(ax) = \frac{-x\cos(ax)}{2a}$
2) If X = cosax or sinax, then express $\frac{1}{D+a}$ as $\frac{1}{D+a} = (D-a) \cdot \frac{1}{D^2-a^2}$ and $\frac{1}{D-a}$ as $\frac{1}{D-a} = (D+a) \cdot \frac{1}{D^2-a^2}$
Ex.: Solve (D⁴ + 10D² + 9)y = cos(2x+3)
Solution: Let (D⁴ + 10D² + 9)y = cos(2x+3)
be the given LDE with constant coefficients,
comparing it with f(D)y = X, we get,
f(D) = D⁴ + 10D² + 9 = (D²+1)(D²+9)
and X = cos(2x+3)
 \therefore It's A.E. is f(D) = 0
i.e. (D²+1)(D²+9) = 0
 \therefore D = $\pm i, \pm 3i$ are the roots of an A.E.
 \therefore C.F. = $e^{0x}(C_1\cos x + C_2\sin x) + e^{0x}(C_3\cos 3x + C_4\sin 3x)$
i.e. C.F. = $c_1\cos x + C_2\sin x + C_3\cos 3x + C_4\sin 3x$
Now P.I. = $\frac{1}{f(D)}X$
 $= \frac{\cos(2x+3)}{(-4x+1)(-4+9)}$ \therefore D² = $-a^2 = -2^2 = -4$
 $= \frac{\cos(2x+3)}{-15}$
 \therefore G.S. = C.F. + P.I.
i.e. y = C_1\cos x + C_2\sin x + C_3\cos 3x + C_4\sin 3x - \frac{1}{15}\cos(2x + 3)
be the required G.S. of given differential equation.
Ex: Solve (D³ + D)y = sin3x

Solution: Let
$$(D^3 + D)y = \sin 3x$$

be the given LDE with constant coefficients,
comparing it with $f(D)y = X$, we get,
 $f(D) = D^3 + D = D(D^2+1)$
and $X = \sin 3x$
 \therefore It's A.E. is $f(D) = 0$
i.e. $D(D^2+1) = 0$

 \therefore D = 0, +*i* are the roots of an A.E. $\therefore C.F. = C_1 e^{0x} + e^{0x} (C_2 \cos x + C_3 \sin x)$ i.e. $C.F. = C_1 + C_2 \cos x + C_3 \sin x$ Now P.I. $= \frac{1}{f(D)} X$ $=\frac{1}{D(D^2+1)}sin3x$ $=\frac{1}{D}\frac{\sin 3x}{(-9+1)}$ $\therefore D^2 = -a^2 = -3^2 = -9$ $=\frac{1}{-8}\int \sin 3x \, dx$ $=\frac{1}{24}\cos 3x$ \therefore G.S. = CF + PIi.e. $y = C_1 + C_2 \cos x + C_3 \sin x + \frac{1}{24} \cos 3x$ be the required G.S. of given differential equation. **Ex.:** Solve $(D^2 + 4)y = \sin 3x + e^x + x^2$ **Solution:** Let $(D^2 + 4)y = sin 3x + e^x + x^2$ be the given LDE with constant coefficients, comparing it with f(D)y = X, we get, $f(D) = D^2 + 4$ and $X = \sin 3x + e^x + x^2$ \therefore It's A.E. is f(D) = 0i.e. $D^2 + 4 = 0$ \therefore D = $\pm 2i$ are the roots of an A.E. र्ध सिधिदं विन्दति मानवः। $\therefore \text{ C.F.} = e^{0x}(\text{C}_1 \cos 2x + \text{C}_2 \sin 2x)$ i.e. C.F. = $C_1 cos 2x + C_2 sin 2x$ Now P.I. $=\frac{1}{f(D)}X = \frac{1}{(D^2+4)}(\sin 3x + e^x + x^2)$ $= \frac{1}{D^2+4}\sin 3x + \frac{1}{D^2+4}e^x + \frac{1}{D^2+4}x^2 \qquad \because D^2 = -a^2 = -3^2 = -9$ $= \frac{\sin 3x}{-9+4} + \frac{e^x}{1+4} + \frac{1}{4(1+\frac{1}{2}D^2)} x^2$ $= -\frac{1}{5}sin3x + \frac{1}{5}e^{x} + \frac{1}{4}\left[1 - \frac{1}{4}D^{2} + \frac{1}{16}D^{4} - \dots\right]x^{2}$ $= -\frac{1}{5}\sin 3x + \frac{1}{5}e^{x} + \frac{1}{4}\left[x^{2} - \frac{1}{4}(2) + 0...\right]$ $=-\frac{1}{5}sin3x+\frac{1}{5}e^{x}+\frac{1}{4}x^{2}-\frac{1}{8}e^{x}$

:: G.S. = C.F. + P.I.

i.e.
$$y = C_1 \cos 2x + C_2 \sin 2x - \frac{1}{5} \sin 3x + \frac{1}{5} e^x + \frac{1}{4} x^2 - \frac{1}{8}$$

be the required G.S. of given differential equation.

Ex.: Solve $(D^2 - 1)y = 10sin^2x$ **Solution:** Let $(D^2 - 1)y = 10sin^2x$ be the given LDE with constant coefficients, comparing it with f(D)y = X, we get, $f(D) = D^2 - 1 = (D - 1)(D + 1)$ and X = $10\sin^2 x = 10(\frac{1-\cos 2x}{2}) = 5 - 5\cos 2x$ \therefore It's A.E. is f(D) = 0i.e. (D - 1)(D + 1) = 0 \therefore D = 1, -1 are the roots of an A.E. $\therefore C.F. = C_1 e^x + C_2 e^{-x}$ Now P.I. = $\frac{1}{f(D)}$ X $=\frac{1}{(D^2-1)}(5-5\cos 2x)$ $= \frac{5}{\frac{D^2 - 1}{D^2 - 1}} e^{0x} - \frac{5}{\frac{D^2 - 1}{D^2 - 1}} \cos 2x$ $= \frac{5e^{0x}}{0 - 1} - \frac{5\cos 2x}{-4 - 1}$ $=-5+\cos 2x$ $=\cos 2x - 5$ \therefore G.S. = C.F. + P.I. i.e. $y = C_1 e^x + C_2 e^{-x} + \cos 2x - 5$ be the required G.S. of given differential equation. **Type-IV:** When $X = e^{ax}V$, where V is a function of x. **Theorem:** If $D \equiv \frac{d}{dx}$, f(D) is polynomial in D and V is a function of x, then $\frac{1}{f(D)} e^{ax} V = e^{ax} \frac{1}{f(D+a)} V.$ **Proof:** Let $f(D)y = e^{ax}V$, where V is a function of x For any function U of x, we have $De^{ax}U = e^{ax}DU + ae^{ax}U = e^{ax}(D + a)U$ $D^2e^{ax}U = e^{ax}D(D+a)U + a e^{ax}(D+a)U$ $= e^{ax}(D + a)(D + a)U$ $= e^{ax}(D + a)^2 U$

and so on, in general,

$$D^{r}e^{ax}U = e^{ax} (D + a)^{r}U \quad \forall r \in N$$
Let $f(D) = D^{n} + P_{1}D^{n-1} + P_{2}D^{n-2} + ... + P_{n-1}D + P_{n}$
 $\therefore f(D)e^{ax}U = [D^{n} + P_{1}D^{n-1} + P_{2}D^{n-2} + ... + P_{n-1}D + P_{n}]e^{ax}U$
 $= D^{n}e^{ax}U + P_{1}D^{n-1}e^{ax}U + P_{2}D^{n-2}e^{ax}U + ... + P_{n-1}De^{ax}U + P_{n}e^{ax}U$
 $= e^{ax}(D+a)^{n}U + P_{1}e^{ax}(D+a)^{n-1}U + P_{2}e^{ax}(D+a)^{n-2}U + ... + P_{n-1}e^{ax}(D+a)U + P_{n}e^{ax}U$
 $= e^{ax} [(D+a)^{n} + P_{1}(D+a)^{n-1} + P_{2}(D+a)^{n-2} + ... + P_{n-1}(D+a) + P_{n}]U$
 $\therefore f(D)e^{ax}U = e^{ax}f(D+a)U$
By taking $U = \frac{1}{f(D+a)}V$, we get,
 $f(D)e^{ax}\frac{1}{f(D+a)}V = e^{ax}f(D+a)\frac{1}{f(D+a)}V = e^{ax}V$
i.e. $e^{ax}V = f(D)e^{ax}\frac{1}{f(D+a)}V$
Hence proved.

Ex.: Solve $(D^4 - 1)y = e^x \cos x$ Solution: Let $(D^4 - 1)y = e^x \cos x$

> be the given LDE with constant coefficients, comparing it with f(D)y = X, we get, $f(D) = D^4 - 1 = (D^2 - 1)(D^2 + 1)$ and $X = e^x cosx$ \therefore It's A.E. is f(D) = 0i.e. $(D^2 - 1)(D^2 + 1) = 0$ $\therefore D = \pm 1, \pm i$ are the roots of an A.E. $\therefore C.F. = C_1 e^x + C_2 e^{-x} + e^{0x}(C_3 cosx + C_4 sinx))$ i.e. C.F. $= C_1 e^x + C_2 e^{-x} + C_3 cosx + C_4 sinx$ Now P.I. $= \frac{1}{f(D)} X$ $= \frac{1}{(D^2 - 1)(D^2 + 1)} e^x cosx$ $= e^x \frac{1}{(D^2 + 2D)(D^2 + 2D + 2)} cosx$ $= e^x \frac{1}{(-1 + 2D)(-1 + 2D + 2)} cosx$

विन्दति मानव

$$= e^{3} \frac{1}{(2D-1)(2D+1)} \cos x$$

$$= e^{3} \frac{1}{(4D^{2}-1)} \cos x$$

$$= e^{3} \frac{1}{(4D^{2}-1)} \cos x$$

$$= e^{3} \frac{1}{(2D^{2}-6D)} \cos x$$

$$= e^{3} \frac{1}{(2D^{2}-6D)} \cos x$$

$$\Rightarrow G.S. = C.F. + P.I.$$
i.e. $y = C_{1}e^{3} + C_{2}e^{3} + C_{3}\cos x + C_{4}\sin x - \frac{1}{5}e^{3} \cos x$
be the required G.S. of given differential equation.

Ex.: Solve (D² - 6D + 13)y = e^{3x} \sin 2x
Solution: Let (D² - 6D + 13)y = e^{3x} \sin 2x
be the given LDE with constant coefficients,
comparing it with (D)y = X, we get,
f(D) = D² - 6D + 13
and X = $e^{3x} \sin 2x$

$$\therefore$$
 It's A.E. is f(D) = 0
i.e. D² - 6D + 13 = 0
$$\therefore$$
 D = $\frac{6\pm\sqrt{36-52}}{2} = \frac{6\pm4i}{2} = 3\pm 2i$ are the roots of an A.E.
$$\therefore$$
 C.F. = $e^{3x}(C_{1}\cos 2x + C_{2}\sin 2x)$
Now P.I. = $\frac{1}{f(D^{2}-6D+13)}e^{3x}\sin 2x$

$$= e^{3x} \frac{1}{(D^{2}+6D+9-6D-18+13)}\sin 2x$$

$$= e^{3x} \frac{1}{(D^{2}+6D+9-6D-18+13)}\sin 2x$$

$$= e^{3x} \frac{-1}{(D^{2}+6D+9-6D-18+13)}\sin 2x$$

$$= e^{3x} \frac{-1}{(D^{2}+6D+3)}e^{3x}\sin 2x$$

$$\therefore$$
 G.S. = C.F. + P.I.
i.e. $y = e^{3x}(C_{1}\cos 2x + C_{2}\sin 2x) - \frac{1}{4}xe^{3x}\sin 2x$
be the required G.S. of given differential equation.

Ex.: Solve $(D^2 - 2D + 1)y = x^2e^{3x}$ Solution: Let $(D^2 - 2D + 1)y = x^2e^{3x}$

be the given LDE with constant coefficients,

comparing it with f(D)y = X, we get,

f(D) = D² - 2D + 1 = (D - 1)² and X = x²e^{3x}

$$\therefore$$
 It's A.E. is f(D) = 0
i.e. (D - 1)² = 0
 \therefore D = 1, 1 are the roots of an A.E.
 \therefore C.F. = (C₁ + C₂x)e^x
Now P.I. = $\frac{1}{f(D)} X$
 $= \frac{1}{(D^{2} - 2D + 1)} x^{2}e^{3x}$
 $= e^{3x} \frac{1}{(D^{2} + 6D + 9 - 2D - 6 + 1)} x^{2}$
 $= e^{3x} \frac{1}{(D^{2} + 6D + 9 - 2D - 6 + 1)} x^{2}$
 $= e^{3x} \frac{1}{(D^{2} + 6D + 9 - 2D - 6 + 1)} x^{2}$
 $= e^{3x} \frac{1}{(D^{2} + 4D + 4)} x^{2}$
 $= e^{3x} \frac{1}{(1 + D + \frac{D^{2}}{4})} + (D + \frac{D^{2}}{4})^{2} \dots] x^{2}$
 $= \frac{1}{4} e^{3x} [1 - D - \frac{D^{2}}{4} + D^{2} + \frac{D^{3}}{2} + \dots] x^{2}$
 $= \frac{1}{4} e^{3x} [2x^{2} - 2x - \frac{1}{2} + 2 + 0]$
 $= \frac{1}{8} e^{3x} (2x^{2} - 4x + 3)$
 \therefore G.S. = C.F. + P.I.
i.e. $y = (C_{1} + C_{2x})e^{x} + \frac{1}{8} e^{3x}(2x^{2} - 4x + 3)$
be the required G.S. of given differential equation.
Type-V: When X = xV, where V is a function of x only.
Theorem: If D = $\frac{d}{dx}$, f(D) is polynomial in D and V is a function of x only, then

$$\frac{1}{f(D)} x V = [x - \frac{1}{f(D)} f'(D)] \frac{1}{f(D)} V.$$

Proof: Let f(D)y = xV, where V is a function of x only.

For any function U of x, By using Leibnitz's theorem, we get, $D^{r}xU = xD^{r}U + rD^{r-1}U \quad \forall r \in N \dots (i)$ Let $f(D) = D^{n} + P_{1}D^{n-1} + P_{2}D^{n-2} + \dots + P_{n-1}D + P_{n} \dots (ii)$ $\therefore f'(D) = nD^{n-1} + P_{1}(n-1)D^{n-2} + P_{2}(n-2)D^{n-3} + \dots + P_{n-1} \dots (iii)$

$$\hat{f}(D)(xU) = [D^{n} + P_{1}D^{n-1} + P_{2}D^{n-2} + ... + P_{n-1}D + P_{n}](xU) = D^{n}(xU) + P_{1}D^{n-1}(xU) + P_{2}D^{n-2}(xU) + ... + P_{n-1}D(xU) + P_{n}(xU) = xD^{n}U + nD^{n-1}U + P_{1}[xD^{n-1}U + (n-1)D^{n-2}U] + P_{2}[xD^{n-2}U + (n-2)D^{n-3}U) + ... + P_{n-1}(xDU + U) + P_{n}(xU) = x[D^{n} + P_{1}D^{n-1} + P_{2}D^{n-2} + ... + P_{n-1}D + P_{n}]U + [nD^{n-1} + P_{1}(n-1)D^{n-2} + P_{2}(n-2)D^{n-3} + ... + P_{n-1}]U + [nD^{n-1} + P_{1}(n-1)D^{n-2} + P_{2}(n-2)D^{n-3} + ... + P_{n-1}]U $\hat{f}(D)(xU) = xf(D)U + f'(D)U$
By taking $U = \frac{1}{f(D)}V$, we get,
 $f(D)(x\frac{1}{f(D)}V) = xf(D)\frac{1}{f(D)}V + f'(D)\frac{1}{f(D)}V$
 $\hat{i.e.} f(D)(x\frac{1}{f(D)}V) = xV + f'(D)\frac{1}{f(D)}V$
 $\hat{v} xV = f(D)(x\frac{1}{f(D)}V) - f'(D)\frac{1}{f(D)}V$
 Operating $\frac{1}{f(D)}$ on both sides, we get,
 $\hat{i.f(D)}(xV) = x\frac{1}{f(D)}V - \frac{1}{f(D)}f'(D)\frac{1}{f(D)}V$
 $\hat{i.f(D)}(xV) = [x - \frac{1}{f(D)}f'(D)]\frac{1}{f(D)}V$
 Hence proved.$$

Ex.: Solve $(D^2 + 1)y = x\cos 2x$

Solution: Let $(D^2 + 1)y = x\cos 2x$ be the given LDE with constant coefficients, comparing it with f(D)y = X, we get, $f(D) = D^2 + 1$ and $X = x\cos 2x$ \therefore It's A.E. is f(D) = 0i.e. $D^2 + 1 = 0$ $\therefore D = \pm i$ are the roots of an A.E. $\therefore C.F. = e^{0x}(C_1\cos x + C_2\sin x)$ i.e. $C.F. = C_1\cos x + C_2\sin x$ Now P.I. $= \frac{1}{f(D)}X$ $= \frac{1}{(D^2 + 1)}x\cos 2x$

$$= [x - \frac{1}{(b^{2} + 1)}(2D)] \frac{1}{(b^{2} + 1)} cos2x$$

$$= [x - \frac{1}{(b^{2} + 1)}(2D)] \frac{cos2x}{(-4 + 1)}$$

$$= -\frac{1}{3} [xcos2x - \frac{1}{(b^{2} + 1)}(2Dcos2x)]$$

$$= -\frac{1}{3} [xcos2x - \frac{1}{(b^{2} + 1)}(-4sin2x)]$$

$$= -\frac{1}{3} [xcos2x + \frac{4}{9}sin2x$$

$$\therefore G.S. = C.F. + P.I.$$

i.e. $y = C_{1}cosx + C_{2}sinx - \frac{1}{3}xcos2x + \frac{4}{9}sin2x$
be the required G.S. of given differential equation.
Ex.: Solve (D² + 2D + 1)y = xcosx
Solution: Let (D² + 2D + 1)y = xcosx
be the given LDE with constant coefficients,
comparing it with f(D)y = X, we get,
f(D) = D² + 2D + 1 = (D + 1)²
and X = xcosx

$$\therefore It's A.E. is f(D) = 0$$

i.e. (D + 1)² = 0

$$\Rightarrow D = -1, -1 \text{ are the roots of an A.E.}$$

$$\therefore C.F. = (C_{1} + C_{3}x)e^{-x}$$

Now P.I. = $\frac{1}{(D^{2} + 2D + 1)} xcosx$

$$= [x - \frac{1}{(D^{2} + 2D + 1)}(2D + 2)] \frac{1}{(D^{2} + 2D + 1)} cosx$$

$$= [x - \frac{1}{(D^{2} + 2D + 1)}(D + 1)] \frac{1}{(-1+2D+1)} cosx$$

$$= \frac{1}{2} [x - \frac{2}{(D+1)}] sinx$$

$$= \frac{1}{2} [xsinx - \frac{2}{(D^{2} - 1)}(D - 1)]sinx$$

$$= \frac{1}{2} [xsinx - \frac{2}{(p^2 - 1)} (cosx - sinx)] = \frac{1}{2} [xsinx - \frac{2(cosx - sinx)}{(c^1 - 1)}] = \frac{1}{2} [xsinx + \frac{2(cosx - sinx)}{(c^1 - 1)}] = \frac{1}{2} (xsinx + cosx - sinx)$$

$$\therefore G.S. = C.F. + P.I.$$

i.e. $y = (C_1 + C_2x)e^{-x} + \frac{1}{2} (xsinx + cosx - sinx)$
be the required G.S. of given differential equation.
Fx.: Solve (D² + 4)y = xsinx
Solution: Let (D² + 4)y = xsinx
be the given LDE with constant coefficients,
comparing it with f(D)y = X, we get,
f(D) = D² + 4 and X = xsinx

$$\therefore It's A.E. is f(D) = 0$$

i.e. D² + 4 = 0

$$\therefore D = \pm 2i \text{ are the roots of an A.E.}$$

$$\therefore C.F. = e^{0x} (C_1 cos2x + C_2 sin2x)$$

i.e. C.F. = $C_1 cos2x + C_2 sin2x$
Now P.I. = $\frac{1}{(p^2 + 4)} xsinx$

$$= [x - \frac{2}{(p^2 + 4)} O] \frac{1}{(-1 + 4)} sinx$$

$$= [x - \frac{2}{(p^2 + 4)} O] \frac{1}{(-1 + 4)} sinx$$

$$= \frac{1}{3} [xsinx - \frac{2cosx}{(-1 + 4)}]$$

$$= \frac{1}{3} [xsinx - \frac{2cosx}{2}]$$

$$= \frac{1}{3} (3xsinx - 2cosx)$$

$$\therefore G.S. = C.F. + P.I.$$

i.e. $y = C_1 cos2x + C_2 sin2x + \frac{1}{9} (3xsinx - 2cosx)$

be the required G.S. of given differential equation.

Ex.: Solve $(D^2 - 1)y = x \sin x$ **Solution:** Let $(D^2 - 1)y = x \sin x$ be the given LDE with constant coefficients, comparing it with f(D)y = X, we get, $f(D) = D^2 - 1 = (D - 1)(D + 1)$ and $X = x \sin x$ \therefore It's A.E. is f(D) = 0 i.e. (D - 1)(D + 1) = 0 \therefore D = 1, -1 are the roots of an A.E. \therefore C.F. = C₁ e^x + C₂ e^{-x} Now P.I. = $\frac{1}{f(D)}$ X $=\frac{1}{(D^2-1)}$ xsinx $= \left[x - \frac{1}{(D^2 - 1)}(2D)\right] \frac{1}{(D^2 - 1)} sinx$ $= \left[x - \frac{2}{(D^2 - 1)}D\right] \frac{1}{(-1 - 1)} sinx$ $=-\frac{1}{2}[xsinx - \frac{2}{(D^2-1)}cosx]$ $= -\frac{1}{2} [xsinx - \frac{2cosx}{(-1-1)}]$ $=-\frac{1}{2}(xsinx+cosx)$ \therefore G.S. = C.F. + P.I. i.e. $y = C_1 e^x + C_2 e^{-x} - \frac{1}{2} (x \sin x + \cos x)$ be the required G.S. of given differential equation. **Ex.:** Solve $(D^2 - 2D + 1)y = x \sin x$ **Solution:** Let $(D^2 - 2D + 1)y = x \sin x$ be the given LDE with constant coefficients, comparing it with f(D)y = X, we get,

 $f(D) = D^2 - 2D + 1 = (D - 1)^2$ and X = xsinx ∴ It's A.E. is f(D) = 0i.e. $(D - 1)^2 = 0$

$$\therefore$$
 D = 1, 1 are the roots of an A.E.

$$\therefore C.F. = (C_1 + C_2x)e^x$$
Now P.I. $= \frac{1}{f(D)}X$

$$= \frac{1}{(D^2 - 2D + 1)}xsinx$$

$$= [x - \frac{1}{(D^2 - 2D + 1)}(2D - 2)]\frac{1}{(D^2 - 2D + 1)}sinx$$

$$= [x - \frac{2}{(D^2 - 2D + 1)}(D - 1)]\frac{1}{(-1 - 2D + 1)}sinx$$

$$= \frac{1}{2}[x - \frac{2}{(D - 1)^2}(D - 1)]\int(-sinx)dx$$

$$= \frac{1}{2}[x - \frac{2}{(D - 1)}]cosx$$

$$= \frac{1}{2}[xcosx - \frac{2}{(D^2 - 1)}(D + 1)]cosx$$

$$= \frac{1}{2}[xcosx - \frac{2}{(D^2 - 1)}(-sinx + cosx)]$$

$$= \frac{1}{2}[xcosx - \frac{2(-sinx + cosx)}{(-1 - 1)}]$$

$$= \frac{1}{2}(xcosx - sinx + cosx)$$

$$\therefore G.S. = C.F. + P.I.$$
i.e. $y = (C_1 + C_2x)e^x + \frac{1}{2}(xcosx - sinx + cosx)$
be the required G.S. of given differential equation,

MULTIPLE CHOICE QUESTIONS (MCQ'S)

1) A differential equation of the form $\frac{d^n y}{dx^n} + p_1 \frac{d^{n-1} y}{dx^{n-1}} + p_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + p_{n-1} \frac{dy}{dx} + p_n y = X$ i.e. f(D)y = X, where $D \equiv \frac{d}{dx}$; $p_1, p_2, ..., p_n$ are constants and X is a function of x only, is called a differential equation with constant co-efficients. B) homogeneous C) quadratic A) linear D) non-homogeneous 2) An associated equation of linear differential equation with constant coefficient's f(D)y = X is A) f(D) = 0C) f(D)y = 0B) f(D) = XD) None of these 3) An auxiliary equation (A.E.) of linear differential equation with constant coefficient's f(D)y = X is A) f(D) = 0C) f(D)y = 0B) f(D) = XD) None of these

4) If f(D)y = X is a LDE with constant coefficient's, then f(D)y = 0 is called equation. A) complementary B) auxiliary C) associated D) None of these 5) If f(D)y = X is a LDE with constant coefficient's, then f(D) = 0 is called equation A) complementary B) auxiliary C) associated D) None of these 6) If LDE f(D)y = X has C.F. = u and P.I. = v, then its G.S. is $y = \dots$ B) u - v C) u + vA) uv D) None of these 7) If LDE is f(D)y = 0, then P.I. = A) -1 B) 0 **C**) 1 D) None of these 8) If an A.E. f(D) = 0 of LDE f(D)y = X has n distinct roots m_1, m_2, m_3, m_n then C.F.= A) $C_1 e^{m_1 x} + C_2 e^{m_2 x} + C_3 e^{m_3 x} + \dots + C_n e^{m_n x}$ B) $C_1 e^{-m_1 x} + C_2 e^{-m_2 x} + C_3 e^{-m_3 x} + \dots + C_n e^{-m_n x}$ C) $C_1 e^x + C_2 e^{m_2 x} + C_3 e^{m_3 x} + \dots + C_n e^{m_n x}$ D) None of these 9) If an A.E. f(D) = 0 of LDE f(D)y = 0 has n distinct roots $m_1, m_2, m_3, \dots, m_n$ then its G.S. is $y = \dots$ A) $C_1 e^{m_1 x} + C_2 e^{m_2 x} + C_3 e^{m_3 x} + \dots + C_n e^{m_n x}$ B) $C_1 e^{-m_1 x} + C_2 e^{-m_2 x} + C_3 e^{-m_3 x} + \dots + C_n e^{-m_n x}$ C) $C_1 e^x + C_2 e^{m_2 x} + C_3 e^{m_3 x} + \dots + C_n e^{m_n x}$ D) None of these 10) If an A.E. f(D) = 0 of LDE f(D)y = X has root m, repeated k times, then $C.F. = \dots$ A) $C_1 e^{mx} + C_2 e^{mx} + C_3 e^{mx} + \dots + C_k e^{mx}$ B) Ce^{mx} C) $(C_1 + C_2 x + C_3 x^2 + ... + C_k x^{k-1})e^{mx}$ D) None of these 11) If an A.E. f(D) = 0 of LDE f(D)y = 0 has root m, repeated k times, then its G.S. is $y = \dots$ A) $C_1 e^{mx} + C_2 e^{mx} + C_3 e^{mx} + \dots + C_k e^{mx}$ B) Ce^{mx} C) $(C_1 + C_2 x + C_3 x^2 + ... + C_k x^{k-1}) e^{mx}$ D) None of these 12) If an A.E. f(D) = 0 of LDE f(D)y = X has complex roots $\alpha \pm i\beta$, then C.F.= A) $C_1 e^{\alpha x} + C_2 e^{\beta x}$ B) $e^{\beta x}(C_1 \cos \alpha x + C_2 \sin \alpha x)$ C) $e^{\alpha x}(C_1 \cos\beta x + C_2 \sin\beta x)$ D) None of these 13) If an A.E. f(D) = 0 of LDE f(D)y = 0 has complex roots $\alpha \pm i\beta$, then its G.S. is $y = \dots$

A) $C_1 e^{\alpha x} + C_2 e^{\beta x}$	B) $e^{\beta x}(C_1 \cos \alpha x + C_2 \sin \alpha x)$			
C) $e^{\alpha x}(C_1 \cos\beta x + C_2 \sin\beta x)$	D) None of these			
14) If an A.E. $f(D) = 0$ of LDE $f(D)y = X$ has complex roots $\alpha \pm i\beta$ occurs twice,				
then C.F.=				
A) $(C_1 + C_2 x)e^{\alpha x} + (C_3 + C_4 x)e^{\beta x}$	B) $e^{\alpha x}[(C_1+C_2x)\cos\beta x + (C_3+C_4x)\sin\beta x]$			
C) $e^{\alpha x}(C_1 \cos\beta x + C_2 \sin\beta x)$	D) None of these			
15) If an A.E. $f(D) = 0$ of LDE $f(D)y = 0$ has complex roots $\alpha \pm i\beta$ occurs twice,				
then its G.S. is $y = \dots$	Unorde -			
A) $(C_1 + C_2 x)e^{\alpha x} + (C_3 + C_4 x)e^{\beta x}$	B) $e^{\alpha x}[(C_1+C_2x)\cos\beta x + (C_3+C_4x)\sin\beta x]$			
C) $(C_1 \cos\beta x + C_2 \sin\beta x)$	D) None of these			
16) If a and b are real roots of LDE with constant coefficient's $f(D)y = 0$,				
then its G.S. is $y = \dots$	A Section			
A) $C_1 e^{ax} + C_2 e^{bx}$	B) $C_1 e^{ax} + C_2 e^{-bx}$			
C) $C_1 e^{-ax} + C_2 e^{-bx}$	D) None of these			
17) The solution of LDE with constant coefficient's $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} - 7y = 0$ is $y = \dots$				
A) $C_1 e^x + C_2 e^{-7x}$ B) $C_1 e^{-x} + C_2 e^{-7x}$	C) $C_1 e^{-x} + C_2 e^{7x}$ D) None of these			
18) The G.S of LDE $(D^2 + 6D - 7)y = 0$ is $y =$				
A) $C_1 e^x + C_2 e^{-7x}$ B) $C_1 e^{-x} + C_2 e^{-7x}$	C) $C_1e^{-x} + C_2e^{7x}$ D) None of these			
19) The solution of LDE with constant coefficient's $\frac{d^2y}{dx^2} - 5 \frac{dy}{dx} + 6y = 0$ is $y = \dots$				
A) $C_1 e^{2x} + C_2 e^{-3x}$ B) $C_1 e^{-2x} + C_2 e^{-3x}$	C) $C_1e^{2x} + C_2e^{3x}$ D) None of these			
20) The G.S of LDE $(D^2 - 5D + 6)y = 0$ is $y =$				
UNSKAPEL APPOSING	C) $C_1e^{2x} + C_2e^{3x}$ D) None of these			
21) The solution of LDE with constant coefficient's $\frac{d^2y}{dx^2} - 7 \frac{dy}{dx} + 12y = 0$ is $y = \dots$				
A) $C_1 e^{3x} + C_2 e^{4x}$ B) $C_1 e^{-3x} + C_2 e^{-4x}$	C) $C_1e^{-3x} + C_2e^{4x}$ D) None of these			
22) The G.S of $(D^2 - 7D + 12)y = 0$ is $y = \dots$				
, 1 2 , 1 2	C) $C_1e^{-3x} + C_2e^{4x}$ D) None of these			
23) The G.S of $(2D^2 + 5D - 12)y = 0$ is $y = \dots$				
	C) $C_1e^{-3x} + C_2e^{4x}$ D) None of these			
24) The C.F. of $(2D^2 + 3D - 2)y = 0$ is A) $C_1 e^{\frac{1}{2}x} + C_2 e^{-2x}$ B) $C_1 e^{\frac{3}{2}x} + C_2 e^{-4x}$ C) $C_1 e^{-3x} + C_2 e^{4x}$ D) None of these				
A) $C_1 e^{\overline{2}^{\chi}} + C_2 e^{-2\chi}$ B) $C_1 e^{\overline{2}^{\chi}} + C_2 e^{-4\chi}$	C) $C_1e^{-3x} + C_2e^{4x}$ D) None of these			

$$36) \frac{1}{1-a}r e^{ax} = \dots$$

$$A) \frac{x^r e^{ax}}{r!} B) \frac{e^{ax}}{f(a)} C) \frac{x^r e^{ax}}{f(a)} D) \text{ None of these}$$

$$37) \text{ If } \phi(a) \neq 0, \text{ then } \frac{1}{(D-a)^r \phi(D)} e^{ax} = \dots$$

$$A) \frac{x^r e^{ax}}{r!} B) \frac{x^r e^{ax}}{f(a)} C) \frac{x^r e^{ax}}{f(a)} D) \text{ None of these}$$

$$38) P.I. \text{ of } \text{LDE } (D^2 - 3D + 2)y = e^{3x} \text{ is } \dots$$

$$A) \frac{x^e e^{3x}}{r!} B) \frac{e^{5x}}{2} C) \frac{e^{5x}}{12} D) \text{ None of these}$$

$$39) P.I. \text{ of } \text{LDE } (D^3 + 3D^2 + 3D + 1)y = e^x \text{ is } \dots$$

$$A) \frac{x^e e^{3x}}{6} B) \frac{e^{-x}}{8} C) \frac{e^{-x}}{3} D) \text{ None of these}$$

$$40) P.I. \text{ of } \text{LDE } \frac{d^2y}{dx^2} + 4 \frac{dy}{dx} + 4y = e^{2x} \text{ is } \dots$$

$$A) \frac{e^{2x}}{4} B) \frac{e^{2x}}{4x^2} C) \frac{e^{2x}}{2} D) \text{ None of these}$$

$$41) 1 + x + x^2 + x^3 + \dots \text{ is an expansion of } \dots$$

$$A) (1 - x)^1 B) (1 + x)^1 C) (1 - x)^n D) \text{ None of these}$$

$$42) 1 - x + x^2 - x^3 + \dots \text{ is an expansion of } \dots$$

$$A) \frac{1}{1-x} B) \frac{1}{1+x} C) (1 - x)^n D) \text{ None of these}$$

$$43) \text{ If } f(-a^2) \neq 0, \text{ then } \frac{1}{f(D^2)} \sin(ax+b) = \dots$$

$$A) \frac{tan(ax+b)}{f(-a^2)} B) \frac{sin(ax+b)}{f(-a^2)} C) \frac{cos(ax+b)}{f(-a^2)} D) \text{ None of these}$$

$$44) \text{ If } f(-9) \neq 0 \text{ then } \frac{1}{f(D^2)} \sin(3x+5) = \dots$$

$$A) \frac{tan(3x+5)}{f(-25)} B) \frac{sin(3x+5)}{f(-2)} D) \frac{x}{2a} \sin x$$

$$A(5) \frac{1}{D^2 + a^2} \cos x$$

$$B) \frac{-x}{2a} \sin x = \dots$$

$$A) \frac{1}{12} \cos x$$

$$B) \frac{-x}{2a} \sin x = 0$$

$$A) \frac{1}{12} \cos x$$

$$B) \frac{-x}{2a} \sin x = 0$$

$$A) \frac{sin(3x-5)}{16} B) \frac{sin(3x+5)}{(-2)} C) \frac{cos(3x+5)}{(-7)} D) \text{ None of these}$$

$$44) \text{ If } f(C) is polynomial in D2 with constant coefficient's and and f(-a^2) \neq 0 \text{ then } \frac{1}{f(D^2)} B) \frac{sin(ax+b)}{f(-a^2)} C) \frac{cos(ax+b)}{f(-a^2)} D) \text{ None of these}$$

$$43) \text{ If } f(-a^2) \neq 0 \text{ then } \frac{1}{f(D^2)} x^{in}(ax+b) = \dots$$

$$A) \frac{tan(ax+b)}{f(-a^2)} B) \frac{sin(ax+b)}{(-a^2)} C) \frac{cos(ax+b)}{(-a^2)} D) \text{ None of these}$$

$$44) \text{ If } f(-9) \neq 0 \text{ then } \frac{1}{f(D^2)} x^{in}(ax+b) = \dots$$

$$A) \frac{1}{a} (x+b) = \dots$$

$$A) \frac{1}{a} (x+b) = 0$$

$$A) \frac{1}{a} (x+b) = \dots$$

$$A) \frac{1}{a} (x+b) = 0$$

$$A) \frac{1}{a} (x+b) = \dots$$

$$A) \frac{1}{a} (x+b$$

49) If
$$f(D^2)$$
 is polynomial in D² with constant coefficient's and
and $f(-4) \neq 0$ then $\frac{1}{f(D^2)} \cos(2x+3) = \dots$...
A) $\frac{\tan(2x+3)}{f(-4)}$ B) $\frac{\sin(2x+3)}{f(-4)}$ C) $\frac{\cos(2x+3)}{f(-4)}$ D) None of these
50) $\frac{1}{D^2 + a^2} \cos ax = \dots$...
A) $\frac{-x}{2a} \cos ax = \dots$
A) $\frac{-x}{2a} \cos 4x = \dots$
A) $\frac{-x}{8} \cos 4x = \dots$
A) $\frac{-x}{8} \cos 4x = \dots$
A) $\frac{-x}{8} \cos 4x = 0$ $\frac{-x}{8} \sin 4x$ C) $\frac{x}{8} \cos 4x = 0$ $\frac{x}{8} \sin 4x$
52) If $f(D)y = e^{ax}V$ where V is function of x then $\frac{1}{f(D)}e^{ax}V = \dots$
A) $e^{ax} \frac{1}{f(D-a)}V$ B) $e^{ax} \frac{1}{f(D+a)}V$ C) $V \frac{1}{f(D+a)}e^{ax}$ D) None of these
53) If $f(D)y = e^{4x}V$ where V is function of x then $\frac{1}{f(D)}e^{4x}V = \dots$
A) $e^{4x} \frac{1}{f(D-4)}V$ B) $e^{4x} \frac{1}{f(D+4)}V$ C) $V \frac{1}{f(D+4)}e^{4x}$ D) None of these
54) If $f(D)y = e^{-3x}V$ where V is function of x then $\frac{1}{f(D)}e^{-3x}V = \dots$
A) $e^{-3x} \frac{1}{f(D-3)}V$ B) $e^{-3x} \frac{1}{f(D+3)}V$ C) $V \frac{1}{f(D-3)}e^{-3x}$ D) None of these
55) If $f(D)y = xV$ where V is function of x then $\frac{1}{f(D)}(xV) = \dots$
A) $[x - \frac{1}{f(D)}f'(D)]\frac{1}{f(D)}V$ B) $[x + \frac{1}{f(D)}f'(D)]\frac{1}{f(D)}V$
C) $[x - \frac{1}{f(D)}f(D)]\frac{1}{f(D)}V$ D) None of these

।।स्वकमर्णा तमभ्यर्च्य सिध्दिं विन्दति मानवः।।

UNIT-4: HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS

Homogeneous Linear Differential Equation: A differential equation of the form

$$x^{n}\frac{d^{n}y}{dx^{n}} + p_{1}x^{n-1}\frac{d^{n-1}y}{dx^{n-1}} + p_{2}x^{n-2}\frac{d^{n-2}y}{dx^{n-2}} + \dots + p_{n-1}x\frac{dy}{dx} + p_{n}y = X$$

where $p_1, p_2, ..., p_n$ are constants and X is a function of x only, is called a homogeneous linear differential equation of order n.

Remark: A homogeneous linear differential is also called **Cauchy's** linear equation.

Consider a homogeneous linear differential equation

$$\begin{aligned} x^{n} \frac{d^{n}y}{dx^{n}} + p_{1}x^{n-1} \frac{d^{n-1}y}{dx^{n-1}} + p_{2}x^{n-2} \frac{d^{n-2}y}{dx^{n-2}} + \dots + p_{n-1}x\frac{dy}{dx} + p_{n}y = X \dots (i) \\ \text{To solve it we change variable x to z by putting} \\ x &= e^{z} \text{ i.e. } z = \log x \text{ and } D = \frac{d}{dz} \\ \text{Now } \frac{dy}{dx} &= \frac{dy}{dz}\frac{dz}{dx} = \frac{dy}{dz} \cdot \frac{1}{x} \qquad \because \frac{dz}{dx} = \frac{1}{x} \\ \therefore x \frac{dy}{dx} &= \frac{dy}{dz} = Dy \\ \text{Again } \frac{d^{2}y}{dx^{2}} &= \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} \left[\frac{1}{x}, \frac{dy}{dz}\right] \\ &= \frac{1}{x} \cdot \frac{d}{dx} \left(\frac{dy}{dz}\right) - \frac{1}{x^{2}} \cdot \frac{dy}{dz} + \frac{1}{x^{2}} \cdot \frac{dy}{dz} \\ &= \frac{1}{x} \cdot \frac{d}{dx} \left(\frac{dy}{dz}\right) - \frac{1}{x^{2}} \cdot \frac{dy}{dz} + \frac{1}{x^{2}} \cdot \frac{dy}{dz} \\ &= \frac{1}{x} \cdot \frac{d}{dx} \left(\frac{dy}{dz}\right) - \frac{1}{x^{2}} \cdot \frac{dy}{dz} \\ &= \frac{1}{x} \cdot \frac{d}{dx} \left(\frac{dy}{dz}\right) \frac{dz}{dx} - \frac{1}{x^{2}} \cdot \frac{dy}{dz} \\ &= \frac{1}{x^{2}} \cdot \frac{d^{2}y}{dz^{2}} - \frac{1}{x^{2}} \cdot \frac{dy}{dz} \\ &= \frac{1}{x^{2}} \cdot \frac{d^{2}y}{dz^{2}} - \frac{1}{x^{2}} \cdot \frac{dy}{dz} \\ &= D(D-1)(D-2)y \\ \text{and so on, in general } x^{r} \frac{d^{r}y}{dx^{r}} = D(D-1)(D-2)(D-3) \dots (D-r+1)y \\ &\therefore \text{ Equation (i) becomes,} \\ &[D(D-1)(D-2) \dots (D-n+1) + p_{1}D(D-1)(D-2) \dots (D-n+2) \end{aligned}$$

 $(p_2 D(D - 1)(D - 2) ... (D - n + 3) + ... + p_{n-1} D + p_n]y = Z$ Which is linear differential equation with constant coefficients and Z is function of z. Using usual method, G.S. in y and z is obtained. In this solution putting $z = \log x$, we get required G.S. of given equation.

Ex. Solve
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - 4y = 0$$

Solution: Let $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - 4y = 0 \dots (i)$
be the given homogeneous linear differential equation.
To solve it we put $x = e^x$ i.e. $z = \log x$ and $D = \frac{d}{dz}$, we get,
 $x \frac{dy}{dx} = Dy$ and $x^2 \frac{d^2y}{dx^2} = D(D-1)y$
Equation (i) becomes,
 $[D(D-1) + D - 4]y = 0$
i.e. $(D^2 - 4)y = 0$
Which is LDE with constant coefficients.
It's A.E. is $D^2 - 4 = 0$
i.e. $(D-2)(D+2) = 0$
 $\therefore D = 2, -2$ are the roots of an A.E.
 $\therefore C.F. = C_1e^{2z} + C_2e^{-2z}$
and P.I.= 0 \therefore Z = 0.
 $\therefore G.S. = C.F. + P.I. = C.F.$
i.e. $y = C_1e^{2z} + C_2e^{-2z}$
Using z = logx i.e. $e^z = x$, we get,
 $y = C_1x^2 + \frac{C_2}{x^2}$
be the G.S. of given homogeneous LDE.

Ex. Solve
$$x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^5$$

Solution: Let $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^5 \dots$ (i)
be the given homogeneous linear differential equation.
To solve it we put $x = e^z$ i.e. $z = \log x$ and $D = \frac{d}{dz}$, we get,
 $x \frac{dy}{dx} = Dy$ and $x^2 \frac{d^2y}{dx^2} = D(D - 1)y$
Equation (i) becomes,

 $[D(D-1)-4D+6]y = e^{5z}$ i.e. $(D^2 - 5D + 6)v = e^{5z}$ Which is LDE with constant coefficients. It's A.E. is $D^2 - 5D + 6 = 0$ i.e. (D-2)(D-3) = 0 \therefore D = 2, 3 are the roots of an A.E. $\therefore C.F_{2} = C_{1}e^{2z} + C_{2}e^{3z}$ and P.I.= $\frac{1}{(D-2)(D-3)}e^{5z}$ $=\frac{e^{5z}}{(5-2)(5-3)}$ $=\frac{1}{c}e^{5z}$ \therefore G.S. = C.F. + P.I. i.e. $y = C_1 e^{2z} + C_2 e^{3z} + \frac{1}{c} e^{5z}$ Using $z = \log x$ i.e. $e^z = x$, we get, $y = C_1 x^2 + C_2 x^3 + \frac{1}{2} x^5$ be the G.S. of given homogeneous LDE. **Ex.** Solve $\frac{d^2y}{dx^2} - \frac{2}{x}\frac{dy}{dx} - \frac{4}{x^2}y = x^2$ Solution: Let $\frac{d^2y}{dx^2} - \frac{2}{x}\frac{dy}{dx} - \frac{4}{x^2}y = x^2$ i.e. $x^2\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} - 4y = x^4$... (i) be the given homogeneous linear differential equation. To solve it we put $x = e^z$ i.e. $z = \log x$ and $D = \frac{d}{dz}$, we get, $x \frac{dy}{dx} = Dy$ and $x^2 \frac{d^2y}{dx^2} = D(D-1)y$ त्रभ्यच्ये सिध्दि विन्दति मानवः Equation (i) becomes, $[D(D-1)-2D-4]v = e^{4z}$ i.e. $(D^2 - 3D - 4)v = e^{4z}$ Which is LDE with constant coefficients. It's A.E. is $D^2 - 3D - 4 = 0$ i.e. (D-4)(D+1) = 0 \therefore D = 4. -1 are the roots of an A.E. \therefore C.F. = C₁e^{4z} + C₂e^{-z} and P.I.= $\frac{1}{(D-4)(D+1)}e^{4z}$

$$=\frac{ze^{4z}}{1!(4+1)}$$

$$=\frac{1}{5}2e^{4z}$$

$$\therefore G.S. = C.F. + P.I.$$
i.e. $y = C_1e^{4z} + C_2e^{-x} + \frac{1}{5}ze^{4z}$
Using $z = \log x$ i.e. $e^{z} = x$, we get,
 $y = C_1x^4 + \frac{C_2}{x} + \frac{1}{5}x^{4}\log x$
be the G.S. of given homogeneous LDE.
Ex. Solve $\frac{d^2y}{dx^2} - \frac{1}{x}\frac{dy}{dx} + \frac{1}{x^2}y = \frac{2}{x^2}\log x$.
Solution: Let $\frac{d^2y}{dx^2} - \frac{1}{x}\frac{dy}{dx} + \frac{1}{x^2}y = \frac{2}{x^2}\log x$ i.e. $x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 2\log x$... (i)
be the given homogeneous linear differential equation.
To solve it we put $x = e^x$ i.e. $z = \log x$ and $D = \frac{d}{dz}$, we get,
 $x\frac{dy}{dx} = Dy$ and $x^2\frac{d^2y}{dx^2} = D(D - 1)y$
Equation (i) becomes,
 $[D(D - 1) - D + 1]y = 2z$
i.e. $(D^2 - 2D + 1)y = 2z$
Which is LDE with constant coefficients.
It's A.E. is $D^2 - 2D + 1 = 0$
i.e. $(D - 1)^2 = 0$
 $\therefore D = 1, 1$ are the roots of an A.E.
 $\therefore C.F. = (C_1 + C_2z)e^2$
and $P.I = \frac{D^2 - 2D + 1}{2} + 2z$
 $= 2[1+(2D - D^2)+(2D - D^2)^2 + ...]z$
 $= 2[1+(2D - D^2)]^2$
 $= 2[1+(2D - D^2)+(2D - D^2)^2 + ...]z$
 $= 2[z+2(1)+0]$
 $= 2z + 4$
 \therefore G.S. = C.F. + P.I.
i.e. $y = (C_1 + C_2z)e^2 + 2z + 4$
Using $z = \log x$ i.e. $e^x = x$, we get,
 $y = (C_1 + C_2)e^x + 2z + 4$
Using $z = \log x$ i.e. $e^x = x$, we get,
 $y = (C_1 + C_2)e^x + 2z + 4$
Using $z = \log x$ i.e. $e^x = x$, we get,
 $y = (C_1 + C_2)e^x + 2z + 4$
be the G.S. of given homogeneous LDE.

Ex. Solve $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^2 \log x$ Solution: Let $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^2 \log x \dots$ (i) be the given homogeneous linear differential equation. To solve it we put $x = e^z$ i.e. $z = \log x$ and $D = \frac{d}{dz}$, we get, $x \frac{dy}{dx} = Dy \text{ and } x^2 \frac{d^2y}{dx^2} = D(D-1)y$ Equation (i) becomes, $[D(D-1)-4D+6]y = e^{2z}z$ i.e. $(D^2 - 5D + 6)v = e^{2z}z$ Which is LDE with constant coefficients. It's A.E. is $D^2 - 5D + 6 = 0$ i.e. (D-2)(D-3) = 0 \therefore D = 2, 3 are the roots of an A.E. $\therefore C.F. = C_1 e^{2z} + C_2 e^{3z}$ and P.I.= $\frac{1}{(D-2)(D-3)}e^{2z}z$ $= e^{2z} \frac{1}{(D+2-2)(D+2-3)}z$ $= e^{2z} \frac{1}{D(D-1)}z$ $= -e^{2z} \frac{1}{D(1-D)}z$ $= -e^{2z} \frac{1}{D} [1 + D + D^{2} + ...]z$ $=-e^{2z}\frac{1}{p}[z+1+0]$ $= -e^{2z} \int (z+1)dz$ तमभ्यच्य सिधिदं विन्दति मानवः $=-e^{2z}(\frac{1}{2}z^{2}+z)$ $=-\frac{1}{2}e^{2z}(z+1)z$ \therefore G.S. = C.F. + P.I. i.e. $y = C_1 e^{2z} + C_2 e^{3z} - \frac{1}{2} e^{2z} (z+1)z$ Using $z = \log x$ i.e. $e^z = x$, we get, $y = C_1 x^2 + C_2 x^3 - \frac{1}{2} x^2 (\log x + 1) \log x$ be the G.S. of given homogeneous LDE.

Ex. Solve $x^4 \frac{d^3y}{dx^3} + 2x^3 \frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = 1$ Solution: Let $x^4 \frac{d^3y}{dx^3} + 2x^3 \frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = 1$ i.e. $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = \frac{1}{x}$... (i) be the given homogeneous linear differential equation. To solve it we put $x = e^z$ i.e. $z = \log x$ and $D = \frac{d}{dz}$, we get, $x \frac{dy}{dx} = Dy, x^2 \frac{d^2y}{dx^2} = D(D-1)y \text{ and } x^3 \frac{d^3y}{dx^3} = D(D-1)(D-2)y$ Equation (i) becomes, $[D(D-1)(D-2) + 2D(D-1) - D + 1]y = \frac{1}{2^{Z}}$ i.e. $(D^3 - 3D^2 + 2D + 2D^2 - 2D - D + 1)y = e^{-z}$ i.e. $(D^3 - D^2 - D + 1)v = e^{-z}$ Which is LDE with constant coefficients. It's A E, is $D^3 - D^2 - D + 1 = 0$ i.e. $D^2 (D-1) - (D-1) = 0$ i.e. $(D-1)(D^2-1) = 0$ i.e. $(D-1)^2(D+1) = 0$ \therefore D = 1, 1, -1 are the roots of an A.E. $\therefore C.F. = (C_1 + C_2 z)e^z + C_3 e^{-z}$ and P.I.= $\frac{1}{(D-1)^2(D+1)} e^{-z}$ $=\frac{ze^{-z}}{1!(-1+1)^2}$ कमर्णा तमभ्यर्च्य सिध्दि विन्दति मानवः $=\frac{z}{\sqrt{z}}$ \therefore G.S. = C.F. + P.I. i.e. $y = (C_1 + C_2 z)e^z + C_3 e^{-z} + \frac{z}{4e^z}$ Using $z = \log x$ i.e. $e^{z} = x$, we get, $y = (C_1 + C_2 \log x)x + \frac{C_3}{x} + \frac{\log x}{4x}$

be the G.S. of given homogeneous LDE.

Legendre's Linear Equation: A differential equation of the form $(ax + b)^{n} \frac{d^{n}y}{dx^{n}} + p_{1}(ax + b)^{n-1} \frac{d^{n-1}y}{dx^{n-1}} + p_{2}(ax + b)^{n-2} \frac{d^{n-2}y}{dx^{n-2}} + \dots + p_{n}y = X$ where $p_1, p_2, ..., p_n$ are constants and X is a function of x only, is called a Legendre's linear equation of order n. Remark: i) To convert Legendre's linear equation to a homogeneous linear differential equation form put ax+b = u. ii) To convert Legendre's linear equation to a linear differential equation form put $ax+b = e^z$ i.e. z = log(ax+b). Method of Solving Legendre's Linear Equation: Consider the Legendre's linear equation $(ax + b)^{n} \frac{d^{n}y}{dx^{n}} + p_{1}(ax + b)^{n-1} \frac{d^{n-1}y}{dx^{n-1}} + p_{2}(ax + b)^{n-2} \frac{d^{n-2}y}{dx^{n-2}} + \dots + p_{n}y = X$ To solve it we change variable x to z by putting $ax+b = e^{z}$ i.e. z = log(ax+b) and $D = \frac{d}{dz}$ Now $\frac{dy}{dx} = \frac{dy}{dz}\frac{dz}{dx} = \frac{dy}{dz}\cdot\frac{a}{ax+b}$ $\therefore \frac{dz}{dx} = \frac{a}{ax+b}$ \therefore (ax + b) $\frac{dy}{dx} = a\frac{dy}{dz} = aDy$ Again $\frac{d^2y}{dy^2} = \frac{d}{dy} \left(\frac{dy}{dy}\right) = \frac{d}{dy} \left[\frac{a}{ay+b}, \frac{dy}{dz}\right]$ $=\frac{a}{ax+b}\cdot\frac{d}{dx}\left(\frac{dy}{dz}\right)-\frac{a^2}{(ax+b)^2}\cdot\frac{dy}{dz}$ $=\frac{a}{ax+b}\cdot\frac{d}{dz}\left(\frac{dy}{dz}\right)\frac{dz}{dx}-\frac{a^2}{(ax+b)^2}\cdot\frac{dy}{dz}$ $= \frac{a^2}{(ax+b)^2} \cdot \frac{d^2y}{dz^2} - \frac{a^2}{(ax+b)^2} \cdot \frac{dy}{dz}$ $\therefore (ax+b)^2 \frac{d^2y}{dx^2} = a^2 \left[\frac{d^2y}{dz^2} - \frac{dy}{dz} \right] = a^2 (D^2 - D)y = a^2 D(D - 1)y$ Similarly $(ax+b)^3 \frac{d^3y}{dx^3} = a^3D(D-1)(D-2)y$ and so on, in general $(ax+b)^{r} \frac{d^{r}y}{dx^{r}} = a^{r}D(D-1)(D-2)(D-3)...(D-r+1)y$ \therefore Equation (i) becomes, $[a^{n}D(D-1)(D-2)...(D-n+1)+p_{1}a^{n-1}D(D-1)(D-2)...(D-n+2)]$ $(p_{2}a^{n-2}D(D-1)(D-2)...(D-n+3)+....+p_{n-1}aD+p_{n}]y=Z$ Which is linear differential equation with constant coefficients and Z is function of z. Using usual method, G.S. in y and z is obtained. In this solution putting z = log(ax+b), we get required G.S. of given equation.

Ex. Solve $(x+2)^2 \frac{d^2y}{dx^2} - (x+2) \frac{dy}{dx} + y = 3x + 4$ Solution: Let $(x+2)^2 \frac{d^2y}{dx^2} - (x+2) \frac{dy}{dx} + y = 3x + 4 \dots$ (i) be the given Legendre's linear equation. To solve it we put $x+2 = e^z$ i.e. z = log(x+2) and $D = \frac{d}{dz}$, we get, $(x+2)\frac{dy}{dx} = Dy \text{ and } (x+2)^2 \frac{d^2y}{dx^2} = D(D-1)y$ Equation (i) becomes, $[D(D-1) - D + 1]y = 3(e^{z}-2) + 4$ i.e. $(D^2 - 2D + 1)y = 3e^z - 2$ Which is LDE with constant coefficients. It's A.E. is $D^2 - 2D + 1 = 0$ i.e. $(D-1)^2 = 0$ \therefore D = 1, 1 are the roots of an A.E. \therefore C.F. = (C₁ + C₂z)e^z and P.I.= $\frac{1}{(D-1)^2}(3e^z-2)$ $=\frac{1}{(D-1)^2}3e^z-\frac{1}{(D-1)^2}2e^{0z}$ $=\frac{3z^2e^z}{2!}-\frac{2e^{0z}}{(0-1)^2}$ $=\frac{3}{2}z^{2}e^{z}-2$: G.S. = C.F. + P.I.i.e. $y = (C_1 + C_2 z)e^z + \frac{3}{2}z^2e^z - 2$ Using z = log(x+2) i.e. $e^z = x+2$, we get, $y = [C_1 + C_2 \log(x+2)](x+2) + \frac{3}{2}(x+2)^2 [\log(x+2)]^2 - 2$ be the G.S. of given Legendre's equation.

Ex. Solve $(x+3)^2 \frac{d^2y}{dx^2} - 4(x+3) \frac{dy}{dx} + 6y = \log(x+3)$ Solution: Let $(x+3)^2 \frac{d^2y}{dx^2} - 4(x+3) \frac{dy}{dx} + 6y = \log(x+3)...$ (i) be the given Legendre's linear equation. To solve it we put $x+3 = e^z$ i.e. $z = \log(x+3)$ and $D = \frac{d}{dz}$, we get, $(x+3) \frac{dy}{dx} = Dy$ and $(x+3)^2 \frac{d^2y}{dx^2} = D(D-1)y$ Equation (i) becomes,

$$[D(D-1) - 4D + 6]y = z$$

i.e. $(D^2 - 5D + 6)y = z$
Which is LDE with constant coefficients.
It's A.E. is $D^2 - 5D + 6 = 0$
i.e. $(D-2)(D-3) = 0$
 $\therefore D = 2, 3$ are the roots of an A.E.
 $\therefore C.F. = C_1e^{2z} + C_2e^{3z}$
and $P.I. = \frac{1}{D^2 - 5D + 6}z$
 $= \frac{1}{6[1 - (\frac{5}{6}D - \frac{1}{6}D^2) + (\frac{5}{6}D - \frac{1}{6}D^2)^2 + ...]z$
 $= \frac{1}{6}[1 + (\frac{5}{6}D - \frac{1}{6}D^2) + (\frac{5}{6}D - \frac{1}{6}D^2)^2 + ...]z$
 $= \frac{1}{6}[z + \frac{5}{6}(1) + 0]$
 $= \frac{1}{6}z + \frac{5}{36}$
 $\therefore G.S. = C.F. + P.I.$
i.e. $y = C_1e^{2z} + C_2e^{3z} + \frac{1}{6}z + \frac{5}{36}$
Using $z = \log(x+3)$ i.e. $e^z = x+3$, we get,
 $y = C_1(x+3)^2 + C_2(x+3)^3 + \frac{1}{6}\log(x+3) + \frac{5}{36}$
be the G.S. of given Legendre's equation.

Ex. Solve
$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x) \frac{dy}{dx} + y = 2\sin[\log(1+x)]$$

Solution: Let $(1+x)^2 \frac{d^2y}{dx^2} + (1+x) \frac{dy}{dx} + y = 2\sin[\log(1+x)] \dots (i)$ be the given Legendre's linear equation. To solve it we put $1+x = e^z$ i.e. $z = \log(1+x)$ and $D = \frac{d}{dz}$, we get, $(1+x) \frac{dy}{dx} = Dy$ and $(1+x)^2 \frac{d^2y}{dx^2} = D(D-1)y$ Equation (i) becomes, $[D(D-1) + D + 1]y = 2\sin z$ i.e. $(D^2 + 1)y = 2\sin z$ Which is LDE with constant coefficients. It's A.E. is $D^2 + 1 = 0$ $\therefore D = \pm i$ are the roots of an A.E. $\therefore C.F. = e^{0z}(C_1\cos z + C_2\sin z) = C_1\cos z + C_2\sin z$

and P.I.= $\frac{1}{D^2+1}$ (2sinz) $=\frac{-2z\cos z}{(2\times 1)}$ = -zcosz \therefore G.S. = C.F. + P.I. i.e. $y = C_1 \cos z + C_2 \sin z - z \cos z = [C_1 - z] \cos z + C_2 \sin z$ Using z = log(1+x) i.e. $e^z = 1+x$, we get, $y = [C_1 - \log(1+x)]\cos \log(1+x) + C_2 \sin \log(1+x)$ be the G.S. of given Legendre's equation. **Ex.** Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x) \frac{dy}{dx} + y = 4\cos[\log(1+x)]$ Solution: Let $(1+x)^2 \frac{d^2y}{dx^2} + (1+x) \frac{dy}{dx} + y = 4\cos[\log(1+x)] \dots (i)$ be the given Legendre's linear equation. To solve it we put $1+x = e^z$ i.e. z = log(1+x) and $D = \frac{d}{dz}$, we get, $(1 + x)\frac{dy}{dx} = Dy \text{ and } (1+x)^2 \frac{d^2y}{dx^2} = D(D-1)y$ Equation (i) becomes, $[D(D - 1) + D + 1]y = 4\cos z$ i.e. $(D^2 + 1)y = 4\cos z$ Which is LDE with constant coefficients. It's A E is $D^2 + 1 = 0$ \therefore D = \pm i are the roots of an A.E. $\therefore C.F. = e^{0z}(C_1 \cos z + C_2 \sin z) = C_1 \cos z + C_2 \sin z$ and P.I.= $\frac{1}{D^2+1}$ (4cosz) HUI तमभ्याच्यं सिष्टि विन्दति मानवः $=\frac{4zsinz}{(2\times 1)}$ = 2zsinz \therefore G.S. = C.F. + P.I. i.e. $y = C_1 \cos z + C_2 \sin z + 2z \sin z = C_1 \cos z + (C_2 + 2z) \sin z$ Using z = log(1+x) i.e. $e^z = 1+x$, we get, $y = C_1 coslog(1+x) + [C_2 + 2log(1+x)]sinlog(1+x)$

be the G.S. of given Legendre's equation.

Ex. Solve $(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2) \frac{dy}{dx} - 36y = 3x^2 + 4x + 1$ Solution: Let $(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2) \frac{dy}{dx} - 36y = 3x^2 + 4x + 1 \dots$ (i) be the given Legendre's linear equation. To solve it we put $3x+2 = e^z$ i.e. z = log(3x+2) and $D = \frac{d}{dz}$, we get, $(3x + 2)\frac{dy}{dx} = 3Dy \text{ and } (3x+2)^2 \frac{d^2y}{dx^2} = 9D(D-1)y$ Equation (i) becomes, $[9D(D-1) + 3(3D) - 36]y = 3(\frac{e^{z}-2}{3})^{2} + 4(\frac{e^{z}-2}{3}) + 1$ i.e. $(9D^2 - 9D + 9D - 36)y = \frac{1}{2}(e^{2z} - 4e^z + 4) + \frac{4}{2}(e^z - 2) + 1$ i.e. $(9D^2 - 36)y = \frac{1}{2}e^{2z} - \frac{4}{2}e^{z} + \frac{4}{3}e^{z} - \frac{8}{3} + 1$ i.e. $9(D^2 - 4)y = \frac{1}{2}e^{2z} - \frac{1}{2}e^{2z}$ i.e. $(D^2 - 4)y = \frac{1}{27}e^{2z} - \frac{1}{27}e^{2z}$ Which is LDE with constant coefficients. It's A.E. is $D^2 - 4 = 0$ i.e. (D-2)(D+2) = 0 \therefore D = 2, -2 are the roots of an A.E. $\therefore C.F. = C_1 e^{2z} + C_2 e^{-2z}$ and P.I.= $\frac{1}{(D-2)(D+2)}(\frac{1}{27}e^{2z}-\frac{1}{27})$ $= \frac{1}{27} \left[\frac{1}{(D-2)(D+2)} e^{2z} - \frac{1}{(D-2)(D+2)} e^{0z} \right]$ $=\frac{1}{100}(ze^{2z}+1)$ $\therefore \text{ G.S.} = \text{C.F.} + \text{P.I.}$ i.e. $y = C_1 e^{2z} + C_2 e^{-2z} + \frac{1}{108} (ze^{2z} + 1)$ Using z = log(3x+2) i.e. $e^{z} = 3x+2$, we get, $y = C_1(3x+2)^2 + \frac{C_2}{(3x+2)^2} + \frac{1}{108} [(3x+2)^2 \log(3x+2) + 1]$ be the G.S. of given Legendre's equation.

Ex. Solve $(2x+1)^2 \frac{d^2y}{dx^2} - 2(2x+1) \frac{dy}{dx} - 12y = 6x$ Solution: Let $(2x+1)^2 \frac{d^2y}{dx^2} - 2(2x+1) \frac{dy}{dx} - 12y = 6x$... (i) be the given Legendre's linear equation. To solve it we put $2x+1 = e^z$ i.e. z = log(2x+1) and $D = \frac{d}{dz}$, we get, $(2x + 1)\frac{dy}{dx} = 2Dy \text{ and } (2x+1)^2 \frac{d^2y}{dx^2} = 4D(D-1)y$ Equation (i) becomes, $[4D(D-1)-2(2D)-12]y=6(\frac{e^{z}-1}{2})$ i.e. $(4D^2 - 4D - 4D - 12)v = 3(e^z - 1)$ i.e. $(4D^2 - 8D - 12)v = 3(e^z - 1)$ i.e. $4(D^2 - 2D - 3)v = 3(e^z - 1)$ i.e. $(D^2 - 2D - 3)y = \frac{3}{4}(e^z - 1)$ Which is LDE with constant coefficients. It's A.E. is $D^2 - 2D - 3 = 0$ i.e. (D-3)(D+1) = 0 \therefore D = 3, -1 are the roots of an A.E. $\therefore C.F. = C_1 e^{3z} + C_2 e^{-z}$ and P.I.= $\frac{1}{(D-3)(D+1)}\frac{3}{4}(e^{z}-1)$ $=\frac{3}{4}\left[\frac{1}{(D-3)(D+1)}e^{z}-\frac{1}{(D-3)(D+1)}e^{0z}\right]$ $= \frac{3}{4} \left[\frac{e^{z}}{(1-3)(1+1)} - \frac{e^{0z}}{(0-3)(0+1)} \right]$ $=\frac{3}{4}\left(-\frac{1}{4}e^{z}+\frac{1}{2}\right)$ <u>- 3</u> है<u>स्ट</u> केंमणां तमभ्यर्च्य सिध्दिं विन्दति मानवः। \therefore G.S. = C.F. + P.I. i.e. $y = C_1 e^{3z} + C_2 e^{-z} - \frac{3}{16} e^{z} + \frac{1}{4}$ Using z = log(2x+1) i.e. $e^z = 2x+1$, we get, $y = C_1(2x+1)^3 + C_2(2x+1)^{-1} - \frac{3}{12}(2x+1) + \frac{1}{12}$ i.e. $y = C_1(2x+1)^3 + \frac{C_2}{(2x+1)} - \frac{3}{8}x + \frac{1}{16}$ be the G.S. of given Legendre's equation.

MULTIPLE CHOICE QUESTIONS (MCQ'S)

1) A differential equation $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2x^2$ is			
A) L.D.E. with constant coefficient's B) Homogeneous L.D.E.			
C) Non-Homogeneous L.D.E. D) None of these			
2) A differential equation $x^3 \frac{d^2y}{dx^2} - 5x \frac{dy}{dx} + 8y = 7x^2$ is			
A) L.D.E. with constant coefficient's B) Homogeneous L.D.E.			
C) Non-Homogeneous L.D.E. D) None of these			
3) A differential equation $\frac{d^2y}{dx^2} - \frac{2}{x}\frac{dy}{dx} - \frac{4}{x^2}y = x^2$ is			
A) L.D.E. with constant coefficient's B) Homogeneous L.D.E.			
C) Non-Homogeneous L.D.E. D) None of these			
4) A differential equation of the form			
$x^{n}\frac{d^{n}y}{dx^{n}} + P_{1}x^{n-1}\frac{d^{n-1}y}{dx^{n-1}} + P_{2}x^{n-2}\frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n-1}x\frac{dy}{dx} + P_{n}y = X$			
Where P ₁ , P ₂ , P ₃ ,P _n are constants and X is function of x only is called			
A) L.D.E. with constant coefficient's B) Homogeneous L.D.E.			
C) Non-Homogeneous L.D.E. D) None of these			
5) A homogeneous linear differential equation is also called			
A) Cauchy's linear equation B) Legendre's linear equation			
C) Non-Homogeneous L.D.E. D) None of these			
6) A differential equation of the form			
$x^{n} \frac{d^{n}y}{dx^{n}} + P_{1}x^{n-1} \frac{d^{n-1}y}{dx^{n-1}} + P_{2}x^{n-2} \frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n-1}x \frac{dy}{dx} + P_{n}y = X$			
Where P_1 , P_2 , P_3 , P_n are constants and X is function of x only can be reduced to			
L.D.E. with constant coefficient form by substitution			
A) $z = \log x$ B) $x = \log z$ C) $z = e^x$ D) None of these			
7) A differential equation $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2x^2$ can be reduced to L.D.E. with constant			
coefficient form by substitution			
A) $x = \log z$ B) $z = \log x$ C) $z = e^x$ D) None of these			
8) A differential equation $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^2 \log x$ can be reduced to L.D.E. with			
constant coefficient form by substitution			
A) $x = \log z$ B) $z = \log x$ C) $z = e^x$ D) None of these			

9) If D $\equiv \frac{d}{dz}$ and z = lo	by then $x \frac{dy}{dx} = \dots$			
A) Dy	B) D(D-1)y	C) D(D-1)(D-2)y D) N	None of these	
10) If $D \equiv \frac{d}{dz}$ and $z = \log x$ then $x^2 \frac{d^2 y}{dx^2} = \dots$				
A) Dy		C) D(D-1)(D-2)y D) N	None of these	
11) If $D \equiv \frac{d}{dz}$ and $z = \log x$ then $x^3 \frac{d^3 y}{dx^3} = \dots$				
A) Dy		C) D(D-1)(D-2)y D) N	None of these	
12) If D = $\frac{d}{dz}$ and z = logx then $x^r \frac{d^r y}{dx^r}$ =				
A) D(D-1)(D-2) (D-r-1)y	B) D(D-1)(D-2) (D-r)y	
C) D(D-1)(D-2)) (D-r+1)y	D) None of these		
13) To reduce the Legendre's Linear Equation				
$(ax+b)^{n}\frac{d^{n}y}{dx^{n}} + P_{1}(ax+b)^{n-1}\frac{d^{n-1}y}{dx^{n-1}} + P_{2}(ax+b)^{n-2}\frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n-1}(ax+b)\frac{dy}{dx} + P_{n}y = X$				
in homogeneous linear differential equation form we substitute				
		C) x = log(az+b) D) N	None of these	
14) To reduce the Legendre's Linear Equation				
$(ax+b)^{n}\frac{d^{n}y}{dx^{n}} + P_{1}(ax+b)^{n-1}\frac{d^{n-1}y}{dx^{n-1}} + P_{2}(ax+b)^{n-2}\frac{d^{n-2}y}{dx^{n-2}} + \dots + P_{n-1}(ax+b)\frac{dy}{dx} + P_{n}y = X$				
into linear differential equation with constant coefficient form we substitute				
		$\mathbf{C} \mathbf{x} = \log(\mathbf{az} + \mathbf{b}) \mathbf{D} \mathbf{X}$		
15) The Legendre's Linear Equation $(2x+1)^2 \frac{d^2y}{dx^2} - 2(2x+1)\frac{dy}{dx} - 12y = 6x$				
can be reduced to L.D.E. with constant coefficient form by substitution				
A) $2x+1 = \log z$	$\mathbf{B}) \mathbf{z} = \log(2\mathbf{x}+1)$) C) $x = log(2z+1)$ D) N	None of these	
16) The Legendre's Linear Equation $(2x-1)^3 \frac{d^3y}{dx^3} + (2x-1)\frac{dy}{dx} - 2y = 0$				
can be reduced to L.D.E. with constant coefficient form by substitution				
A) $2x-1 = \log z$	B) $z = \log(2x-1)$	C) $x = \log(2z-1)$ D) N	None of these	
17) The Legendre's Linear Equation $(1+x)^2 \frac{d^2y}{dx^2} + (1+x) \frac{dy}{dx} + y = 4\cos[\log(1+x)]$				
can be reduced to L.D.E. with constant coefficient form by substitution				
A) $1+x = \log z$	B) $z = \log(1+x)$	C) $x = \log(z+1)$ D) N	None of these	
18) If D = $\frac{d}{dz}$ and z = log(ax+b) then (ax+b) $\frac{dy}{dx}$ =				
A) aDy	B) $a^2D(D-1)y$	C) $a^{3}D(D-1)(D-2)y$	D) None of these	

19) If
$$D = \frac{d}{dz}$$
 and $z = \log(ax+b)$ then $(ax+b)^2 \frac{d^2y}{dx^2} = \dots$
A) aDy B) $a^2D(D-1)y$ C) $a^3D(D-1)(D-2)y$ D) None of these
20) If $D = \frac{d}{dz}$ and $z = \log(ax+b)$ then $(ax+b)^3 \frac{d^3y}{dx^3} = \dots$
A) aDy B) $a^2D(D-1)y$ C) $a^3D(D-1)(D-2)y$ D) None of these
21) If $D = \frac{d}{dz}$ and $z = \log x$ then $(ax+b)^r \frac{d^ry}{dx^r} = \dots$
A) $a^2D(D-1)(D-2) \dots (D-r-1)y$ B) $a^2D(D-1)(D-2) \dots (D-r)y$
C) $a^2D(D-1)(D-2) \dots (D-r+1)y$ D) None of these
22) If $D = \frac{d}{dz}$ and $z = \log(x+2)$ then $(x+2)\frac{dy}{dx^2} = \dots$
A) Dy B) 2Dy C) 2D(D-1)y D) None of these
23) If $D = \frac{d}{dz}$ and $z = \log(x+2)$ then $(x+2)^2 \frac{d^3y}{dx^3} = \dots$
A) 2Dy B) D(D-1)y C) 4D(D-1)y D) None of these
24) If $D = \frac{d}{dz}$ and $z = \log(x+2)$ then $(x+2)^3 \frac{d^3y}{dx^3} = \dots$
A) (D-1)y B) 8D(D-1)y C) 4D(D-1)(D-2)y D) None of these
25) If $D = \frac{d}{dz}$ and $z = \log(x+2)$ then $(x+2)^n \frac{d^3y}{dx^n} = \dots$
A) D(D-1)(D-2)...(D-n-1)y B) D(D-1)(D-2),...(D-n)y
C) D(D-1)(D-2)...(D-n-1)y D) None of these
26) If $D = \frac{d}{dz}$ and $z = \log(3x+2)$ then $(3x+2)^n \frac{d^2y}{dx^2} = \dots$
A) 3Dy B) 2Dy C) Dy D) None of these
27) If $D = \frac{d}{dz}$ and $z = \log(3x+2)$ then $(3x+2)^2 \frac{d^2y}{dx^2} = \dots$
A) 3Dy B) 9D(D-1)y C) 27D(D-1)(D-2)y D) None of these
28) If $D = \frac{d}{dz}$ and $z = \log(3x+2)$ then $(3x+2)^3 \frac{d^3y}{dx^3} = \dots$
A) 3Dy B) 9D(D-1)y C) 27D(D-1)(D-2)y D) None of these
29) If $D = \frac{d}{dz}$ and $z = \log(3x+2)$ then $(3x+2)^3 \frac{d^3y}{dx^3} = \dots$
A) 3Dy B) 9D(D-1)y C) 27D(D-1)(D-2)y D) None of these
29) If $D = \frac{d}{dz}$ and $z = \log(3x+2)$ then $(3x+2)^3 \frac{d^3y}{dx^3} = \dots$
A) 3Dy B) 9D(D-1)y C) 27D(D-1)(D-2)...(D-r)y
C) 3'D(D-1)(D-2)...(D-r+1)Y D) None of these
30) If $D = \frac{d}{dz}$ and $z = \log(4x+1)$ then $(4x+1)\frac{dy}{dx} = \dots$
A) 3Dy B) 16D(D-1)y C) 64D(D-1)(D-2)y D) None of these
30) If $D = \frac{d}{dz}$ and $z = \log(4x+1)$ then $(4x+1)\frac{dy}{dx} = \dots$

31) If
$$D \equiv \frac{d}{dz}$$
 and $z = \log(4x+1)$ then $(4x+1)^2 \frac{d^2y}{dx^2} = \dots$
A) 4Dy B) 16D(D-1)y C) 64D(D-1)(D-2)y D) None of these
32) If $D \equiv \frac{d}{dz}$ and $z = \log(4x+1)$ then $(4x+1)^3 \frac{d^3y}{dx^3} = \dots$
A) 4Dy B) 16D(D-1)y C) 64D(D-1)(D-2)y D) None of these
33) If $D \equiv \frac{d}{dz}$ and $z = \log(4x+1)$ then $(4x+1)^r \frac{d^ry}{dx^r} = \dots$
A) 4^rD(D-1)(D-2)...(D-r+1)y B) D(D-1)(D-2)...(D-r+1)y
C) 4^rD(D-1)(D-2)...(D-r-1)y D) None of these
34) If $D \equiv \frac{d}{dz}$ and $z = \log(2x+5)$ then $(2x+5)\frac{dy}{dx} = \dots$
A) 2Dy B) Dy C) 5D(D-1)y D) None of these
35) If $D \equiv \frac{d}{dz}$ and $z = \log(2x+5)$ then $(2x+5)^2 \frac{d^2y}{dx^2} = \dots$
A) 2Dy B) 4D(D-1)y C) 25D(D-1)y D) None of these
36) If $D \equiv \frac{d}{dz}$ and $z = \log(2x+5)$ then $(2x+5)^3 \frac{d^3y}{dx^3} = \dots$
A) 2Dy B) 4D(D-1)y C) 8D(D-1)(D-2)y D) None of these
37) If $D \equiv \frac{d}{dz}$ and $z = \log(2x+5)$ then $(2x+5)^r \frac{d^ry}{dx^r} = \dots$
A) 2^rD(D-1)(D-2)...(D-r+1)y B) 2^rD(D-1)(D-2)...(D-r)y
C) 2^rD(D-1)(D-2)...(D-r-1)y D) None of these

।।स्वकमर्णा तमभ्यर्च्य सिध्दिं विन्दति मानवः।

॥ अंतरी पेटवू ज्ञानज्योत ॥

विद्यापीठ गीत

मंत्र असो हा एकच हृदयी 'जीवन म्हणजे ज्ञान' ज्ञानामधूनी मिळो मुक्ती अन मुक्तीमधूनी ज्ञान ॥धृ ॥ कला, ज्ञान, विज्ञान, संस्कृती साधू पुरूषार्थ साफल्यास्तव सदा 'अंतरी पेटवू ज्ञानज्योत' मंगल पावन चराचरातून स्त्रवते अक्षय ज्ञान ॥१ ॥ उत्तम विद्या, परम शक्ति ही आमुची ध्येयासकी शील, एकता, चारित्र्यावर सदैव आमुची भक्ती सत्य शिवाचे मंदिर सुंदर, विद्यापीठ महान ॥२ ॥ समता, ममता, स्वातंत्र्याचे नांदो जगी नाते, आत्मबलाने होऊ आम्ही आमुचे भाग्यविधाते, ज्ञानप्रभुची लाभो करूणा आणि पायसदान ॥३ ॥ – कै.प्रा. राजा महाजन

THE NATIONAL INTERGRATION PLEDGE

"I solemnly pledge to work with dedication to preserve and strengthen the freedom and integrity of the nation.

I further affirm that I shall never resort to violence and that all differences and disputes relating to religion, language, region or other political or economic grievance should be settled by peaceful and constitutional means."