Pimpalner Education Society's

Karm. A. M. Patil Arts, Commerce and Kai. Annasaheb N. K. Patil Science Senior College Pimpalner, Tal.- Sakri, Dist.- Dhule.

CLASS NOTES
CLASS: F.Y.B.SC SEM.-II
SUBJECT: MTH-201: ORDINARY DIFFERENTLAL EQUATIONS PREPARED BY: PROF. K. D. KADAM

MTH 201: ORDINARY DIFFERENTLAL EQUATIONS

Unit-I Differential Equations of First Order and First Degree
a) Partial derivatives of first order.
b) Exact differential equations. Condition for exactness.
c) Integrating factor.
d) Rules for finding integrating factors.
e) Linear differential equations.
f) Bernoulli's Equation. Equation reducible to linear form.

Unit-II Differential Equations of First Order and Higher Degree
a) Differential equations of first order and higher degree.
b) Equation solvable for p.
c) Equation solvable for y.
d) Equation solvable for x.
e) Clairaut's form.

Unit-III Linear Differential Equations with Constant Coefficients
a) Linear differential equations with constant coefficients.
b) Complementary functions.
c) Particular integrals of $f(D) y=X$, where $X=e^{a x}, \cos (a x), \sin (a x), x^{n}, e^{a x} V, x V$ with usual notations.

Unit-IV Linear Differential Equations with Variable Coefficients
a) Homogeneous linear differential equations (Cauchy's differential equations).
b) Example of Homogeneous linear differential equations.
c) Equations reducible to homogeneous linear differential equations (Legendre's equations)
d) Example of Equations reducible to homogeneous linear differential equations

Reference Books:

1. Introductory Course in Differential Equations, by D. A. Murray, Orient Congman (India) 1967.
2. Differential Equations, by G. F. Simmons, Tata McGraw Hill, 1972.

Learning Outcomes:

After successful completion of this course, the student will be able to:
a) understand basic concepts in differential equations
b) understand method of solving differential equations

UNIT-1: DIFFERENTLAL EQUATIONS OF FIRST ORDER AND FIRST DEGREE

Partial Derivatives: 1) Let $\mathrm{f}(\mathrm{x}, \mathrm{y})$ be a real valued function. If $\lim _{\mathrm{h} \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}$ is exists and finite, then this limit is called partial derivative of $f(x, y)$ w.r.t.x and it is denoted by $\mathrm{f}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})$ or $\frac{\partial f}{\partial x}$.
2) Let $\mathrm{f}(\mathrm{x}, \mathrm{y})$ be a real valued function. If $\lim _{\mathrm{k} \rightarrow 0} \frac{f(x, y+k)-f(x, y)}{k}$ is exists and finite, then this limit is called partial derivative of $f(x, y)$ w.r.t.y and it is denoted by $\mathrm{f}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})$ or $\frac{\partial f}{\partial y}$.
Remark: 1) Partial derivative of $f(x, y)$ w.r.t.x at point (a, b) is given by

$$
\mathrm{f}_{\mathrm{x}}(\mathrm{a}, \mathrm{~b})=\lim _{\mathrm{h} \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}
$$

2) Partial derivative of $f(x, y)$ w.r.t.y at point (a, b) is given by

$$
\mathrm{f}_{\mathrm{y}}(\mathrm{a}, \mathrm{~b})=\lim _{\mathrm{k} \rightarrow 0} \frac{f(a, b+k)-f(a, b)}{k}
$$

3) $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are called first order partial derivatives.
4) $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial x \partial y}, \frac{\partial^{2} f}{\partial y \partial x}$ and $\frac{\partial^{2} f}{\partial y^{2}}$ are called second order partial derivatives.

Ex. If $\mathrm{u}=\mathrm{xy}+\mathrm{e}^{\mathrm{x}}$ then find $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial^{2} u}{\partial y^{2}}$ and $\frac{\partial^{2} u}{\partial x \partial y}$
Solution: Let $u=x y+e^{x}$

$$
\begin{aligned}
& \therefore \frac{\partial u}{\partial x}=\frac{\partial}{\partial x}\left(\mathrm{xy}+\mathrm{e}^{\mathrm{x}}\right)=\mathrm{y}+\mathrm{e}^{\mathrm{x}} \\
& \therefore \frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left(\mathrm{xy}+\mathrm{e}^{\mathrm{x}}\right)=\mathrm{x}+0=\mathrm{x} \\
& \therefore \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x}\left(\mathrm{y}+\mathrm{e}^{\mathrm{x}}\right)=0+\mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}} \\
& \therefore \frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}\right)=\frac{\partial}{\partial y}(\mathrm{x})=0 \\
& \therefore \frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right)=\frac{\partial}{\partial x}(\mathrm{x})=1
\end{aligned}
$$

Ex. If $u=x^{3}+y^{3}+3 x y$ then find $\frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial^{2} u}{\partial y^{2}}$ and $\frac{\partial^{2} u}{\partial x \partial y}$
Solution: Let $u=x^{3}+y^{3}+3 x y$

$$
\begin{aligned}
& \therefore \frac{\partial u}{\partial x}=\frac{\partial}{\partial x}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+3 \mathrm{xy}\right)=3 \mathrm{x}^{2}+0+3 \mathrm{y}=3 \mathrm{x}^{2}+3 \mathrm{y} \\
& \therefore \frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+3 \mathrm{xy}\right)=0+3 \mathrm{y}^{2}+3 \mathrm{x}=3 \mathrm{y}^{2}+3 \mathrm{x} \\
& \therefore \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x}\left(3 \mathrm{x}^{2}+3 \mathrm{y}\right)=6 \mathrm{x}+0=6 \mathrm{x} \\
& \therefore \frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}\right)=\frac{\partial}{\partial y}\left(3 \mathrm{y}^{2}+3 \mathrm{x}\right)=6 \mathrm{y}+0=6 \mathrm{y} \\
& \therefore \frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right)=\frac{\partial}{\partial x}\left(3 \mathrm{y}^{2}+3 \mathrm{x}\right)=0+3=3
\end{aligned}
$$

Ex. If $\mathrm{u}=\mathrm{e}^{\mathrm{x}} \sin x y$ then find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ at $(0,0)$.
Solution: Let $u=e^{x} \sin x y$
$\therefore \frac{\partial u}{\partial x}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{xy}+\mathrm{ye}^{\mathrm{x}} \cos \mathrm{xy}$
and $\frac{\partial u}{\partial y}=\mathrm{xe}^{\mathrm{x}} \cos \mathrm{xy}$
\therefore At point $(0,0)$.

$$
\frac{\partial u}{\partial x}=0 \text { and } \frac{\partial u}{\partial y}=0
$$

Ex. If $u=x^{2} y+y^{2} z+z^{2} x$ then find $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ and $\frac{\partial u}{\partial z}$ at $(1,1,1)$.
Solution: Let $u=x^{2} y+y^{2} z+z^{2} x$

$$
\begin{aligned}
& \therefore \frac{\partial u}{\partial x}=2 \mathrm{xy}+0+\mathrm{z}^{2}=2 \mathrm{xy}+\mathrm{z}^{2} \\
& \frac{\partial u}{\partial y}=\mathrm{x}^{2}+2 \mathrm{yz}+0=\mathrm{x}^{2}+2 \mathrm{yz} \\
& \text { and } \frac{\partial u}{\partial z}=0+\mathrm{y}^{2}+2 \mathrm{zx}=\mathrm{y}^{2}+2 \mathrm{zx}
\end{aligned}
$$

\therefore At point $(1,1,1)$.

$$
\frac{\partial u}{\partial x}=2+1=3, \frac{\partial u}{\partial y}=1+2=3 \text { and } \frac{\partial u}{\partial z}=1+2=3
$$

Ex. If $\mathrm{u}=\mathrm{x}^{3} \mathrm{z}+\mathrm{y}^{2} \mathrm{x}-2 \mathrm{yz}$ then find $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ and $\frac{\partial u}{\partial z}$ at (1,2,3).
Solution: Let $u=x^{3} z+y^{2} x-2 y z$

$$
\begin{aligned}
\therefore \frac{\partial u}{\partial x} & =3 \mathrm{x}^{2} \mathrm{z}+\mathrm{y}^{2}-0=3 \mathrm{x}^{2} \mathrm{z}+\mathrm{y}^{2} \\
\frac{\partial u}{\partial y} & =0+2 \mathrm{yx}-2 \mathrm{z}=2 \mathrm{yx}-2 \mathrm{z}
\end{aligned}
$$

and $\frac{\partial u}{\partial z}=x^{3}+0-2 y=x^{3}-2 y$
\therefore At point $(1,2,3)$.

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=9+4=13 \\
& \frac{\partial u}{\partial y}=4-6=-2 \\
& \text { and } \frac{\partial u}{\partial z}=1-4=-3
\end{aligned}
$$

Ex. If $u=\log (\tan \mathrm{x}+\tan \mathrm{y}+\tan \mathrm{z})$, show that $\sin 2 \mathrm{x} \frac{\partial u}{\partial x}+\sin 2 \mathrm{y} \frac{\partial u}{\partial y}+\sin 2 \mathrm{z} \frac{\partial u}{\partial z}=2$
Proof: Let $u=\log (\tan x+\tan y+\tan z)$
$\therefore \frac{\partial u}{\partial x}=\frac{1}{\tan \mathrm{x}+\tan \mathrm{y}+\tan \mathrm{z}}\left(\sec ^{2} x+0+0\right)=\frac{\sec ^{2} x}{\tan \mathrm{x}+\tan \mathrm{y}+\tan \mathrm{z}}$
$\therefore \sin 2 \mathrm{x} \frac{\partial u}{\partial x}=\frac{\sin 2 x\left(\sec ^{2} x\right)}{\tan \mathrm{x}+\tan \mathrm{y}+\tan \mathrm{z}}=\frac{2 \sin x \cos x}{\tan \mathrm{x}+\tan \mathrm{y}+\tan \mathrm{z}}\left(\frac{1}{\cos ^{2} x}\right)=\frac{2 \tan x}{\tan \mathrm{x}+\tan \mathrm{y}+\tan \mathrm{z}}$
$\therefore \sin 2 \mathrm{x} \frac{\partial u}{\partial x}=\frac{2 \tan x}{\tan \mathrm{x}+\tan \mathrm{y}+\tan \mathrm{z}}$

Similarly $\sin 2 \mathrm{y} \frac{\partial u}{\partial y}=\frac{2 \tan y}{\tan \mathrm{x}+\tan \mathrm{y}+\operatorname{tanz}}$
and $\sin 2 z \frac{\partial u}{\partial z}=\frac{2 \tan z}{\tan x+\tan y+\tan z}$
\therefore By adding, we get,

$$
\sin 2 \mathrm{x} \frac{\partial u}{\partial x}+\sin 2 \mathrm{y} \frac{\partial u}{\partial y}+\sin 2 \mathrm{z} \frac{\partial u}{\partial z}
$$

$$
\begin{aligned}
& =\frac{2 \tan x}{\tan \mathrm{x}+\tan \mathrm{y}+\tan \mathrm{z}}+\frac{2 \tan y}{\tan \mathrm{x}+\tan \mathrm{y}+\tan \mathrm{z}}+\frac{2 \tan \mathrm{tan} \mathrm{tan}+\tan \mathrm{y}+\tan \mathrm{z}}{\tan \mathrm{x}+\tan \mathrm{y}+\tan \mathrm{z}} \\
& =\frac{2 \tan x+2 \tan y+2 \tan z}{\tan }
\end{aligned}
$$

$$
=2
$$

Hence proved.

Ex. If $\mathrm{u}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-1 / 2}$, prove that $\mathrm{x} \frac{\partial u}{\partial x}+\mathrm{y} \frac{\partial u}{\partial y}+\mathrm{z} \frac{\partial u}{\partial z}=-\mathrm{u}$
Proof: Let $u=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$

$$
\begin{aligned}
& \therefore \frac{\partial u}{\partial x}=-\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-3 / 2}(2 x+0+0) \\
& \therefore \mathrm{x} \frac{\partial u}{\partial x}=-\mathrm{x}^{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-3 / 2}
\end{aligned}
$$

Similarly y $\frac{\partial u}{\partial y}=-\mathrm{y}^{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-3 / 2}$
and $\mathrm{z} \frac{\partial u}{\partial z}=-\mathrm{z}^{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-3 / 2}$
\therefore By adding, we get,
$\mathrm{x} \frac{\partial u}{\partial x}+\mathrm{y} \frac{\partial u}{\partial y}+\mathrm{z} \frac{\partial u}{\partial z}=-\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-3 / 2}=-\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-1 / 2}=-\mathrm{u}$
Hence proved.

Ex. If $\mathrm{u}=\log \left(\mathrm{x}^{3}+\mathrm{y}^{3}-\mathrm{x}^{2} \mathrm{y}-\mathrm{xy}^{2}\right)$, show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=\frac{2}{x+y}$
Proof: Let $u=\log \left(x^{3}+y^{3}-x^{2} y-x y^{2}\right)$
$\therefore \frac{\partial u}{\partial x}=\frac{1}{x^{3}+y^{3}-x^{2} y-x^{2}}\left(3 x^{2}+0-2 x y-y^{2}\right)=\frac{3 x^{2}-2 x y-y^{2}}{x^{3}+y^{3}-x^{2} y-x^{2}}$
and $\frac{\partial u}{\partial y}=\frac{1}{x^{3}+y^{3}-x^{2} y-x^{2}}\left(0+3 y^{2}+0-x^{2}-2 x y\right)=\frac{3 y^{2}-2 x y-x^{2}}{x^{3}+y^{3}-x^{2} y-x y^{2}}$
\therefore By adding, we get,

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=\frac{3 \mathrm{x}^{2}-2 \mathrm{xy}-\mathrm{y}^{2}+3 \mathrm{y}^{2}-2 \mathrm{xy}-\mathrm{x}^{2}}{\mathrm{x}^{3}+\mathrm{y}^{3}-\mathrm{x}^{2} \mathrm{y}-\mathrm{xy}^{2}} \\
&=\frac{2 \mathrm{x}^{2}-4 \mathrm{xy}+2 \mathrm{y}^{2}}{\mathrm{x}^{3}+\mathrm{y}^{3}-\mathrm{x}^{2} \mathrm{y}-\mathrm{xy}^{2}} \\
&=\frac{2\left(\mathrm{x}^{2}-2 \mathrm{xy}+\mathrm{y}^{2}\right)}{(\mathrm{x}+\mathrm{y})\left(\mathrm{x}^{2}-2 \mathrm{xy}+\mathrm{y}^{2}\right)} \\
& \therefore \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=\frac{2}{x+y}
\end{aligned}
$$

Hence proved.

Differential equation: An equation which contains the terms of derivatives is called differential equation.
Order of Differential equation: An order of the highest ordered derivatives occurring in the equation is called the order of a differential equation.
Degree of Differential equation: Power of the highest ordered derivative occurring in the differential equation when it is free from radical signs and fractional indices is called the degree of a differential equation.
Homogeneous Function: A function $f(x, y)$ is said to be homogeneous function of degree ' n ' if $f(x, y)=x^{n} F\left(\frac{y}{x}\right)$
Differential equation of First Order and First Degree: If M and N are functions of variables x and y then $M d x+N d y=0$ is called differential equation of first order and first degree.
Homogeneous Differential equation: If M and N are homogeneous functions of variables x and y of same degree then $\mathrm{Mdx}+\mathrm{Ndy}=0$ or $\frac{d y}{d x}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous differential equation.
Exact Differential equation: A differential equation of type $M d x+N d y=0$ is called exact differential equation if there exist a function $\mathrm{u}(\mathrm{x}, \mathrm{y})$ such that $\mathrm{Mdx}+\mathrm{Ndy}=\mathrm{du}$.
e.g. As $2 x y^{2} d x+2 x^{2} y d y=d\left(x^{2} y^{2}\right)$
$\therefore 2 x y^{2} d x+2 x^{2} y d y=0$ is an exact differential equation.

Theorem: A necessary and sufficient condition for differential equation $M d x+N d y=0$ to be exact is that $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
Proof: Necessary condition: Suppose Mdx + Ndy $=0$ is exact.
\therefore there exist a function $\mathrm{u}(\mathrm{x}, \mathrm{y})$ such that $\mathrm{Mdx}+\mathrm{Ndy}=\mathrm{du} \ldots$..(1)
But by total differentiation $\mathrm{du}=\frac{\partial u}{\partial x} \mathrm{dx}+\frac{\partial u}{\partial y} \mathrm{dy} \ldots$ (2)
From equation (1) and (2), we have
$\mathrm{M}=\frac{\partial u}{\partial x}$ and $\mathrm{N}=\frac{\partial u}{\partial y}$
$\therefore \frac{\partial M}{\partial y}=\frac{\partial^{2} u}{\partial y \partial x}$ and $\frac{\partial N}{\partial x}=\frac{\partial^{2} u}{\partial x \partial y}$
But $\frac{\partial^{2} u}{\partial y \partial x}=\frac{\partial^{2} u}{\partial x \partial y}$
$\therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
Sufficient condition: Suppose Mdx + Ndy $=0$ be a differential equation such that $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
Let us define $\mathrm{f}(\mathrm{x}, \mathrm{y})=\int_{y-\text { constant }} M d x$
$\therefore \mathrm{M}=\frac{\partial f}{\partial x}$
$\therefore \frac{\partial M}{\partial y}=\frac{\partial^{2} f}{\partial y \partial x}$
$\therefore \frac{\partial M}{\partial y}=\frac{\partial^{2} f}{\partial x \partial y}$
$\therefore \frac{\partial N}{\partial x}=\frac{\partial^{2} f}{\partial x \partial y}$ since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
$\therefore \frac{\partial N}{\partial x}-\frac{\partial^{2} f}{\partial x \partial y}=0$
$\therefore \frac{\partial}{\partial x}\left(\mathrm{~N}-\frac{\partial f}{\partial y}\right)=0$
Integrating both sides w.r.t. x , keeping y constant, we get,
$\mathrm{N}-\frac{\partial f}{\partial y}=\mathrm{g}(\mathrm{y})$, a function of y only.
$\therefore \mathrm{N}=\frac{\partial f}{\partial y}+\mathrm{g}(\mathrm{y})$
$\therefore \mathrm{Mdx}+\mathrm{Ndy}=\frac{\partial f}{\partial x} \mathrm{dx}+\left[\frac{\partial f}{\partial y}+\mathrm{g}(\mathrm{y})\right] \mathrm{dy}$

$$
=\mathrm{d}\left[\mathrm{f}+\int g(y) d y\right]
$$

$\therefore \mathrm{Mdx}+\mathrm{Ndy}=0$ is an exact differential equation.

Remark: A general solution of exact differential equation $\mathrm{Mdx}+\mathrm{Ndy}=0$ is $\int_{y-\text { constant }} M d x+\int($ terms in N not containing $\left.x) d y\right]=\mathrm{c}$

Ex. Solve $\left(2 x^{3}+3 y\right) d x+(3 x+y-1) d y=0$
Solution: Let $\left(2 x^{3}+3 y\right) d x+(3 x+y-1) d y=0$ be the given differential equation, comparing it with $\mathrm{Mdx}+\mathrm{Ndy}=0$, we get,
$\mathrm{M}=2 \mathrm{x}^{3}+3 \mathrm{y}$ and $\mathrm{N}=3 \mathrm{x}+\mathrm{y}-1$
$\therefore \frac{\partial M}{\partial y}=3$ and $\frac{\partial N}{\partial x}=3$
$\therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
\therefore Given differential equation is exact
\therefore It's general solution is
$\int_{y-\text { constant }} M d x+\int($ terms of N not containing $\left.x) d y\right]=\mathrm{c}$
$\left.\therefore \int_{y \text {-constant }}\left(2 \mathrm{x}^{3}+3 \mathrm{y}\right) \mathrm{dx}+\int(\mathrm{y}-1) d y\right]=\mathrm{c}$
$\therefore \frac{1}{2} \mathrm{x}^{4}+3 \mathrm{xy}+\frac{1}{2} \mathrm{y}^{2}-\mathrm{y}=\mathrm{c}$.

Ex. Solve $\left(y^{2}-2 x y+6 x\right) d x-\left(x^{2}-2 x y+2\right) d y=0$
Solution: Let $\left(y^{2}-2 x y+6 x\right) d x-\left(x^{2}-2 x y+2\right) d y=0$ be the given differential equation, comparing it with $\mathrm{Mdx}+\mathrm{Ndy}=0$, we get,
$M=y^{2}-2 x y+6 x$ and $N=-x^{2}+2 x y-2$
$\therefore \frac{\partial M}{\partial y}=2 \mathrm{y}-2 \mathrm{x}$ and $\frac{\partial N}{\partial x}=-2 \mathrm{x}+2 \mathrm{y}$
$\therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
\therefore Given differential equation is exact.
\therefore It's general solution is
$\int_{y \text {-constant }} M d x+\int($ terms of N not containing $\left.x) d y\right]=\mathrm{c}$
$\left.\therefore \int_{y-\text { constant }}\left(\mathrm{y}^{2}-2 \mathrm{xy}+6 \mathrm{x}\right) \mathrm{dx}+\int(-2) d y\right]=\mathrm{c}$
$\therefore x^{2}-x^{2} y+3 x^{2}-2 y=c$.

Ex. Solve $3 y^{2} d x+\left(x^{3}+8 y\right) d y=3 y d x+3 x d y$ given that for $x=0, y=1$.
Solution: Let $3 y x^{2} d x+\left(x^{3}+8 y\right) d y=3 y d x+3 x d y$
i.e. $\left(3 y x^{2}-3 y\right) d x+\left(x^{3}+8 y-3 x\right) d y=0$ be the given differential equation, comparing it with $\mathrm{Mdx}+\mathrm{Ndy}=0$, we get,
$\mathrm{M}=3 \mathrm{yx}^{2}-3 \mathrm{y}$ and $\mathrm{N}=\mathrm{x}^{3}+8 \mathrm{y}-3 \mathrm{x}$
$\therefore \frac{\partial M}{\partial y}=3 \mathrm{x}^{2}-3$ and $\frac{\partial N}{\partial x}=3 \mathrm{x}^{2}-3$
$\therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
\therefore Given differential equation is exact .
\therefore It's general solution is
$\int_{y-\text { constant }} M d x+\int($ terms of N not containing $\left.x) d y\right]=c$
$\left.\therefore \int_{y-\text { constant }}\left(3 \mathrm{yx}^{2}-3 y\right) \mathrm{dx}+\int(8 \mathrm{y}) d y\right]=\mathrm{c}$
$\therefore \mathrm{yx}^{3}-3 \mathrm{xy}+4 \mathrm{y}^{2}=\mathrm{c}$
Given that for $\mathrm{x}=0, \mathrm{y}=1$
$\therefore 0-0+4=\mathrm{c}$
$\therefore \mathrm{c}=4$
\therefore Particular solution of given equation is

$$
y x^{3}-3 x y+4 y^{2}=4
$$

Ex. Solve $\left(\sin x . \cos y+e^{2 x}\right) d x+(\cos x \cdot \sin y+\tan y) d y=0$
Solution: Let $\left(\sin x . \cos y+{ }^{2 x}\right) d x+(\cos x . \sin y+t a n y) d y=0$ be the given differential equation, comparing it with $\mathrm{Mdx}+\mathrm{Ndy}=0$, we get,
$\mathrm{M}=\sin \mathrm{x} \cdot \cos y+\mathrm{e}^{2 x}$ and $\mathrm{N}=\cos \mathrm{x} \cdot \sin \mathrm{y}+\tan \mathrm{y}$
$\therefore \frac{\partial M}{\partial y}=-\sin \mathrm{x}$. siny and $\frac{\partial N}{\partial x}=-\sin \mathrm{x}$. $\sin \mathrm{y}$
$\therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
\therefore Given differential equation is exact .
\therefore It's general solution is
$\int_{y \text {-constant }} M d x+\int($ terms of N not containing $\left.x) d y\right]=\mathrm{c}$
$\left.\therefore \int_{y-\text { constant }}\left(\sin \mathrm{x} \cdot \cos \mathrm{y}+\mathrm{e}^{2 \mathrm{x}}\right) \mathrm{dx}+\int \operatorname{tany} \mathrm{d} y\right]=\mathrm{c}$
$\therefore-\cos \mathrm{x} \cdot \cos \mathrm{y}+\frac{1}{2} \mathrm{e}^{2 \mathrm{x}}+\log \sec \mathrm{y}=\mathrm{c}$.

Ex. Solve $\left(\cos 2 y-3 x^{2} y^{2}\right) d x+\left(\cos 2 y-2 x \sin 2 y-2 x^{3} y\right) d y=0$
Solution: Let $\left(\cos 2 y-3 x^{2} y^{2}\right) d x+\left(\cos 2 y-2 x \sin 2 y-2 x^{3} y\right) d y=0$ be the given differential equation, comparing it with $\mathrm{Mdx}+\mathrm{Ndy}=0$, we get, $M=\cos 2 y-3 x^{2} y^{2}$ and $N=\cos 2 y-2 x \sin 2 y-2 x^{3} y$
$\therefore \frac{\partial M}{\partial y}=-2 \sin 2 \mathrm{y}-6 \mathrm{x}^{2} \mathrm{y}$ and $\frac{\partial N}{\partial x}=-2 \sin 2 \mathrm{y}-6 \mathrm{x}^{2} \mathrm{y}$
$\therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
\therefore Given differential equation is exact.
\therefore It's general solution is
$\int_{y-\text { constant }} M d x+\int($ terms of N not containing $\left.x) d y\right]=\mathrm{c}$
$\left.\therefore \int_{y-\text { constant }}\left(\cos 2 \mathrm{y}-3 \mathrm{x}^{2} \mathrm{y}^{2}\right) \mathrm{dx}+\int \cos 2 \mathrm{y} d y\right]=\mathrm{c}$
$\therefore \mathrm{x} \cdot \cos 2 \mathrm{y}-\mathrm{x}^{3} \mathrm{y}^{2}+\frac{1}{2} \sin 2 \mathrm{y}=\mathrm{c}$.
Integrating Factor: A function $\mathrm{u}(\mathrm{x}, \mathrm{y})$ is said to be an integrating factor (I.F.) of non-exact differential equation $\mathrm{Mdx}+\mathrm{Ndy}=0$ if Mudx + Nudy $=0$ is exact.
Rules of finding I.F.:
Rule-I: If the differential equation $M d x+N d y=0$ is homogeneous then $\frac{1}{M x+N y}$ is an I.F. if $M x+N y \neq 0$
Proof: Let $\mathrm{Mdx}+\mathrm{Ndy}=0$ is homogeneous differential equation.
$\therefore \mathrm{M}$ and N are homogeneous functions of same degree say n .
\therefore By Eulers theorem
$\mathrm{x} \frac{\partial M}{\partial x}+\mathrm{y} \frac{\partial M}{\partial y}=\mathrm{nM}$ and $\mathrm{x} \frac{\partial N}{\partial x}+\mathrm{y} \frac{\partial N}{\partial y}=\mathrm{nN}$
Given that $M x+N y \neq 0$
\therefore Multipling by $\frac{1}{M x+N y}$ to given equation, we get,
$\frac{M}{M x+N y} \mathrm{dx}+\frac{N}{M x+N y} \mathrm{dy}=0$
i.e. $\mathrm{M}_{1} \mathrm{dx}+\mathrm{N}_{1} \mathrm{dy}=0$ where $\mathrm{M}_{1}=\frac{M}{M x+N y}, \mathrm{~N}_{1}=\frac{N}{M x+N y}$
$\therefore \frac{\partial M_{1}}{\partial y}=\frac{(M x+N y) \frac{\partial M}{\partial y}-M\left(x \frac{\partial M}{\partial y}+N+y \frac{\partial N}{\partial y}\right)}{(M x+N y)^{2}}=\frac{N y \frac{\partial M}{\partial y}-M N-M y \frac{\partial N}{\partial y}}{(M x+N y)^{2}}$
and $\frac{\partial N_{1}}{\partial x}=\frac{(M x+N y) \frac{\partial N}{\partial x}-N\left(M+x \frac{\partial M}{\partial x}+y \frac{\partial N}{\partial x}\right)}{(M x+N y)^{2}}=\frac{M x \frac{\partial N}{\partial x}-M N-N x \frac{\partial M}{\partial x}}{(M x+N y)^{2}}$
$\therefore \frac{\partial M_{1}}{\partial y}-\frac{\partial N_{1}}{\partial x}=\frac{N y \frac{\partial M}{\partial y}-M N-M y \frac{\partial N}{\partial y}-M x \frac{\partial N}{\partial x}+M N+N x \frac{\partial M}{\partial x}}{(M x+N y)^{2}}$

$$
=\frac{N\left(x \frac{\partial M}{\partial x}+y \frac{\partial M}{\partial y}\right)-M\left(x \frac{\partial N}{\partial x}+y \frac{\partial N}{\partial y}\right)}{(M x+N y)^{2}}
$$

$=\frac{N(n M)-M(n N)}{(M x+N y)^{2}} \quad$ by (1)

$$
=0
$$

$\therefore \frac{\partial M_{1}}{\partial y}=\frac{\partial N_{1}}{\partial x}$
$\therefore \mathrm{M}_{1} \mathrm{dx}+\mathrm{N}_{1} \mathrm{dy}=0$ is exact.
$\therefore \frac{1}{M x+N y}$ is an I.F.of given equation is proved.

Ex. Solve $(x+y) d x+(y-x) d y=0$
Solution: Let $(x+y) d x+(y-x) d y=0$ be the given differential equation, comparing it with $\mathrm{Mdx}+\mathrm{Ndy}=0$, we get,
$\mathrm{M}=\mathrm{x}+\mathrm{y}$ and $\mathrm{N}=\mathrm{y}-\mathrm{x}$
$\therefore \frac{\partial M}{\partial y}=1$ and $\frac{\partial N}{\partial x}=-1$
$\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
\therefore Given differential equation is not exact.
But the given differential equation is homogeneous with
$M x+N y=(x+y) x+(y-x) y=x^{2}+y x+y^{2}-x y=x^{2}+y^{2} \neq 0$
\therefore I.F. $=\frac{1}{M x+N y}=\frac{1}{x^{2}+y^{2}}$
Multiplying given equation by $\frac{1}{x^{2}+y^{2}}$, we get,
$\frac{x+y}{x^{2}+y^{2}} \mathrm{dx}+\frac{y-x}{x^{2}+y^{2}} \mathrm{dy}=0$ which is exact
\therefore It's general solution is
$\int_{y-\text { constant }} \frac{x+y}{x^{2}+y^{2}} \mathrm{dx}+\int 0 d y=\mathrm{c}$
$\therefore \int_{y-\text { constant }} \frac{x}{x^{2}+y^{2}} \mathrm{dx}+\mathrm{y} \int_{y-\text { constant }} \frac{1}{x^{2}+y^{2}} \mathrm{dx}=\mathrm{c}$
$\therefore \frac{1}{2} \int_{y-\text { constant }} \frac{2 x}{x^{2}+y^{2}} \mathrm{dx}+\mathrm{y} \int_{y-\text { constant }} \frac{1}{x^{2}+y^{2}} \mathrm{dx}=\mathrm{c}$
$\therefore \frac{1}{2} \log \left(x^{2}+y^{2}\right)+y \cdot \frac{1}{y} \tan ^{-1}\left(\frac{\mathrm{x}}{\mathrm{y}}\right)=\mathrm{c}$
i.e $\frac{1}{2} \log \left(x^{2}+y^{2}\right)+\tan ^{-1}\left(\frac{x}{y}\right)=\mathrm{c}$

Ex. Solve $\left(x y-y^{2}\right) d x-x^{2} d y=0$
Solution: Let $\left(x y-y^{2}\right) d x-x^{2} d y=0$ be the given differential equation,
comparing it with $\mathrm{Mdx}+\mathrm{Ndy}=0$, we get,
$\mathrm{M}=\mathrm{xy}-\mathrm{y}^{2}$ and $\mathrm{N}=-\mathrm{x}^{2}$
$\therefore \frac{\partial M}{\partial y}=\mathrm{x}-2 \mathrm{y}$ and $\frac{\partial N}{\partial x}=-2 \mathrm{x}$
$\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
\therefore Given differential equation is not exact.
But the given differential equation is homogeneous with
$M x+N y=\left(\mathrm{xy}-\mathrm{y}^{2}\right) x+\left(-\mathrm{x}^{2}\right) y=x^{2} y-y^{2} \mathrm{x}-x^{2} y=-x y^{2} \neq 0$
\therefore I.F. $=\frac{1}{M x+N y}=\frac{1}{-x y^{2}}$
Multiplying given equation by $\frac{-1}{x y^{2}}$, we get,
$\frac{-1}{x y^{2}}\left(x y-y^{2}\right) d x+\frac{1}{x y^{2}} \mathrm{x}^{2} \mathrm{dy}=0$
i.e. $\left(\frac{1}{x}-\frac{1}{y}\right) \mathrm{dx}+\frac{x}{y^{2}} \mathrm{dy}=0$ which is exact
\therefore It's general solution is
$\int_{y-\text { constant }}\left(\frac{1}{x}-\frac{1}{y}\right) \mathrm{dx}+\int 0 d y=\mathrm{c}$
$\therefore \log \mathrm{x}-\frac{\mathrm{x}}{\mathrm{y}}=\mathrm{c}$

Ex. Solve $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$
Solution: Let $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$ be the given differential equation,
comparing it with $\mathrm{Mdx}+\mathrm{Ndy}=0$, we get,
$\mathrm{M}=\mathrm{x}^{2} \mathrm{y}$ and $\mathrm{N}=-\mathrm{x}^{3}-\mathrm{y}^{3}$
$\therefore \frac{\partial M}{\partial y}=\mathrm{x}^{2}$ and $\frac{\partial N}{\partial x}=-3 \mathrm{x}^{2}$
$\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
\therefore Given differential equation is not exact.
But the given differential equation is homogeneous with
$M x+N y=\left(x^{2} y\right) x+\left(-x^{3}-y^{3}\right) y=x^{3} y-x^{3} y-y^{4}=-y^{4} \neq 0$
\therefore I.F. $=\frac{1}{M x+N y}=\frac{1}{-y^{4}}$
Multiplying given equation by $\frac{-1}{y^{4}}$, we get,
$\frac{-1}{y^{4}} x^{2} y d x+\frac{1}{y^{4}}\left(x^{3}+y^{3}\right) d y=0$
i.e. $\left(-\frac{x^{2}}{y^{3}}\right) d x+\left(\frac{x^{3}}{y^{4}}+\frac{1}{y}\right) d y=0$ which is exact
\therefore It's general solution is
$\int_{y-\text { constant }}\left(-\frac{\mathrm{x}^{2}}{y^{3}}\right) \mathrm{dx}+\int \frac{1}{y} d y=\mathrm{c}$
$\therefore\left(-\frac{\mathrm{x}^{3}}{3 y^{3}}\right)+\log \mathrm{y}=\mathrm{c}$
Rule-II: If the differential equation $\mathrm{Mdx}+\mathrm{Ndy}=0$ is of type $\mathrm{f}_{1}(\mathrm{xy}) \mathrm{ydx}+\mathrm{f}_{2}(\mathrm{xy}) \mathrm{xdy}=0$ then $\frac{1}{M x-N y}$ is an I.F. if $M x-N y \neq 0$
Proof: Let given differential equation Mdx + Ndy $=0$ is of type
$\mathrm{f}_{1}(\mathrm{xy}) \mathrm{ydx}+\mathrm{f}_{2}(\mathrm{xy}) \mathrm{xdy}=0$
Given that $M x-N y \neq 0$
\therefore Multipling by $\frac{1}{M x-N y}$ to given equation, we get,
$\frac{M}{M x-N y} \mathrm{dx}+\frac{N}{M x-N y} \mathrm{dy}=0$
i.e. $\mathrm{M}_{1} \mathrm{dx}+\mathrm{N}_{1} \mathrm{dy}=0$ where $\mathrm{M}_{1}=\frac{M}{M x-N y}=\frac{\mathrm{f}_{1}(\mathrm{xy}) \mathrm{y}}{\mathrm{f}_{1}(\mathrm{xy}) \mathrm{y} x-\mathrm{f}_{2}(\mathrm{xy}) \mathrm{xy}}=\frac{\mathrm{f}_{1}}{\mathrm{x}\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)}$ and
$\mathrm{N}_{1}=\frac{N}{M x+N y}==\frac{\mathrm{f}_{2}(\mathrm{xy}) \mathrm{x}}{\mathrm{f}_{1}(\mathrm{xy}) \mathrm{y} x-\mathrm{f}_{2}(\mathrm{xy}) \mathrm{x} y}=\frac{\mathrm{f}_{2}}{\mathrm{y}\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)}$
$\therefore \frac{\partial M_{1}}{\partial y}=\frac{1}{x}\left[\frac{\left(f_{1}-\mathrm{f}_{2}\right)\left(x f f_{1}\right)-\mathrm{f}_{1}\left(x f_{1}-x f f_{2}\right)}{\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)^{2}}=\frac{-\mathrm{f}_{2} f f_{1}+\mathrm{f}_{1} f \prime_{2}}{\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)^{2}}=\frac{\mathrm{f}_{1} f f_{2}-\mathrm{f}_{2} f f_{1}}{\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)^{2}}\right.$
and $\frac{\partial N_{1}}{\partial x}=\frac{1}{y}\left[\frac{\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)\left(y f f_{2}\right)-\mathrm{f}_{2}\left(y f_{1}-y f \prime_{2}\right)}{\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)^{2}}=\frac{\mathrm{f}_{1} f f_{2}-\mathrm{f}_{2} f f_{1}}{\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)^{2}}\right.$
$\therefore \frac{\partial M_{1}}{\partial y}-\frac{\partial N_{1}}{\partial x}=\frac{\mathrm{f}_{1} f f_{2}-\mathrm{f}_{2} f f_{1}-\mathrm{f}_{1} f f_{2}+\mathrm{f}_{2} f_{1}}{\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)^{2}}$
$=0$
$\therefore \frac{\partial M_{1}}{\partial y}=\frac{\partial N_{1}}{\partial x}$
$\therefore \mathrm{M}_{1} \mathrm{dx}+\mathrm{N}_{1} \mathrm{dy}=0$ is exact.
$\therefore \frac{1}{M x-N y}$ is an I.F.of given equation is proved.

Ex. Solve $y(x y+1) d x+\left(x^{2} y^{2}+x y+1\right) x d y=0$
Solution: Let $y(x y+1) d x+\left(x^{2} y^{2}+x y+1\right) x d y=0$ be the given differential equation of type $f_{1}(x y) y d x+f_{2}(x y) x d y=0$ with $M=(x y+1) y$ and $N=\left(x^{2} y^{2}+x y+1\right) x$
$\therefore M x-N y=(x y+1) y x-\left(x^{2} y^{2}+x y+1\right) x y=x^{2} y^{2}+x y-x^{3} y^{3}-x^{2} y^{2}-x y=-x^{3} y^{3} \neq 0$
\therefore I.F. $=\frac{1}{M x-N y}=\frac{1}{-x^{3} y^{3}}$
Multiplying given equation by $\frac{-1}{x^{3} y^{3}}$, we get,
$\frac{-1}{x^{3} y^{3}} y(x y+1) d x-\frac{1}{x^{3} y^{3}}\left(x^{2} y^{2}+x y+1\right) x d y=0$
i.e. $\left(-\frac{1}{\mathrm{x}^{2} y}-\frac{1}{\mathrm{x}^{3} y^{2}}\right) \mathrm{dx}+\left(-\frac{1}{y}-\frac{1}{x y^{2}}-\frac{1}{\mathrm{x}^{2} y^{3}}\right) \mathrm{dy}=0$ which is exact
\therefore It's general solution is
$\int_{y-\text { constant }}\left(-\frac{1}{\mathrm{x}^{2} y}-\frac{1}{\mathrm{x}^{3} y^{2}}\right) \mathrm{dx}+\int\left(-\frac{1}{y}\right) d y=\mathrm{c}$
$\therefore \frac{1}{\mathrm{x} y}+\frac{1}{2 \mathrm{x}^{2} y^{2}}-\log \mathrm{y}=\mathrm{c}$
Ex. Solve $\left(x^{2} y^{2}+4 x y+2\right) x d y+\left(x^{2} y^{2}+5 x y+2\right) y d x=0$
Solution: Let $\left(x^{2} y^{2}+4 x y+2\right) x d y+\left(x^{2} y^{2}+5 x y+2\right) y d x=0$ be the given differential equation of type $f_{1}(x y) y d x+f_{2}(x y) x d y=0$ with
$M=\left(x^{2} y^{2}+5 x y+2\right) y$ and $N=\left(x^{2} y^{2}+4 x y+2\right) x$
$\therefore \mathrm{Mx}-\mathrm{Ny}=\left(\mathrm{x}^{2} \mathrm{y}^{2}+5 \mathrm{xy}+2\right) \mathrm{yx}-\left(\mathrm{x}^{2} \mathrm{y}^{2}+4 \mathrm{xy}+2\right) \mathrm{xy}$
$=x^{3} y^{3}+5 x^{2} y^{2}+2 x y-x^{3} y^{3}-4 x^{2} y^{2}-2 x y=x^{2} y^{2} \neq 0$
\therefore I.F. $=\frac{1}{M x-N y}=\frac{1}{x^{2} y^{2}}$
Multiplying given equation by $\frac{1}{x^{2} y^{2}}$, we get,
$\frac{1}{x^{2} y^{2}}\left(\mathrm{x}^{2} \mathrm{y}^{2}+5 x y+2\right) \mathrm{ydx}+\frac{1}{x^{2} y^{2}}\left(\mathrm{x}^{2} \mathrm{y}^{2}+4 \mathrm{xy}+2\right) \mathrm{xdy}=0$
i.e. $\left(y+\frac{5}{x}+\frac{2}{x^{2} y}\right) d x+\left(x+\frac{4}{y}+\frac{2}{x y^{2}}\right) d y=0$ which is exact
\therefore It's general solution is
$\int_{y-\text { constant }}\left(\mathrm{y}+\frac{5}{x}+\frac{2}{\mathrm{x}^{2} y}\right) \mathrm{dx}+\int\left(\frac{4}{y}\right) d y=\mathrm{c}$
$\therefore \mathrm{xy}+5 \log \mathrm{x}-\frac{2}{\mathrm{xy}}+4 \log \mathrm{y}=\mathrm{c}$
$\therefore \mathrm{xy}-\frac{2}{\mathrm{x} y}+\log \left(\mathrm{x}^{5} \mathrm{y}^{4}\right)=\mathrm{c}$

Ex. Solve $\left(\frac{1}{x}+y\right) d x+\left(\frac{1}{y}-x\right) d y=0$
Solution: Let $\left(\frac{1}{x}+y\right) d x+\left(\frac{1}{y}-x\right) d y=0$ i.e. $(1+x y) y d x+(1-x y) x d y=0$ be the given differential equation of type $f_{1}(x y) y d x+f_{2}(x y) x d y=0$ with
$\mathrm{M}=(1+x y) \mathrm{y}$ and $\mathrm{N}=(1-\mathrm{xy}) \mathrm{x}$
$\therefore \mathrm{Mx}-\mathrm{Ny}=(1+x y) \mathrm{yx}-(1-\mathrm{xy}) \mathrm{xy}=\mathrm{xy}+\mathrm{x}^{2} \mathrm{y}^{2}-\mathrm{xy}+\mathrm{x}^{2} \mathrm{y}^{2}=2 \mathrm{x}^{2} \mathrm{y}^{2} \neq 0$
\therefore I.F. $=\frac{1}{M x-N y}=\frac{1}{2 x^{2} y^{2}}$
Multiplying given equation by $\frac{1}{2 x^{2} y^{2}}$, we get,
$\frac{1}{2 x^{2} y^{2}}(1+x y) y d x+\frac{1}{2 x^{2} y^{2}}(1-x y) x d y=0$
i.e. $\left(\frac{1}{2 x^{2} y}+\frac{1}{2 x}\right) \mathrm{dx}+\left(\frac{1}{2 x y^{2}}-\frac{1}{2 y}\right) \mathrm{dy}=0$ which is exact
\therefore It's general solution is
$\int_{y-\text { constant }}\left(\frac{1}{2 x^{2} y}+\frac{1}{2 x}\right) \mathrm{dx}+\int\left(-\frac{1}{2 y}\right) d y=\mathrm{c}_{1}$
$\therefore \frac{-1}{2 \mathrm{x} y}+\frac{1}{2} \log \mathrm{x}-\frac{1}{2} \log \mathrm{y}=\mathrm{c}_{1}$ i.e. $\log \left(\frac{x}{y}\right)-\frac{1}{\mathrm{x} y}=\mathrm{c}$ where $2 \mathrm{c}_{1}=\mathrm{c}$

Rule-III: If $\frac{1}{N}\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]$ is a function of x alone, say $\mathrm{f}(\mathrm{x})$ then $\mathrm{e}^{\int \mathrm{f}(\mathrm{x}) \mathrm{dx}}$ I.F. of

$$
\begin{equation*}
\text { equation } \mathrm{Mdx}+\mathrm{Ndy}=0 \tag{1}
\end{equation*}
$$

Proof: Given differential equation is $\mathrm{Mdx}+\mathrm{Ndy}=0$
such that $\frac{1}{N}\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]=\mathrm{f}(\mathrm{x})$
$\therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}+\mathrm{Nf}(\mathrm{x})$
\therefore Multipling by $\mathrm{e}^{\int \mathrm{ff}(\mathrm{x}) \mathrm{dx}}$ to given equation, we get,
$e^{\int f(x) d x} M d x+e^{\int f(x) d x} N d y=0$
i.e. $M_{1} d x+N_{1} d y=0$ where $M_{1}=e^{\int f(x) d x} M$ and $N_{1}=e^{\int f(x) d x} N$
$\therefore \frac{\partial M_{1}}{\partial y}=\mathrm{e}^{\mathrm{ff}(\mathrm{x}) \mathrm{dx}} \frac{\partial M}{\partial y}$ and
$\frac{\partial N_{1}}{\partial x}=\mathrm{e}^{\mathrm{ff}(\mathrm{x}) \mathrm{dx}} \frac{\partial N}{\partial x}+\mathrm{f}(\mathrm{x}) \mathrm{e}^{\mathrm{ff}(\mathrm{x}) \mathrm{dx}} \mathrm{N}=\mathrm{e}^{\mathrm{ff}(\mathrm{x}) \mathrm{dx}}\left[\frac{\partial N}{\partial x}+\mathrm{Nf}(\mathrm{x})\right]$
$\therefore \frac{\partial N_{1}}{\partial x}=\mathrm{e}^{\int \mathrm{f}(\mathrm{x}) \mathrm{dx}} \frac{\partial M}{\partial y}$
by(2)
$\therefore \frac{\partial M_{1}}{\partial y}=\frac{\partial N_{1}}{\partial x}$
$\therefore \mathrm{M}_{1} \mathrm{dx}+\mathrm{N}_{1} \mathrm{dy}=0$ is exact.
$\therefore \mathrm{e}^{\int f(\mathrm{f}) \mathrm{dx}}$ is an I.F.of given equation is proved.
Ex. Solve $\left(x-y^{2}\right) d x+2 x y d y=0$
Solution: Let $\left(x-y^{2}\right) d x+2 x y d y=0$ be the given differential equation,
comparing it with $M d x+N d y=0$, we get,
$\mathrm{M}=\mathrm{x}-\mathrm{y}^{2}$ and $\mathrm{N}=2 \mathrm{xy}$
$\therefore \frac{\partial M}{\partial y}=-2 \mathrm{y}$ and $\frac{\partial N}{\partial x}=2 \mathrm{y}$
$\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
\therefore Given differential equation is not exact.
But $\frac{1}{N}\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]=\frac{1}{2 x y}[-2 y-2 y]=\frac{-2}{x}=\mathrm{f}(\mathrm{x})$
\therefore I.F. $=\mathrm{e}^{\int \mathrm{ff}(\mathrm{x}) \mathrm{dx}}=\mathrm{e}^{-2 \log \mathrm{x}}=\mathrm{x}^{-2}=\frac{1}{x^{2}}$
Multiplying given equation by $\frac{1}{x^{2}}$, we get,
$\frac{1}{x^{2}}\left(x-y^{2}\right) d x+\frac{1}{x^{2}}(2 x y) d y=0$
i.e. $\left(\frac{1}{x}-\frac{y^{2}}{x^{2}}\right) d x+\frac{2 y}{x} d y=0$ which is exact
\therefore It's general solution is
$\int_{y-\text { constant }}\left(\frac{1}{x}-\frac{\mathrm{y}^{2}}{x^{2}}\right) \mathrm{dx}+\int 0 d y=\mathrm{c}$
$\therefore \log \mathrm{X}+\frac{\mathrm{y}^{2}}{x}=\mathrm{c}$

Ex. Solve $\left(x^{2}+y^{2}+x\right) d x+x y d y=0$
Solution: Let $\left(x^{2}+y^{2}+x\right) d x+x y d y=0$ be the given differential equation,
comparing it with $M d x+N d y=0$, we get,
$M=x^{2}+y^{2}+x$ and $N=x y$
$\therefore \frac{\partial M}{\partial y}=2 \mathrm{y}$ and $\frac{\partial N}{\partial x}=\mathrm{y}$
$\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
\therefore Given differential equation is not exact.
But $\frac{1}{N}\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]=\frac{1}{x y}[2 y-y]=\frac{1}{x}=\mathrm{f}(\mathrm{x})$
\therefore I.F. $=\mathrm{e}^{\int \mathrm{f}(\mathrm{x}) \mathrm{dx}}=\mathrm{e}^{\log \mathrm{x}}=x$
Multiplying given equation by x, we get,
$x\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{x}\right) \mathrm{dx}+x(\mathrm{xy}) \mathrm{dy}=0$
i.e. $\left(\mathrm{x}^{3}+x \mathrm{y}^{2}+\mathrm{x}^{2}\right) \mathrm{dx}+x^{2} \mathrm{y} \mathrm{dy}=0$ which is exact
\therefore It's general solution is
$\int_{y-\text { constant }}\left(\mathrm{x}^{3}+\mathrm{xy}^{2}+\mathrm{x}^{2}\right) \mathrm{dx}+\int 0 d y=\mathrm{c}_{1}$
$\therefore \frac{1}{4} \mathrm{x}^{4}+\frac{1}{2} x^{2} \mathrm{y}^{2}+\frac{1}{3} \mathrm{x}^{3}=\mathrm{c}_{1}$
i.e. $3 x^{4}+6 x^{2} y^{2}+4 x^{3}=c$ where $c=12 c_{1}$

Ex. Solve $\left(2 y^{2}+3 x y-2 y+6 x\right) d x+\left(x^{2}+2 x y-x\right) d y=0$
Solution: Let $\left(2 y^{2}+3 x y-2 y+6 x\right) d x+\left(x^{2}+2 x y-x\right) d y=0$ be the given differential equation, comparing it with $\mathrm{Mdx}+\mathrm{Ndy}=0$, we get,
$M=2 y^{2}+3 x y-2 y+6 x$ and $N=x^{2}+2 x y-x$
$\therefore \frac{\partial M}{\partial y}=4 \mathrm{y}+3 \mathrm{x}-2$ and $\frac{\partial N}{\partial x}=2 \mathrm{x}+2 \mathrm{y}-1$
$\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
\therefore Given differential equation is not exact.
But $\frac{1}{N}\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]=\frac{1}{\left(\mathrm{x}^{2}+2 \mathrm{xy}-\mathrm{x}\right)}[4 \mathrm{y}+3 \mathrm{x}-2-2 \mathrm{x}-2 \mathrm{y}+1]$

$$
=\frac{(x+2 y-1)}{x(x+2 y-1)}=\frac{1}{x}=\mathrm{f}(\mathrm{x})
$$

\therefore I.F. $=\mathrm{e}^{\int \mathrm{f}(\mathrm{x}) \mathrm{dx}}=\mathrm{e}^{\log \mathrm{x}}=x$
Multiplying given equation by x, we get,
$x\left(2 \mathrm{y}^{2}+3 \mathrm{xy}-2 \mathrm{y}+6 \mathrm{x}\right) \mathrm{dx}+x\left(\mathrm{x}^{2}+2 \mathrm{xy}-\mathrm{x}\right) \mathrm{dy}=0$
i.e. $\left(2 x y^{2}+3 x^{2} y-2 x y+6 x^{2}\right) d x+\left(x^{3}+2 x^{2} y-x^{2}\right) d y=0$ which is exact
\therefore It's general solution is
$\int_{y-\text { constant }}\left(2 x y^{2}+3 x^{2} y-2 x y+6 x^{2}\right) d x+\int 0 d y=c$
$\therefore x^{2} y^{2}+x^{3} y-x^{2} y+2 x^{3}=c$

Rule-IV: If $\frac{1}{M}\left[\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right]$ is a function of y alone, say $\mathrm{f}(\mathrm{y})$ then $\mathrm{e}^{\int \mathrm{f}(\mathrm{y}) \mathrm{dy}}$ I.F. of equation $\mathrm{Mdx}+\mathrm{Ndy}=0$.
Proof: Given differential equation is $\mathrm{Mdx}+\mathrm{Ndy}=0 \ldots \ldots$ (1)
such that $\frac{1}{M}\left[\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right]=\mathrm{f}(\mathrm{y})$
$\therefore \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}+\operatorname{Mf}(\mathrm{y})$
\therefore Multipling by $\mathrm{e}^{\int f(y) d y}$ to given equation, we get, $\mathrm{e}^{\int f(y) d y} \mathrm{Mdx}+\mathrm{e}^{\int f(y) d y} \mathrm{Ndy}=0$
i.e. $M_{1} d x+N_{1} d y=0$ where $M_{1}=e^{\int f(y) d y} M$ and $N_{1}=e^{\int f(y) d y} N$
$\therefore \frac{\partial M_{1}}{\partial y}=\mathrm{e}^{\mathrm{ff}(\mathrm{y}) \mathrm{dy}} \frac{\partial M}{\partial y}+\mathrm{f}(\mathrm{y}) \mathrm{e}^{\mathrm{ff}(\mathrm{y}) \mathrm{dy}} \mathrm{M}=\mathrm{e}^{\mathrm{ff}(\mathrm{y}) \mathrm{dy}}\left[\frac{\partial M}{\partial y}+\mathrm{Mf}(\mathrm{y})\right]$
$\therefore \frac{\partial M_{1}}{\partial y}=\mathrm{e}^{\int \mathrm{f}(\mathrm{y}) \mathrm{dy}} \frac{\partial N}{\partial x}$
by (2)
and $\frac{\partial N_{1}}{\partial x}=\mathrm{e}^{\int \mathrm{ff}(\mathrm{y}) \mathrm{dy}} \frac{\partial N}{\partial x}$
$\therefore \frac{\partial M_{1}}{\partial y}=\frac{\partial N_{1}}{\partial x}$
$\therefore \mathrm{M}_{1} \mathrm{dx}+\mathrm{N}_{1} \mathrm{dy}=0$ is exact.
$\therefore \mathrm{e}^{\int f(y) d y}$ is an I.F.of given equation is proved.

Ex. Solve $\left(y^{4}+2 y\right) d x+\left(x y^{3}+2 y^{4}-4 x\right) d y=0$
Solution: Let $\left(y^{4}+2 y\right) d x+\left(x y^{3}+2 y^{4}-4 x\right) d y=0$ be the given differential equation, comparing it with $\mathrm{Mdx}+\mathrm{Ndy}=0$, we get,
$M=y^{4}+2 y$ and $N=x y^{3}+2 y^{4}-4 x$
$\therefore \frac{\partial M}{\partial y}=4 \mathrm{y}^{3}+2$ and $\frac{\partial N}{\partial x}=\mathrm{y}^{3}-4$
$\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
\therefore Given differential equation is not exact.
But $\frac{1}{M}\left[\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right]=\frac{1}{\left(\mathrm{y}^{4}+2 \mathrm{y}\right)}\left[\mathrm{y}^{3}-4-4 \mathrm{y}^{3}-2\right]$

$$
=\frac{\left(-3 \mathrm{y}^{3}-6\right)}{y\left(\mathrm{y}^{3}+2\right)}=\frac{-3}{y}=\mathrm{f}(\mathrm{y})
$$

\therefore I.F. $=\mathrm{e}^{\int \mathrm{ff}(\mathrm{y}) \mathrm{dy}}=\mathrm{e}^{-3 \log \mathrm{y}}=\mathrm{y}^{-3}=\frac{1}{y^{3}}$
Multiplying given equation by $\frac{1}{y^{3}}$, we get,
$\frac{1}{y^{3}}\left(y^{4}+2 y\right) d x+\frac{1}{y^{3}}\left(x y^{3}+2 y^{4}-4 x\right) d y=0$
i.e. $\left(y+\frac{2}{y^{2}}\right) d x+\left(x+2 y-\frac{4 x}{y^{3}}\right) d y=0$ which is exact
\therefore It's general solution is
$\int_{y-\text { constant }}\left(\mathrm{y}+\frac{2}{y^{2}}\right) \mathrm{dx}+\int 2 y d y=\mathrm{c}$
$\therefore\left(\mathrm{y}+\frac{2}{y^{2}}\right) \mathrm{x}+\mathrm{y}^{2}=\mathrm{c}$
Ex. Solve $\left(3 x^{2} y^{4}+2 x y\right) d x+\left(2 x^{3} y^{3}-x^{2}\right) d y=0$
Solution: Let $\left(3 x^{2} y^{4}+2 x y\right) d x+\left(2 x^{3} y^{3}-x^{2}\right) d y=0$ be the given differential equation, comparing it with $M d x+N d y=0$, we get,
$M=3 x^{2} y^{4}+2 x y$ and $N=2 x^{3} y^{3}-x^{2}$
$\therefore \frac{\partial M}{\partial y}=12 \mathrm{x}^{2} \mathrm{y}^{3}+2 \mathrm{x}$ and $\frac{\partial N}{\partial x}=6 \mathrm{x}^{2} \mathrm{y}^{3}-2 \mathrm{x}$
$\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
\therefore Given differential equation is not exact.
But $\frac{1}{M}\left[\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right]=\frac{1}{\left(3 \mathrm{x}^{2} \mathrm{y}^{4}+2 \mathrm{xy}\right)}\left[6 \mathrm{x}^{2} \mathrm{y}^{3}-2 \mathrm{x}-12 \mathrm{x}^{2} \mathrm{y}^{3}-2 \mathrm{x}\right]$

$$
=\frac{\left(-6 x^{2} \mathrm{y}^{3}-4 x\right)}{y\left(3 \mathrm{x}^{2} \mathrm{y}^{3}+2 x\right)}=\frac{-2}{y}=\mathrm{f}(\mathrm{y})
$$

\therefore I.F. $=\mathrm{e}^{\int f(\mathrm{y}) \mathrm{dy}}=\mathrm{e}^{-2 \log \mathrm{y}}=\mathrm{y}^{-2}=\frac{1}{y^{2}}$
Multiplying given equation by $\frac{1}{y^{2}}$, we get,
$\frac{1}{y^{2}}\left(3 \mathrm{x}^{2} \mathrm{y}^{4}+2 \mathrm{xy}\right) \mathrm{dx}+\frac{1}{y^{2}}\left(2 \mathrm{x}^{3} \mathrm{y}^{3}-\mathrm{x}^{2}\right) \mathrm{dy}=0$
i.e. $\left(3 x^{2} y^{2}+\frac{2 x}{y}\right) d x+\left(2 x^{3} y-\frac{x^{2}}{y^{2}}\right) d y=0$ which is exact
\therefore It's general solution is
$\int_{y-\text { constant }}\left(3 \mathrm{x}^{2} \mathrm{y}^{2}+\frac{2 x}{y}\right) \mathrm{dx}+\int 0 d y=\mathrm{c}$
$\therefore \mathrm{x}^{3} \mathrm{y}^{2}+\frac{x^{2}}{y}=\mathrm{c}$
Linear Differential Equation: A differential equation of type $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$ where P and Q are functions of x alone is called linear differential equation. Method of Solving Linear Differential Equation:

Let $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$ i.e. $(\mathrm{Py}-\mathrm{Q}) \mathrm{dx}+\mathrm{dy}=0 \ldots . .(1)$ be a linear differential equation
$\mathrm{M}=(\mathrm{Py}-\mathrm{Q})$ and $\mathrm{N}=1$
Where P and Q are functions of x alone.
$\therefore \frac{\partial M}{\partial y}=\mathrm{P}$ and $\frac{\partial N}{\partial x}=0$
$\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
\therefore Given differential equation is not exact.
But $\frac{1}{N}\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]=\mathrm{P}=\mathrm{f}(\mathrm{x})$
\therefore I.F. $=\mathrm{e}^{\int f(x) d x}=\mathrm{e}^{\int \mathrm{Pdx}}$
Multiplying equation (1) by $e^{\int P d x}$, we get,
$e^{\int P d x}(P y-Q) d x+e^{\int P d x} d y=0$
which is exact
\therefore It's general solution is
$\int_{y-\text { constant }} \mathrm{e}^{\int \mathrm{Pdx}}(\mathrm{Py}-\mathrm{Q}) \mathrm{dx}+\int 0 d y=\mathrm{c}$
$\therefore y \int \mathrm{e}^{\int P d x} P d x-\int \mathrm{e}^{\int P d x} \mathrm{Qdx}=\mathrm{c}$
$\therefore \mathrm{ye}^{\text {Pdx }}=\int \mathrm{e}^{\int \mathrm{Pdx}} \mathrm{Qdx}+\mathrm{c}$
be the general solution of linear differential equation.

Remark: If linear differential equation is of type $\frac{d x}{d y}+\mathrm{Px}=\mathrm{Q}$
where P and Q are functions of y alone, then it's G. S. is $x e^{\int P d y}=\int e^{\int P d y} Q d y+c$

Ex. Solve $\frac{d y}{d x}+2 \mathrm{y} \tan \mathrm{x}=\sin \mathrm{x}$
Solution: Let $\frac{d y}{d x}+2 y \tan \mathrm{x}=\sin \mathrm{x}$ be the given differential equation, which is linear differential equation, with $P=2 \tan x$ and $Q=\sin x$
\therefore I.F. $=\mathrm{e}^{\int \mathrm{Pdx}}=\mathrm{e}^{\int 2 \tan \mathrm{xdx}}==\mathrm{e}^{2 \operatorname{logsec} x}=\sec ^{2} \mathrm{x}$
\therefore General solution of given equaion is
$y e^{\int P d x}=\int e^{\int P d x} Q d x+c$
i.e. $y \sec ^{2} x=\int \sec ^{2} x \cdot \sin x d x+c$

$$
=\int \sec x \cdot \tan x d x+c
$$

$\therefore y^{2}{ }^{2} \mathrm{x}=\sec \mathrm{x}+\mathrm{c}$

Ex. Solve $\frac{d y}{d x}+\frac{y}{\tan x}=2 \sin \mathrm{x} \cdot \cos \mathrm{x}$, given that $\mathrm{y}=0$ when $\mathrm{x}=\frac{\pi}{2}$
Solution: Let $\frac{d y}{d x}+\frac{y}{\tan x}=2 \sin x \cdot \cos x$ be the given differential equation, which is linear differential equation,
with $\mathrm{P}=\frac{1}{\tan x}=\cot \mathrm{x}$ and $\mathrm{Q}=2 \sin \mathrm{x} \cdot \cos \mathrm{X}$
\therefore I.F. $=\mathrm{e}^{\int \operatorname{Pdx}}=\mathrm{e}^{\int \cot x d x}==\mathrm{e}^{\log \sin x}=\sin \mathrm{x}$
\therefore General solution of given equaion is
$y e^{\int P d x}=\int e^{\int P d x} Q d x+c$
i.e. $y \sin x=\int \sin x .2 \sin x \cdot \cos x d x+c$

$$
=2 \int \sin ^{2} x \cdot \cos x d x+c
$$

$\therefore \mathrm{y} \sin \mathrm{x}=\frac{2}{3} \sin ^{3} \mathrm{x}+\mathrm{c}$
Given that $\mathrm{y}=0$ when $\mathrm{x}=\frac{\pi}{2}$
$\therefore 0=\frac{2}{3}+\mathrm{c}$ i.e. $\mathrm{c}=-\frac{2}{3}$
\therefore Particular solution of given equaion is

$$
\mathrm{y} \cdot \sin \mathrm{x}=\frac{2}{3} \sin ^{3} \mathrm{x}-\frac{2}{3}
$$

Ex. Solve x. $\cos \mathrm{x} \cdot \frac{d y}{d x}+(\mathrm{x} \sin \mathrm{x}+\cos \mathrm{x}) \mathrm{y}=1$
Solution: Let $\mathrm{x} \cdot \cos \mathrm{x} \cdot \frac{d y}{d x}+(\mathrm{x} \sin \mathrm{x}+\cos \mathrm{x}) \mathrm{y}=1$
i.e. $\frac{d y}{d x}+\left(\tan x+\frac{1}{x}\right) y=\frac{\operatorname{secx}}{x}$ be the given differential equation,
which is linear differential equation, with $\mathrm{P}=\tan x+\frac{1}{x}$ and $\mathrm{Q}=\frac{\sec x}{x}$
$\operatorname{Now} \int \mathrm{Pdx}=\int\left(\tan x+\frac{1}{x}\right) \mathrm{dx}=\log \sec \mathrm{x}+\log \mathrm{x}=\log \mathrm{x} \sec \mathrm{x}$
\therefore I.F. $=\mathrm{e}^{\mathrm{TPdx}}=\mathrm{e}^{\log x \sec x}=\mathrm{xsec} \mathrm{x}$
\therefore General solution of given equaion is
$y e^{\int P d x}=\int e^{\int P d x} Q d x+c$
i.e. $y x \sec x=\int x \sec x \cdot \frac{\operatorname{secx}}{x} d x+c$

$$
=\int \sec ^{2} x d x+c
$$

$\therefore \mathrm{xysec} \mathrm{x}=\tan \mathrm{x}+\mathrm{c}$

Ex. Solve $\frac{d y}{d x}+\mathrm{x}^{2} \mathrm{y}=\mathrm{x}^{5}$
Solution: Let $\frac{d y}{d x}+\mathrm{x}^{2} \mathrm{y}=\mathrm{x}^{5}$ be the given differential equation, which is linear differential equation, with $P=x^{2}$ and $Q=x^{5}$ Now $\int \operatorname{Pdx}=\int \mathrm{x}^{2} \mathrm{dx}=\frac{1}{3} \mathrm{x}^{3}$
\therefore I.F. $=\mathrm{e}^{\sqrt[P \mathrm{Pdx}]{ }}=\mathrm{e}^{\frac{1}{x^{3}}}$
\therefore General solution of given equaion is
$y e^{\int P d x}=\int e^{\int P d x} Q d x+c$
i.e. $\mathrm{ye}^{\frac{1}{3} \mathrm{x}^{3}}=\int \mathrm{e}^{\frac{1}{3} \mathrm{x}^{3}} \cdot \mathrm{x}^{5} \mathrm{dx}+\mathrm{c}$

In integration put $\frac{1}{3} \mathrm{x}^{3}=\mathrm{t} \therefore \mathrm{x}^{3}=3 \mathrm{t} \therefore 3 \mathrm{x}^{2} \mathrm{dx}=3 \mathrm{dt}$ i.e. $\mathrm{x}^{2} \mathrm{dx}=\mathrm{dt}$
$\therefore \mathrm{ye}^{\frac{1}{3^{3}}}=\int \mathrm{e}^{\mathrm{t}} .3 \mathrm{tdt}+\mathrm{c}$
$=3\left[\mathrm{te}^{\mathrm{t}}-\int \mathrm{e}^{\mathrm{t}} \mathrm{dt}\right]+\mathrm{c}$
$=3\left[\mathrm{te}^{\mathrm{t}}-\mathrm{e}^{\mathrm{t}}\right]+\mathrm{c}$
$=e^{\mathrm{t}}[3 \mathrm{t}-3]+\mathrm{c}$
$\therefore \mathrm{ye}^{\frac{1}{3} \mathrm{x}^{3}}=\mathrm{e}^{\frac{1}{3} \mathrm{x}^{3}}\left(\mathrm{x}^{3}-3\right)+\mathrm{c}$

Ex. Solve $\left(1+\mathrm{x}^{2}\right) \frac{d y}{d x}+2 \mathrm{xy}-1=0$
Solution: Let $\left(1+\mathrm{x}^{2}\right) \frac{d y}{d x}+2 \mathrm{xy}-1=0$
i.e. $\frac{d y}{d x}+\frac{2 x}{1+x^{2}} y=\frac{1}{1+x^{2}}$ be the given differential equation,
which is linear differential equation, with $\mathrm{P}=\frac{2 x}{1+x^{2}}$ and $\mathrm{Q}=\frac{1}{1+x^{2}}$
Now \int Pdx $=\int \frac{2 x}{1+x^{2}} \mathrm{dx}=\log \left(1+\mathrm{x}^{2}\right)$
\therefore I.F. $=\mathrm{e}^{\mathrm{Pdx}}=\mathrm{e}^{\log \left(1+x^{2}\right)}=1+\mathrm{x}^{2}$
\therefore General solution of given equaion is

$$
\begin{aligned}
& \text { ye } \mathrm{e}^{\int \mathrm{Pdx}}=\int \mathrm{e}^{\mathrm{Pdx}} \mathrm{Qdx}+\mathrm{c} \\
& \text { i.e. } \mathrm{y}\left(1+x^{2}\right)=\int\left(1+x^{2}\right) \cdot \frac{1}{1+x^{2}} \mathrm{dx}+\mathrm{c} \\
& \quad=\int \mathrm{dx}+\mathrm{c} \\
& \begin{aligned}
\therefore \mathrm{y}\left(1+x^{2}\right) & =\mathrm{x}+\mathrm{c}
\end{aligned}
\end{aligned}
$$

Bernoulli's Differential Equation: A differential equation of type $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Qy}^{\mathrm{n}}$ where P and Q are functions of x alone is called Bernoulli's differential equation. Method of Solving Bernoulli's Differential Equation:

Consider the Bernoulli's equation

$$
\begin{equation*}
\frac{d y}{d x}+\mathrm{Py}=\mathrm{Qy}^{\mathrm{n}} \tag{1}
\end{equation*}
$$

where P and Q are functions of x alone
Multiplying equation (1) by y^{-n} we get,

$$
\begin{aligned}
& \quad \mathrm{y}^{\mathrm{-} \frac{d y}{d x}+\mathrm{Py}^{1-\mathrm{n}}=\mathrm{Q}} \\
& \text { Put } \mathrm{y}^{1-\mathrm{n}}=\mathrm{v} \quad \therefore(1-\mathrm{n}) \mathrm{y}^{-\mathrm{n}} \frac{d y}{d x}=\frac{d v}{d x} \text { i.e. } \mathrm{y}^{-\mathrm{n}} \frac{d y}{d x}=\frac{1}{(1-n)} \frac{d v}{d x} \\
& \therefore \frac{1}{(1-n)} \frac{d v}{d x}+\mathrm{Pv}=\mathrm{Q} \\
& \therefore \frac{d v}{d x}+(1-n) \mathrm{Pv}=(1-n) \mathrm{Q} \\
& \therefore \frac{d v}{d x}+\mathrm{P}_{1} \mathrm{v}=\mathrm{Q}_{1}
\end{aligned}
$$

Which is linear differential equation, where $\mathrm{P}_{1}=(1-n) \mathrm{P}$ and $\mathrm{Q}_{1}=(1-n) \mathrm{Q}$
\therefore I.F. $=e^{\int \mathrm{P}_{1} \mathrm{dx}}$
\therefore General solution of given equaion is

$$
\begin{aligned}
& \quad v e^{\int \mathrm{P}_{1} \mathrm{dx}}=\int e^{\int \mathrm{P}_{1} \mathrm{dx}} \mathrm{Q}_{1} \mathrm{dx}+\mathrm{c} \\
& \text { i.e. } y^{1-n} e^{(1-\mathrm{n}) \mathrm{Pdx}^{2}}=\int e^{(1-\mathrm{n}) \mathrm{Pdx}}(1-n) \mathrm{Qdx}+\mathrm{c}
\end{aligned}
$$

Remark:1) Bernoulli's differential equation may be is of type $\frac{d x}{d y}+\mathrm{Px}=\mathrm{Qx}^{\mathrm{n}}$ where P and Q are functions of y alone.
2) If given differential equation is of type $\mathrm{f}^{\prime}(\mathrm{y}) \frac{d y}{d x}+\operatorname{Pf}(\mathrm{y})=\mathrm{Q}$
where P and Q are functions of x alone, then to reduce it into lineardifferential equation by putting $\mathrm{f}(\mathrm{y})=\mathrm{v}$ and then solve.
3) If given differential equation is of type $\mathrm{f}^{\prime}(\mathrm{x}) \frac{d x}{d y}+\operatorname{Pf}(\mathrm{x})=\mathrm{Q}$ where P and Q are functions of y alone, then to reduce it into lineardifferential equation by putting $\mathrm{f}(\mathrm{x})=\mathrm{v}$ and then solve.

Ex. Solve $\frac{d y}{d x}+x y=x^{3} y^{3}$
Solution: Let $\frac{d y}{d x}+x y=x^{3} y^{3}$ be the given differential equation, which is in the form of Bernoulli's equation.
Multiplying equation (1) by y^{-3} we get,

$$
\mathrm{y}^{-3} \frac{d y}{d x}+\mathrm{xy}^{-2}=\mathrm{x}^{3}
$$

Put $\mathrm{y}^{-2}=\mathrm{v} \quad \therefore-2 \mathrm{y}^{-3} \frac{d y}{d x}=\frac{d v}{d x} \quad$ i.e. $\mathrm{y}^{-3} \frac{d y}{d x}=\frac{-1}{2} \frac{d v}{d x}$
$\therefore \frac{-1}{2} \frac{d v}{d x}+\mathrm{xv}=\mathrm{x}^{3}$
$\therefore \frac{d v}{d x}-2 \mathrm{x} y=-2 \mathrm{x}^{3}$
Which is linear differential equation, with $P=-2 x$ and $Q=-2 x^{3}$
\therefore I.F. $=e^{\int \mathrm{Pdx}}=e^{\int(-2 \mathrm{x}) \mathrm{dx}}=e^{-x^{2}}$
\therefore General solution of given equaion is
$v e^{\int \mathrm{Pdx}}=\int e^{\mathrm{PPdx}} \mathrm{Qdx}+\mathrm{c}$
i.e. $y^{-2} e^{-x^{2}}=\int e^{-x^{2}}\left(-2 \mathrm{x}^{3}\right) \mathrm{dx}+\mathrm{c}$

$$
=\int e^{-x^{2}}\left(-x^{2}\right)(2 x \mathrm{dx})+\mathrm{c}
$$

In integration put $-\mathrm{x}^{2}=\mathrm{t} \quad \therefore-2 \mathrm{xdx}=\mathrm{dt} \quad \therefore 2 \mathrm{xdx}=-\mathrm{dt}$
$\therefore y^{-2} e^{-x^{2}}=\int \mathrm{e}^{\mathrm{t}} \cdot \mathrm{t}(-\mathrm{dt})+\mathrm{c}$

$$
\begin{aligned}
& =-\int \mathrm{e}^{\mathrm{t}} \cdot \mathrm{tdt}+\mathrm{c} \\
& =-\left[\mathrm{te}^{\mathrm{t}}-\int \mathrm{e}^{\mathrm{t}} \mathrm{dt}\right]+\mathrm{c} \\
& =-\left[\mathrm{te}^{\mathrm{t}}-\mathrm{e}^{\mathrm{t}}\right]+\mathrm{c} \\
& =-\mathrm{e}^{\mathrm{t}}(\mathrm{t}-1)+\mathrm{c} \\
& =\mathrm{e}^{\mathrm{t}}(1-\mathrm{t})+\mathrm{c} \\
\therefore y^{-2} e^{-x^{2}} & =\mathrm{e}^{-\mathrm{x}^{2}}\left(1+\mathrm{x}^{2}\right)+\mathrm{c}
\end{aligned}
$$

i.e. $1=\left(1+x^{2}\right) y^{2}+c y^{2} e^{x^{2}}$

Ex. Solve xy $-\frac{d y}{d x}=y^{3} e^{-x^{2}}$
Solution: Let $\mathrm{xy}-\frac{d y}{d x}=\mathrm{y}^{3} e^{-x^{2}}$ i.e. $\frac{d y}{d x}-\mathrm{xy}=-\mathrm{y}^{3} e^{-x^{2}}$ be the given differential equation, which is in the form of Bernoulli's equation.
Multiplying equation (1) by y^{-3} we get,

$$
\mathrm{y}^{-3} \frac{d y}{d x}-\mathrm{xy}^{-2}=-e^{-x^{2}}
$$

Put $\mathrm{y}^{-2}=\mathrm{v} \quad \therefore-2 \mathrm{y}^{-3} \frac{d y}{d x}=\frac{d v}{d x} \quad$ i.e. $\mathrm{y}^{-3} \frac{d y}{d x}=\frac{-1}{2} \frac{d v}{d x}$
$\therefore \frac{-1}{2} \frac{d v}{d x}-\mathrm{xv}=-e^{-x^{2}}$
$\therefore \frac{d v}{d x}+2 \mathrm{xv}=2 e^{-x^{2}}$
Which is linear differential equation, with $\mathrm{P}=2 \mathrm{x}$ and $\mathrm{Q}=2 e^{-x^{2}}$
\therefore I.F. $=e^{\int \mathrm{Pdx}}=e^{\int(2 \mathrm{x}) \mathrm{dx}}=e^{x^{2}}$
\therefore General solution of given equaion is

$$
\mathrm{v} e^{\int \mathrm{Pdx}}=\int e^{\int \mathrm{Pdx}} \mathrm{Qdx}+\mathrm{c}
$$

i.e. $y^{-2} e^{x^{2}}=\int e^{x^{2}}\left(2 e^{-x^{2}}\right) \mathrm{dx}+\mathrm{c}$

$$
=2 \mathrm{x}+\mathrm{c}
$$

$\therefore e^{x^{2}}=2 \mathrm{xy}^{2}+\mathrm{cy}^{2}$

Ex. Solve $\frac{d y}{d x}-y \tan x+y^{2} \sec x=0$
Solution: Let $\frac{d y}{d x}-y \tan x+y^{2} \sec x=0$ i.e. $\frac{d y}{d x}-y \tan x=-y^{2} \sec x$ be the given differential equation, which is in the form of Bernoulli's equation.
Multiplying equation (1) by y^{-2} we get,

$$
\mathrm{y}^{-2} \frac{d y}{d x}-\mathrm{y}^{-1} \tan \mathrm{x}=-\sec \mathrm{x}
$$

Put $\mathrm{y}^{-1}=\mathrm{v} \quad \therefore-\mathrm{y}^{-2} \frac{d y}{d x}=\frac{d v}{d x} \quad$ i.e. $\mathrm{y}^{-2} \frac{d y}{d x}=-\frac{d v}{d x}$
$\therefore-\frac{d v}{d x}-\mathrm{vtan} \mathrm{x}=-\sec \mathrm{x}$
$\therefore \frac{d v}{d x}+\mathrm{v} \tan \mathrm{x}=\mathrm{sec} \mathrm{x}$
Which is linear differential equation, with $P=\tan x$ and $Q=\sec x$
\therefore I.F. $=e^{\int \mathrm{Pdx}}=e^{\int(\tan \mathrm{x}) \mathrm{dx}}=e^{\log \sec x}=\sec \mathrm{x}$
\therefore General solution of given equation is

$$
v e^{\int \mathrm{Pdx}}=\int e^{\int \mathrm{Pdx}} \mathrm{Qdx}+\mathrm{c}
$$

i.e. $y^{-1} \sec x=\int \sec x(\sec x) d x+c$

$$
=\int \sec ^{2} x d x+c
$$

$\therefore \quad y^{-1} \sec x=\tan x+c$
$\therefore \quad \sec \mathrm{x}=(\tan \mathrm{x}+\mathrm{c}) \mathrm{y}$
Ex. Solve tany $\frac{d y}{d x}+\tan \mathrm{x}=\cos \mathrm{y} \cos ^{2} \mathrm{x}$
Solution: Let $\tan y \frac{d y}{d x}+\tan \mathrm{x}=\cos y \cos ^{2} \mathrm{x}$ i.e.secytany $\frac{d y}{d x}+\sec y \tan \mathrm{x}=\cos ^{2} \mathrm{x}$ be the given differential equation in the form $\mathrm{f}^{\prime}(\mathrm{y}) \frac{d y}{d x}+\operatorname{Pf}(\mathrm{y})=\mathrm{Q}$ with $f(y)=$ secy .

$$
\begin{aligned}
& \therefore \text { Put } \mathrm{f}(\mathrm{y})=\mathrm{v} \text { i.e. } \sec \mathrm{y}=\mathrm{v} \quad \therefore \text { secytany } \frac{d y}{d x}=\frac{d v}{d x} \\
& \therefore \frac{d v}{d x}+\mathrm{v} \tan \mathrm{x}=\cos ^{2} \mathrm{x}
\end{aligned}
$$

Which is linear differential equation in v and x , with $\mathrm{P}=\tan \mathrm{x}$ and $\mathrm{Q}=\cos ^{2} \mathrm{x}$
\therefore I.F. $=e^{\int P \mathrm{Pdx}}=e^{\int \operatorname{tanxdx}}=e^{\log \sec x}=\operatorname{secx}$
\therefore General solution of given equaion is

$$
\mathrm{v} e^{\int \mathrm{Pdx}}=\int e^{\int \mathrm{Pdx}} \mathrm{Qdx}+\mathrm{c}
$$

i.e. $\sec y \sec x=\int \sec x\left(\cos ^{2} x\right) d x+c$

$$
=\int \cos x d x+c
$$

$\therefore \sec y \sec x=\sin x+c$

Ex. Solve $\frac{d y}{d x}-\frac{\tan \mathrm{y}}{1+x}=(1+\mathrm{x}) \mathrm{e}^{\mathrm{x}}$ secy
Solution: Let $\frac{d y}{d x}-\frac{\operatorname{tany}}{1+x}=(1+\mathrm{x}) \mathrm{e}^{\mathrm{x}}$ secy i.e. $\cos \frac{d y}{d x}-\frac{\sin \mathrm{y}}{1+x}=(1+\mathrm{x}) \mathrm{e}^{\mathrm{x}}$
be the given differential equation in the form $\mathrm{f}^{\prime}(\mathrm{y}) \frac{d y}{d x}+\operatorname{Pf}(\mathrm{y})=\mathrm{Q}$
with $f(y)=$ siny.
$\therefore \operatorname{Put} \mathrm{f}(\mathrm{y})=\mathrm{v}$ i.e. $\sin \mathrm{y}=\mathrm{v} \quad \therefore \cos y \frac{d y}{d x}=\frac{d v}{d x}$
$\therefore \frac{d v}{d x}-\frac{v}{1+x}=(1+\mathrm{x}) \mathrm{e}^{\mathrm{x}}$
Which is linear differential equation in v and x, with $P=\frac{-1}{1+x}$ and $Q=(1+x) e^{x}$
\therefore I.F. $=e^{\int \mathrm{Pdx}}=e^{\int \frac{-1}{1+x} \mathrm{dx}}=e^{-\log (1+x)}=\frac{1}{(1+x)}$
\therefore General solution of given equaion is

$$
v e^{\int P d x}=\int e^{\int P d x} Q d x+c
$$

i.e. $\frac{\sin y}{(1+x)}=\int \frac{1}{(1+x)}(1+\mathrm{x}) \mathrm{e}^{\mathrm{x}} \mathrm{dx}+\mathrm{c}$
$=\int \mathrm{e}^{\mathrm{x}} \mathrm{dx}+\mathrm{c}$
$\therefore \frac{\sin y}{(1+x)}=\mathrm{e}^{\mathrm{x}}+\mathrm{c}$

MULTIPLE CHOICE QUESTIONS

1) If $\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}$ is exists, then it is denoted by \ldots
A) $f_{x}(x, y)$
B) $\mathrm{f}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})$
C) $f_{x}(a, b)$
D) $f_{y}(a, b)$
2) If $\lim _{\mathrm{k} \rightarrow 0} \frac{f(x, y+k)-f(x, y)}{k}$ is exists, then it is denoted by \ldots
A) $f_{x}(x, y)$
B) $f_{y}(x, y)$
C) $f_{x}(a, b)$
D) $f_{y}(a, b)$
3) Partial derivative of $f(x, y)$ w.r.t. x at point (a, b) is given by $f_{x}(a, b)=\ldots$
A) $\lim _{\mathrm{k} \rightarrow 0} \frac{f(a, b+k)-f(a, b)}{k}$
B) $\lim _{\mathrm{h} \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{k}$
C) $\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}$
D) $\lim _{\mathrm{k} \rightarrow 0} \frac{f(a, b+k)-f(a, b)}{h}$
4) Partial derivative of $f(x, y)$ w.r.t.y at point (a, b) is given by $f_{y}(a, b)=\ldots$
A) $\lim _{\mathrm{k} \rightarrow 0} \frac{f(a, b+k)-f(a, b)}{k}$
B) $\lim _{\mathrm{h} \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}$
C) $\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{k}$
D) $\lim _{\mathrm{k} \rightarrow 0} \frac{f(a, b+k)-f(a, b)}{h}$
5) If $\mathrm{u}=\mathrm{e}^{\mathrm{x}} \sin x y$ then $\frac{\partial u}{\partial x}$ at $(0,0)$ is \ldots
A) -1
B) 1
C) 0
D) $\frac{\pi}{2}$
6) If $u=e^{x} \sin x y$ then $\frac{\partial u}{\partial y}$ at $(0,0)$ is \ldots
A) -1
B) 1
C) 0
D) $\frac{\pi}{2}$
7) If $u=x^{2} y+y^{2} z+z^{2} x$ then $\frac{\partial u}{\partial x}$ at $(1,1,1)$ is \ldots
A) 5
B) 4
C) 3
D) 2
8) If $u=x^{2} y+y^{2} z+z^{2} x$ then $\frac{\partial u}{\partial y}$ at $(1,1,1)$ is \ldots
A) 5
B) 4
C) 3
D) 2
9) If $u=x^{2} y+y^{2} z+z^{2} x$ then $\frac{\partial u}{\partial z}$ at $(1,1,1)$ is ...
A) 5
B) 4
C) 3
D) 2
10) If $u=x^{3} z+y^{2} x-2 y z$ then $\frac{\partial u}{\partial x}$ at $(1,2,3)$ is \ldots
A) 11
B) 12
C) 13
D) 14
11) If $u=x^{3} z+y^{2} x-2 y z$ then $\frac{\partial u}{\partial y}$ at $(1,2,3)$ is \ldots
A) 1
B) -2
C) 13
D) 4
12) If $u=x^{3} z+y^{2} x-2 y z$ then $\frac{\partial u}{\partial z}$ at $(1,2,3)$ is \ldots
A) -3
B) -2
C) 13
D) 4
13) If $u=x y+e^{x}$ then $\frac{\partial u}{\partial x}$ is \ldots
A) $x y+e^{x}$
B) $y+e^{x}$
C) x
D) 0
14) If $u=x y+e^{x}$ then $\frac{\partial u}{\partial y}$ is \ldots
A) $x y+e^{x}$
B) $y+e^{x}$
C) x
D) 0
15) If $u=x y+e^{x}$ then $\frac{\partial^{2} u}{\partial x^{2}}$ is ...
A) $x y+e^{x}$
B) $y+e^{x}$
C) e^{x}
D) 0
16) If $u=x y+e^{x}$ then $\frac{\partial^{2} u}{\partial y^{2}}$ is ...
A) 0
B) $y+e^{x}$
C) x
D) y
17) If $u=x y+e^{x}$ then $\frac{\partial^{2} u}{\partial x \partial y}$ is \ldots
A) 0
B) 1
C) x
D) y
18) If $u=x y+e^{x}$ then $\frac{\partial^{2} u}{\partial y \partial x}$ is \ldots
A) 0
B) 1
C) $y+e^{x}$
D) e^{x}
19) If $\mathrm{u}=\log (\tan \mathrm{x}+\tan \mathrm{y}+\tan \mathrm{z})$ then $\sin 2 \mathrm{x} \frac{\partial u}{\partial x}+\sin 2 \mathrm{y} \frac{\partial u}{\partial y}+\sin 2 \mathrm{z} \frac{\partial u}{\partial z}=\ldots$
A) -1
B) 0
C) 1
D) 2
20) If $\mathrm{u}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-1 / 2}$, then $\mathrm{x} \frac{\partial u}{\partial x}+\mathrm{y} \frac{\partial u}{\partial y}+\mathrm{z} \frac{\partial u}{\partial z}=\ldots$
A) -u
B) u
C) 0
D) 1
21) If $u=\log \left(x^{3}+y^{3}-x^{2} y-x y^{2}\right)$, then $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=\ldots$
A) $\frac{-2}{x+y}$
B) $\frac{2}{x+y}$
C) $\frac{1}{x+y}$
D) 0
22) If M and N are the functions of variables x, y then a differential equation $M d x+N d y=0$ is called $\ldots .$. differential equation
A) first order and first degree
B) first order and higher degree
C) second order and first degree
D) None of these
23) If M and N are the homogeneous functions of variables x, y of same degree then a differential equation $\mathrm{Mdx}+\mathrm{Ndy}=0$ is called $\ldots .$. differential equation
A) non-homogeneous
B) exact
C) homogeneous
D) None of these
24) A differential equation $M d x+N d y=0$ is exact, if there exist function $u(x, y)$ such that
A) $\operatorname{Mdx}+\mathrm{Ndy}=\mathrm{x}$
B) $M d x+N d y=y$
C) $\mathrm{Mdx}+\mathrm{Ndy}=\mathrm{u}$
D) $M d x+N d y=d u$
25) A differential equation $M d x+N d y=0$ is exact if
A) $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial y}$
B) $\frac{\partial M}{\partial x} \neq \frac{\partial N}{\partial y}$
C) $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial x}$
D) $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
26) A differential equation $\mathrm{Mdx}+\mathrm{Ndy}=0$ is homogeneous differential equation then I.F. is
A) $\frac{1}{M x-N y}$
B) $\frac{1}{M x+N y}$
C) $\frac{1}{M y-N x}$
D) $\frac{1}{M y+N x}$
27) A differential equation $M d x+N d y=0$ is of type $f_{1}(x y) y d x+f_{2}(x y) x d y=0$ then I.F. is
A) $\frac{1}{M x-N y}$
B) $\frac{1}{M x+N y}$
C) $\frac{1}{M y-N x}$
D) $\frac{1}{M y+N x}$
28) If $\frac{1}{N}\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]$ is a function of x alone, say $\mathrm{f}(\mathrm{X})$ then I.F. of equation $\mathrm{Mdx}+\mathrm{Ndy}=0$ is \ldots.
A) $e^{\int f(y) d y}$
B) $e^{\int f(x) d x}$
C) $e^{\int f(z) d z}$
D) $e^{\int f(x) d y}$
29) If $\frac{1}{M}\left[\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right]$ is a function of y alone, say $f(y)$ then I.F. of equation $\mathrm{Mdx}+\mathrm{Ndy}=0$ is \ldots
A) $e^{\int f(y) d y}$
B) $e^{\int f(x) d x}$
C) $e^{\int f(z) d z}$
D) $e^{\int f(y) d x}$
30) A differential equation of type $\frac{d y}{d x}+P y=Q$ where P and Q are functions of x alone is called \qquad
A) non-linear differential equation
B) homogeneous differential equation
C) linear differential equation
D) Bernoulli's equation
31) A differential equation of type $\frac{d x}{d y}+\mathrm{Px}=\mathrm{Q}$ where P and Q are functions of y alone is called \qquad
A) non-linear differential equation
B) homogeneous differential equation
C) linear differential equation
D) Bernoulli's equation
32) A differential equation of type $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q} \cdot \mathrm{y}^{\mathrm{n}}$ where P and Q are functions of x alone is called \qquad
A) non-linear differential equation
B) homogeneous differential equation
C) linear differential equation
D) Bernoulli's equation
33) A differential equation of type $\frac{d x}{d y}+\mathrm{Px}=\mathrm{Q} \cdot \mathrm{x}^{\mathrm{n}}$ where P and Q are functions of y alone is called \qquad
A) non-linear differential equation
B) homogeneous differential equation
C) linear differential equation
D) Bernoulli's equation
34) I.F. of a linear differential equation of type $\frac{d y}{d x}+P y=Q$ where P and Q are functions of x alone is
A) $e^{\int P d y}$
B) $e^{\int P d x}$
C) $\mathrm{e}^{\int \mathrm{Pdz}}$
D) $e^{\int Q d x}$
35) I.F. of a linear differential equation of type $\frac{d x}{d y}+\mathrm{Px}=\mathrm{Q}$ where P and Q are functions of y alone is
A) $e^{\int P d y}$
B) $e^{\int P d x}$
C) $e^{\int P d z}$
D) $e^{\int Q d y}$
36) I.F. of differential equation $(x+y) d x+(y-x) d y=0$ is
A) $\frac{1}{x^{2}+y^{2}}$
B) $\frac{1}{x^{2}-y^{2}}$
C) $\frac{1}{x+y}$
D) 1
37) I.F. of differential equation $\frac{d y}{d x}+2 y \tan x=\sin x$ is
A) $\sec ^{2} x$
B) $\log \sec x$
C) $\tan x$
D) $\sin x$
38) I.F. of differential equation $\frac{d y}{d x}+\frac{y}{x}=\mathrm{x}^{3}$ is
A) x^{3}
B) x^{2}
C) x
D) $\frac{1}{x}$
39) To solve a differential equation of type $f^{\prime}(y) \frac{d y}{d x}+\operatorname{Pf}(\mathrm{y})=\mathrm{Q}$ where P and Q are functions of x alone, we put
A) $f(x)=v$
B) $f^{\prime}(x)=v$
C) $f(y)=v$
D) $f^{\prime}(y)=v$
40) To solve a differential equation of type $\mathrm{f}^{\prime}(\mathrm{x}) \frac{d x}{d y}+\operatorname{Pf}(\mathrm{x})=\mathrm{Q}$ where P and Q are functions of y alone, we put
A) $f(x)=v$
B) $f^{\prime}(x)=v$
C) $f(y)=v$
D) $f^{\prime}(y)=v$

UNIT-2: DIFFERENTLAL EQUATIONS OF FIRST ORDER AND HIGHER DEGREE

Definition: An equation $F(x, y, p)=p^{n}+A_{1} p^{n-1}+A_{2} p^{n-2}+\ldots \ldots+A_{n-1} p+A_{n}=0$
is called differential equations of first order and higher degree.
Where $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \ldots, \mathrm{~A}_{\mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}}$ are functions of x and y and $\mathrm{p}=\frac{d y}{d x}$

Equation Solvable for p:
An equation $F(x, y, p)=p^{n}+A_{1} p^{n-1}+A_{2} p^{n-2}+\ldots+A_{n-1} p+A_{n}=0$ is said to be solvable for p if it factorized into n linear factors.

Method of finding the solution of equation solvable for p :
Let an equation $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{p})=\mathrm{p}^{\mathrm{n}}+\mathrm{A}_{1} \mathrm{p}^{\mathrm{n}-1}+\mathrm{A}_{2} \mathrm{p}^{\mathrm{n}-2}+\ldots+\mathrm{A}_{\mathrm{n}-1} \mathrm{p}+\mathrm{A}_{\mathrm{n}}=0$
is solvable for p .
$\therefore \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{p})$ is factorized into n linear factors say
$F(x, y, p)=\left(p-f_{1}\right)\left(p-f_{2}\right) \ldots \ldots\left(p-f_{n}\right)$ where $f_{1}, f_{2}, \ldots \ldots, f_{n}$ are functions of x, y
\therefore From given equation, we have,

$$
\begin{aligned}
& \left(\mathrm{p}-\mathrm{f}_{1}\right)\left(\mathrm{p}-\mathrm{f}_{2}\right) \ldots \ldots\left(\mathrm{p}-\mathrm{f}_{\mathrm{n}}\right)=0 \\
& \Rightarrow \mathrm{p}-\mathrm{f}_{1}=0 \text { or } \mathrm{p}-\mathrm{f}_{2}=0 \text { or } \ldots \ldots, \mathrm{p}-\mathrm{f}_{\mathrm{n}}=0 \\
& \Rightarrow \frac{d y}{d x}-\mathrm{f}_{1}=0, \frac{d y}{d x}-\mathrm{f}_{2}=0, \ldots \ldots, \frac{d y}{d x}-\mathrm{f}_{\mathrm{n}}=0 \\
& \Rightarrow \frac{d y}{d x}=\mathrm{f}_{1}(\mathrm{x}, \mathrm{y}), \frac{d y}{d x}=\mathrm{f}_{2}(\mathrm{x}, \mathrm{y}), \ldots \ldots, \frac{d y}{d x}=\mathrm{f}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

be the differential equations of first order and first degree.
Solving these equations, we get general solutions as
$\phi_{1}\left(\mathrm{x}, \mathrm{y}, \mathrm{c}_{1}\right)=0, \phi_{2}\left(\mathrm{x}, \mathrm{y}, \mathrm{c}_{2}\right)=0, \ldots ., \phi_{\mathrm{n}}\left(\mathrm{x}, \mathrm{y}, \mathrm{c}_{\mathrm{n}}\right)=0$.
As order of given equation is one,
\therefore replace arbitrary constants $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \ldots, \mathrm{c}_{\mathrm{n}}$ by single constant c .
$\phi_{1}(\mathrm{x}, \mathrm{y}, \mathrm{c})=0, \phi_{2}(\mathrm{x}, \mathrm{y}, \mathrm{c})=0, \ldots . ., \phi_{\mathrm{n}}\left(\mathrm{x}, \mathrm{y}, \mathrm{c}_{\mathrm{n}}\right)=0$
be the general solutions of linear factors.
\therefore General solution of given equation is
$\phi_{1}(x, y, c) \phi_{2}(x, y, c) \ldots \phi_{n}(x, y, c)=0$.
Ex. Solve $\mathrm{p}^{2}-8 \mathrm{p}+12=0$
Solution: Let $p^{2}-8 p+12=0$
i.e. $(p-2)(p-6)=0$
be the given differential equation, which is solvable for p
$\therefore \mathrm{p}-2=0$ or $\mathrm{p}-6=0$
i.e. $\frac{d y}{d x}-2=0$ or $\frac{d y}{d x}-6=0$
$\therefore \mathrm{dy}=2 \mathrm{dx}$ or $\mathrm{dy}=6 \mathrm{dx}$
Integrating, we get,
$\mathrm{y}=2 \mathrm{x}+\mathrm{c}$ or $\mathrm{y}=6 \mathrm{x}+\mathrm{c}$
i.e. $2 \mathrm{x}-\mathrm{y}+\mathrm{c}=0$ or $6 \mathrm{x}-\mathrm{y}+\mathrm{c}=0$
\therefore The G. S. of given equation is
$(2 x-y+c)(6 x-y+c)=0$

Ex. Solve $\mathrm{p}^{2}-7 \mathrm{p}+10=0$
Solution: Let $p^{2}-7 p+10=0$
i.e. $(p-2)(p-5)=0$
be the given differential equation, which is solvable for p
$\therefore \mathrm{p}-2=0$ or $\mathrm{p}-5=0$
i.e. $\frac{d y}{d x}-2=0$ or $\frac{d y}{d x}-5=0$
$\therefore \mathrm{dy}=2 \mathrm{dx}$ or $\mathrm{dy}=5 \mathrm{dx}$
Integrating, we get,
$y=2 x+c$ or $y=5 x+c$
i.e. $2 x-y+c=0$ or $5 x-y+c=0$
\therefore The G. S. of given equation is
$(2 x-y+c)(5 x-y+c)=0$

Ex. Solve $p(p-y)=x(x+y)$
Solution: Let $p(p-y)=x(x+y)$

$$
\begin{aligned}
& \text { i.e. } p^{2}-p y-x(x+y)=0 \\
& \text { i.e. }(p+x)(p-x-y)=0
\end{aligned}
$$

be the given differential equation, which is solvable for p
$\therefore \mathrm{p}+\mathrm{x}=0$ or $\mathrm{p}-\mathrm{x}-\mathrm{y}=0$
i.e. $\frac{d y}{d x}+\mathrm{x}=0$ or $\frac{d y}{d x}-\mathrm{x}-\mathrm{y}=0$
i) Consider $\frac{d y}{d x}+x=0$
$\therefore \mathrm{dy}+\mathrm{xdx}=0$
Integrating, we get,
$y+\frac{1}{2} x+c_{1}=0$
i.e. $2 y+x+c=0 \ldots .$. (1) where $2 c_{1}=c$
ii) Consider $\frac{d y}{d x}-y=x$

Which is linear differential equation with $P=-1$ and $Q=x$ having G.S.
$\mathrm{y} e^{\int \mathrm{Pdx}}=\int e^{\int \mathrm{Pdx}} \mathrm{Qdx}+\mathrm{c}$
i.e. $y e^{\int(-1) \mathrm{dx}}=\int e^{\int(-1) \mathrm{dx}} \mathrm{xdx}+\mathrm{c}$
$\therefore \mathrm{y} e^{-\mathrm{x}}=\int e^{-\mathrm{x}} \mathrm{xdx}+\mathrm{c}$
$\therefore \mathrm{y} e^{-\mathrm{x}}=-\mathrm{x} e^{-\mathrm{x}}-\int\left(-e^{-\mathrm{x}}\right) \mathrm{dx}+\mathrm{c}$
$\therefore \mathrm{y} e^{-\mathrm{x}}=-\mathrm{x} e^{-\mathrm{x}}-e^{-\mathrm{x}}+\mathrm{c}$
$\therefore \mathrm{y}=-\mathrm{x}-1+\mathrm{c} e^{\mathrm{x}}$
$\therefore \mathrm{x}+\mathrm{y}+1-\mathrm{c} e^{\mathrm{x}}=0$
From equation (1), (2) the G. S. of given equation is
$(x+2 y+c)\left(x+y+1-c e^{x}\right)=0$

Ex. Solve $\frac{1}{p}-\mathrm{p}=\frac{y}{x}-\frac{x}{y}$
Solution: Let $\frac{1}{p}-\mathrm{p}=\frac{y}{x}-\frac{x}{y}$

$$
\text { i.e. } \frac{1-p^{2}}{p}=\frac{y^{2}-x^{2}}{x y}
$$

i.e. $\frac{p^{2}-1}{p}=\frac{x^{2}-y^{2}}{x y}$
i.e. $x y p^{2}-x y-\left(x^{2}-y^{2}\right) p=0$
i.e. $x y p^{2}-x^{2} p+y^{2} p-x y=0$
i.e. $(y p-x)(x p+y)=0$
be the given differential equation, which is solvable for p
$\therefore \mathrm{yp}-\mathrm{x}=0$ or $\mathrm{xp}+\mathrm{y}=0$
i) Consider $\mathrm{yp}-\mathrm{x}=0$ i.e. $\frac{d y}{d x}-\mathrm{x}=0$
$\therefore \mathrm{ydy}-\mathrm{xdx}=0$
Integrating, we get,
$\frac{1}{2} y^{2}-\frac{1}{2} x^{2}=c_{1}$
i.e. $y^{2}-x^{2}-c=0 \ldots \ldots$. (1) where $2 c_{1}=c$
ii) Consider $\mathrm{xp}+\mathrm{y}=0$ i.e. $\mathrm{x} \frac{d y}{d x}+\mathrm{y}=0$
$\therefore \frac{d y}{y}+\frac{d x}{x}=0$
Integrating, we get,
$\log y+\log x=\log c$
$\therefore \log (x y)=\log c$
$\therefore x y=c$
$\therefore \mathrm{xy}-\mathrm{c}=0$
From equation (1), (2) the G. S. of given equation is $\left(y^{2}-x^{2}-c\right)(x y-c)=0$

Ex. Solve $\mathrm{x}^{2}\left(\frac{d y}{d x}\right)^{2}+\mathrm{xy} \frac{d y}{d x}-6 \mathrm{y}^{2}=0$
Solution: Let $\mathrm{x}^{2}\left(\frac{d y}{d x}\right)^{2}+\mathrm{xy} \frac{d y}{d x}-6 \mathrm{y}^{2}=0$ i.e. $x^{2} p^{2}+x y p-6 y^{2}=0$
i.e. $(x p-2 y)(x p+3 y)=0$
be the given differential equation, which is solvable for p
$\therefore \mathrm{xp}-2 \mathrm{y}=0$ or $\mathrm{xp}+3 \mathrm{y}=0$
i) Consider $\mathrm{xp}-2 \mathrm{y}=0$ i.e. $\mathrm{x} \frac{d y}{d x}-2 \mathrm{y}=0$
$\therefore \frac{d y}{y}-2 \frac{d x}{x}=0$
Integrating, we get,
$\log y-2 \log x=\log c$
$\therefore \log \frac{y}{x^{2}}=\log c$
$\therefore \frac{y}{x^{2}}=\mathrm{c}$
$\therefore \mathrm{y}-\mathrm{cx}^{2}=0$
ii) Consider $\mathrm{xp}+3 \mathrm{y}=0$ i.e. $\mathrm{x} \frac{d y}{d x}+3 \mathrm{y}=0$
$\therefore \frac{d y}{y}+3 \frac{d x}{x}=0$
Integrating, we get,
$\log y+3 \log x=\log c$
$\therefore \log \left(x^{3} y\right)=\log c$
$\therefore x^{3} y=c$
$\therefore \mathrm{x}^{3} \mathrm{y}-\mathrm{c}=0$
From equation (1), (2) the G. S. of given equation is $\left(y-c x^{2}\right)\left(x^{3} y-c\right)=0$

Equation Solvable for y : An equation $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{p})=0$, where $\mathrm{p}=\frac{d y}{d x}$ is said to be solvable for y if it can be expressed as $y=f(x, p)$.

Method of finding the solution of equation solvable for y :

Let an equation $F(x, y, p)=0 \ldots \ldots$ (1) is solvable for y.
\therefore it expressed as $\mathrm{y}=\mathrm{f}(\mathrm{x}, \mathrm{p})$
Differentiating equation (2) w.r.t. x, we get,
$\frac{d y}{d x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial p} \cdot \frac{d p}{d x}$
$\therefore \mathrm{p}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial p} \cdot \frac{d p}{d x}$
Equation (3) is the differential equation of first order and first degree in p and x. Solving it, we get general solution as

$$
\begin{equation*}
\phi(\mathrm{x}, \mathrm{p}, \mathrm{c})=0 \ldots \ldots \tag{4}
\end{equation*}
$$

Eliminating p from given equations (1) and (4) we get required general solution of equation (1).
If elimination of p from given equations (1) and (4) is not possible, then equations (1) and (4) represent general solution of equation (1) with p as parameter.

Ex. Solve $p x-x^{4} p^{2}=-y$
Solution: Let $p x-x^{4} p^{2}=-y$ i.e. $y=-p x+x^{4} p^{2}$
be the given differential equation, which is solvable for y.
Differentiating equation (1) w.r.t. x, we get,
$\frac{d y}{d x}=-\mathrm{p}-\mathrm{x} \frac{d p}{d x}+4 \mathrm{x}^{3} \mathrm{p}^{2}+2 \mathrm{x}^{4} \mathrm{p} \frac{d p}{d x}$
$\therefore \mathrm{p}=-\mathrm{p}+4 \mathrm{x}^{3} \mathrm{p}^{2}-\mathrm{x} \frac{d p}{d x}\left(1-2 \mathrm{x}^{3} \mathrm{p}\right)$
$\therefore 2 \mathrm{p}-4 \mathrm{x}^{3} \mathrm{p}^{2}+\mathrm{x} \frac{d p}{d x}\left(1-2 \mathrm{x}^{3} \mathrm{p}\right)=0$
$\therefore 2 \mathrm{p}\left(1-2 \mathrm{x}^{3} \mathrm{p}\right)+\mathrm{x} \frac{d p}{d x}\left(1-2 \mathrm{x}^{3} \mathrm{p}\right)=0$
$\therefore\left(1-2 \mathrm{x}^{3} \mathrm{p}\right)\left(2 \mathrm{p}+\mathrm{x} \frac{d p}{d x}\right)=0$
We reject the factor $\left(1-2 \mathrm{x}^{3} \mathrm{p}\right)$ which does not contain $\frac{d p}{d x}$.
\therefore Consider $\left(2 \mathrm{p}+\mathrm{x} \frac{d p}{d x}\right)=0$
$\therefore 2 \frac{d x}{x}+\frac{d p}{p}=0$
Integrating, we get,
$2 \log x+\log p=\log c$
$\therefore \mathrm{x}^{2} \mathrm{p}=\mathrm{c}$
$\therefore \mathrm{p}=\frac{c}{x^{2}}$
Eliminating p from given equations (1) and (2), we get,
$\mathrm{y}=-\mathrm{x}\left(\frac{c}{x^{2}}\right)+\mathrm{x}^{4}\left(\frac{c^{2}}{x^{4}}\right)$ i.e. $\mathrm{y}=-\frac{c}{x}+\mathrm{c}^{2}$
be the required general solution of equation (1).
Ex. Solve $y=2 p x+x^{2} p^{4}$
Solution: Let $\mathrm{y}=2 \mathrm{px}+\mathrm{x}^{2} \mathrm{p}^{4} \ldots \ldots$ (1)
be the given differential equation, which is solvable for y .
Differentiating equation (1) w.r.t. x , we get,
$\frac{d y}{d x}=2 \mathrm{p}+2 \mathrm{x} \frac{d p}{d x}+2 \mathrm{xp}^{4}+4 \mathrm{x}^{2} \mathrm{p}^{3} \frac{d p}{d x}$
$\therefore 2 \mathrm{p}+2 \mathrm{x} \frac{d p}{d x}+2 \mathrm{xp}^{4}+4 \mathrm{x}^{2} \mathrm{p}^{3} \frac{d p}{d x}=\mathrm{p}$
$\therefore \mathrm{p}+2 \mathrm{xp}^{4}+2 \mathrm{x} \frac{d p}{d x}+4 \mathrm{x}^{2} \mathrm{p}^{3} \frac{d p}{d x}=0$
$\therefore \mathrm{p}\left(1+2 \mathrm{xp}^{3}\right)+2 \mathrm{x} \frac{d p}{d x}\left(1+2 \mathrm{xp}^{3}\right)=0$
$\therefore\left(1+2 \mathrm{xp}^{3}\right)\left(\mathrm{p}+2 \mathrm{x} \frac{d p}{d x}\right)=0$
We reject the factor $\left(1+2 \mathrm{xp}^{3}\right)$ which does not contain $\frac{d p}{d x}$.
\therefore Consider $\left(\mathrm{p}+2 \mathrm{x} \frac{d p}{d x}\right)=0$
$\therefore \frac{d x}{x}+2 \frac{d p}{p}=0$
Integrating, we get,
$\log x+2 \log p=\log c$
$\therefore \mathrm{xp}^{2}=\mathrm{c}$
$\therefore \mathrm{p}^{2}=\frac{c}{x}$
$\therefore \mathrm{p}=\sqrt{\frac{x}{x}}$
Eliminating p from given equations (1) and (2), we get,
$\mathrm{y}=2 \mathrm{x} \sqrt{\frac{c}{x}}+\mathrm{x}^{2}\left(\frac{c^{2}}{x^{2}}\right)$
i.e. $\mathrm{y}=2 \sqrt{c x}+\mathrm{c}^{2}$ be the required general solution of equation (1).

Ex. Solve y-2px $=f\left(\mathrm{xp}^{2}\right)$
Solution: Let $\mathrm{y}-2 \mathrm{px}=\mathrm{f}\left(\mathrm{xp}^{2}\right)$ i.e. $\mathrm{y}=2 \mathrm{px}+\mathrm{f}\left(\mathrm{xp}^{2}\right)$
be the given differential equation, which is solvable for y .
Differentiating equation (1) w.r.t. x, we get,
$\frac{d y}{d x}=2 \mathrm{p}+2 \mathrm{x} \frac{d p}{d x}+\mathrm{f}^{\prime}\left(\mathrm{xp}^{2}\right) \cdot\left[\mathrm{p}^{2}+2 \mathrm{xp} \frac{d p}{d x}\right]$
$\therefore 2 \mathrm{p}+2 \mathrm{x} \frac{d p}{d x}+\mathrm{f}^{\prime}\left(\mathrm{xp}^{2}\right) \cdot\left[\mathrm{p}^{2}+2 \mathrm{xp} \frac{d p}{d x}\right]=\mathrm{p}$
$\therefore \mathrm{p}+\mathrm{p}^{2} \mathrm{f}^{\prime}\left(\mathrm{xp}^{2}\right)+2 \mathrm{x} \frac{d p}{d x}+2 \mathrm{xpf}^{\prime}\left(\mathrm{xp}^{2}\right) \frac{d p}{d x}=0$
$\therefore \mathrm{p}\left[1+\mathrm{pf}^{\prime}\left(\mathrm{xp}^{2}\right)\right]+2 \mathrm{x} \frac{d p}{d x}\left[1+\mathrm{pf}^{\prime}\left(\mathrm{xp}^{2}\right)\right]=0$
$\therefore\left[1+\mathrm{pf}^{\prime}\left(\mathrm{xp}^{2}\right)\right]\left(\mathrm{p}+2 \mathrm{x} \frac{d p}{d x}\right)=0$
We reject the factor $\left[1+\mathrm{pf}^{\prime}\left(\mathrm{xp}^{2}\right)\right]$ which does not contain $\frac{d p}{d x}$.
$\therefore \operatorname{Consider}\left(\mathrm{p}+2 \mathrm{x} \frac{d p}{d x}\right)=0$
$\therefore \frac{d x}{x}+2 \frac{d p}{p}=0$
Integrating, we get,
$\log x+2 \log p=\log c$
$\therefore \mathrm{xp}^{2}=\mathrm{c}$
$\therefore \mathrm{p}^{2}=\frac{c}{x}$
$\therefore \mathrm{p}=\sqrt{\frac{c}{x}}$
Eliminating p from given equations (1) and (2), we get,
$\mathrm{y}=2 \mathrm{x} \sqrt{\frac{c}{x}}+\mathrm{f}\left(\mathrm{x} . \frac{c}{x}\right)$
i.e. $\mathrm{y}=2 \sqrt{c x}+\mathrm{f}(\mathrm{c}) \quad$ be the required general solution of equation (1).

Ex. Solve $\mathrm{y}+\mathrm{p}^{2}=2 \mathrm{px}$
Solution: Let $y+p^{2}=2 p x$ i.e. $y=2 p x-p^{2}$
be the given differential equation, which is solvable for y .
Differentiating equation (1) w.r.t. x, we get,
$\frac{d y}{d x}=2 \mathrm{p}+2 \mathrm{x} \frac{d p}{d x}-2 \mathrm{p} \frac{d p}{d x}$
$\therefore 2 \mathrm{p}+2 \mathrm{x} \frac{d p}{d x}-2 \mathrm{p} \frac{d p}{d x}=\mathrm{p}$
$\therefore \mathrm{p}+2 \frac{d p}{d x}(\mathrm{x}-\mathrm{p})=0$
$\therefore \mathrm{p} \frac{d x}{d p}+2 \mathrm{x}-2 \mathrm{p}=0$
$\therefore \mathrm{p} \frac{d x}{d p}+2 \mathrm{x}=2 \mathrm{p}$
$\therefore \frac{d x}{d p}+\frac{2}{p} \mathrm{x}=2$
Which is linear differential equation in x and p with $\mathrm{P}=\frac{2}{p}$ and $\mathrm{Q}=2$.
\therefore It's G. S. is
$\mathrm{x} e^{\int \mathrm{Pdp}}=\int e^{\int \mathrm{Pdp}} \mathrm{Qdp}+\mathrm{c}$
i.e. $\mathrm{x} e^{\int\left(\frac{2}{p}\right) \mathrm{dp}}=\int e^{\int\left(\frac{2}{p}\right) \mathrm{dp}} 2 \mathrm{dp}+\mathrm{c}$
$\therefore \mathrm{x} e^{2 \log \mathrm{p}}=2 \int e^{2 \log \mathrm{p}} \mathrm{dp}+\mathrm{c}$
$\therefore \mathrm{xp}^{2}=2 \int \mathrm{p}^{2} \mathrm{dp}+\mathrm{c}$
$\therefore \mathrm{xp}^{2}=\frac{2}{3} \mathrm{p}^{3}+\mathrm{c}$
Elimination of p from given equations (1) and (2) is not possible.
\therefore equations (1) and (2) represents G. S. of equation (1) with p as parameter.

Ex. Solve $y=(1+p) x+e^{p}$
Solution: Let $y=(1+p) x+e^{p} \ldots \ldots$ (1)
be the given differential equation, which is solvable for y.
Differentiating equation (1) w.r.t. x, we get,

$$
\begin{aligned}
& \frac{d y}{d x}=(1+\mathrm{p})+\mathrm{x} \frac{d p}{d x}+\mathrm{e}^{\mathrm{p}} \frac{d p}{d x} \\
& \therefore 1+\mathrm{p}+\frac{d p}{d x}\left(\mathrm{x}+\mathrm{e}^{\mathrm{p}}\right)=\mathrm{p} \\
& \therefore 1+\frac{d p}{d x}\left(\mathrm{x}+\mathrm{e}^{\mathrm{p}}\right)=0 \\
& \therefore \frac{d x}{d p}+\left(\mathrm{x}+\mathrm{e}^{\mathrm{p}}\right)=0 \\
& \therefore \frac{d x}{d p}+\mathrm{x}=-\mathrm{e}^{\mathrm{p}}
\end{aligned}
$$

Which is linear differential equation in x and p with $\mathrm{P}=1$ and $\mathrm{Q}=-\mathrm{e}^{\mathrm{p}}$.
\therefore It's G. S. is
$\mathrm{x} e^{\int \mathrm{Pdp}}=\int e^{\int \mathrm{Pdp}} \mathrm{Qdp}+\mathrm{c}$
i.e. $x e^{\int(1) \mathrm{dp}}=\int e^{\int(1) \mathrm{dp}}\left(-\mathrm{e}^{\mathrm{p}}\right) \mathrm{dp}+\mathrm{c}$
$\therefore \mathrm{x} e^{\mathrm{p}}=-\int e^{\mathrm{p}} \mathrm{e}^{\mathrm{p}} \mathrm{dp}+\mathrm{c}$
$\therefore \mathrm{x} e^{\mathrm{p}}=-\int e^{2 \mathrm{p}} \mathrm{dp}+\mathrm{c}$
$\therefore \mathrm{x} e^{\mathrm{p}}=-\frac{1}{2} e^{2 \mathrm{p}}+\mathrm{c}$
Eliminating p from given equations (1) and (2) is not possible.
\therefore equations (1) and (2) represents G. S. of equation (1) with p as parameter.

Equation Solvable for x : An equation $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{p})=0$, where $\mathrm{p}=\frac{d y}{d x}$ is said to be solvable for x if it can be expressed as $x=f(y, p)$.

Method of finding the solution of equation solvable for x :
Let an equation $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{p})=0 \ldots \ldots$ (1) is solvable for x .
\therefore it expressed as $\mathrm{x}=\mathrm{f}(\mathrm{y}, \mathrm{p})$
Differentiating equation (2) w.r.t. y, we get,

$$
\begin{align*}
& \frac{d x}{d y}=\frac{\partial f}{\partial y}+\frac{\partial f}{\partial p} \cdot \frac{d p}{d y} \tag{2}\\
& \therefore \frac{1}{p}=\frac{\partial f}{\partial y}+\frac{\partial f}{\partial p} \cdot \frac{d p}{d y} \tag{3}
\end{align*}
$$

Equation (3) is the differential equation of first order and first degree in p and y. Solving it, we get general solution as

$$
\begin{equation*}
\phi(y, p, c)=0 \ldots \ldots \tag{4}
\end{equation*}
$$

Eliminating p from given equations (1) and (4) we get required general solution of equation (1).
If elimination of p from given equations (1) and (4) is not possible, then equations (1) and (4) represent general solution of equation (1) with p as parameter.

Ex. Solve $y=2 p x+y p^{2}$
Solution: Let $\mathrm{y}=2 \mathrm{px}+\mathrm{yp}^{2}$ i.e. $2 \mathrm{px}=\mathrm{y}-\mathrm{yp}{ }^{2}$ i.e. $2 \mathrm{x}=\frac{y}{p}-\mathrm{yp}$
be the given differential equation, which is solyable for x .
Differentiating equation (1) w.r.t. y, we get,
$2 \frac{d x}{d y}=\frac{1}{p}-\frac{y}{p^{2}} \frac{d p}{d y}-\mathrm{p}-\mathrm{y} \frac{d p}{d y}$
$\therefore \frac{2}{p}=\frac{1}{p}-\mathrm{p}-\mathrm{y} \frac{d p}{d y}\left(\frac{1}{p^{2}}+1\right)$
$\therefore \frac{1}{p}+\mathrm{p}+\mathrm{y} \frac{d p}{d y}\left(\frac{1}{p^{2}}+1\right)=0$
$\therefore \mathrm{p}\left(\frac{1}{p^{2}}+1\right)+\mathrm{y} \frac{d p}{d y}\left(\frac{1}{p^{2}}+1\right)=0$
$\therefore\left(\frac{1}{p^{2}}+1\right)\left(\mathrm{p}+\mathrm{y} \frac{d p}{d y}\right)=0$
We reject the factor $\left(\frac{1}{p^{2}}+1\right)$ which does not contain $\frac{d p}{d y}$.
\therefore Consider $\left(\mathrm{p}+\mathrm{y} \frac{d p}{d y}\right)=0$
$\therefore \frac{d y}{y}+\frac{d p}{p}=0$
Integrating, we get,
$\log y+\log p=\log c$
$\therefore \mathrm{yp}=\mathrm{c}$
$\therefore \mathrm{p}=\frac{c}{y}$.
Eliminating p from given equations (1) and (2), we get,
$\mathrm{y}=2 \mathrm{x}\left(\frac{c}{y}\right)+\mathrm{y}\left(\frac{c^{2}}{y^{2}}\right)$
i.e. $y^{2}=2 c x+c^{2}$ is the required general solution of equation (1).

Ex. Solve $\mathrm{p}^{3}-4 \mathrm{xyp}+8 \mathrm{y}^{2}=0$
Solution: Let $\mathrm{p}^{3}-4 \mathrm{xyp}+8 \mathrm{y}^{2}=0$ i.e. $\mathrm{p}^{3}+8 \mathrm{y}^{2}=4 \mathrm{xyp}$ i.e. $4 \mathrm{x}=\frac{8 y}{p}+\frac{p^{2}}{y}$.
be the given differential equation, which is solvable for x .
Differentiating equation (1) w.r.t. y , we get,
$4 \frac{d x}{d y}=\frac{8}{p}-\frac{8 y}{p^{2}} \frac{d p}{d y}-\frac{p^{2}}{y^{2}}+\frac{2 p}{y} \frac{d p}{d y}$
$\therefore \frac{4}{p}=\frac{8}{p}-\frac{p^{2}}{y^{2}}-\frac{8 y}{p^{2}} \frac{d p}{d y}+\frac{2 p}{y} \frac{d p}{d y}$
$\therefore \frac{4}{p}-\frac{p^{2}}{y^{2}}-\frac{8 y}{p^{2}} \frac{d p}{d y}+\frac{2 p}{y} \frac{d p}{d y}=0$
$\therefore\left(\frac{4}{p}-\frac{p^{2}}{y^{2}}\right)-\frac{2 y}{p} \frac{d p}{d y}\left(\frac{4}{p}-\frac{p^{2}}{y^{2}}\right)=0$
$\therefore\left(\frac{4}{p}-\frac{p^{2}}{y^{2}}\right)\left(1-\frac{2 y}{p} \frac{d p}{d y}\right)=0$
We reject the factor $\left(\frac{4}{p}-\frac{p^{2}}{y^{2}}\right)$ which does not contain $\frac{d p}{d y}$.
\therefore Consider $1-\frac{2 y}{p} \frac{d p}{d y}=0$
$\therefore \frac{d y}{y}-2 \frac{d p}{p}=0$
$\therefore 2 \frac{d p}{p}-\frac{d y}{y}=0$
Integrating, we get,
$2 \log p-\log y=\log c$
$\therefore \frac{p^{2}}{y}=\mathrm{c}$
$\therefore \mathrm{p}^{2}=c y$
$\therefore \mathrm{p}=\sqrt{c y}$
Eliminating p from given equations (1) and (2), we get,
$(\sqrt{c y})^{3}-4 \mathrm{xy} \sqrt{c y}+8 \mathrm{y}^{2}=0$
i.e. $c \sqrt{c}-4 \mathrm{x} \sqrt{c}+8 \sqrt{y}=0$ is the required general solution of equation (1).

Ex. Solve $4\left(x^{2}+y p\right)=y^{4}$
Solution: Let $4\left(\mathrm{xp}^{2}+\mathrm{yp}\right)=\mathrm{y}^{4}$ i.e. $4 \mathrm{xp}^{2}=\mathrm{y}^{4}-4 \mathrm{yp}$ i.e. $4 \mathrm{x}=\frac{y^{4}}{p^{2}}-\frac{4 y}{p}$
be the given differential equation, which is solvable for x .
Differentiating equation (1) w.r.t. y, we get,
$4 \frac{d x}{d y}=\frac{4 y^{3}}{p^{2}}-\frac{2 y^{4}}{p^{3}} \frac{d p}{d y}-\frac{4}{p}+\frac{4 y}{p^{2}} \frac{d p}{d y}$
$\therefore \frac{4}{p}=-\frac{4}{p}+\frac{4 y^{3}}{p^{2}}-\frac{2 y^{4}}{p^{3}} \frac{d p}{d y}+\frac{4 y}{p^{2}} \frac{d p}{d y}$
$\therefore \frac{8}{p}-\frac{4 y^{3}}{p^{2}}+\frac{2 y^{4}}{p^{3}} \frac{d p}{d y}-\frac{4 y}{p^{2}} \frac{d p}{d y}=0$
$\therefore 2\left(\frac{4}{p}-\frac{2 y^{3}}{p^{2}}\right)-\frac{y}{p} \frac{d p}{d y}\left(\frac{4}{p}-\frac{2 y^{3}}{p^{2}}\right)=0$
$\therefore\left(\frac{4}{p}-\frac{2 y^{3}}{p^{2}}\right)\left(2-\frac{y}{p} \frac{d p}{d y}\right)=0$

We reject the factor $\left(\frac{4}{p}-\frac{2 y^{3}}{p^{2}}\right)$ which does not contain $\frac{d p}{d y}$.
\therefore Consider $2-\frac{y}{p} \frac{d p}{d y}=0$
$\therefore 2 \frac{d y}{y}-\frac{d p}{p}=0$
$\therefore \frac{d p}{p}-2 \frac{d y}{y}=0$
Integrating, we get,
$\log p-2 \log y=\log c$
$\therefore \frac{p}{y^{2}}=\mathrm{c}$
$\therefore \mathrm{p}=c y^{2}$
Eliminating p from given equations (1) and (2), we get,
$4\left(x c^{2} y^{4}+c y^{3}\right)=y^{4}$
i.e. $4 c(c x y+1)=y$ is the required general solution of equation (1).

Ex. Solve $\left(\frac{d y}{d x}\right)^{2}-2 \mathrm{x} \frac{d y}{d x}+\mathrm{y}=0$
Solution: Let $\left(\frac{d y}{d x}\right)^{2}-2 \mathrm{x} \frac{d y}{d x}+\mathrm{y}=0$
i.e. $p^{2}-2 x p+y=0$
i.e. $p^{2}+y=2 x p$
i.e. $2 \mathrm{x}=\mathrm{p}+\frac{y}{p}$
be the given differential equation, which is solvable for x .
Differentiating equation (1) w.r.t. y, we get,
$2 \frac{d x}{d y}=\frac{d p}{d y}+\frac{1}{p}-\frac{y}{p^{2}} \frac{d p}{d y}$
$\therefore \frac{2}{p}=\frac{1}{p}+\frac{d p}{d y}\left(1-\frac{y}{p^{2}}\right)$
$\therefore \frac{1}{p}-\frac{d p}{d y}\left(1-\frac{y}{p^{2}}\right)=0$
$\therefore \frac{d y}{d p}-\mathrm{p}\left(1-\frac{y}{p^{2}}\right)=0$
$\therefore \frac{d y}{d p}-\mathrm{p}+\frac{y}{p}=0$
$\therefore \frac{d y}{d p}+\frac{y}{p}=\mathrm{p}$
Which is linear differential equation in y and p with $\mathrm{P}=\frac{1}{p}$ and $\mathrm{Q}=\mathrm{p}$
\therefore It's G. S. is
$\mathrm{y} e^{\int \mathrm{Pdp}}=\int e^{\int \mathrm{Pdp}} \mathrm{Qdp}+\mathrm{c}$
i.e. $\mathrm{y} e^{\int\left(\frac{1}{p}\right) \mathrm{dp}}=\int e^{\int\left(\frac{1}{p}\right) \mathrm{dp}}(\mathrm{p}) \mathrm{dp}+\mathrm{c}$
$\therefore \mathrm{y} e^{\log \mathrm{p}}=\int e^{\log } \mathrm{pdp}+\mathrm{c}$
$\therefore y p=\int p^{2} d p+c$
$\therefore y p=\frac{1}{3} \mathrm{p}^{3}+\mathrm{c} \ldots \ldots$ (2)
Eliminating p from given equations (1) and (2) is not possible.
\therefore equations (1) and (2) represents G. S. of equation (1) with p as parameter.

Clairaut's Equation: A differential equation of type $\mathrm{y}=\mathrm{px}+\mathrm{f}(\mathrm{p})$, where $\mathrm{p}=\frac{d y}{d x}$ is said to be Clairut's equation.

Method of solving the Clairaut's equation:

Let $\mathrm{y}=\mathrm{px}+\mathrm{f}(\mathrm{p}) \ldots \ldots$ (1) be the Clairut's equation, where $\mathrm{p}=\frac{d y}{d x}$
Which is solvable for y .
\therefore Differentiating equation (1) w.r.t. x , we get,
$\frac{d y}{d x}=\mathrm{p}+\mathrm{x} \frac{d p}{d x}+\mathrm{f}^{\prime}(\mathrm{p}) \frac{d p}{d x}$
$\therefore \mathrm{p}=\mathrm{p}+\mathrm{x} \frac{d p}{d x}+\mathrm{f}^{\prime}(\mathrm{p}) \frac{d p}{d x}$
$\therefore \frac{d p}{d x}\left[\mathrm{x}+\mathrm{f}^{\prime}(\mathrm{p})\right]=0$
We reject the factor $\left[\mathrm{x}+\mathrm{f}^{\prime}(\mathrm{p})\right]$ which does not contain $\frac{d p}{d x}$.
\therefore Consider $\frac{d p}{d x}=0$
$\therefore \mathrm{dp}=0$
Integrating, we get,
$\mathrm{p}=\mathrm{c}$....... (2)
Eliminating p from given equations (1) and (2), we get, $y=c x+f(c)$ is the required general solution of Clairaut's equation.

Remark: The G.S. of Clairaut's equation $\mathrm{y}=\mathrm{px}+\mathrm{f}(\mathrm{p})$ is obtained by putting $\mathrm{p}=\mathrm{c}$.

Ex. Solve $y=p x+p-p^{2}$
Solution: Let $y=p x+p-p^{2}$
be the given differential equation, which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{p}=\mathrm{c}$ in equation (1) as
$y=c x+c-c^{2}$
Ex. Solve $\mathrm{y}=\mathrm{px}+\sqrt{4+p^{2}}$
Solution: Let $\mathrm{y}=\mathrm{px}+\sqrt{4+p^{2}}$
be the given differential equation, which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{p}=\mathrm{c}$ in equation (1) as
$\mathrm{y}=\mathrm{cx}+\sqrt{4+c^{2}}$
Ex. Solve $\mathrm{y}=\mathrm{px}+\sqrt{a^{2} p^{2}+b}$
Solution: Let $\mathrm{y}=\mathrm{px}+\sqrt{a^{2} p^{2}+b}$
be the given differential equation, which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{p}=\mathrm{c}$ in equation (1) as
$\mathrm{y}=\mathrm{cx}+\sqrt{a^{2} c^{2}+b}$

Ex. Solve $y p=a+x^{2}$
Solution: Let $y p=a+x p^{2}$
i.e. $\mathrm{y}=\mathrm{px}+\frac{a}{p}$.
be the given differential equation, which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{p}=\mathrm{c}$ in equation (1) as
$\mathrm{y}=\mathrm{cx}+\frac{a}{c}$
Ex. Solve $y-a \sqrt{1+p^{2}}-\mathrm{px}=0$
Solution: Let $\mathrm{y}-\mathrm{a} \sqrt{1+p^{2}}-\mathrm{px}=0$
i.e. $\mathrm{y}=\mathrm{px}+\mathrm{a} \sqrt{1+p^{2}}$
be the given differential equation, which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{p}=\mathrm{c}$ in equation (1) as
$\mathrm{y}=\mathrm{cx}+\mathrm{a} \sqrt{1+\mathrm{c}^{2}}$
Ex. Solve $\mathrm{p}=\cot (\mathrm{px}-\mathrm{y})$
Solution: Let $\mathrm{p}=\cot (\mathrm{px}-\mathrm{y})$ i.e. $\cot ^{-1} \mathrm{p}=\mathrm{px}-\mathrm{y}$ i.e. $\mathrm{y}=\mathrm{px}-\cot ^{-1} \mathrm{p}$
be the given differential equation, which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{p}=\mathrm{c}$ in equation (1) as $y=c x-\cot ^{-1} c$

Ex. Solve p $=\sin (y-p x)$
Solution: Let $p=\sin (y-p x)$ i.e. $y-p x=\sin ^{-1} p$ i.e. $y=p x+\sin ^{-1} p$
be the given differential equation, which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{p}=\mathrm{c}$ in equation (1) as
$\mathrm{y}=\mathrm{cx}+\sin ^{-1} \mathrm{c}$
Ex. Solve $\mathrm{p}=\log (\mathrm{y}-\mathrm{px})$
Solution: Let $p=\log (y-p x)$ i.e. $y-p x=e^{p}$ i.e. $y=p x+e^{p} \ldots \ldots$ (1)
be the given differential equation, which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{p}=\mathrm{c}$ in equation (1) as
$y=c x+e^{c}$
Ex. Solve $(y-p x)(p-1)+p=0$
Solution: Let $(\mathrm{y}-\mathrm{px})(\mathrm{p}-1)+\mathrm{p}=0$ i.e. $\mathrm{y}-\mathrm{px}=\frac{-p}{p-1}$ i.e. $\mathrm{y}=\mathrm{px}+\frac{p}{1-p}$
be the given differential equation, which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{p}=\mathrm{c}$ in equation (1) as
$\mathrm{y}=\mathrm{cx}+\frac{c}{1-c}$

Ex. Solve cospx.cosy $=\mathrm{p}^{2}-\sin p x$.siny
Solution: Let cospx.cosy $=\mathrm{p}^{2}$ - sinpx.siny
i.e. $\cos p x . \cos y+\sin p x . \sin y=p^{2}$
i.e. $\cos (y-p x)=p^{2}$
i.e. $y-p x=\cos ^{-1} p^{2}$
i.e. $y=p x+\cos ^{-1} p^{2}$
be the given differential equation, which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{p}=\mathrm{c}$ in equation (1) as
$y=c x+\cos ^{-1} c^{2}$

Ex. Solve sinpx.cosy - cospx.siny $-\mathrm{p}=0$
Solution: Let sinpx.cosy $-\operatorname{cospx} . \operatorname{siny}-\mathrm{p}=0$
i.e. $\sin (p x-y)=p$
i.e. $p x-y=\sin ^{-1} p$
i.e. $y=p x-\sin ^{-1} p$
be the given differential equation, which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{p}=\mathrm{c}$ in equation (1) as
$\mathrm{y}=\mathrm{cx}-\sin ^{-1} \mathrm{c}$

Ex. Solve $\mathrm{y}=\mathrm{x}\left(\frac{d y}{d x}\right)+\left(\frac{d y}{d x}\right)^{2}$
Solution: Let $\mathrm{y}=\mathrm{x}\left(\frac{d y}{d x}\right)+\left(\frac{d y}{d x}\right)^{2}$ i.e. $\mathrm{y}=\mathrm{px}+\mathrm{p}^{2}$...... (1) where $\mathrm{p}=\frac{d y}{d x}$
be the given differential equation, which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{p}=\mathrm{c}$ in equation (1) as
$y=c x+c^{2}$

Ex. Solve $\mathrm{y}=\mathrm{x} \frac{d y}{d x}+\mathrm{a}\left(\frac{d y}{d x}\right)\left(1-\frac{d y}{d x}\right)$
Solution: Let $\mathrm{y}=\mathrm{x} \frac{d y}{d x}+\mathrm{a}\left(\frac{d y}{d x}\right)\left(1-\frac{d y}{d x}\right)$ i.e. $\mathrm{y}=\mathrm{px}+\mathrm{ap}(1-\mathrm{p}) \ldots \ldots$. (1) where $\mathrm{p}=\frac{d y}{d x}$ be the given differential equation, which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{p}=\mathrm{c}$ in equation (1) as $y=c x+a c(1-c)$

Equations reducible to Clairaut's form: By using some proper substitution given differential equation can be reduced to Clairut's form and it's G.S. is obtained by putting $\mathrm{p}=\mathrm{c}$ and resubstituting the values.

Ex. Solve $e^{4 x}(p-1)+e^{2 y} p^{2}=0$ by putting $e^{2 x}=u$ and $e^{2 y}=v$.
Solution: Let $e^{4 x}(p-1)+e^{2 y} p^{2}=0$.
be the given differential equation,

Putting $\mathrm{e}^{2 \mathrm{x}}=\mathrm{u}$ and $\mathrm{e}^{2 \mathrm{y}}=\mathrm{v}$, we get,
$2 e^{2 x} d x=d u$ and $2 e^{2 y} d y=d v$
$\therefore \frac{2 \mathrm{e}^{2 y} \mathrm{dy}}{2 e^{2 x} d x}=\frac{d v}{d u}$
$\therefore \frac{\mathrm{dy}}{d x}=\frac{\mathrm{e}^{2 \mathrm{x}}}{e^{2 y}} \frac{d v}{d u}=\frac{\mathrm{u}}{v} \frac{d v}{d u}$
i.e. $\mathrm{p}=\frac{\mathrm{u}}{v} \mathrm{P} \quad$ where $\mathrm{P}=\frac{d v}{d u}$
\therefore Putting this values in (1), we get,
$\mathrm{u}^{2}\left(\frac{\mathrm{u}}{v} \mathrm{P}-1\right)+\mathrm{v}\left(\frac{\mathrm{u}}{v} \mathrm{P}\right)^{2}=0$
i.e. $\frac{u^{2}}{v}(\mathrm{Pu}-\mathrm{v})+\frac{u^{2}}{v} \mathrm{P}^{2}=0$
i.e. $\mathrm{Pu}-\mathrm{v}+\mathrm{P}^{2}=0$
i.e. $v=P u+P^{2}$
which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{P}=\mathrm{c}$ as
$\mathrm{v}=\mathrm{cu}+\mathrm{c}^{2}$
$\therefore \mathrm{e}^{2 \mathrm{y}}=\mathrm{ce}^{2 \mathrm{x}}+\mathrm{c}^{2}$ is the G. S. of equation (1).

Ex. Solve $(x-p y)(p x-y)=2 p$ by putting $x^{2}=u$ and $y^{2}=v$.
Solution: Let $(x-p y)(p x-y)=2 p$
be the given differential equation,
Putting $x^{2}=u$ and $y^{2}=v$, we get,
$2 x d x=d u$ and $2 y d y=d v$
$\therefore \frac{2 y d y}{2 x d x}=\frac{d v}{d u}$
$\therefore \frac{\mathrm{dy}}{d x}=\frac{\mathrm{x}}{y} \frac{d v}{d u}=\frac{\sqrt{u}}{\sqrt{v}} \frac{d v}{d u}$
i.e. $\mathrm{p}=\frac{\sqrt{u}}{\sqrt{v}} \mathrm{P}$ where $\mathrm{P}=\frac{d v}{d u}$
\therefore Putting this values in (1), we get,
$\left(\sqrt{u}-\frac{\sqrt{u}}{\sqrt{v}} \mathrm{P} \sqrt{v}\right)\left(\frac{\sqrt{u}}{\sqrt{v}} \mathrm{P} \sqrt{u}-\sqrt{v}\right)=2 \frac{\sqrt{u}}{\sqrt{v}} \mathrm{P}$
i.e. $\frac{\sqrt{u}}{\sqrt{v}}(1-\mathrm{P})(\mathrm{Pu}-\mathrm{v})=2 \frac{\sqrt{u}}{\sqrt{v}} \mathrm{P}$
i.e. $(P-1)(v-P u)=2 P$
i.e. $\mathrm{v}=\mathrm{Pu}+\frac{2 P}{P-1}$
which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{P}=\mathrm{c}$ as
$\mathrm{v}=\mathrm{cu}+\frac{2 c}{c-1}$
$\therefore \mathrm{y}^{2}=\mathrm{cx}^{2}+\frac{2 c}{c-1}$ is the G. S. of equation (1).

Ex. Solve $(x+p y)(p x-y)=\lambda^{2} p$ by putting $x^{2}=u$ and $y^{2}=v$.
Solution: Let ($\mathrm{x}+\mathrm{py}$) $(\mathrm{px}-\mathrm{y})=\lambda^{2} \mathrm{p}$
be the given differential equation,
Putting $x^{2}=u$ and $y^{2}=v$, we get,
$2 x d x=d u$ and $2 y d y=d v$
$\therefore \frac{2 y d y}{2 x d x}=\frac{d v}{d u}$
$\therefore \frac{\mathrm{dy}}{d x}=\frac{\mathrm{x}}{y} \frac{d v}{d u}=\frac{\sqrt{u}}{\sqrt{v}} \frac{d v}{d u}$
i.e. $\mathrm{p}=\frac{\sqrt{u}}{\sqrt{v}} \mathrm{P}$ where $\mathrm{P}=\frac{d v}{d u}$
\therefore Putting this values in (1), we get,
$\left(\sqrt{u}+\frac{\sqrt{u}}{\sqrt{v}} \mathrm{P} \sqrt{v}\right)\left(\frac{\sqrt{u}}{\sqrt{v}} \mathrm{P} \sqrt{u}-\sqrt{v}\right)=\lambda^{2} \frac{\sqrt{u}}{\sqrt{v}} \mathrm{P}$
i.e. $\frac{\sqrt{u}}{\sqrt{v}}(1+\mathrm{P})(\mathrm{Pu}-\mathrm{v})=\lambda \frac{2 \sqrt{u}}{\sqrt{v}} \mathrm{P}$
i.e. $(1+P)(P u-v)=\lambda^{2} P$
i.e. $\mathrm{Pu}-\mathrm{v}=\frac{\lambda^{2} P}{1+P}$
i.e. $\mathrm{v}=\mathrm{Pu}-\frac{\lambda^{2} P}{1+P}$
which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{P}=\mathrm{c}$ as
$\mathrm{v}=\mathrm{cu}-\frac{\lambda^{2} c}{1+c}$
$\therefore y^{2}=\mathrm{cx}^{2}-\frac{\lambda^{2} c}{1+c}$ is the G. S. of equation (1).
Ex. Solve $\mathrm{xy}(\mathrm{y}-\mathrm{px})=(\mathrm{x}+\mathrm{py})$, using $\mathrm{x}^{2}=\mathrm{u}$ and $\mathrm{y}^{2}=\mathrm{v}$.
Solution: Let $\mathrm{xy}(\mathrm{y}-\mathrm{px})=(\mathrm{x}+\mathrm{py})$
be the given differential equation,
Putting $x^{2}=u$ and $y^{2}=v$, we get,
$2 x d x=d u$ and $2 y d y=d v$
$\therefore \frac{2 y d y}{2 x d x}=\frac{d v}{d u}$
$\therefore \frac{\mathrm{dy}}{d x}=\frac{\mathrm{x}}{y} \frac{d v}{d u}=\frac{\sqrt{u}}{\sqrt{v}} \frac{d v}{d u}$
i.e. $\mathrm{p}=\frac{\sqrt{u}}{\sqrt{v}} \mathrm{P}$ where $\mathrm{P}=\frac{d v}{d u}$
\therefore Putting this values in (1), we get,
$\sqrt{u} \sqrt{v}\left(\sqrt{v}-\frac{\sqrt{u}}{\sqrt{v}} \mathrm{P} \sqrt{u}\right)=\left(\sqrt{u}+\frac{\sqrt{u}}{\sqrt{v}} \mathrm{P} \sqrt{v}\right)$
i.e. $\sqrt{u}(v-P u)=\sqrt{u}(1+P)$
i.e. $(\mathrm{v}-\mathrm{Pu})=1+\mathrm{P}$
i.e. $v=P u+1+P$
which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{P}=\mathrm{c}$ as
$\mathrm{v}=\mathrm{cu}+1+\mathrm{c}$
$\therefore \mathrm{y}^{2}=\mathrm{cx}^{2}+1+\mathrm{c}$ is the G . S . of equation (1).

Ex. Solve $y^{2}=p x y+f\left(p \cdot \frac{y}{x}\right)$, using $x^{2}=u$ and $y^{2}=v$.
Solution: Let $y^{2}=p x y+f\left(p, \frac{y}{x}\right)$
be the given differential equation,
Putting $x^{2}=u$ and $y^{2}=v$, we get,
$2 x d x=d u$ and $2 y d y=d v$
$\therefore \frac{2 y d y}{2 x d x}=\frac{d v}{d u}$
$\therefore \frac{\mathrm{dy}}{d x}=\frac{\mathrm{x}}{y} \frac{d v}{d u}=\frac{\sqrt{u}}{\sqrt{v}} \frac{d v}{d u}$
i.e. $\mathrm{p}=\frac{\sqrt{u}}{\sqrt{v}} \mathrm{P}$ where $\mathrm{P}=\frac{d v}{d u}$
\therefore Putting this values in (1), we get,
$\mathrm{v}=\frac{\sqrt{u}}{\sqrt{v}} \mathrm{P} \sqrt{u} \sqrt{v}+\mathrm{f}\left(\frac{\sqrt{u}}{\sqrt{v}} \mathrm{P} \cdot \frac{\sqrt{v}}{\sqrt{u}}\right)$
i.e. $v=P u+f(P)$
which is in Clairaut's form.
\therefore It's G.S. is obtained by putting $\mathrm{P}=\mathrm{c}$ as
$\mathrm{v}=\mathrm{cu}+\mathrm{f}(\mathrm{c})$
$\therefore \mathrm{y}^{2}=\mathrm{cx}^{2}+\mathrm{f}(\mathrm{c})$ is the G. S. of equation (1).

MULTIPLE CHOICE QUESTIONS (MCQ'S)

1) If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \ldots, \mathrm{~A}_{\mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}}$ are functions of x and y and $\mathrm{p}=\frac{d y}{d x}$, then an equation $F(x, y, p)=p^{n}+A_{1} p^{n-1}+A_{2} p^{n-2}+\ldots \ldots+A_{n-1} p+A_{n}=0$ is called differential equations of
A) first order and first degree
B) first order and higher degree
C) higher order and first degree
D) None of these
2) The differential equation $F(x, y, p)=0$ is factorized into linear factors then it said to be
A) solvable for p
B) solvable for y
C) solvable for x
D) None of these
3) The differential equation $p^{2}-7 p+10=0$ is \qquad
A) solvable for x
B) solvable for y
C) solvable for p
D) None of these
4) The differential equation $p^{2}-8 p+12=0$ is
A) solvable for x
B) solvable for p
C) solvable for y
D) None of these
5) The differential equation $p^{2}+6 p+8=0$ is \qquad
A) solvable for x
B) solvable for y
C) solvable for p
D) None of these
6) The differential equation $p(p-y)=x(x+y)$ is
A) solvable for p
B) solvable for y
C) solvable for x
D) None of these
7) The differential equation $\frac{1}{p}-\mathrm{p}=\frac{y}{x}-\frac{x}{y}$ is
A) solvable for p
B) solvable for y
C) solvable for x
D) None of these
8) The differential equation $\mathrm{x}^{2}\left(\frac{d y}{d x}\right)^{2}-\mathrm{xy} \frac{d y}{d x}-6 \mathrm{y}^{2}=0$ is \qquad
A) solvable for x
B) solvable for y
C) solvable for p
D) None of these
9) The differential equation $F(x, y, p)=0$ is solvable for y if it can be expresed as
A) $y=f(x, p)$
B) $x=f(y, p)$
C) $p=f(x, y)$
D) None of these
10) If the differential equation $F(x, y, p)=0$ is expressed as $y=f(x, p)$ then it said to be
A) solvable for p
B) solvable for y
C) solvable for x
D) None of these
11) The differential equation $y=2 p x+f\left(x p^{2}\right)$ is
A) solvable for x
B) solvable for y
C) solvable for p
D) None of these
12) The differential equation $y=2 p x+x^{2} p^{4}$ is
A) solvable for p
B) solvable for y
C) solvable for x
D) None of these
13) The differential equation $4 y=x^{2}+p^{2}$ is
A) solvable for y
B) solvable for x
C) solvable for p
D) None of these
14) The differential equation $y+p^{2}=2 p x^{2}$ is
A) solvable for x
B) solvable for y
C) solvable for p
D) None of these
15) The differential equation $F(x, y, p)=0$ is solvable for x if it can be expresed as
A) $y=f(x, p)$
B) $x=f(y, p)$
C) $p=f(x, y)$
D) None of these
16) If the differential equation $F(x, y, p)=0$ is expresed as $x=f(y, p)$, then it said to be
A) solvable for p
B) solvable for y
C) solvable for x
D) None of these
17) The differential equation $y=2 p x+y^{3} p^{2}$ is $\ldots \ldots .$.
A) solvable for p
B) solvable for y
C) solvable for x
D) None of these
18) The differential equation $y=2 p x+y^{2} p^{3}$ is
A) solvable for x
B) solvable for y
C) solvable for p
D) None of these
19) The differential equation $p^{3}-4 x y p+8 y^{2}=0$ is \qquad
A) solvable for p
B) solvable for x
C) solvable for y
D) None of these
20) The differential equation $4\left(x p^{2}+y p\right)=y^{4}$ is \qquad
A) solvable for x
B) solvable for y
C) solvable for p
D) None of these
21) The differential equation $\left(\frac{d y}{d x}\right)^{2} y^{2}-2 x \frac{d y}{d x}+y=0$ is
A) solvable for x
B) solvable for y
C) solvable for p
D) None of these
22) The differential equation $\frac{1}{p}=\cot \left(\mathrm{x}-\frac{p}{1+p^{2}}\right)$ is \qquad
A) solvable for p
B) solvable for x
C) solvable for y
D) None of these
23) The equation of type $\mathrm{y}=\mathrm{px}+\mathrm{f}(\mathrm{p})$, where $\mathrm{p}=\frac{d y}{d x}$ is called \ldots.
A) Clairaut's equation
B) Linear equation
C) Bernoulli's equation
D) None of these
24) The solution of Clairaut's equation $y=p x+f(p)$ is obtained by putting $p=$
A) y
B) x
C) c
D) None of these
25) The solution of Clairaut's equation $y=p x+f(p)$ is
A) $y=c x+f(c)$
B) $y=p c+e^{c}$
C) $y=p x-f(c)$
D) None of these
26) The solution of differential equation $p=\cot (p x-y)$ is
A) $y=c x-\cot ^{-1} c$
B) $y=c x-\cot p$
C) $y=c x+\operatorname{cotp}$
D) None of these
27) The solution of differential equation $p=\log (y-p x)$ is
A) $y=\log (y-c x)$
B) $y=c x+e^{c}$
C) $y=p c-e^{c}$
D) None of these
28) The solution of differential equation ($y-p x)(p-1)+p=0$ is
A) $x=c y-\frac{c}{1-c}$
B) $y=c x-\frac{c}{1-c}$
C) $y=c x+\frac{c}{1-c}$
D) None of these
29) The solution of differential equation $(y-p x)(p-1)=p$ is
A) $y=c x+\frac{c}{c-1}$
B) $y=c x+\frac{c}{1-c}$
C) $y=c x+\frac{c}{1-c}$
D) None of these
30) The solution of differential equation $\mathrm{y}-\mathrm{a} \sqrt{1+p^{2}}-\mathrm{px}=0$ is
A) $y=a \sqrt{1+p^{2}}-c x$
B) $y=a \sqrt{1+p^{2}}-p x$
C) $y=c x+a \sqrt{1+c^{2}}$
D) None of these
31) The solution of differential equation $y p=a+x p^{2}$ is
A) $y p=a+c^{2} x$
B) $y=\frac{a}{c}+c x$
C) $c y=a+x p^{2}$
D) None of these
32) The solution of differential equation $\mathrm{y}=\mathrm{x}\left(\frac{d y}{d x}\right)+\left(\frac{d y}{d x}\right)^{2}$ is
A) $y=c x-c^{2}$
B) $y=-c x+c^{2}$
C) $y=c x+c^{2}$
D) None of these
33) The solution of differential equation $\mathrm{y}=\mathrm{x} \frac{d y}{d x}+\mathrm{a} \frac{d y}{d x}\left(1-\frac{d y}{d x}\right)$ is
A) $y=c x+a c(1-c)$
B) $y=c x-a c(1-c)$
C) $y=-c x+a c(1-c)$
D) None of these

Linear Differential Equation with Constant Coefficients: A differential equation of the form $\frac{d^{n} y}{d x^{n}}+p_{1} \frac{d^{n-1} y}{d x^{n-1}}+p_{2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots . .+p_{n-1} \frac{d y}{d x}+p_{n} y=X$ i.e. $f(D) y=X$, where $D \equiv \frac{d}{d x} ; p_{1}, p_{2}, \ldots, p_{n}$ are constants and X is a function of x only, is called a linear differential equation with constant co-efficients.
Associated Equation of the Linear Differential Equation: If $f(D) y=X$ is the linear differential equation with constant co-efficients, then $f(D) y=0$ is called its associated equation.
Auxiliary Equation of the Linear Differential Equation: If $f(D) y=X$ is the linear differential equation with constant co-efficients, then $f(D)=0$ is called its auxiliary equation (A.E.).
Complementary Function (C.F.): The part of G.S. which is solution of the associated equation $f(D) y=0$ containing arbitrary constants is called Complementary Function (C.F.). Particular Integral (P.I.) The part of G.S. which is solution of $f(\mathrm{D}) \mathrm{y}=\mathrm{X}$ not involving arbitrary constants is called Particular Integral (P.I.) and denoted by P.I. $=\frac{1}{f(D)} X$
Remark: i) If $\mathrm{y}=\mathrm{u}$ is the Complementary Function (C.F.) and $\mathrm{y}=\mathrm{v}$ is Particular Integral (P.I.) of $\operatorname{LDE} f(D) y=X$, then $y=u+v$ is the General Solution (G.S.) of it.
ii) If operator $D \equiv \frac{d}{d x}$, then 1) $\left.\left.D^{r} y=\frac{d^{r} y}{d x^{r}}, 2\right) D^{r} D^{k}=D^{r+k}, 3\right)\left[f(x) D^{r}\right] y=f(x) \cdot D^{r} y$
4) $\left.[f(x)+g(x)] D^{n}=f(x) \cdot D^{n}+g(x) \cdot D^{n}, 5\right) f(x)\left[D^{m}+D^{n}\right]=f(x) \cdot D^{m}+f(x) \cdot D^{n}$
6) $f_{1}(D)$ and $f_{2}(D)$ be operational factors, then $\left[f_{1}(D) . f_{2}(D)\right] y=f_{1}(D)\left[f_{2}(D) y\right]$
7) If in $\operatorname{LDE~} f(D) y=X, X=0$, then P.I. $=0$ i.e. G.S. $=$ C.F.
8) $\frac{1}{f(D)}$ is called inverse operator of $f(D)$.

Process of Finding Complementary Function (C.F.):

i) If an A.E. $f(D)=0$ of $\operatorname{LDE~} f(D) y=X$ has n distinct roots $m_{1}, m_{2}, m_{3}, \ldots, m_{n}$, then C.F. $=C_{1} \mathrm{e}^{\mathrm{m}_{1} \mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{\mathrm{m}_{2} \mathrm{x}}+\ldots+\mathrm{C}_{\mathrm{n}} \mathrm{e}^{\mathrm{m}_{\mathrm{n}} \mathrm{x}}$
ii) If an A.E. $f(D)=0$ of $\operatorname{LDE} f(D) y=X$ has root m, repeated k times, then
C.F. $=\left(C_{1}+C_{2} x+C_{3} x^{2}+\ldots+C_{k} x^{k-1}\right) e^{m x}$
iii) If an A.E. $f(D)=0$ of $\operatorname{LDE} f(D) y=X$ has complex roots $\alpha \pm i \beta$, then C.F. $=e^{\alpha x}\left(C_{1} \cos \beta x+C_{2} \sin \beta x\right)$
iv) If an A.E. $f(D)=0$ of $\operatorname{LDE} f(D) y=X$ has complex roots $\alpha \pm i \beta$ occurs twice, then C.F. $=e^{\alpha x}\left[\left(C_{1}+C_{2} x\right) \cos \beta x+\left(C_{3}+C_{4} x\right) \sin \beta x\right]$

Properties of Inverse operator $\frac{1}{f(\mathrm{D})}$:
i) $\frac{1}{f(D)}\left[C_{1} X_{1}+C_{2} X_{2}\right]=C_{1} \frac{1}{f(D)} X_{1}+C_{2} \frac{1}{f(D)} X_{2}$ where C_{1} and C_{2} are constants.
ii) $\frac{1}{(D-\alpha)(D-\beta)}=\frac{1}{(\alpha-\beta)}\left[\frac{1}{(D-\alpha)}-\frac{1}{(D-\beta)}\right]$

Ex.: Solve $\frac{d^{2} y}{d^{2}}+6 \frac{d y}{d x}-7 y=0$
Solution: Let $\frac{d^{2} y}{d^{2}}+6 \frac{d y}{d x}-7 y=0$
i.e. $\left(D^{2}+6 D-7\right) y=0$ be the given LDE with constant coefficients,

Its A.E. is $D^{2}+6 D-7=0$
i.e. $(D-1)(D+7)=0$
$\therefore \mathrm{D}=1,-7$ are the distinct roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{-7 \mathrm{x}}$
Here $\mathrm{X}=0 \therefore$ P.I. $=0$.
\therefore G.S. $=$ C.F. + P.I. $=$ C.F.
i.e. $y=C_{1} e^{x}+C_{2} e^{-7 x}$
be the required G.S. of given equation.
Ex.: Solve $\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+12 y=0$
Solution: Let $\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+12 y=0$
i.e. $\left(D^{2}-7 D+12\right) y=0$ be the given $L D E$ with constant coefficients,

Its A.E. is $\mathrm{D}^{2}-7 \mathrm{D}+12=0$
i.e. $(D-3)(D-4)=0$
$\therefore \mathrm{D}=3,4$ are the distinct roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{3 \mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{4 \mathrm{x}}$
Here $\mathrm{X}=0 \therefore$ P.I. $=0$.
\therefore G.S. $=$ C.F. + P.I. $=$ C.F.
i.e. $y=C_{1} e^{3 x}+C_{2} e^{4 x}$
be the required G.S. of given equation.
Ex.: Solve $2 \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+5 \frac{\mathrm{dy}}{\mathrm{dx}}-12 \mathrm{y}=0$
Solution: Let $2 \frac{d^{2} y}{d^{2}}+5 \frac{d y}{d x}-12 y=0$
i.e. $\left(2 D^{2}+5 D-12\right) y=0$ be the given LDE with constant coefficients,

Its A.E. is $2 \mathrm{D}^{2}+5 \mathrm{D}-12=0$
i.e. $2 D^{2}+8 D-3 D-12=0$
i.e. $2 D(D+4)-3(D+4)=0$
i.e. $(D+4)(2 D-3)=0$
$\therefore \mathrm{D}=-4, \frac{3}{2}$ are the distinct roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{-4 \mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{\frac{3}{2} \mathrm{x}}$
Here $\mathrm{X}=0 \therefore$ P.I. $=0$.
\therefore G.S. $=$ C.F.+ P.I. $=$ C.F.
i.e. $y=C_{1} e^{-4 x}+C_{2} e^{\frac{3}{2} x}$
be the required G.S. of given equation.

Ex.: Find the complementary function of $2 \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-2 y=0$
Solution: Let $2 \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-2 y=0$
i.e. $\left(2 D^{2}+3 D-2\right) y=0$ be the given LDE with constant coefficients,

Its A.E. is $2 D^{2}+3 D-2=0$
i.e. $2 D^{2}+4 D-D-2=0$
i.e. $2 D(D+2)-(D+2)=0$
i.e. $(D+2)(2 D-1)=0$
$\therefore \mathrm{D}=-2, \frac{1}{2}$ are the distinct roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{-2 \mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{\frac{1}{2} \mathrm{x}}$
Ex.: Solve $\left(D^{3}+3 D^{2}-D-3\right) y=0$
Solution: Let $\left(D^{3}+3 D^{2}-D-3\right) y=0$ be the given LDE with constant coefficients,
Its A.E. is $D^{3}+3 D^{2}-D-3=0$
i.e. $D^{2}(D+3)-(D+3)=0$
i.e. $(D+3)\left(D^{2}-1\right)=0$
i.e. $(D+3)(D-1)(D+1)=0$
$\therefore \mathrm{D}=-3,1,-1$ are the roots of an A.E.
\therefore C.F. $=C_{1} \mathrm{e}^{-3 \mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{\mathrm{x}}+\mathrm{C}_{3} \mathrm{e}^{-\mathrm{x}}$
Here $\mathrm{X}=0 \therefore$ P.I. $=0$.
\therefore G.S. $=$ C.F.+ P.I. $=$ C.F.
i.e. $y=C_{1} e^{-3 x}+C_{2} e^{x}+C_{3} e^{-x}$
be the required G.S. of given equation.

Ex.: Solve $4 \frac{d^{2} y}{d^{2}}-4 \frac{d y}{d x}+y=0$
Solution: Let $4 \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+y=0$
i.e. $\left(4 D^{2}-4 D+1\right) y=0$ be the given LDE with constant coefficients,

Its A.E. is $4 D^{2}-4 D+1=0$
i.e. $(2 D-1)^{2}=0$
$\therefore \mathrm{D}=\frac{1}{2}, \frac{1}{2}$ (repeated two times) are the roots of an A.E.
\therefore C.F. $=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) \mathrm{e}^{\frac{1}{\mathrm{x}} \mathrm{x}}$
Here $\mathrm{X}=0 \therefore$ P.I. $=0$.
\therefore G.S. $=$ C.F. i.e. $y=\left(C_{1}+C_{2} x\right) \mathrm{e}^{\frac{1}{2} \mathrm{x}}$
be the required G.S. of given equation.
Ex.: Solve $\frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-y=0$
Solution: Let $\frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-y=0$
i.e. $\left(D^{3}+D^{2}-D-1\right) y=0$ be the given LDE with constant coefficients,

Its A.E. is $\mathrm{D}^{3}+\mathrm{D}^{2}-\mathrm{D}-1=0$
i.e. $\mathrm{D}^{2}(\mathrm{D}+1)-(\mathrm{D}+1)=0$
i.e. $(D+1)\left(D^{2}-1\right)=0$
i.e. $(D-1)(D+1)^{2}=0$
$\therefore \mathrm{D}=1, \mathrm{D}=-1,-1$ (repeated two times) are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{\mathrm{x}}+\left(\mathrm{C}_{2}+\mathrm{C}_{3} \mathrm{x}\right) \mathrm{e}^{-\mathrm{x}}$
Here $\mathrm{X}=0 \therefore$ P.I. $=0$.
\therefore G.S. $=$ C.F. + P.I. $=$ C.F.
i.e. $y=C_{1} e^{x}+\left(C_{2}+C_{3} x\right) e^{-x}$
be the required G.S. of given equation.
Ex.: Find the complementary function of $\frac{d^{3} y}{d x^{3}}+2 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=e^{x}$
Solution: Let $\frac{d^{3} y}{d x^{3}}+2 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=e^{x}$
i.e. $\left(D^{3}+2 D^{2}+D\right) y=e^{x}$ be the given LDE with constant coefficients,

Its A.E. is $D^{3}+2 D^{2}+D=0$
i.e. $D\left(D^{2}+2 D+1\right)=0$ i.e. $D(D+1)^{2}=0$
$\therefore \mathrm{D}=0, \mathrm{D}=-1,-1$ (repeated two times) are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{0 \mathrm{x}}+\left(\mathrm{C}_{2}+\mathrm{C}_{2} \mathrm{x}\right) \mathrm{e}^{-\mathrm{x}}$
$=\mathrm{C}_{1}+\left(\mathrm{C}_{2}+\mathrm{C}_{3} \mathrm{x}\right) \mathrm{e}^{-\mathrm{x}}$

Ex.: Solve $(\mathrm{D}-1)^{2}\left(\mathrm{D}^{2}-1\right) \mathrm{y}=0$
Solution: Let $(D-1)^{2}\left(D^{2}-1\right) y=0$ be the given LDE with constant coefficients,
Its A.E. is $(D-1)^{2}\left(D^{2}-1\right)=0$
i.e. $(D+1)(D-1)^{3}=0$
$\therefore \mathrm{D}=-1, \mathrm{D}=1,1,1$ (repeated three times) are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{-\mathrm{x}}+\left(\mathrm{C}_{2}+\mathrm{C}_{3} \mathrm{x}+\mathrm{C}_{4} \mathrm{x}^{2}\right) \mathrm{e}^{\mathrm{x}}$
Here $\mathrm{X}=0 \therefore$ P.I. $=0$.
\therefore G.S. $=$ C.F. + P.I. $=$ C.F.
i.e. $y=C_{1} e^{-x}+\left(C_{2}+C_{3} x+C_{4} x^{2}\right) e^{x}$
be the required G.S. of given equation.

Ex.: Solve $(D-1)^{2}\left(D^{2}+1\right) y=0$
Solution: Let $(\mathrm{D}-1)^{2}\left(\mathrm{D}^{2}+1\right) \mathrm{y}=0$ be the given LDE with constant coefficients,
Its A.E. is $(D-1)^{2}\left(D^{2}+1\right)=0$
$\therefore \mathrm{D}=1,1, \pm \mathrm{i}$ are the roots of an A.E.
$\therefore C . F=\left(C_{1}+C_{2} x\right) e^{x}+e^{0 x}\left(C_{3} \cos x+C_{4} \sin x\right)$

$$
=\left(C_{1}+C_{2} x\right) e^{x}+C_{3} \cos x+C_{4} \sin x
$$

Here $\mathrm{X}=0 \therefore$ P.I. $=0$.
\therefore G.S. $=$ C.F. + P.I. $=$ C.F.
i.e. $y=\left(C_{1}+C_{2} x\right) e^{x}+C_{3} \cos x+C_{4} \sin x$
be the required G.S. of given equation.

Ex.: Solve $\left(D^{2}-6 D+13\right) y=0$
Solution: Let $\left(D^{2}-6 D+13\right) y=0$ be the given LDE with constant coefficients,
Its A.E. is $D^{2}-6 D+13=0$
$\therefore \mathrm{D}=\frac{6 \pm \sqrt{36-52}}{2}=3 \pm 2 \mathrm{i}$ are the roots of an A.E.
\therefore C.F. $=\mathrm{e}^{3 \mathrm{x}}\left(\mathrm{C}_{1} \cos 2 \mathrm{x}+\mathrm{C}_{2} \sin 2 \mathrm{x}\right)$
Here $\mathrm{X}=0 \therefore$ P.I. $=0$.
\therefore G.S. $=$ C.F. + P.I. $=$ C.F.
i.e. $y=e^{3 x}\left(C_{1} \cos 2 x+C_{2} \sin 2 x\right)$
be the required G.S. of given equation.

Ex.: Solve $\frac{d^{3} y}{d x^{3}}-2 \frac{d^{2} y}{d^{2}}+4 \frac{d y}{d x}-8 y=0$
Solution: Let $\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{dx}}-2 \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}}+4 \frac{\mathrm{dy}}{\mathrm{dx}}-8 \mathrm{y}=0$
i.e. $\left(D^{3}-2 D^{2}+4 D-8\right) y=0$ be the given LDE with constant coefficients,

Its A.E. is $D^{3}-2 D^{2}+4 D-8=0$
i.e. $D^{2}(D-2)+4(D-2)=0$
i.e. $(D-2)\left(D^{2}+4\right)=0$
$\therefore \mathrm{D}=2, \pm 2 \mathrm{i}$ are the roots of an A.E.
\therefore C.F. $=C_{1} e^{2 x}+e^{0 x}\left(C_{2} \cos 2 x+C_{3} \sin 2 x\right)$
$=C_{1} e^{2 x}+C_{2} \cos 2 x+C_{3} \sin 2 x$
Here $\mathrm{X}=0 \therefore$ P.I. $=0$.
\therefore G.S. $=$ C.F. + P.I. $=$ C.F.
i.e. $y=C_{1} e^{2 x}+C_{2} \cos 2 x+C_{3} \sin 2 x$
be the required G.S. of given equation.
Ex.: Solve $\left(\mathrm{D}^{4}+18 \mathrm{D}^{2}+81\right) \mathrm{y}=0$
Solution: Let $\left(\mathrm{D}^{4}+18 \mathrm{D}^{2}+81\right) \mathrm{y}=0$ be the given LDE with constant coefficients,
Its A.E. is $\mathrm{D}^{4}+18 \mathrm{D}^{2}+81=0$
i.e. $\left(D^{2}+9\right)^{2}=0$
$\therefore \mathrm{D}= \pm 3 \mathrm{i}$ (repeated two times) are the roots of an A.E.
\therefore C.F. $=\mathrm{e}^{0 \mathrm{x}}\left[\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) \cos 3 \mathrm{x}+\left(\mathrm{C}_{3}+\mathrm{C}_{4} \mathrm{x}\right) \sin 3 \mathrm{x}\right]$
$=\left(C_{1}+C_{2} x\right) \cos 3 x+\left(C_{3}+C_{4} x\right) \sin 3 x$
Here $\mathrm{X}=0 \therefore$ P.I. $=0$.
\therefore G.S. $=$ C.F. + P.I. $=$ C.F.
i.e. $y=\left(C_{1}+C_{2} x\right) \cos 3 x+\left(C_{3}+C_{4} x\right) \sin 3 x$
be the required G.S. of given equation.
Ex.: Solve $\mathrm{D}^{2}\left(\mathrm{D}^{2}+3\right)^{2} \mathrm{y}=0$
Solution: Let $\mathrm{D}^{2}\left(\mathrm{D}^{2}+3\right)^{2} \mathrm{y}=0$ be the given LDE with constant coefficients,
Its A.E. is $D^{2}\left(D^{2}+3\right)^{2}=0$
$\therefore \mathrm{D}=0,0, \pm \sqrt{3} \mathrm{i}, \pm \sqrt{3} \mathrm{i}$ (repeated two times) are the roots of an A.E.
\therefore C.F. $=\left(C_{1}+C_{2} x\right) e^{0 x}+\mathrm{e}^{0 \mathrm{x}}\left[\left(\mathrm{C}_{3}+\mathrm{C}_{4} \mathrm{x}\right) \cos \sqrt{3} \mathrm{x}+\left(\mathrm{C}_{5}+\mathrm{C}_{6} \mathrm{x}\right) \sin \sqrt{3} \mathrm{x}\right]$

$$
=C_{1}+C_{2} x+\left(C_{3}+C_{4} x\right) \cos \sqrt{3} x+\left(C_{5}+C_{6} x\right) \sin \sqrt{3} x
$$

Here $\mathrm{X}=0 \therefore$ P.I. $=0$.
\therefore G.S. $=$ C.F. + P.I. $=$ C.F.
i.e. $y=C_{1}+C_{2} x+\left(C_{3}+C_{4} x\right) \cos \sqrt{3} x+\left(C_{5}+C_{6} x\right) \sin \sqrt{3} x$
be the required G.S. of given equation.

General Method of Finding P.I.:

Theorem: If $D \equiv \frac{d}{d x}$ and X is function of x, then $\frac{1}{D-m} X=e^{m x} \int X e^{-m x} d x$
Proof: Let $\mathrm{y}=\frac{1}{\mathrm{D}-\mathrm{m}} \mathrm{X} \Rightarrow(\mathrm{D}-\mathrm{m}) \mathrm{y}=\mathrm{X} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}-\mathrm{my}=\mathrm{X}$
Which is linear differential equation of first order with $\mathrm{P}=-\mathrm{m}$ and $\mathrm{Q}=\mathrm{X}$.
\therefore I.F. $=\mathrm{e}^{\int \mathrm{Pdx}}=\mathrm{e}^{\int(-\mathrm{m}) \mathrm{dx}}=\mathrm{e}^{-\mathrm{mx}}$
G.S. of linear differential equation is
$y($ I.F. $)=\int($ I. F $) Q d x+c$
$\therefore \mathrm{y}\left(\mathrm{e}^{-\mathrm{mx}}\right)=\int\left(\mathrm{e}^{-\mathrm{mx}}\right) \mathrm{Xdx}+\mathrm{c}$
$\therefore \mathrm{y}=\mathrm{ce}^{\mathrm{mx}}+\mathrm{e}^{\mathrm{mx}} \int\left(\mathrm{e}^{-\mathrm{mx}}\right) \mathrm{Xdx}$
As G.S. $=$ C.F. + P.I. and C.F. of equation (1) is C.F. $=c e^{m x}$
\therefore P.I. $=\mathrm{e}^{\mathrm{mx}} \int\left(\mathrm{e}^{-\mathrm{mx}}\right) \mathrm{X} d \mathrm{dx}$
$\therefore \frac{1}{\mathrm{D}-\mathrm{m}} \mathrm{X}=\mathrm{e}^{\mathrm{mx}} \int \mathrm{Xe}^{-\mathrm{mx}} \mathrm{dx}$

P.I. of Some Standard Functions:

Type-I: When $\mathrm{X}=\mathrm{e}^{\mathrm{ax}}$ where a is constant.
Theorem: If $D \equiv \frac{d}{d x}$ and $f(D)$ is polynomial in D with $f(a) \neq 0$, then $\frac{1}{f(D)} e^{a x}=\frac{e^{a x}}{f(a)}$
Proof: Let $f(D) y=e^{a x}$ be a LDE with $f(D)=D^{n}+P_{1} D^{n-1}+P_{2} D^{n-2}+\ldots+P_{n-1} D+P_{n}$
As $D e^{a x}=a^{a x}, D^{2} e^{a x}=a^{2} e^{a x}, \ldots, D^{r} e^{a x}=a^{r} e^{a x} \forall r \in N$
$\therefore \mathrm{f}(\mathrm{D}) \mathrm{e}^{\mathrm{ax}}=\left[\mathrm{D}^{\mathrm{n}}+\mathrm{P}_{1} \mathrm{D}^{\mathrm{n}-1}+\mathrm{P}_{2} \mathrm{D}^{\mathrm{n}-2}+\ldots+\mathrm{P}_{\mathrm{n}-1} \mathrm{D}+\mathrm{P}_{\mathrm{n}}\right] \mathrm{e}^{\mathrm{ax}}$

$$
\begin{aligned}
& =D^{n} e^{a x}+P_{1} D^{n-1} e^{a x}+P_{2} D^{n-2} e^{a x}+\ldots+P_{n-1} D e^{a x}+P_{n} e^{a x} \\
& =a^{n} e^{a x}+P_{1} a^{n-1} e^{a x}+P_{2} a^{n-2} e^{a x}+\ldots+P_{n-1} a e^{a x}+P_{n} e^{a x} \\
& =\left[a^{n}+P_{1} a^{n-1}+P_{2} a^{n-2}+\ldots+P_{n-1} a+P_{n}\right] e^{a x}
\end{aligned}
$$

$\therefore \mathrm{f}(\mathrm{D}) \mathrm{e}^{\mathrm{ax}}=\mathrm{f}(\mathrm{a}) \mathrm{e}^{\mathrm{ax}}$
$\therefore \mathrm{e}^{\mathrm{ax}}=\frac{\mathrm{f}(\mathrm{D}) \mathrm{e}^{\mathrm{ax}}}{\mathrm{f}(\mathrm{a})} \quad \because \mathrm{f}(\mathrm{a}) \neq 0$
$\therefore \frac{1}{f(\mathrm{D})} \mathrm{e}^{\mathrm{ax}}=\frac{\mathrm{e}^{\mathrm{ax}}}{\mathrm{f}(\mathrm{a})} \quad$ Hence proved.

Theorem: If $D \equiv \frac{d}{d x}$, then $\frac{1}{(D-a)^{r}} e^{a x}=\frac{r^{r}}{r!} e^{a x}$
Proof: We prove $\frac{1}{(D-a)^{r}} e^{a x}=\frac{x^{r}}{r!} e^{a x}$ by mathematical induction.
For $\mathrm{r}=1, \frac{1}{\mathrm{D}-\mathrm{a}} \mathrm{e}^{a \mathrm{x}}=\mathrm{e}^{\mathrm{ax}} \int \mathrm{e}^{\mathrm{ax}} \mathrm{e}^{-a \mathrm{x}} \mathrm{dx}$

$$
\begin{aligned}
& =\mathrm{e}^{\mathrm{ax}} \int 1 \mathrm{dx} \\
& =\mathrm{xe}^{\mathrm{ax}} \\
& =\frac{\mathrm{x}^{1}}{1!} \mathrm{e}^{\mathrm{ax}}
\end{aligned}
$$

i.e. result is true for $\mathrm{r}=1$.

Suppose result is true for $\mathrm{r}=\mathrm{k}$
i.e. $\frac{1}{(D-a)^{k}} e^{a x}=\frac{x^{k}}{k!} e^{a x}$

Consider $\frac{1}{(D-a)^{k+1}} \mathrm{e}^{\mathrm{ax}}=\frac{1}{(\mathrm{D}-\mathrm{a})}\left[\frac{1}{(\mathrm{D}-\mathrm{a})^{\mathrm{k}}} \mathrm{e}^{\mathrm{ax}}\right]$

$$
\begin{aligned}
& =\frac{1}{(D-a)}\left[\frac{x^{k}}{k!} e^{a x}\right] \quad \text { by (1) } \\
& =e^{a x} \int\left(\frac{x^{k}}{k!} e^{a x}\right) e^{-a x} d x \\
& =e^{a x} \int\left(\frac{x^{k}}{k!}\right) d x \\
& =e^{a x} \frac{x^{k+1}}{k!(k+1)} \\
& =\frac{x^{k+1}}{(k+1)!} e^{a x}
\end{aligned}
$$

i.e. result is true for $r=k \Rightarrow$ result is true for $r=k+1$
\therefore by mathematical induction the result is true for any natural number r .
i.e. $\frac{1}{(D-a)^{r}} e^{a x}=\frac{x^{r}}{r!} e^{a x} \forall r \in N$.

Theorem: If $D \equiv \frac{d}{d x}$ and $f(D)$ is polynomial in D with $f(D)=(D-a)^{r} \phi(D)$ and $\phi(a) \neq 0$, then $\frac{1}{(D-a)^{r} \phi(D)} e^{a x}=\frac{r^{r} e^{a x}}{r!\phi(a)}$
Proof: Let $f(D)=(D-a)^{r} \phi(D)$ and $\phi(D) \neq 0$
Consider $\frac{1}{(D-a)^{r} \phi(D)} e^{a x}=\frac{1}{(D-a)^{r}}\left[\frac{1}{\phi(D)} e^{a x}\right]$

$$
\begin{aligned}
& =\frac{1}{(\mathrm{D}-\mathrm{a})^{\mathrm{r}}}\left[\frac{\mathrm{e}^{\mathrm{ax}}}{\phi(\mathrm{a})}\right] \because \phi(\mathrm{a}) \neq 0 \\
& =\frac{1}{\phi(\mathrm{a})}\left[\frac{1}{(\mathrm{D}-\mathrm{a})^{\mathrm{r}}} \mathrm{e}^{\mathrm{ax}}\right] \\
& =\frac{1}{\phi(\mathrm{a})}\left[\frac{\mathrm{r}^{\mathrm{r}}}{\mathrm{r}!} \mathrm{e}^{\mathrm{ax}}\right] \\
& =\frac{\mathrm{x}^{\mathrm{r}} \mathrm{e}^{\mathrm{ax}}}{\mathrm{r}!\phi(\mathrm{a})}
\end{aligned}
$$

Ex.: Find the particular integral of $\operatorname{LDE}\left(D^{2}-3 D+2\right) y=e^{5 x}$
Solution: Let $\left(D^{2}-3 D+2\right) y=e^{5 x}$
be the given LDE with constant coefficients,
comparing it with $f(D) y=X$, we get,

$$
f(D)=D^{2}-3 D+2=(D-1)(D-2) \text { and } X=e^{5 x}
$$

Now P.I. $=\frac{1}{f(\mathrm{D})} \mathrm{X}$

$$
\begin{aligned}
& =\frac{1}{(\mathrm{D}-1)(\mathrm{D}-2)} \mathrm{e}^{5 \mathrm{x}} \\
& =\frac{\mathrm{e}^{5 \mathrm{x}}}{(5-1)(5-2)} \\
& =\frac{\mathrm{e}^{5 \mathrm{x}}}{12}
\end{aligned}
$$

Ex.: Find the particular integral of $\operatorname{LDE}\left(D^{3}-5 D^{2}+8 D-4\right) y=e^{2 x}+3 e^{x}$
Solution: Let $\left(D^{3}-5 D^{2}+8 D-4\right) y=e^{2 x}+3 e^{x}$
be the given LDE with constant coefficients, comparing it with $\mathrm{f}(\mathrm{D}) \mathrm{y}=\mathrm{X}$, we get,
$f(D)=D^{3}-5 D^{2}+8 D-4=(D-1)(D-2)^{2}$
and $\mathrm{X}=\mathrm{e}^{2 \mathrm{x}}+3 \mathrm{e}^{\mathrm{x}}$
Now P.I. $=\frac{1}{f(D)} X=\frac{1}{(D-1)(D-2)^{2}}\left(e^{2 x}+3 e^{x}\right)$

$$
\begin{aligned}
& =\frac{1}{(\mathrm{D}-1)(\mathrm{D}-2)^{2}} \mathrm{e}^{2 \mathrm{x}}+\frac{1}{(\mathrm{D}-1)(\mathrm{D}-2)^{2}} 3 \mathrm{e}^{\mathrm{x}} \\
& =\frac{\mathrm{x}^{2} \mathrm{e}^{2 \mathrm{x}}}{2!(2-1)}+\frac{3 \mathrm{xe}^{\mathrm{x}}}{1!(1-2)^{2}} \\
& =\frac{1}{2} \mathrm{x}^{2} \mathrm{e}^{2 \mathrm{x}}+3 \mathrm{xe}^{\mathrm{x}}
\end{aligned}
$$

Ex.: Solve $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=e^{2 x}$
Solution: Let $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=e^{2 x}$
i.e. $\left(D^{2}+4 D+4\right) y=e^{2 x}$
be the given LDE with constant coefficients,
comparing it with $f(D) y=X$, we get,
$f(D)=D^{2}+4 D+4=(D+2)^{2}$
and $\mathrm{X}=\mathrm{e}^{2 \mathrm{x}}$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $(\mathrm{D}+2)^{2}=0$
$\therefore \mathrm{D}=-2,-2$ (repeated two times) are the roots of an A.E.
\therefore C.F. $=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) \mathrm{e}^{-2 \mathrm{x}}$
Now P.I. $=\frac{1}{f(D)} X$

$$
\begin{aligned}
& =\frac{1}{(\mathrm{D}+2)^{2}} \mathrm{e}^{2 \mathrm{x}} \\
& =\frac{\mathrm{e}^{2 \mathrm{x}}}{(2+2)^{2}} \\
& =\frac{1}{16} \mathrm{e}^{2 \mathrm{x}}
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=\left(C_{1}+C_{1} x\right) e^{-2 x}+\frac{1}{16} e^{2 x}$
be the required G.S. of given differential equation.

Ex.: Solve ($\left.D^{2}-3 D+2\right) y=\cosh x$
Solution: Let $\left(D^{2}-3 D+2\right) y=\cosh x$
be the given LDE with constant coefficients, comparing it with $\mathrm{f}(\mathrm{D}) \mathrm{y}=\mathrm{X}$, we get,
$f(D)=D^{2}-3 D+2=(D-1)(D-2)$
and $X=\cosh x=\frac{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}{2}$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $(D-1)(D-2)=0$
$\therefore \mathrm{D}=1,2$ are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{2 \mathrm{x}}$
Now P.I. $=\frac{1}{f(D)} \mathrm{X}$

$$
\begin{aligned}
& =\frac{1}{(\mathrm{D}-1)(\mathrm{D}-2)}\left[\frac{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}{2}\right] \\
& =\frac{1}{2(\mathrm{D}-1)(\mathrm{D}-2)} \mathrm{e}^{\mathrm{x}}+\frac{1}{2(\mathrm{D}-1)(\mathrm{D}-2)} \mathrm{e}^{-\mathrm{x}} \\
& =\frac{\mathrm{xe}^{\mathrm{x}}}{2(1!)(1-2)}+\frac{\mathrm{e}^{-\mathrm{x}}}{2(-1-1)(-1-2)} \\
& =-\frac{1}{2} \mathrm{xe}^{\mathrm{x}}+\frac{1}{12} \mathrm{e}^{-\mathrm{x}}
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=C_{1} e^{x}+C_{2} e^{2 x}-\frac{1}{2} x e^{x}+\frac{1}{12} e^{-x}$
be the required G.S. of given differential equation.

Ex.: Solve $\left(\mathrm{D}^{3}+3 \mathrm{D}^{2}+3 \mathrm{D}+1\right) \mathrm{y}=\mathrm{e}^{-\mathrm{x}}$
Solution: Let $\left(D^{3}+3 D^{2}+3 D+1\right) y=e^{-x}$
be the given LDE with constant coefficients,
comparing it with $f(D) y=X$, we get,
$\mathrm{f}(\mathrm{D})=\mathrm{D}^{3}+3 \mathrm{D}^{2}+3 \mathrm{D}+1=(\mathrm{D}+1)^{3}$
and $\mathrm{X}=\mathrm{e}^{-\mathrm{X}}$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $(\mathrm{D}+1)^{3}=0$
$\therefore \mathrm{D}=-1,-1,-1$ (repeated three times) are the roots of an A.E.
\therefore C.F. $=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}+\mathrm{C}_{3} \mathrm{x}^{2}\right) \mathrm{e}^{-\mathrm{x}}$
Now P.I. $=\frac{1}{f(D)} X=\frac{1}{(D+1)^{3}} e^{-x}$

$$
\begin{aligned}
& =\frac{x^{3} e^{-x}}{3!} \\
& =\frac{1}{6} x^{3} e^{-x}
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=\left(C_{1}+C_{2} x+C_{3} x^{2}\right) e^{-x}+\frac{1}{6} x^{3} e^{-x}$
be the required G.S. of given differential equation.

Ex.: Solve $\left(D^{3}-1\right) y=\left(e^{x}+1\right)^{2}$
Solution: Let $\left(D^{3}-1\right) y=\left(e^{x}+1\right)^{2}$
be the given LDE with constant coefficients,
comparing it with $\mathrm{f}(\mathrm{D}) \mathrm{y}=\mathrm{X}$, we get,
$f(D)=D^{3}-1=(D-1)\left(D^{2}+D+1\right)$
and $\mathrm{X}=\left(\mathrm{e}^{\mathrm{x}}+1\right)^{2}=\mathrm{e}^{2 \mathrm{x}}+2 \mathrm{e}^{\mathrm{x}}+1$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $(D-1)\left(D^{2}+D+1\right)=0$
$\therefore \mathrm{D}=1$ or $\mathrm{D}=\frac{-1 \pm \sqrt{1-4}}{2}=\frac{-1}{2} \pm \frac{\sqrt{3}}{2} \mathrm{i}$ are the roots of an A.E.
\therefore C.F. $=C_{1} e^{x}+e^{-\frac{1}{2} \mathrm{x}}\left(C_{2} \cos \frac{\sqrt{3}}{2} \mathrm{x}+\mathrm{C}_{3} \sin \frac{\sqrt{3}}{2} \mathrm{x}\right)$
Now P.I. $=\frac{1}{f(D)} \mathrm{X}$

$$
=\frac{1}{(\mathrm{D}-1)\left(\mathrm{D}^{2}+\mathrm{D}+1\right)}\left(\mathrm{e}^{2 \mathrm{x}}+2 \mathrm{e}^{\mathrm{x}}+1\right)
$$

$$
\begin{aligned}
& =\frac{1}{(D-1)\left(D^{2}+D+1\right)} e^{2 x}+\frac{2}{(D-1)\left(D^{2}+D+1\right)} e^{x}+\frac{1}{(D-1)\left(D^{2}+D+1\right)} e^{0 x} \\
& =\frac{e^{2 x}}{(2-1)(4+2+1)}+\frac{2 x e^{x}}{1!\left(1^{2}+1+1\right)}+\frac{e^{0 x}}{(0-1)(0+0+1)} \\
& =\frac{1}{7} e^{2 x}+\frac{2}{3} x e^{x}-1
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=C_{1} e^{x}+e^{-\frac{1}{2} x}\left(C_{2} \cos \frac{\sqrt{3}}{2} x+C_{3} \sin \frac{\sqrt{3}}{2} x\right)+\frac{1}{7} e^{2 x}+\frac{2}{3} x e^{x}-1$
be the required G.S. of given differential equation.

Type-II: When $\mathrm{X}=\mathrm{x}^{\mathrm{m}}$ or polynomial in x .
Let $f(D) y=x^{m}$ be the given LDE with constant coefficients,
If $g(D)$ is the lowest degree term in $f(D)$, then
$f(D)=g(D) \cdot[1 \pm \phi(D)]$
\therefore P.I. $=\frac{1}{f(D)} x^{m}=\frac{1}{g(D)[1 \pm \phi(D)]} x^{m}==\frac{1}{g(D)}[1 \pm \phi(D)]^{-1} x^{m}$
and use results
i) $\frac{1}{1+x}=(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots \ldots$
i.e. $\frac{1}{1+\phi(D)}=[1+\phi(D)]^{-1}=1-\phi(D)+[\phi(D)]^{2}-[\phi(D)]^{3}+$
ii) $\frac{1}{1-\mathrm{x}}=(1-\mathrm{x})^{-1}=1+\mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{3}+\ldots \ldots$
i.e. $\frac{1}{1+\phi(D)}=[1-\phi(D)]^{-1}=1+\phi(D)+[\phi(D)]^{2}+[\phi(D)]^{3}+$

Ex.: Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+5 y=x^{2}$
Solution: Let $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+5 y=x^{2}$
i.e. $\left(D^{2}-2 D+5\right) y=x^{2}$
be the given LDE with constant coefficients,
comparing it with $f(D) y=X$, we get,
$f(D)=D^{2}-2 D+5$ and $X=x^{2}$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $\mathrm{D}^{2}-2 \mathrm{D}+5=0$
$\therefore \mathrm{D}=\frac{2 \pm \sqrt{4-20}}{2}=1 \pm 2 \mathrm{i}$ are the roots of an A.E.
\therefore C.F. $=\mathrm{e}^{\mathrm{x}}\left(\mathrm{C}_{1} \cos 2 \mathrm{x}+\mathrm{C}_{2} \sin 2 \mathrm{x}\right)$
Now P.I. $=\frac{1}{f(D)} X=\frac{1}{D^{2}-2 D+5} x^{2}$

$$
\begin{aligned}
& =\frac{1}{5\left[1-\left(\frac{2}{5} D-\frac{1}{5} D^{2}\right)\right]} \mathrm{x}^{2} \\
& =\frac{1}{5}\left[1-\left(\frac{2}{5} D-\frac{1}{5} D^{2}\right)\right]^{-1} x^{2} \\
& =\frac{1}{5}\left[1+\left(\frac{2}{5} D-\frac{1}{5} D^{2}\right)+\left(\frac{2}{5} D-\frac{1}{5} D^{2}\right)^{2}+\ldots\right] \mathrm{x}^{2} \\
& =\frac{1}{5}\left[1+\frac{2}{5} D-\frac{1}{5} D^{2}+\frac{4}{25} D^{2}-\frac{4}{25} D^{3}+\cdots\right] \mathrm{x}^{2} \\
& =\frac{1}{5}\left[x^{2}+\frac{2}{5}(2 x)-\frac{1}{5}(2)+\frac{4}{25}(2)-0\right] \\
& =\frac{1}{5}\left[x^{2}+\frac{4}{5} x-\frac{2}{25}\right]
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=e^{x}\left(C_{1} \cos 2 x+C_{2} \sin 2 x\right)+\frac{1}{5}\left(x^{2}+\frac{4}{5} x-\frac{2}{25}\right)$
be the required G.S. of given differential equation.

Ex.: Solve $\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{dx}} \mathrm{x}^{3}+3 \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}} \mathrm{x}^{2}+2 \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{x}^{2}$
Solution: Let $\frac{d^{3} y}{d^{3}}+3 \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=x^{2}$
i.e. $\left(D^{3}+3 D^{2}+2 D\right) y=x^{2}$
be the given LDE with constant coefficients, comparing it with $f(D) y=X$, we get,
$\mathrm{f}(\mathrm{D})=\mathrm{D}^{3}+3 \mathrm{D}^{2}+2 \mathrm{D}=\mathrm{D}(\mathrm{D}+1)(\mathrm{D}+2)$
and $\mathrm{X}=\mathrm{x}^{2}$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $D(D+1)(D+2)=0$
$\therefore \mathrm{D}=0,-1,-2$ are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{0 \mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{-\mathrm{x}}+\mathrm{C}_{3} \mathrm{e}^{-2 \mathrm{x}}$

$$
=\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{e}^{-x}+\mathrm{C}_{3} \mathrm{e}^{-2 x}
$$

Now P.I. $=\frac{1}{f(D)} \mathrm{X}$

$$
\begin{aligned}
& =\frac{1}{\mathrm{D}^{3}+3 \mathrm{D}^{2}+2 \mathrm{D}} \mathrm{x}^{2} \\
& =\frac{1}{2 \mathrm{D}\left[1+\left(\frac{3}{2} \mathrm{D}+\frac{1}{2} \mathrm{D}^{2}\right)\right]} \mathrm{x}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2 D}\left[1+\left(\frac{3}{2} D+\frac{1}{2} D^{2}\right)\right]^{-1} x^{2} \\
& =\frac{1}{2 D}\left[1-\left(\frac{3}{2} D+\frac{1}{2} D^{2}\right)+\left(\frac{3}{2} D+\frac{1}{2} D^{2}\right)^{2}+\ldots\right] x^{2} \\
& =\frac{1}{2 D}\left[1-\frac{3}{2} D-\frac{1}{2} D^{2}+\frac{9}{4} D^{2}+\frac{3}{2} D^{3}+\cdots\right] x^{2} \\
& =\frac{1}{2 D}\left[x^{2}-\frac{3}{2}(2 x)-\frac{1}{2}(2)+\frac{9}{4}(2)+0\right] \\
& =\frac{1}{2 D}\left[x^{2}-3 x+\frac{7}{2}\right] \\
& =\frac{1}{2} \int\left[x^{2}-3 x+\frac{7}{2}\right] d x \\
& =\frac{1}{2}\left[\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+\frac{7 x}{2}\right] \\
& =\frac{1}{6} x^{3}-\frac{3}{4} x^{2}+\frac{7}{4} x
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=C_{1}+C_{2} e^{-x}+C_{3} e^{-2 x}+\frac{1}{6} x^{3}-\frac{3}{4} x^{2}+\frac{7}{4} x$
be the required G.S. of given differential equation.

Ex.: Solve $\left(D^{2}+2 D+3\right) y=x-2 x^{2}$
Solution: Let $\left(D^{2}+2 D+3\right) y=x-2 x^{2}$
be the given LDE with constant coefficients, comparing it with $\mathrm{f}(\mathrm{D}) \mathrm{y}=\mathrm{X}$, we get,
$f(D)=D^{2}+2 D+3$
and $X=x-2 x^{2}$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $D^{2}+2 D+3=0$
$\therefore \mathrm{D}=\frac{-2 \pm \sqrt{4-12}}{2}=-1 \pm \sqrt{2} i$ are the roots of an A.E.
\therefore C.F. $=e^{-x}\left[\mathrm{C}_{1} \cos \sqrt{2} x+\mathrm{C}_{2} \sin \sqrt{2} x\right]$
Now P.I. $=\frac{1}{f(D)} \mathrm{X}$

$$
\begin{aligned}
& =\frac{1}{D^{2}+2 D+3}\left(x-2 x^{2}\right) \\
& =\frac{1}{3\left[1+\left(\frac{2}{3} D+\frac{1}{3} D^{2}\right)\right]} x^{2} \\
& =\frac{1}{3}\left[1+\left(\frac{2}{3} D+\frac{1}{3} D^{2}\right)\right]^{-1}\left(x-2 x^{2}\right) \\
& =\frac{1}{3}\left[1-\left(\frac{2}{3} D+\frac{1}{3} D^{2}\right)+\left(\frac{2}{3} D+\frac{1}{3} D^{2}\right)^{2}+\cdots\right]\left(x-2 x^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{3}\left[1-\frac{2}{3} D-\frac{1}{3} D^{2}+\frac{4}{9} D^{2}+\frac{4}{9} D^{3}+\ldots\right]\left(x-2 x^{2}\right) \\
& =\frac{1}{3}\left[\left(x-2 x^{2}\right)-\frac{2}{3}(1-4 x)-\frac{1}{3}(-4)+\frac{4}{9}(-4)+0\right] \\
& =\frac{1}{3}\left[x-2 x^{2}-\frac{2}{3}+\frac{8}{3} x+\frac{4}{3}-\frac{16}{9}\right] \\
& =\frac{1}{3}\left[-2 x^{2}+\frac{11}{3} x-\frac{10}{9}\right] \\
& =-\frac{2}{3} x^{2}+\frac{11}{9} x-\frac{10}{27}
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=e^{-x}\left[\mathrm{C}_{1} \cos \sqrt{2} x+\mathrm{C}_{2} \sin \sqrt{2} x\right]-\frac{2}{3} x^{2}+\frac{11}{9} x-\frac{10}{27}$
be the required G.S. of given differential equation.

Ex.: Solve $\left(D^{3}+2 D^{2}+D\right) y=e^{2 x}+x^{2}+x$
Solution: Let $\left(D^{3}+2 D^{2}+D\right) y=e^{2 x}+x^{2}+x$
be the given LDE with constant coefficients,
comparing it with $f(D) y=X$, we get,
$f(D)=D^{3}+2 D^{2}+D=D(D+1)^{2}$
and $\mathrm{X}=\mathrm{e}^{2 \mathrm{x}}+\mathrm{x}^{2}+\mathrm{x}$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $\mathrm{D}(\mathrm{D}+1)^{2}=0$
$\therefore \mathrm{D}=0,-1,-1$ are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} e^{0 x}+\left(\mathrm{C}_{2}+\mathrm{C}_{3} \mathrm{x}\right) \mathrm{e}^{-\mathrm{x}}$

$$
=C_{1}+\left(C_{2}+C_{3} x\right) e^{-x}
$$

Now P.I. $=\frac{1}{f(D)} \mathrm{X}$

$$
\begin{aligned}
& =\frac{1}{D^{3}+2 D^{2}+D}\left[e^{2 x}+x^{2}+x\right] \\
& =\frac{1}{D^{3}+2 D^{2}+D} e^{2 x}+\frac{1}{D^{3}+2 D^{2}+D}\left(x^{2}+x\right) \\
& =\frac{e^{2 x}}{8+8+2}+\frac{1}{D\left[1+\left(2 D+D^{2}\right)\right]}\left(x^{2}+x\right) \\
& =\frac{e^{2 x}}{18}+\frac{1}{D}\left[1+\left(2 D+D^{2}\right)\right]^{-1}\left(x^{2}+x\right) \\
& =\frac{e^{2 x}}{18}+\frac{1}{D}\left[1-\left(2 D+D^{2}\right)+\left(2 D+D^{2}\right)^{2}-\cdots\right]\left(x^{2}+x\right) \\
& =\frac{e^{2 x}}{18}+\frac{1}{D}\left[1-2 D-D^{2}+4 D^{2}+4 D^{3}+\ldots\right]\left(x^{2}+x\right) \\
& =\frac{e^{2 x}}{18}+\frac{1}{D}\left[\left(x^{2}+x\right)-2(2 x+1)-(2)+4(2)+0\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e^{2 x}}{18}+\frac{1}{D}\left[x^{2}-3 x+4\right] \\
& =\frac{e^{2 x}}{18}+\int\left[x^{2}-3 x+4\right] \mathrm{dx} \\
& =\frac{e^{2 x}}{18}+\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+4 x \\
& =\frac{1}{18} e^{2 x}+\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+4 x
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $\mathrm{y}=\mathrm{C}_{1}+\left(\mathrm{C}_{2}+\mathrm{C}_{3} \mathrm{x}\right) \mathrm{e}^{-\mathrm{x}}+\frac{1}{18} e^{2 x}+\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+4 x$
be the required G.S. of given differential equation.

Type-III: When $\mathrm{X}=\sin (\mathrm{ax}+\mathrm{b})$ or $\cos (\mathrm{ax}+\mathrm{b})$
Theorem: If $f\left(D^{2}\right)$ is polynomial in D^{2} with constant coefficients and $f\left(-a^{2}\right) \neq 0$, then
a) $\frac{1}{f\left(D^{2}\right)} \cos (a x+b)=\frac{\cos (a x+b)}{f\left(-a^{2}\right)}$
b) $\frac{1}{f\left(D^{2}\right)} \sin (a x+b)=\frac{\sin (a x+b)}{f\left(-a^{2}\right)}$

Proof: a) By taking successive derivatives, we get,
$\operatorname{Dcos}(a x+b)=-a \sin (a x+b)$,
$\mathrm{D}^{2} \cos (\mathrm{ax}+\mathrm{b})=(-\mathrm{a}) \cdot \mathrm{acos}(\mathrm{ax}+\mathrm{b})$
i.e. $D^{2} \cos (a x+b)=\left(-a^{2}\right) \cos (a x+b)$
$D^{3} \cos (a x+b)=\left(-a^{2}\right) \cdot(-a) \sin (a x+b)$
$D^{4} \cos (a x+b)=\left(-a^{2}\right) \cdot(-a) \cdot a \cos (a x+b)$
i.e. $\left(D^{2}\right)^{2} \cos (a x+b)=\left(-a^{2}\right)^{2} \cos (a x+b)$

Similarly, $\left(D^{2}\right)^{3} \cos (a x+b)=\left(-a^{2}\right)^{3} \cos (a x+b)$
and so on, in general,
$\left(\mathrm{D}^{2}\right)^{\mathrm{r}} \cos (\mathrm{ax}+\mathrm{b})=\left(-\mathrm{a}^{2}\right)^{\mathrm{r}} \cos (\mathrm{ax}+\mathrm{b}) \forall \mathrm{r} \in \mathbb{N}$
$\therefore \mathrm{f}\left(\mathrm{D}^{2}\right) \cos (\mathrm{ax}+\mathrm{b})=\mathrm{f}\left(-\mathrm{a}^{2}\right) \cos (\mathrm{ax}+\mathrm{b})$
where $f\left(D^{2}\right)$ is polynomial in D^{2} with constant coefficients and $f\left(-a^{2}\right) \neq 0$
$\therefore \cos (\mathrm{ax}+\mathrm{b})=\frac{f\left(D^{2}\right) \cos (a x+b)}{f\left(-a^{2}\right)} \quad \because f\left(-a^{2}\right) \neq 0$
Operating $\frac{1}{f\left(D^{2}\right)}$ on both sides, we get,
$\therefore \frac{1}{f\left(D^{2}\right)} \cos (\mathrm{ax}+\mathrm{b})=\frac{\cos (a x+b)}{f\left(-a^{2}\right)} \quad$ Hence proved.
b) By taking successive derivatives, we get,
$D \sin (a x+b)=a \cos (a x+b)$,
$\mathrm{D}^{2} \sin (\mathrm{ax}+\mathrm{b})=\mathrm{a} .(-\mathrm{a}) \sin (\mathrm{ax}+\mathrm{b})$
i.e. $D^{2} \sin (a x+b)=\left(-a^{2}\right) \sin (a x+b)$
$\mathrm{D}^{3} \sin (\mathrm{ax}+\mathrm{b})=\left(-\mathrm{a}^{2}\right) \cdot \mathrm{acos}(\mathrm{ax}+\mathrm{b})$
$D^{4} \sin (a x+b)=\left(-a^{2}\right) \cdot a \cdot(-a) \sin (a x+b)$
i.e. $\left(D^{2}\right)^{2} \sin (a x+b)=\left(-a^{2}\right)^{2} \sin (a x+b)$

Similarly, $\left(D^{2}\right)^{3} \sin (a x+b)=\left(-a^{2}\right)^{3} \sin (a x+b)$ and so on, in general,
$\left(\mathrm{D}^{2}\right)^{\mathrm{r}} \sin (\mathrm{ax}+\mathrm{b})=\left(-\mathrm{a}^{2}\right)^{\mathrm{r}} \sin (\mathrm{ax}+\mathrm{b}) \forall \mathrm{r} \in \mathbb{N}$
$\therefore \mathrm{f}\left(\mathrm{D}^{2}\right) \sin (\mathrm{ax}+\mathrm{b})=\mathrm{f}\left(-\mathrm{a}^{2}\right) \sin (\mathrm{ax}+\mathrm{b})$
where $f\left(D^{2}\right)$ is polynomial in D^{2} with constant coefficients and $f\left(-a^{2}\right) \neq 0$
$\therefore \sin (\mathrm{ax}+\mathrm{b})=\frac{f\left(D^{2}\right) \sin (a x+b)}{f\left(-a^{2}\right)} \quad \because f\left(-a^{2}\right) \neq 0$
Operating $\frac{1}{f\left(D^{2}\right)}$ on both sides, we get,
$\therefore \frac{1}{f\left(D^{2}\right)} \sin (\mathrm{ax}+\mathrm{b})=\frac{\sin (a x+b)}{f\left(-a^{2}\right)} \quad$ Hence proved.
Theorem: a) $\frac{1}{\left(D^{2}+a^{2}\right)^{r}} \cos (\mathrm{ax})=\frac{(-1)^{r} x^{r} \cos \left(a x+\frac{\pi}{2} r\right)}{r!(2 a)^{r}}$ b) $\frac{1}{\left(D^{2}+a^{2}\right)^{r}} \sin (\mathrm{ax})=\frac{(-1)^{r} x^{r} \sin \left(a x+\frac{\pi}{2} r\right)}{r!(2 a)^{r}}$
Proof: Consider $\frac{1}{\left(D^{2}+a^{2}\right)^{r}} \mathrm{e}^{\mathrm{iax}}=\frac{1}{(D+a i)^{r}(D-a i)^{r}} \mathrm{e}^{\mathrm{iax}}$

$$
\begin{aligned}
&=\frac{x^{r} e^{i a x}}{r!(a i+a i)^{r}} \\
&=\frac{x^{r} e^{i a x}}{r!(2 a i)^{r}} \\
&=\frac{(-i)^{r} x^{r} e^{i a x}}{r!(2 a)^{r}} \because \frac{1}{i}=-i \\
&=\frac{(-1)^{r} i^{r} x^{r} e^{i a x}}{r!(2 a)^{r}} \\
&=\frac{(-1)^{r} e^{i \frac{\pi}{2} x^{r} e^{i a x}}}{r!(2 a)^{r}} \because e^{i \frac{\pi}{2}}=i \\
&=\frac{(-1)^{r} x^{r} e^{i\left(a x+\frac{\pi}{2} r\right)}}{r!(2 a)^{r}} \\
& \therefore \frac{1}{\left(D^{2}+a^{2}\right)^{r}}[\cos (\mathrm{ax})+\mathrm{i} \sin (\mathrm{ax})]=\frac{(-1)^{r} x^{r}}{r!(2 a)^{r}}\left[\cos \left(\mathrm{ax}+\frac{\pi}{2} r\right)+\mathrm{i} \sin \left(\mathrm{ax}+\frac{\pi}{2} r\right)\right]
\end{aligned}
$$

Equating real and imaginary parts, we get,
a) $\frac{1}{\left(D^{2}+a^{2}\right)^{r}} \cos (\mathrm{ax})=\frac{(-1)^{r} x^{r} \cos \left(a x+\frac{\pi}{2} r\right)}{r!(2 a)^{r}}$
b) $\frac{1}{\left(D^{2}+a^{2}\right)^{r}} \sin (\mathrm{ax})=\frac{(-1)^{r} x^{r} \sin \left(a x+\frac{\pi}{2} r\right)}{r!(2 a)^{r}}$

Note: 1) For $\mathrm{r}=1$, we get, $a) \frac{1}{D^{2}+a^{2}} \cos (\mathrm{ax})=\frac{x \sin (a x)}{2 a}$,b) $\frac{1}{D^{2}+a^{2}} \sin (\mathrm{ax})=\frac{-x \cos (a x)}{2 a}$
2) If $X=\operatorname{cosax}$ or sinax, then express $\frac{1}{D+\alpha}$ as $\frac{1}{D+\alpha}=(D-\alpha) \cdot \frac{1}{D^{2}-\alpha^{2}}$ and $\frac{1}{D-\alpha}$ as $\frac{1}{D-\alpha}=(D+\alpha) \cdot \frac{1}{D^{2}-\alpha^{2}}$

Ex.: Solve $\left(D^{4}+10 D^{2}+9\right) y=\cos (2 x+3)$
Solution: Let $\left(D^{4}+10 D^{2}+9\right) y=\cos (2 x+3)$
be the given LDE with constant coefficients,
comparing it with $f(D) y=X$, we get,
$f(D)=D^{4}+10 D^{2}+9=\left(D^{2}+1\right)\left(D^{2}+9\right)$
and $X=\cos (2 x+3)$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $\left(\mathrm{D}^{2}+1\right)\left(\mathrm{D}^{2}+9\right)=0$
$\therefore \mathrm{D}= \pm i, \pm 3 i$ are the roots of an A.E.
\therefore C.F. $=e^{0 x}\left(\mathrm{C}_{1} \cos \mathrm{x}+\mathrm{C}_{2} \sin \mathrm{x}\right)+e^{0 x}\left(\mathrm{C}_{3} \cos 3 \mathrm{x}+\mathrm{C}_{4} \sin 3 \mathrm{x}\right)$
i.e. C.F. $=\mathrm{C}_{1} \cos x+\mathrm{C}_{2} \sin x+\mathrm{C}_{3} \cos 3 \mathrm{x}+\mathrm{C}_{4} \sin 3 \mathrm{x}$

Now P.I. $=\frac{1}{f(D)} \mathrm{X}$

$$
\begin{aligned}
& =\frac{1}{\left(D^{2}+1\right)\left(D^{2}+9\right)} \cos (2 x+3) \\
& =\frac{\cos (2 x+3)}{(-4+1)(-4+9)} \quad \because D^{2}=-a^{2}=-2^{2}=-4 \\
& =\frac{\cos (2 x+3)}{-15}
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $\mathrm{y}=\mathrm{C}_{1} \cos \mathrm{x}+\mathrm{C}_{2} \sin \mathrm{x}+\mathrm{C}_{3} \cos 3 \mathrm{x}+\mathrm{C}_{4} \sin 3 \mathrm{x}-\frac{1}{15} \cos (2 x+3)$
be the required G.S. of given differential equation.
Ex.: Solve $\left(D^{3}+D\right) y=\sin 3 x$
Solution: Let $\left(D^{3}+D\right) y=\sin 3 x$
be the given LDE with constant coefficients,
comparing it with $f(D) y=X$, we get,
$\mathrm{f}(\mathrm{D})=\mathrm{D}^{3}+\mathrm{D}=\mathrm{D}\left(\mathrm{D}^{2}+1\right)$
and $\mathrm{X}=\sin 3 \mathrm{x}$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $\mathrm{D}\left(\mathrm{D}^{2}+1\right)=0$
$\therefore \mathrm{D}=0, \pm i$ are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} e^{0 x}+e^{0 x}\left(\mathrm{C}_{2} \cos \mathrm{x}+\mathrm{C}_{3} \sin \mathrm{x}\right)$
i.e. C.F. $=\mathrm{C}_{1}+\mathrm{C}_{2} \cos x+\mathrm{C}_{3} \sin x$

Now P.I. $=\frac{1}{f(D)} \mathrm{X}$

$$
\begin{aligned}
& =\frac{1}{D\left(D^{2}+1\right)} \sin 3 x \\
& =\frac{1}{D} \frac{\sin 3 x}{(-9+1)} \quad \because D^{2}=-a^{2}=-3^{2}=-9 \\
& =\frac{1}{-8} \int \sin 3 x \mathrm{dx} \\
& =\frac{1}{24} \cos 3 x
\end{aligned}
$$

\therefore G.S.
$=$ C.F. + P.I.
i.e. $\mathrm{y}=\mathrm{C}_{1}+\mathrm{C}_{2} \cos \mathrm{x}+\mathrm{C}_{3} \sin \mathrm{x}+\frac{1}{24} \cos 3 x$
be the required G.S. of given differential equation.

Ex.: Solve $\left(D^{2}+4\right) y=\sin 3 x+e^{x}+x^{2}$
Solution: Let $\left(D^{2}+4\right) y=\sin 3 x+e^{x}+x^{2}$
be the given LDE with constant coefficients,
comparing it with $f(D) y=X$, we get,
$f(D)=D^{2}+4$ and $X=\sin 3 x+e^{x}+x^{2}$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $\mathrm{D}^{2}+4=0$
$\therefore \mathrm{D}= \pm 2 i$ are the roots of an A.E.
$\therefore \mathrm{C} . \mathrm{F} .=e^{0 x}\left(\mathrm{C}_{1} \cos 2 \mathrm{x}+\mathrm{C}_{2} \sin 2 \mathrm{x}\right)$
i.e. C.F. $=C_{1} \cos 2 x+C_{2} \sin 2 x$

Now P.I. $=\frac{1}{f(D)} X=\frac{1}{\left(D^{2}+4\right)}\left(\sin 3 \mathrm{x}+\mathrm{e}^{\mathrm{x}}+\mathrm{x}^{2}\right)$
$=\frac{1}{D^{2}+4} \sin 3 \mathrm{x}+\frac{1}{D^{2}+4} \mathrm{e}^{\mathrm{x}}+\frac{1}{D^{2}+4} \mathrm{x}^{2} \quad \because D^{2}=-a^{2}=-3^{2}=-9$
$=\frac{\sin 3 x}{-9+4}+\frac{e^{x}}{1+4}+\frac{1}{4\left(1+\frac{1}{4} D^{2}\right)} \mathrm{x}^{2}$
$=-\frac{1}{5} \sin 3 x+\frac{1}{5} \mathrm{e}^{\mathrm{x}}+\frac{1}{4}\left[1-\frac{1}{4} \mathrm{D}^{2}+\frac{1}{16} \mathrm{D}^{4}-\ldots\right] \mathrm{x}^{2}$
$=-\frac{1}{5} \sin 3 x+\frac{1}{5} \mathrm{e}^{\mathrm{x}}+\frac{1}{4}\left[\mathrm{x}^{2}-\frac{1}{4}(2)+0 \ldots\right]$
$=-\frac{1}{5} \sin 3 x+\frac{1}{5} \mathrm{e}^{\mathrm{x}}+\frac{1}{4} \mathrm{x}^{2}-\frac{1}{8}$
\therefore G.S. $=$ C.F. + P.I.
i.e. $\mathrm{y}=\mathrm{C}_{1} \cos 2 \mathrm{x}+\mathrm{C}_{2} \sin 2 \mathrm{x}-\frac{1}{5} \sin 3 x+\frac{1}{5} \mathrm{e}^{\mathrm{x}}+\frac{1}{4} \mathrm{x}^{2}-\frac{1}{8}$
be the required G.S. of given differential equation.
Ex.: Solve $\left(D^{2}-1\right) y=10 \sin ^{2} x$
Solution: Let $\left(D^{2}-1\right) y=10 \sin ^{2} x$
be the given LDE with constant coefficients,
comparing it with $\mathrm{f}(\mathrm{D}) \mathrm{y}=\mathrm{X}$, we get,
$f(D)=D^{2}-1=(D-1)(D+1)$
and $\mathrm{X}=10 \sin ^{2} \mathrm{x}=10\left(\frac{1-\cos 2 x}{2}\right)=5-5 \cos 2 \mathrm{x}$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $(D-1)(D+1)=0$
$\therefore \mathrm{D}=1,-1$ are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{-\mathrm{x}}$
Now P.I. $=\frac{1}{f(D)} \mathrm{X}$

$$
\begin{aligned}
& =\frac{1}{\left(D^{2}-1\right)}(5-5 \cos 2 \mathrm{x}) \\
& =\frac{5}{D^{2}-1} \mathrm{e}^{0 \mathrm{x}}-\frac{5}{D^{2}-1} \cos 2 \mathrm{x} \\
& =\frac{5 e^{0 x}}{0-1}-\frac{5 \cos 2 x}{-4-1} \\
& =-5+\cos 2 \mathrm{x} \\
& =\cos 2 \mathrm{x}-5
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=C_{1} e^{x}+C_{2} e^{-x}+\cos 2 x-5$
be the required G.S. of given differential equation.
Type-IV: When $\mathrm{X}=\mathrm{e}^{\mathrm{ax}} \mathrm{V}$, where V is a function of x .
Theorem: If $D \equiv \frac{d}{d x}, f(D)$ is polynomial in D and V is a function of x, then

$$
\frac{1}{f(D)} \mathrm{e}^{\mathrm{ax}} \mathrm{~V}=\mathrm{e}^{\mathrm{ax}} \frac{1}{f(D+a)} \mathrm{V}
$$

Proof: Let $f(D) y=e^{a x} V$, where V is a function of x
For any function U of x, we have

$$
\begin{aligned}
D e^{a x} U & =e^{a x} D U+a e^{a x} U=e^{a x}(D+a) U \\
D^{2} e^{a x} U & =e^{a x} D(D+a) U+a e^{a x}(D+a) U \\
& =e^{a x}(D+a)(D+a) U \\
& =e^{a x}(D+a)^{2} U
\end{aligned}
$$

and so on, in general,
$D^{r} e^{a x} U=e^{a x}(D+a)^{r} U \quad \forall r \in N$
Let $\mathrm{f}(\mathrm{D})=\mathrm{D}^{\mathrm{n}}+\mathrm{P}_{1} \mathrm{D}^{\mathrm{n}-1}+\mathrm{P}_{2} \mathrm{D}^{\mathrm{n}-2}+\ldots+\mathrm{P}_{\mathrm{n}-1} \mathrm{D}+\mathrm{P}_{\mathrm{n}}$
$\therefore f(D) e^{\mathrm{ax}} U=\left[D^{n}+P_{1} D^{n-1}+P_{2} D^{n-2}+\ldots+P_{n-1} D+P_{n}\right] e^{a x} U$

$$
=D^{n} e^{a x} U+P_{1} D^{n-1} e^{a x} U+P_{2} D^{n-2} e^{a x} U+\ldots+P_{n-1} D e^{a x} U+P_{n} e^{a x} U
$$

$$
=e^{a x}(D+a)^{n} U+P_{1} e^{a x}(D+a)^{n-1} U+P_{2} e^{a x}(D+a)^{n-2} U+\ldots+P_{n-1} e^{a x}(D+a) U+P_{n} e^{a x} U
$$

$$
=e^{a x}\left[(D+a)^{n}+P_{1}(D+a)^{n-1}+P_{2}(D+a)^{n-2}+\ldots+P_{n-1}(D+a)+P_{n}\right] U
$$

$\therefore \mathrm{f}(\mathrm{D}) \mathrm{e}^{\mathrm{ax}} \mathrm{U}=\mathrm{e}^{\mathrm{ax}} \mathrm{f}(\mathrm{D}+\mathrm{a}) \mathrm{U}$
By taking $\mathrm{U}=\frac{1}{f(D+a)} \mathrm{V}$, we get,
$\mathrm{f}(\mathrm{D}) \mathrm{e}^{\mathrm{ax}} \frac{1}{f(D+a)} \mathrm{V}=\mathrm{e}^{\mathrm{ax}} \mathrm{f}(\mathrm{D}+\mathrm{a}) \frac{1}{f(D+a)} \mathrm{V}=\mathrm{e}^{\mathrm{ax}} \mathrm{V}$
i.e. $\mathrm{e}^{\mathrm{ax}} \mathrm{V}=\mathrm{f}(\mathrm{D}) \mathrm{e}^{\mathrm{ax}} \frac{1}{f(D+a)} \mathrm{V}$

Operating $\frac{1}{f(D)}$ on both sides, we get,
$\frac{1}{f(D)} \mathrm{e}^{\mathrm{ax}} \mathrm{V}=\mathrm{e}^{\mathrm{ax}} \frac{1}{f(D+a)} \mathrm{V} \quad$ Hence proved.
Ex.: Solve $\left(D^{4}-1\right) y=e^{x} \cos x$
Solution: Let $\left(D^{4}-1\right) y=e^{x} \cos x$
be the given LDE with constant coefficients,
comparing it with $f(D) y=X$, we get,
$f(D)=D^{4}-1=\left(D^{2}-1\right)\left(D^{2}+1\right)$
and $\mathrm{X}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $\left(D^{2}-1\right)\left(D^{2}+1\right)=0$
$\therefore \mathrm{D}= \pm 1, \pm \mathrm{i}$ are the roots of an A.E.
\therefore C.F. $=C_{1} e^{x}+C_{2} e^{-x}+e^{0 x}\left(C_{3} \cos x+C_{4} \sin x\right)$
i.e. C.F. $=C_{1} e^{x}+C_{2} e^{-x}+C_{3} \cos x+C_{4} \sin x$

Now P.I. $=\frac{1}{f(D)} \mathrm{X}$

$$
\begin{aligned}
& =\frac{1}{\left(D^{2}-1\right)\left(D^{2}+1\right)} \mathrm{e}^{\mathrm{x}} \cos \mathrm{x} \\
& =\mathrm{e}^{\mathrm{x}} \frac{1}{\left[(D+1)^{2}-1\right]\left[(D+1)^{2}+1\right]} \cos \mathrm{x} \\
& =\mathrm{e}^{\mathrm{x}} \frac{1}{\left(D^{2}+2 D\right)\left(D^{2}+2 D+2\right)} \cos \mathrm{x} \\
& =\mathrm{e}^{\mathrm{x}} \frac{1}{(-1+2 D)(-1+2 D+2)} \cos \mathrm{x}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{e}^{\mathrm{x}} \frac{1}{(2 D-1)(2 D+1)} \cos \mathrm{x} \\
& =\mathrm{e}^{\mathrm{x}} \frac{1}{\left(4 D^{2}-1\right)} \cos \mathrm{x} \\
& =\mathrm{e}^{\mathrm{x}} \frac{\cos x}{(-4-1)} \\
& =-\frac{1}{5} \mathrm{e}^{\mathrm{x}} \cos x
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=C_{1} e^{x}+C_{2} e^{-x}+C_{3} \cos x+C_{4} \sin x-\frac{1}{5} e^{x} \cos x$
be the required G.S. of given differential equation.

Ex.: Solve $\left(D^{2}-6 D+13\right) y=e^{3 x} \sin 2 x$
Solution: Let $\left(D^{2}-6 D+13\right) y=e^{3 x} \sin 2 x$
be the given LDE with constant coefficients,
comparing it with $f(D) y=X$, we get,
$f(D)=D^{2}-6 D+13$
and $X=e^{3 x} \sin 2 x$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $D^{2}-6 D+13=0$
$\therefore \mathrm{D}=\frac{6 \pm \sqrt{36-52}}{2}=\frac{6 \pm 4 i}{2}=3 \pm 2 i$ are the roots of an A.E.
$\therefore \mathrm{C} . \mathrm{F} .=e^{3 x}\left(\mathrm{C}_{1} \cos 2 \mathrm{x}+\mathrm{C}_{2} \sin 2 \mathrm{x}\right)$
Now P.I. $=\frac{1}{f(D)} \mathrm{X}$

$$
\begin{aligned}
& =\frac{1}{\left(D^{2}-6 D+13\right)} \mathrm{e}^{3 \mathrm{x}} \sin 2 \mathrm{x} \\
& =\mathrm{e}^{3 \mathrm{x}} \frac{1}{\left[(D+3)^{2}-6(D+3)+13\right]} \sin 2 \mathrm{x} \\
& =\mathrm{e}^{3 \mathrm{x}} \frac{1}{\left(D^{2}+6 D+9-6 D-18+13\right)} \sin 2 \mathrm{x} \\
& =\mathrm{e}^{3 \mathrm{x}} \frac{1}{\left(D^{2}+4\right)} \sin 2 \mathrm{x} \\
& =\mathrm{e}^{3 \mathrm{x}} \frac{-x \cos 2 x}{(2 \times 2)}
\end{aligned}
$$

$$
=-\frac{1}{4} \mathrm{xe}^{3 \mathrm{x}} \sin 2 x
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $\mathrm{y}=e^{3 x}\left(\mathrm{C}_{1} \cos 2 \mathrm{x}+\mathrm{C}_{2} \sin 2 \mathrm{x}\right)-\frac{1}{4} \mathrm{xe}^{3 \mathrm{x}} \sin 2 x$
be the required G.S. of given differential equation.

Ex.: Solve $\left(D^{2}-4 D+3\right) y=e^{x} \cos 2 x$
Solution: Let $\left(D^{2}-4 D+3\right) y=e^{x} \cos 2 x$
be the given LDE with constant coefficients, comparing it with $f(D) y=X$, we get,
$f(D)=D^{2}-4 D+3=(D-1)(D-3)$

and $\mathrm{X}=\mathrm{e}^{\mathrm{x}} \cos 2 \mathrm{x}$

\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $(D-1)(D-3)=0$
$\therefore \mathrm{D}=1,3$ are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} e^{x}+\mathrm{C}_{2} e^{3 x}$
Now P.I. $=\frac{1}{f(D)} \mathrm{X}$

$$
\begin{aligned}
& =\frac{1}{\left(D^{2}-4 D+3\right)} \mathrm{e}^{\mathrm{x}} \cos 2 \mathrm{x} \\
& =\mathrm{e}^{\mathrm{x}} \frac{1}{\left[(D+1)^{2}-4(D+1)+3\right]} \cos 2 \mathrm{x} \\
& =\mathrm{e}^{\mathrm{x}} \frac{1}{\left(D^{2}+2 D+1-4 D-4+3\right)} \cos 2 \mathrm{x} \\
& =\mathrm{e}^{\mathrm{x}} \frac{1}{\left(D^{2}-2 D\right)} \cos 2 \mathrm{x} \\
& =\mathrm{e}^{\mathrm{x}} \frac{1}{(-4-2 D)} \cos 2 \mathrm{x} \\
& =-\frac{1}{2} \mathrm{e}^{\mathrm{x}} \frac{1}{(D+2)} \cos 2 x \\
& =-\frac{1}{2} \mathrm{e}^{\mathrm{x}} \frac{(D-2)}{\left(D^{2}-4\right)} \cos 2 x \\
& =-\frac{1}{2} \mathrm{e}^{\mathrm{x}} \frac{(-2 \sin 2 x-2 \cos 2 x)}{(-4-4)} \\
& =-\frac{1}{8} \mathrm{e}^{\mathrm{x}}(\sin 2 x+\cos 2 x)
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $\mathrm{y}=\mathrm{C}_{1} e^{x}+\mathrm{C}_{2} e^{3 x}-\frac{1}{8} \mathrm{e}^{\mathrm{x}}(\sin 2 x+\cos 2 x)$
be the required G.S. of given differential equation.

Ex.: Solve $\left(D^{2}-2 D+1\right) y=x^{2} e^{3 x}$
Solution: Let $\left(D^{2}-2 D+1\right) y=x^{2} e^{3 x}$
be the given LDE with constant coefficients, comparing it with $f(D) y=X$, we get,
$\mathrm{f}(\mathrm{D})=\mathrm{D}^{2}-2 \mathrm{D}+1=(\mathrm{D}-1)^{2}$ and $\mathrm{X}=\mathrm{x}^{2} \mathrm{e}^{3 \mathrm{x}}$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $(\mathrm{D}-1)^{2}=0$
$\therefore \mathrm{D}=1,1$ are the roots of an A.E.
\therefore C.F. $=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) e^{x}$
Now P.I. $=\frac{1}{f(D)} \mathrm{X}$

$$
=\frac{1}{\left(D^{2}-2 D+1\right)} \mathrm{x}^{2} \mathrm{e}^{3 \mathrm{x}}
$$

$$
=\mathrm{e}^{3 \mathrm{x}} \frac{1}{\left[(D+3)^{2}-2(D+3)+1\right]} \mathrm{x}^{2}
$$

$$
=\mathrm{e}^{3 \mathrm{x}} \frac{1}{\left(D^{2}+6 D+9-2 D-6+1\right)} \mathrm{x}^{2}
$$

$$
=\mathrm{e}^{3 \mathrm{x}} \frac{1}{\left(D^{2}+4 D+4\right)} \mathrm{x}^{2}
$$

$$
=\mathrm{e}^{3 \mathrm{x}} \frac{1}{4\left(1+D+\frac{D^{2}}{4}\right)} \mathrm{x}^{2}
$$

$$
=\frac{1}{4} \mathrm{e}^{3 \mathrm{x}}\left[1-\left(\mathrm{D}+\frac{D^{2}}{4}\right)+\left(\mathrm{D}+\frac{D^{2}}{4}\right)^{2}-\ldots\right] \mathrm{x}^{2}
$$

$$
=\frac{1}{4} \mathrm{e}^{3 \mathrm{x}}\left[1-\mathrm{D}-\frac{D^{2}}{4}+\mathrm{D}^{2}+\frac{D^{3}}{2}+\ldots\right] \mathrm{x}^{2}
$$

$$
=\frac{1}{4} e^{3 x}\left[x^{2}-2 x-\frac{1}{2}+2+0\right]
$$

$$
=\frac{1}{8} e^{3 x}\left(2 x^{2}-4 x+3\right)
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=\left(C_{1}+C_{2} x\right) e^{x}+\frac{1}{8} e^{3 x}\left(2 x^{2}-4 x+3\right)$
be the required G.S. of given differential equation.
Type- V : When $\mathrm{X}=\mathrm{xV}$, where V is a function of x only.
Theorem: If $D \equiv \frac{d}{d x}, f(D)$ is polynomial in D and V is a function of x only, then

$$
\frac{1}{f(D)} \mathrm{xV}=\left[\mathrm{x}-\frac{1}{f(D)} \mathrm{f}^{\prime}(\mathrm{D})\right] \frac{1}{f(D)} \mathrm{V} .
$$

Proof: Let $f(D) y=x V$, where V is a function of x only.
For any function U of x, By using Leibnitz's theorem, we get,
$D^{r} x U=x D^{r} U+r D^{r-1} U \quad \forall r \in N \ldots$ (i)
Let $f(D)=D^{n}+P_{1} D^{n-1}+P_{2} D^{n-2}+\ldots+P_{n-1} D+P_{n}$
$\therefore \mathrm{f}^{\prime}(\mathrm{D})=\mathrm{nD}^{\mathrm{n}-1}+\mathrm{P}_{1}(\mathrm{n}-1) \mathrm{D}^{\mathrm{n}-2}+\mathrm{P}_{2}(\mathrm{n}-2) \mathrm{D}^{\mathrm{n}-3}+\ldots+\mathrm{P}_{\mathrm{n}-1} \ldots$ (iii)

$$
\begin{aligned}
\therefore f(D)(x U) & =\left[D^{n}+P_{1} D^{n-1}+P_{2} D^{n-2}+\ldots+P_{n-1} D+P_{n}\right](x U) \\
\quad= & D^{n}(x U)+P_{1} D^{n-1}(x U)+P_{2} D^{n-2}(x U)+\ldots+P_{n-1} D(x U)+P_{n}(x U) \\
= & x D^{n} U+n D^{n-1} U+P_{1}\left[x D^{n-1} U+(n-1) D^{n-2} U\right]+P_{2}\left[x D^{n-2} U+(n-2) D^{n-3} U\right)+\ldots \\
& +P_{n-1}(x D U+U)+P_{n}(x U) \\
& =x\left[D^{n}+P_{1} D^{n-1}+P_{2} D^{n-2}+\ldots+P_{n-1} D+P_{n}\right] U \\
& +\left[n D^{n-1}+P_{1}(n-1) D^{n-2}+P_{2}(n-2) D^{n-3}+\ldots+P_{n-1}\right] U
\end{aligned}
$$

$\therefore \mathrm{f}(\mathrm{D})(\mathrm{xU})=\mathrm{xf}(\mathrm{D}) \mathrm{U}+\mathrm{f}^{\prime}(\mathrm{D}) \mathrm{U}$
By taking $\mathrm{U}=\frac{1}{f(D)} \mathrm{V}$, we get,
$\mathrm{f}(\mathrm{D})\left(\mathrm{x} \frac{1}{f(D)} \mathrm{V}\right)=\mathrm{xf}(\mathrm{D}) \frac{1}{f(D)} \mathrm{V}+\mathrm{f}^{\prime}(\mathrm{D}) \frac{1}{f(D)} \mathrm{V}$
i.e. $\mathrm{f}(\mathrm{D})\left(\mathrm{x} \frac{1}{f(D)} \mathrm{V}\right)=\mathrm{xV}+\mathrm{f}^{\prime}(\mathrm{D}) \frac{1}{f(D)} \mathrm{V}$
$\therefore \mathrm{xV}=\mathrm{f}(\mathrm{D})\left(\mathrm{x} \frac{1}{f(D)} \mathrm{V}\right)-\mathrm{f}^{\prime}(\mathrm{D}) \frac{1}{f(D)} \mathrm{V}$
Operating $\frac{1}{f(D)}$ on both sides, we get,
$\therefore \frac{1}{f(D)}(\mathrm{xV})=\mathrm{x} \frac{1}{f(D)} \mathrm{V}-\frac{1}{f(D)} \mathrm{f}^{\prime}(\mathrm{D}) \frac{1}{f(D)} \mathrm{V}$
$\therefore \frac{1}{f(D)}(\mathrm{xV})=\left[\mathrm{x}-\frac{1}{f(D)} \mathrm{f}^{\prime}(\mathrm{D})\right] \frac{1}{f(D)} \mathrm{V}$
Hence proved.

Ex.: Solve $\left(D^{2}+1\right) y=x \cos 2 x$
Solution: Let $\left(D^{2}+1\right) y=x \cos 2 x$
be the given LDE with constant coefficients,
comparing it with $f(D) y=X$, we get,
$f(D)=D^{2}+1$ and $X=x \cos 2 x$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $\mathrm{D}^{2}+1=0$
$\therefore \mathrm{D}= \pm i$ are the roots of an A.E.
\therefore C.F. $=e^{0 x}\left(\mathrm{C}_{1} \cos \mathrm{x}+\mathrm{C}_{2} \sin \mathrm{x}\right)$
i.e. C.F. $=C_{1} \cos x+C_{2} \sin x$

Now P.I. $=\frac{1}{f(D)} \mathrm{X}$

$$
=\frac{1}{\left(D^{2}+1\right)} x \cos 2 x
$$

$$
\begin{aligned}
& =\left[\mathrm{x}-\frac{1}{\left(D^{2}+1\right)}(2 D)\right] \frac{1}{\left(D^{2}+1\right)} \cos 2 x \\
& =\left[\mathrm{x}-\frac{1}{\left(D^{2}+1\right)}(2 D)\right] \frac{\cos 2 x}{(-4+1)} \\
& =-\frac{1}{3}\left[\mathrm{x} \cos 2 x-\frac{1}{\left(D^{2}+1\right)}(2 D \cos 2 x)\right] \\
& =-\frac{1}{3}\left[\mathrm{x} \cos 2 x-\frac{1}{\left(D^{2}+1\right)}(-4 \sin 2 x)\right] \\
& =-\frac{1}{3}\left[\mathrm{x} \cos 2 x+\frac{4 \sin 2 x}{(-4+1)}\right] \\
& =-\frac{1}{3} x \cos 2 x+\frac{4}{9} \sin 2 x
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $\mathrm{y}=\mathrm{C}_{1} \cos \mathrm{x}+\mathrm{C}_{2} \sin \mathrm{x}-\frac{1}{3} \mathrm{x} \cos 2 x+\frac{4}{9} \sin 2 x$
be the required G.S. of given differential equation.

Ex.: Solve $\left(\mathrm{D}^{2}+2 \mathrm{D}+1\right) \mathrm{y}=\mathrm{x} \cos \mathrm{x}$
Solution: Let $\left(D^{2}+2 D+1\right) y=x \cos x$
be the given LDE with constant coefficients,
comparing it with $\mathrm{f}(\mathrm{D}) \mathrm{y}=\mathrm{X}$, we get,
$\mathrm{f}(\mathrm{D})=\mathrm{D}^{2}+2 \mathrm{D}+1=(\mathrm{D}+1)^{2}$
and $\mathrm{X}=\mathrm{x} \cos \mathrm{x}$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $(\mathrm{D}+1)^{2}=0$
$\therefore \mathrm{D}=-1,-1$ are the roots of an A.E.
\therefore C.F. $=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) e^{-x}$
Now P.I. $=\frac{1}{f(D)} \mathrm{X}$

$$
\begin{aligned}
& =\frac{1}{\left(D^{2}+2 D+1\right)} \mathrm{x} \cos \mathrm{x} \\
& =\left[\mathrm{x}-\frac{1}{\left(D^{2}+2 D+1\right)}(2 D+2)\right] \frac{1}{\left(D^{2}+2 D+1\right)} \cos x \\
& =\left[\mathrm{x}-\frac{2}{\left(D^{2}+2 D+1\right)}(D+1)\right] \frac{1}{(-1+2 D+1)} \cos x \\
& =\frac{1}{2}\left[\mathrm{x}-\frac{2}{(D+1)^{2}}(D+1)\right] \int \cos x \mathrm{dx} \\
& =\frac{1}{2}\left[\mathrm{x}-\frac{2}{(D+1)}\right] \sin x \\
& =\frac{1}{2}\left[\mathrm{x} \sin x-\frac{2}{\left(D^{2}-1\right)}(D-1)\right] \sin x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[x \sin x-\frac{2}{\left(D^{2}-1\right)}(\cos x-\sin x)\right] \\
& =\frac{1}{2}\left[x \sin x-\frac{2(\cos x-\sin x)}{(-1-1)}\right] \\
& =\frac{1}{2}(x \sin x+\cos x-\sin x)
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) e^{-x}+\frac{1}{2}(\mathrm{x} \sin x+\cos x-\sin x)$
be the required G.S. of given differential equation.

Ex.: Solve $\left(D^{2}+4\right) y=x \sin x$
Solution: Let $\left(\mathrm{D}^{2}+4\right) \mathrm{y}=\mathrm{x} \sin \mathrm{x}$
be the given LDE with constant coefficients,
comparing it with $f(D) y=X$, we get,
$f(D)=D^{2}+4$ and $X=x \sin x$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $\mathrm{D}^{2}+4=0$
$\therefore \mathrm{D}= \pm 2 i$ are the roots of an A.E.
\therefore C.F. $=e^{0 x}\left(\mathrm{C}_{1} \cos 2 \mathrm{x}+\mathrm{C}_{2} \sin 2 \mathrm{x}\right)$
i.e. C.F. $=C_{1} \cos 2 x+C_{2} \sin 2 x$

Now P.I. $=\frac{1}{f(D)} \mathrm{X}$
$=\frac{1}{\left(D^{2}+4\right)} \mathrm{x} \sin \mathrm{x}$
$=\left[\mathrm{x}-\frac{1}{\left(D^{2}+4\right)}(2 D)\right] \frac{1}{\left(D^{2}+4\right)} \sin x$
$=\left[\mathrm{x}-\frac{2}{\left(D^{2}+4\right)} D\right] \frac{1}{(-1+4)} \sin x$
$=\frac{1}{3}\left[\mathrm{x} \sin x-\frac{2}{\left(D^{2}+4\right)} \cos x\right]$
$=\frac{1}{3}\left[\mathrm{x} \sin x-\frac{2 \cos x}{(-1+4)}\right]$
$=\frac{1}{3}\left[\mathrm{x} \sin x-\frac{2}{3} \cos x\right]$
$=\frac{1}{9}(3 \mathrm{x} \sin x-2 \cos x)$
\therefore G.S. $=$ C.F. + P.I.
i.e. $y=C_{1} \cos 2 x+C_{2} \sin 2 x+\frac{1}{9}(3 x \sin x-2 \cos x)$
be the required G.S. of given differential equation.

Ex.: Solve (D ${ }^{2}-1$) y $=x \sin x$
Solution: Let $\left(D^{2}-1\right) y=x \sin x$
be the given LDE with constant coefficients,
comparing it with $f(D) y=X$, we get,
$\mathrm{f}(\mathrm{D})=\mathrm{D}^{2}-1=(\mathrm{D}-1)(\mathrm{D}+1)$

and $X=x \sin x$

\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $(D-1)(D+1)=0$
$\therefore \mathrm{D}=1,-1$ are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} e^{x}+\mathrm{C}_{2} e^{-x}$
Now P.I. $=\frac{1}{f(D)} \mathrm{X}$
$=\frac{1}{\left(D^{2}-1\right)} \mathrm{x} \sin \mathrm{x}$
$=\left[\mathrm{x}-\frac{1}{\left(D^{2}-1\right)}(2 D)\right] \frac{1}{\left(D^{2}-1\right)} \sin x$
$=\left[\mathrm{x}-\frac{2}{\left(D^{2}-1\right)} D\right] \frac{1}{(-1-1)} \sin x$
$=-\frac{1}{2}\left[\mathrm{x} \sin x-\frac{2}{\left(D^{2}-1\right)} \cos x\right]$
$=-\frac{1}{2}\left[\mathrm{x} \sin x-\frac{2 \cos x}{(-1-1)}\right]$
$=-\frac{1}{2}(x \sin x+\cos x)$
\therefore G.S. $=$ C.F. + P.I.
i.e. $\mathrm{y}=\mathrm{C}_{1} e^{x}+\mathrm{C}_{2} e^{-x}-\frac{1}{2}(\mathrm{x} \sin x+\cos x)$
be the required G.S. of given differential equation.
Ex.: Solve $\left(D^{2}-2 D+1\right) y=x \sin x$
Solution: Let $\left(D^{2}-2 D+1\right) y=x \sin x$
be the given LDE with constant coefficients, comparing it with $f(\mathrm{D}) \mathrm{y}=\mathrm{X}$, we get,
$f(D)=D^{2}-2 D+1=(D-1)^{2}$
and $\mathrm{X}=\mathrm{x} \sin \mathrm{x}$
\therefore It's A.E. is $\mathrm{f}(\mathrm{D})=0$
i.e. $(\mathrm{D}-1)^{2}=0$
$\therefore \mathrm{D}=1,1$ are the roots of an A.E.
\therefore C.F. $=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) e^{x}$
Now P.I. $=\frac{1}{f(D)} \mathrm{X}$

$$
\begin{aligned}
& =\frac{1}{\left(D^{2}-2 D+1\right)} \mathrm{x} \sin \mathrm{x} \\
& =\left[\mathrm{x}-\frac{1}{\left(D^{2}-2 D+1\right)}(2 D-2)\right] \frac{1}{\left(D^{2}-2 D+1\right)} \sin x
\end{aligned}
$$

$$
=\left[\mathrm{x}-\frac{2}{\left(D^{2}-2 D+1\right)}(D-1)\right] \frac{1}{(-1-2 D+1)} \sin x
$$

$$
=\frac{1}{2}\left[\mathrm{x}-\frac{2}{(D-1)^{2}}(D-1)\right] \int(-\sin x) \mathrm{dx}
$$

$$
=\frac{1}{2}\left[\mathrm{x}-\frac{2}{(D-1)}\right] \cos x
$$

$$
=\frac{1}{2}\left[x \cos x-\frac{2}{\left(D^{2}-1\right)}(D+1)\right] \cos x
$$

$$
=\frac{1}{2}\left[x \cos x-\frac{2}{\left(D^{2}-1\right)}(-\sin x+\cos x)\right]
$$

$$
=\frac{1}{2}\left[x \cos x-\frac{2(-\sin x+\cos x)}{(-1-1)}\right]
$$

$$
=\frac{1}{2}(x \cos x-\sin x+\cos x)
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=\left(C_{1}+C_{2} x\right) e^{x}+\frac{1}{2}(x \cos x-\sin x+\cos x)$
be the required G.S. of given differential equation.

MULTIPLE CHOICE QUESTIONS (MCQ'S)

1) A differential equation of the form $\frac{d^{n} y}{d x^{n}}+p_{1} \frac{d^{n-1} y}{d x^{n-1}}+p_{2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots . .+p_{n-1} \frac{d y}{d x}+p_{n} \mathrm{y}=\mathrm{X}$ i.e. $\mathrm{f}(\mathrm{D}) \mathrm{y}=\mathrm{X}$, where $\mathrm{D} \equiv \frac{d}{d x} ; p_{1}, p_{2}, \ldots, p_{n}$ are constants and X is a function of x only, is called a differential equation with constant co-efficients.
A) linear
B) homogeneous
C) quadratic
D) non-homogeneous
2) An associated equation of linear differential equation with constant coefficient's $f(D) y=X$ is \qquad
A) $f(D)=0$
B) $f(D)=X$
C) $f(D) y=0$
D) None of these
3) An auxiliary equation (A.E.) of linear differential equation with constant coefficient's $f(D) y=X$ is
A) $f(D)=0$
B) $f(D)=X$
C) $f(D) y=0$
D) None of these
4) If $f(D) y=X$ is a LDE with constant coefficient's, then $f(D) y=0$ is called equation.
A) complementary B) auxiliary
C) associated
D) None of these
5) If $f(D) y=X$ is a LDE with constant coefficient's, then $f(D)=0$ is called \qquad equation
A) complementary
B) auxiliary
C) associated
D) None of these
6) If $\operatorname{LDE} f(D) y=X$ has C.F. $=u$ and P.I. $=v$, then its G.S. is $y=$ \qquad
A) uv
B) $u-v$
C) $u+v$
D) None of these
7) If LDE is $f(D) y=0$, then P.I. $=\ldots \ldots$
A) -1
B) 0
C) 1
D) None of these
8) If an A.E. $f(D)=0$ of $\operatorname{LDE} f(D) y=X$ has n distinct roots $m_{1,}, m_{2}, m_{3}, \ldots \ldots \ldots ., m_{n}$ then C.F. $=\ldots \ldots$
A) $\mathrm{C}_{1} e^{m_{1} x}+\mathrm{C}_{2} e^{m_{2} x}+\mathrm{C}_{3} e^{m_{3} x}+\ldots \ldots . .+\mathrm{C}_{\mathrm{n}} e^{m_{n} x}$
B) $\mathrm{C}_{1} e^{-m_{1} x}+\mathrm{C}_{2} e^{-m_{2} x}+\mathrm{C}_{3} e^{-m_{3} x}+\ldots \ldots . .+\mathrm{C}_{\mathrm{n}} e^{-m_{n} x}$
C) $\mathrm{C}_{1} e^{x}+\mathrm{C}_{2} e^{m_{2} x}+\mathrm{C}_{3} e^{m_{3} x}+\ldots \ldots . .+\mathrm{C}_{\mathrm{n}} e^{m_{n} x}$
D) None of these
9) If an A.E. $f(D)=0$ of $\operatorname{LDE} f(D) y=0$ has n distinct roots $m_{1,} m_{2}, m_{3}$, m_{n} then its G.S. is $\mathrm{y}=\ldots$...
A) $\mathrm{C}_{1} e^{m_{1} x}+\mathrm{C}_{2} e^{m_{2} x}+\mathrm{C}_{3} e^{m_{3} x}+\ldots \ldots . .+\mathrm{C}_{\mathrm{n}} e^{m_{n} x}$
B) $\mathrm{C}_{1} e^{-m_{1} x}+\mathrm{C}_{2} e^{-m_{2} x}+\mathrm{C}_{3} e^{-m_{3} x}+\ldots \ldots . .+\mathrm{C}_{\mathrm{n}} e^{-m_{n} x}$
C) $\mathrm{C}_{1} e^{x}+\mathrm{C}_{2} e^{m_{2} x}+\mathrm{C}_{3} e^{m_{3} x}+\ldots \ldots . .+\mathrm{C}_{\mathrm{n}} e^{m_{n} x}$
D) None of these
10) If an A.E. $f(D)=0$ of $\operatorname{LDE} f(D) y=X$ has root m, repeated k times, then C.F. $=$
A) $\mathrm{C}_{1} e^{m x}+\mathrm{C}_{2} e^{m x}+\mathrm{C}_{3} e^{m x}+\ldots \ldots+\mathrm{C}_{\mathrm{k}} e^{m x}$
B) $\mathrm{C} e^{m x}$
C) $\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}+\mathrm{C}_{3} x^{2}+\ldots+\mathrm{C}_{\mathrm{k}} x^{k-1}\right) e^{m x}$
D) None of these
11) If an A.E. $f(D)=0$ of $\operatorname{LDE} f(D) y=0$ has root m, repeated k times, then its G.S. is $\mathrm{y}=\ldots \ldots$
A) $\mathrm{C}_{1} e^{m x}+\mathrm{C}_{2} e^{m x}+\mathrm{C}_{3} e^{m x}+\ldots \ldots+\mathrm{C}_{\mathrm{k}} e^{m x}$
B) $C e^{m x}$
C) $\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}+\mathrm{C}_{3} x^{2}+\ldots+\mathrm{C}_{\mathrm{k}} x^{k-1}\right) e^{m x}$
D) None of these
12) If an A.E. $f(D)=0$ of $\operatorname{LDE} \mathrm{f}(\mathrm{D}) \mathrm{y}=\mathrm{X}$ has complex roots $\alpha \pm i \beta$, then C.F.=
A) $\mathrm{C}_{1} e^{\alpha x}+\mathrm{C}_{2} e^{\beta x}$
B) $e^{\beta x}\left(\mathrm{C}_{1} \cos \alpha \mathrm{x}+\mathrm{C}_{2} \sin \alpha \mathrm{x}\right)$
C) $e^{\alpha x}\left(\mathrm{C}_{1} \cos \beta \mathrm{x}+\mathrm{C}_{2} \sin \beta \mathrm{x}\right)$
D) None of these
13) If an A.E. $\mathrm{f}(\mathrm{D})=0$ of $\operatorname{LDE} \mathrm{f}(\mathrm{D}) \mathrm{y}=0$ has complex roots $\alpha \pm i \beta$, then its G.S. is $\mathrm{y}=$ \qquad
A) $\mathrm{C}_{1} e^{\alpha x}+\mathrm{C}_{2} e^{\beta x}$
B) $e^{\beta x}\left(\mathrm{C}_{1} \cos \alpha \mathrm{x}+\mathrm{C}_{2} \sin \alpha \mathrm{x}\right)$
C) $e^{\alpha x}\left(\mathrm{C}_{1} \cos \beta \mathrm{x}+\mathrm{C}_{2} \sin \beta \mathrm{x}\right)$
D) None of these
14) If an A.E. $\mathrm{f}(\mathrm{D})=0$ of $\operatorname{LDE} \mathrm{f}(\mathrm{D}) \mathrm{y}=\mathrm{X}$ has complex roots $\alpha \pm i \beta$ occurs twice, then C.F. $=\ldots .$.
A) $\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) e^{\alpha x}+\left(\mathrm{C}_{3}+\mathrm{C}_{4} \mathrm{x}\right) e^{\beta x}$
B) $e^{\alpha x}\left[\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) \cos \beta \mathrm{x}+\left(\mathrm{C}_{3}+\mathrm{C}_{4} \mathrm{x}\right) \sin \beta \mathrm{x}\right]$
C) $e^{\alpha x}\left(\mathrm{C}_{1} \cos \beta \mathrm{x}+\mathrm{C}_{2} \sin \beta \mathrm{x}\right)$
D) None of these
15) If an A.E. $\mathrm{f}(\mathrm{D})=0$ of $\operatorname{LDE} \mathrm{f}(\mathrm{D}) \mathrm{y}=0$ has complex roots $\alpha \pm i \beta$ occurs twice, then its G.S. is $\mathrm{y}=$ \qquad
A) $\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) e^{\alpha x}+\left(\mathrm{C}_{3}+\mathrm{C}_{4} \mathrm{x}\right) e^{\beta x}$
B) $e^{\alpha x}\left[\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) \cos \beta \mathrm{x}+\left(\mathrm{C}_{3}+\mathrm{C}_{4} \mathrm{x}\right) \sin \beta \mathrm{x}\right]$
C) $\left(\mathrm{C}_{1} \cos \beta \mathrm{x}+\mathrm{C}_{2} \sin \beta \mathrm{x}\right)$
D) None of these
16) If a and b are real roots of LDE with constant coefficient's $f(D) y=0$, then its G.S. is $\mathrm{y}=$
A) $C_{1} e^{a x}+C_{2} e^{b x}$
B) $\mathrm{C}_{1} \mathrm{e}^{\mathrm{ax}}+\mathrm{C}_{2} \mathrm{e}^{-\mathrm{bx}}$
C) $\mathrm{C}_{1} \mathrm{e}^{-\mathrm{ax}}+\mathrm{C}_{2} \mathrm{e}^{-\mathrm{bx}}$
D) None of these
17) The solution of LDE with constant coefficient's $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}-7 y=0$ is $y=\ldots \ldots$.
A) $C_{1} e^{x}+C_{2} e^{-7 x}$
B) $C_{1} e^{-x}+C_{2} e^{-7 x}$
C) $C_{1} e^{-x}+C_{2} e^{7 x}$
D) None of these
18) The G.S of $\operatorname{LDE}\left(D^{2}+6 D-7\right) y=0$ is $y=$ \qquad
A) $C_{1} e^{x}+C_{2} e^{-7 x}$
B) $\mathrm{C}_{1} \mathrm{e}^{-x}+\mathrm{C}_{2} e^{-7 x}$
C) $\mathrm{C}_{1} \mathrm{e}^{-x}+\mathrm{C}_{2} \mathrm{e}^{7 x}$
D) None of these
19) The solution of LDE with constant coefficient's $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0$ is $y=\ldots \ldots$.
A) $\mathrm{C}_{1} \mathrm{e}^{2 x}+\mathrm{C}_{2} \mathrm{e}^{-3 x}$
B) $\mathrm{C}_{1} \mathrm{e}^{-2 x}+\mathrm{C}_{2} \mathrm{e}^{-3 x}$
C) $C_{1} e^{2 x}+C_{2} e^{3 x}$
D) None of these
20) The G.S of $\operatorname{LDE}\left(D^{2}-5 D+6\right) y=0$ is $y=$
A) $\mathrm{C}_{1} \mathrm{e}^{2 x}+\mathrm{C}_{2} \mathrm{e}^{-3 x}$
B) $\mathrm{C}_{1} \mathrm{e}^{-2 x}+\mathrm{C}_{2} \mathrm{e}^{-3 x}$
C) $\mathrm{C}_{1} \mathrm{e}^{2 \mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{3 \mathrm{x}}$
D) None of these
21) The solution of LDE with constant coefficient's $\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+12 y=0$ is $y=$
A) $C_{1} e^{3 x}+C_{2} e^{4 x}$
B) $C_{1} e^{-3 x}+C_{2} e^{-4 x}$
C) $C_{1} e^{-3 x}+C_{2} e^{4 x}$
D) None of these
22) The G.S of $\left(D^{2}-7 D+12\right) y=0$ is $y=$ \qquad
A) $C_{1} e^{3 x}+C_{2} e^{4 x}$
B) $C_{1} e^{-3 x}+C_{2} e^{-4 x}$
C) $\mathrm{C}_{1} \mathrm{e}^{-3 \mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{4 \mathrm{x}}$
D) None of these
23) The G.S of $\left(2 D^{2}+5 D-12\right) y=0$ is $y=$ \qquad
A) $\mathrm{C}_{1} e^{-\frac{3}{2} x}+\mathrm{C}_{2} \mathrm{e}^{-4 \mathrm{x}}$
B) $\mathrm{C}_{1} e^{\frac{3}{2} x}+\mathrm{C}_{2} \mathrm{e}^{-4 x}$
C) $C_{1} e^{-3 x}+C_{2} e^{4 x}$
D) None of these
24) The C.F. of $\left(2 D^{2}+3 D-2\right) y=0$ is
A) $\mathrm{C}_{1} e^{\frac{1}{2} x}+\mathrm{C}_{2} \mathrm{e}^{-2 x}$
B) $\mathrm{C}_{1} e^{\frac{3}{2} x}+\mathrm{C}_{2} \mathrm{e}^{-4 x}$
C) $C_{1} e^{-3 x}+C_{2} e^{4 x}$
D) None of these
25) The G.S of $(D-1)^{2}\left(D^{2}-1\right) y=0$ is $y=\ldots \ldots$
A) $\mathrm{C}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{\mathrm{x}}+\mathrm{C}_{3} \mathrm{e}^{-\mathrm{x}}$
B) $\left(C_{1}+C_{2} x\right) e^{x}+C_{3} e^{-x}$
C) $\left(C_{1}+C_{2} x+C_{3} x^{2}\right) e^{x}+C_{4} e^{-x}$
D) None of these
26) The solution of LDE with constant coefficient's $\left(D^{2}+16\right) y=0$ is $y=\ldots \ldots .$.
A) $e^{-x}\left(C_{1} \cos 4 x+C_{2} \sin 4 x\right)$
B) $C_{1} \cos 4 x+C_{2} \sin 4 x$
C) $e^{x}\left(C_{1} \cos 4 x+C_{2} \sin 4 x\right)$
D) None of these
27) The solution of LDE with constant coefficient's $\left(D^{2}-6 D+13\right) y=0$ is $y=$
A) $e^{3 x}\left(C_{1} \cos x+C_{2} \sin x\right)$
B) $e^{2 x}\left(C_{1} \cos 3 x+C_{2} \sin 3 x\right)$
C) $e^{3 x}\left(C_{1} \cos 2 x+C_{2} \sin 2 x\right)$
D) None of these
28) The solution of LDE with constant coefficient's $\left(D^{2}-6 D+9\right) y=0$ is $y=$ \qquad
A) $\left(C_{1}+C_{2} x\right) e^{-3 x}$
B) $\left(C_{1}+C_{2} x\right) e^{3 x}$
C) $\left(C_{1} e^{3 x}+C_{2} e^{3 x}\right)$
D) None of these
29) If $f(D) y=X$ is a linear differential equation with constant coefficient's then P.I. $=\ldots .$. .
A) $\frac{1}{f(D)} X$
B) $f(D) y$
C) $f(D) X$
D) $\frac{1}{f(D)} y$
30) If $\mathrm{D} \equiv \frac{d}{d x}$ and X is a function of x then $\frac{1}{D} \mathrm{X}=$ \qquad
A) $e^{\int x d x}$
B) $\int X d x$
C) $\frac{d X}{d x}$
D) None of these
31) If $\mathrm{D} \equiv \frac{d}{d x}$ and $\mathrm{f}(0) \neq 0$, then $\frac{1}{f(D)} \mathrm{k}=\ldots \ldots$
A) $\frac{1}{f(0)}$
B) $\frac{k}{f(0)}$
C) $\frac{1}{f(a)}$
D) None of these
32) If $\mathrm{D} \equiv \frac{d}{d x}$ then $\frac{1}{D} \sin \mathrm{x}=$.
A) $\cos x$
B) $-\cos x$
C) $\sin x$
D) None of these
33) If $\mathrm{D} \equiv \frac{d}{d x}$ then $\frac{1}{D} \cos \mathrm{x}=\ldots$..
A) $\cos x$
B) $-\sin x$
C) $\sin x$
D) None of these
34) If X is a function of x then $\frac{1}{D-m} X=\ldots$..
A) $e^{-m x} \int X e^{-m x} \mathrm{dx}$
B) $e^{m x} \int X e^{m x} \mathrm{dx}$
C) $e^{m x} \int X e^{-m x} \mathrm{dx}$
D) None of these
35) If $f(D) y=e^{a x}$ is linear differential equation with constant coefficient's with $\mathrm{f}(\mathrm{a}) \neq 0$ then $\frac{1}{f(D)} \mathrm{e}^{\mathrm{ax}}=\ldots \ldots$
A) $\frac{x^{r} e^{a x}}{r!}$
B) $\frac{e^{a x}}{f(a)}$
C) $\frac{x^{r} e^{a x}}{f(a)}$
D) None of these
36) $\frac{1}{(D-a)^{r}} \mathrm{e}^{\mathrm{ax}}=\ldots \ldots$
A) $\frac{x^{r} e^{a x}}{r!}$
B) $\frac{e^{a x}}{f(a)}$
C) $\frac{x^{r} e^{a x}}{f(a)}$
D) None of these
37) If $\phi(a) \neq 0$, then $\frac{1}{(D-a)^{r} \phi(D)} \mathrm{e}^{\mathrm{ax}}=\ldots \ldots$
A) $\frac{x^{r} e^{a x}}{r!}$
B) $\frac{x^{r} e^{a x}}{r!\phi(a)}$
C) $\frac{x^{r} e^{a x}}{f(a)}$
D) None of these
38) P.I. of $\operatorname{LDE}\left(\mathrm{D}^{2}-3 \mathrm{D}+2\right) \mathrm{y}=\mathrm{e}^{5 \mathrm{x}}$ is
A) $\frac{x e^{5 x}}{12}$
B) $\frac{e^{5 x}}{2}$
C) $\frac{e^{5 x}}{12}$
D) None of these
39) P.I. of $\operatorname{LDE}\left(\mathrm{D}^{3}+3 \mathrm{D}^{2}+3 \mathrm{D}+1\right) \mathrm{y}=\mathrm{e}^{-\mathrm{x}}$ is $\ldots \ldots$
A) $\frac{x^{3} e^{-x}}{6}$
B) $\frac{e^{-x}}{8}$
C) $\frac{e^{-x}}{3}$
D) None of these
40) P.I. of $\operatorname{LDE} \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=\mathrm{e}^{2 \mathrm{x}}$ is
A) $\frac{e^{2 x}}{4}$
B) $\frac{e^{2 x}}{16}$
C) $\frac{e^{2 x}}{32}$
D) None of these
41) $1+x+x^{2}+x^{3}+\ldots \ldots$ is an expansion of...
A) $(1-x)^{-1}$
B) $(1+x)^{-1}$
C) $(1-x)^{-n}$
D) None of these
42) $1-x+x^{2}-x^{3}+\ldots \ldots$ is an expansion of...
A) $\frac{1}{1-x}$
B) $\frac{1}{1+x}$
C) $(1-x)^{n}$
D) None of these
43) If $\mathrm{f}\left(-\mathrm{a}^{2}\right) \neq 0$, then $\frac{1}{f\left(D^{2}\right)} \sin (\mathrm{ax}+\mathrm{b})=$
A) $\frac{\tan (a x+b)}{f\left(-a^{2}\right)}$
B) $\frac{\sin (a x+b)}{f\left(-a^{2}\right)}$
C) $\frac{\cos (a x+b)}{f\left(-a^{2}\right)}$
D) None of these
44) If $\mathrm{f}(-9) \neq 0$ then $\frac{1}{f\left(D^{2}\right)} \sin (3 \mathrm{x}+5)=\ldots \ldots$.
A) $\frac{\tan (3 x+5)}{f(-25)}$
B) $\frac{\sin (3 x+5)}{f(-9)}$
C) $\frac{\cos (3 x+5)}{f(-25)}$
D) None of these
45) $\frac{1}{\mathrm{D}^{2}+\mathrm{a}^{2}} \sin a x=\ldots \ldots$.
A) $\frac{-x}{2 a} \cos a x$
B) $\frac{-x}{2 a} \sin a x$
C) $\frac{x}{2 a} \cos a x$
D) $\frac{x}{2 a} \sin a x$
46) $\frac{1}{D^{2}+36} \sin (6 x)=\ldots \ldots$.
A) $\frac{-x}{12} \cos 6 x$
B) $\frac{-x}{12} \sin 6 x$
C) $\frac{x}{12} \cos 6 x$
D) $\frac{x}{12} \sin 6 x$
47) $\frac{1}{D^{2}+16} \sin (3 x-5)=$
A) $\frac{\sin (3 x-5)}{16}$
B) $\frac{\sin (3 x-5)}{7}$
C) $\frac{\cos (3 x-5)}{-7}$
D) None of these
48) If $f\left(D^{2}\right)$ is polynomial in D^{2} with constant coefficient's and and $f\left(-a^{2}\right) \neq 0$ then $\frac{1}{f\left(D^{2}\right)} \cos (a x+b)=$
A) $\frac{\tan (a x+b)}{f\left(-a^{2}\right)}$
B) $\frac{\sin (a x+b)}{f\left(-a^{2}\right)}$
C) $\frac{\cos (a x+b)}{f\left(-a^{2}\right)}$
D) None of these
49) If $f\left(D^{2}\right)$ is polynomial in D^{2} with constant coefficient's and and $\mathrm{f}(-4) \neq 0$ then $\frac{1}{\mathrm{f}\left(\mathrm{D}^{2}\right)} \cos (2 \mathrm{x}+3)=$ \qquad
A) $\frac{\tan (2 x+3)}{f(-4)}$
B) $\frac{\sin (2 x+3)}{f(-4)}$
C) $\frac{\cos (2 x+3)}{f(-4)}$
D) None of these
50) $\frac{1}{D^{2}+a^{2}} \cos a x=\ldots \ldots$.
A) $\frac{-x}{2 a} \cos a x$
B) $\frac{-x}{2 a} \sin a x$
C) $\frac{x}{2 a} \cos a x$
D) $\frac{x}{2 a} \sin a x$
51) $\frac{1}{\mathrm{D}^{2}+16} \cos 4 \mathrm{x}=\ldots \ldots$.
A) $\frac{-x}{8} \cos 4 x$
B) $\frac{-x}{8} \sin 4 x$
C) $\frac{x}{8} \cos 4 x$
D) $\frac{x}{8} \sin 4 x$
52) If $f(D) y=e^{a x} V$ where V is function of x then $\frac{1}{f(D)} e^{a x} V=\ldots \ldots$.
A) $e^{a x} \frac{1}{f(D-a)} V$
B) $e^{a x} \frac{1}{f(D+a)} V$
C) $V \frac{1}{f(D+a)} e^{a x}$
D) None of these
53) If $f(D) y=e^{4 x} V$ where V is function of x then $\frac{1}{f(D)} e^{4 x} V=\ldots \ldots$.
A) $e^{4 x} \frac{1}{f(D-4)} V$
B) $e^{4 x} \frac{1}{f(D+4)} V$
C) $V \frac{1}{f(D+4)} e^{4 x}$
D) None of these
54) If $f(D) y=e^{-3 x} V$ where V is function of x then $\frac{1}{f(D)} e^{-3 x} V=$
A) $e^{-3 x} \frac{1}{f(D-3)} V$
B) $e^{-3 x} \frac{1}{f(D+3)} V$
C) $V \frac{1}{f(D-3)} e^{-3 x}$
D) None of these
55) If $f(D) y=x V$ where V is function of x then $\frac{1}{f(D)}(x V)=\ldots \ldots$.
A) $\left[x-\frac{1}{f(D)} f^{\prime}(D)\right] \frac{1}{f(D)} V$
B) $\left[x+\frac{1}{f(D)} f^{\prime}(D)\right] \frac{1}{f(D)} V$
C) $\left[x-\frac{1}{f r(D)} f(D)\right] \frac{1}{f(D)} V$
D) None of these

UNIT-4: HOMOGENEOUS LINEAR DIFFERENTLAL EQUATIONS

Homogeneous Linear Differential Equation: A differential equation of the form

$$
x^{n} \frac{d^{n} y}{d x^{n}}+p_{1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+p_{2} x^{n-2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots . .+p_{n-1} x \frac{d y}{d x}+p_{n} y=X
$$

where $p_{1}, p_{2}, \ldots, p_{n}$ are constants and X is a function of x only, is called a homogeneous linear differential equation of order n .
Remark: A homogeneous linear differential is also called Cauchy's linear equation.
e.g. i) $x^{4} \frac{d^{4} y}{d x^{4}}+7 x^{3} \frac{d^{3} y}{d x^{3}}-12 x \frac{d y}{d x}+5 y=\log x$
is a homogeneous linear differential equation of order 4.
ii) $x^{8} \frac{d^{7} y}{d x^{7}}+x y=x^{4}$ is a homogeneous linear differential equation of order 7 .
iii) $x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=x^{5}$
is a homogeneous linear differential equation of order 2 .
Method of Solving Homogeneous Linear Differential Equation:
Consider a homogeneous linear differential equation

$$
\begin{equation*}
x^{n} \frac{d^{n} y}{d x^{n}}+p_{1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+p_{2} x^{n-2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots . .+p_{n-1} x \frac{d y}{d x}+p_{n} y=X \ldots \tag{i}
\end{equation*}
$$

To solve it we change variable x to z by putting

$$
x=e^{z} \text { i.e. } z=\log x \text { and } D=\frac{d}{d z}
$$

Now $\frac{d y}{d x}=\frac{d y}{d z} \frac{d z}{d x}=\frac{d y}{d z} \cdot \frac{1}{x} \quad \because \frac{d z}{d x}=\frac{1}{x}$
$\therefore \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{dz}}=\mathrm{Dy}$
Again $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)=\frac{\mathrm{d}}{\mathrm{dx}}\left[\frac{1}{\mathrm{x}} \cdot \frac{\mathrm{dy}}{\mathrm{dz}}\right]$
$=\frac{1}{x} \cdot \frac{d}{d x}\left(\frac{d y}{d z}\right)-\frac{1}{x^{2}} \cdot \frac{d y}{d z}$
$=\frac{1}{x} \cdot \frac{\mathrm{~d}}{\mathrm{dz}}\left(\frac{\mathrm{dy}}{\mathrm{dz}}\right) \frac{\mathrm{dz}}{\mathrm{dx}}-\frac{1}{\mathrm{x}^{2}} \cdot \frac{\mathrm{dy}}{\mathrm{dz}}$
$=\frac{1}{\mathrm{x}^{2}} \cdot \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dz}}{ }^{2}-\frac{1}{\mathrm{x}^{2}} \cdot \frac{\mathrm{dy}}{\mathrm{dz}}$
$\therefore \mathrm{x}^{2} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dz}^{2}} \frac{\mathrm{dy}}{\mathrm{dz}}=\left(\mathrm{D}^{2}-\mathrm{D}\right) \mathrm{y}=\mathrm{D}(\mathrm{D}-1) \mathrm{y}$
Similarly $x^{3} \frac{d^{3} y}{d x^{3}}=D(D-1)(D-2) y$
and so on, in general $x^{r} \frac{d^{r} y}{d x^{r}}=D(D-1)(D-2)(D-3) \ldots(D-r+1) y$
\therefore Equation (i) becomes,
$\left[D(D-1)(D-2) \ldots(D-n+1)+p_{1} D(D-1)(D-2) \ldots(D-n+2)\right.$
$\left.+\mathrm{p}_{2} \mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2) \ldots(\mathrm{D}-\mathrm{n}+3)+\ldots \ldots+\mathrm{p}_{\mathrm{n}-1} \mathrm{D}+\mathrm{p}_{\mathrm{n}}\right] \mathrm{y}=\mathrm{Z}$
Which is linear differential equation with constant coefficients and
Z is function of z . Using usual method, G.S. in y and z is obtained. In this solution putting $\mathrm{z}=\log \mathrm{x}$, we get required G.S. of given equation.

Ex. Solve $x^{2} \frac{d^{2} y}{d^{2}}+x \frac{d y}{d x}-4 y=0$
Solution: Let $\mathrm{x}^{2} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}-4 \mathrm{y}=0 \ldots$ (i)
be the given homogeneous linear differential equation.
To solve it we put $x=e^{z}$ i.e. $z=\log x$ and $D=\frac{d}{d z}$, we get,
$x \frac{d y}{d x}=D y$ and $x^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y$
Equation (i) becomes,
$[D(D-1)+D-4] y=0$
i.e. $\left(D^{2}-4\right) y=0$

Which is LDE with constant coefficients.
It's A.E. is $\mathrm{D}^{2}-4=0$
i.e. $(\mathrm{D}-2)(\mathrm{D}+2)=0$
$\therefore \mathrm{D}=2,-2$ are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{2 z}+\mathrm{C}_{2} \mathrm{e}^{-2 z}$
and P.I. $=0 \quad \because \mathrm{Z}=0$.
\therefore G.S. $=$ C.F. + P.I. $=$ C.F.
i.e. $y=C_{1} e^{2 z}+C_{2} e^{-2 z}$

Using $\mathrm{z}=\log \mathrm{x}$ i.e. $\mathrm{e}^{\mathrm{z}}=\mathrm{x}$, we get,
$y=C_{1} x^{2}+\frac{C_{2}}{x^{2}}$
be the G.S. of given homogeneous LDE.
Ex. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=x^{5}$
Solution: Let $x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=x^{5} \ldots$ (i)
be the given homogeneous linear differential equation.
To solve it we put $x=e^{z}$ i.e. $z=\log x$ and $D=\frac{d}{d z}$, we get,
$x \frac{d y}{d x}=D y$ and $x^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y$
Equation (i) becomes,
$[D(D-1)-4 D+6] y=e^{5 z}$
i.e. $\left(D^{2}-5 D+6\right) y=e^{5 z}$

Which is LDE with constant coefficients.
It's A.E. is $D^{2}-5 D+6=0$
i.e. $(D-2)(D-3)=0$
$\therefore \mathrm{D}=2,3$ are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{2 z}+\mathrm{C}_{2} \mathrm{e}^{3 z}$
and P.I. $=\frac{1}{(D-2)(D-3)} e^{5 z}$

$$
\begin{aligned}
& =\frac{\mathrm{e}^{5 \mathrm{z}}}{(5-2)(5-3)} \\
& =\frac{1}{6} \mathrm{e}^{5 \mathrm{z}}
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=C_{1} e^{2 z}+C_{2} e^{3 z}+\frac{1}{6} e^{5 z}$

Using $\mathrm{z}=\log \mathrm{x}$ i.e. $\mathrm{e}^{\mathrm{z}}=\mathrm{x}$, we get,
$y=C_{1} x^{2}+C_{2} x^{3}+\frac{1}{6} x^{5}$
be the G.S. of given homogeneous LDE.
Ex. Solve $\frac{d^{2} y}{d x^{2}}-\frac{2}{x} \frac{d y}{d x}-\frac{4}{x^{2}} y=x^{2}$
Solution: Let $\frac{d^{2} y}{d x^{2}}-\frac{2}{x} \frac{d y}{d x}-\frac{4}{x^{2}} y=x^{2}$ i.e. $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{4} \ldots$ (i)
be the given homogeneous linear differential equation.
To solve it we put $x=e^{z}$ i.e. $z=\log x$ and $D=\frac{d}{d z}$, we get,
$x \frac{d y}{d x}=D y$ and $x^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y$
Equation (i) becomes,
$[D(D-1)-2 D-4] y=e^{4 z}$
i.e. $\left(D^{2}-3 D-4\right) y=e^{4 z}$

Which is LDE with constant coefficients.
It's A.E. is $\mathrm{D}^{2}-3 \mathrm{D}-4=0$
i.e. $(D-4)(D+1)=0$
$\therefore \mathrm{D}=4,-1$ are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{4 \mathrm{z}}+\mathrm{C}_{2} \mathrm{e}^{-\mathrm{z}}$
and P.I. $=\frac{1}{(D-4)(D+1)} e^{4 z}$

$$
\begin{aligned}
& =\frac{\mathrm{ze}^{4 \mathrm{z}}}{1!(4+1)} \\
& =\frac{1}{5} \mathrm{ze}^{4 \mathrm{z}}
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=C_{1} e^{4 z}+C_{2} e^{-z}+\frac{1}{5} z e^{4 z}$

Using $\mathrm{z}=\log \mathrm{x}$ i.e. $\mathrm{e}^{\mathrm{z}}=\mathrm{x}$, we get,
$y=C_{1} x^{4}+\frac{C_{2}}{x}+\frac{1}{5} x^{4} \log x$
be the G.S. of given homogeneous LDE.
Ex. Solve $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}}-2-\frac{1}{\mathrm{x}} \frac{\mathrm{dy}}{\mathrm{dx}}+\frac{1}{\mathrm{x}^{2}} \mathrm{y}=\frac{2}{\mathrm{x}^{2}} \log \mathrm{x}$
Solution: Let $\frac{d^{2} y}{d x^{2}}-\frac{1}{x} \frac{d y}{d x}+\frac{1}{x^{2}} y=\frac{2}{x^{2}} \log x$ i.e. $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=2 \log x \ldots$ (i)
be the given homogeneous linear differential equation.
To solve it we put $x=e^{z}$ i.e. $z=\log x$ and $D=\frac{d}{d z}$, we get,
$x \frac{d y}{d x}=D y$ and $x^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y$
Equation (i) becomes,
$[D(D-1)-D+1] y=2 z$
i.e. $\left(D^{2}-2 D+1\right) y=2 z$

Which is LDE with constant coefficients.
It's A.E. is $D^{2}-2 D+1=0$
i.e. $(D-1)^{2}=0$
$\therefore \mathrm{D}=1,1$ are the roots of an A.E.
\therefore C.F. $=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{z}\right) \mathrm{e}^{\mathrm{z}}$
and P.I. $=\frac{1}{D^{2}-2 D+1} 2 z$

$$
\begin{aligned}
& =\frac{2}{\left[1-\left(2 D-D^{2}\right)\right]} z \\
& =2\left[1+\left(2 D-D^{2}\right)+\left(2 D-D^{2}\right)^{2}+\ldots\right] z \\
& =2[z+2(1)+0] \\
& =2 z+4
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=\left(C_{1}+C_{2} z\right) e^{z}+2 z+4$

Using $\mathrm{z}=\log \mathrm{x}$ i.e. $\mathrm{e}^{\mathrm{z}}=\mathrm{x}$, we get,
$y=\left(C_{1}+C_{2} \log x\right) x+2 \log x+4$
be the G.S. of given homogeneous LDE.

Ex. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=x^{2} \log x$
Solution: Let $x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=x^{2} \log x$
be the given homogeneous linear differential equation.
To solve it we put $x=e^{z}$ i.e. $z=\log x$ and $D=\frac{d}{d z}$, we get,

$$
x \frac{d y}{d x}=D y \text { and } x^{2} \frac{d^{2} y}{d^{2}}=D(D-1) y
$$

Equation (i) becomes,

$$
[D(D-1)-4 D+6] y=e^{2 z} z
$$

i.e. $\left(D^{2}-5 D+6\right) y=e^{2 z} z$

Which is LDE with constant coefficients.
It's A.E. is $D^{2}-5 D+6=0$
i.e. $(D-2)(D-3)=0$
$\therefore \mathrm{D}=2,3$ are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{2 \mathrm{z}}+\mathrm{C}_{2} \mathrm{e}^{3 \mathrm{z}}$
and P.I. $=\frac{1}{(D-2)(D-3)} e^{2 z} z$
$=\mathrm{e}^{2 \mathrm{z}} \frac{1}{(\mathrm{D}+2-2)(\mathrm{D}+2-3)} \mathrm{z}$
$=\mathrm{e}^{2 \mathrm{z}} \frac{1}{\mathrm{D}(\mathrm{D}-1)} \mathrm{z}$
$=-\mathrm{e}^{2 \mathrm{z}} \frac{1}{\mathrm{D}(1-\mathrm{D})} \mathrm{z}$
$=-\mathrm{e}^{2 \mathrm{z}} \frac{1}{\mathrm{D}}\left[1+\mathrm{D}+\mathrm{D}^{2}+\ldots\right] \mathrm{z}$
$=-\mathrm{e}^{2 \mathrm{z}} \frac{1}{\mathrm{D}}[\mathrm{z}+1+0]$
$=-e^{2 z} \int(z+1) d z$
$=-\mathrm{e}^{2 \mathrm{z}}\left(\frac{1}{2} \mathrm{z}^{2}+\mathrm{z}\right)$
$=-\frac{1}{2} \mathrm{e}^{2 \mathrm{z}}(\mathrm{z}+1) \mathrm{z}$
\therefore G.S. $=$ C.F. + P.I.
i.e. $y=C_{1} e^{2 z}+C_{2} e^{3 z}-\frac{1}{2} e^{2 z}(z+1) z$

Using $\mathrm{z}=\log \mathrm{x}$ i.e. $\mathrm{e}^{\mathrm{z}}=\mathrm{x}$, we get,
$y=C_{1} x^{2}+C_{2} x^{3}-\frac{1}{2} x^{2}(\log x+1) \log x$
be the G.S. of given homogeneous LDE.

Ex. Solve $x^{4} \frac{d^{3} y}{d x^{3}}+2 x^{3} \frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=1$
Solution: Let $x^{4} \frac{d^{3} y}{d x^{3}}+2 x^{3} \frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=1$ i.e. $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\frac{1}{x} \ldots$
be the given homogeneous linear differential equation.
To solve it we put $x=e^{z}$ i.e. $z=\log x$ and $D=\frac{d}{d z}$, we get,
$x \frac{d y}{d x}=D y, x^{2} \frac{d^{2} y}{d^{2}}=D(D-1) y$ and $x^{3} \frac{d^{3} y}{d^{3}}=D(D-1)(D-2) y$
Equation (i) becomes,

$$
[D(D-1)(D-2)+2 D(D-1)-D+1] y=\frac{1}{e^{z}}
$$

i.e. $\left(D^{3}-3 D^{2}+2 D+2 D^{2}-2 D-D+1\right) y=e^{-z}$
i.e. $\left(D^{3}-D^{2}-D+1\right) y=e^{-z}$

Which is LDE with constant coefficients.
It's A.E. is $D^{3}-D^{2}-D+1=0$
i.e. $D^{2}(D-1)-(D-1)=0$
i.e. $(D-1)\left(D^{2}-1\right)=0$
i.e. $(D-1)^{2}(D+1)=0$
$\therefore \mathrm{D}=1,1,-1$ are the roots of an A.E.
\therefore C.F. $=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{z}\right) \mathrm{e}^{\mathrm{z}}+\mathrm{C}_{3} \mathrm{e}^{-\mathrm{z}}$
and P.I. $=\frac{1}{(D-1)^{2}(D+1)} e^{-z}$

$$
=\frac{\mathrm{ze}^{-\mathrm{z}}}{1!(-1-1)^{2}}
$$

$$
=\frac{\mathrm{z}}{4 \mathrm{e}^{\mathrm{z}}}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=\left(C_{1}+C_{2} z\right) e^{z}+C_{3} e^{-z}+\frac{z}{4 e^{z}}$

Using $\mathrm{z}=\log \mathrm{x}$ i.e. $\mathrm{e}^{\mathrm{z}}=\mathrm{x}$, we get,
$y=\left(C_{1}+C_{2} \log x\right) x+\frac{C_{3}}{x}+\frac{\log x}{4 x}$
be the G.S. of given homogeneous LDE.

Legendre's Linear Equation: A differential equation of the form
$(a x+b)^{n} \frac{d^{n} y}{d x^{n}}+p_{1}(a x+b)^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+p_{2}(a x+b)^{n-2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots . .+p_{n} y=X$
where $p_{1}, p_{2}, \ldots, p_{n}$ are constants and X is a function of x only, is called a Legendre's linear equation of order n.
Remark: i) To convert Legendre's linear equation to a homogeneous linear differential equation form put $\mathrm{ax}+\mathrm{b}=\mathrm{u}$.
ii) To convert Legendre's linear equation to a linear differential equation form put $\mathrm{ax}+\mathrm{b}=\mathrm{e}^{\mathrm{z}}$ i.e. $\mathrm{z}=\log (\mathrm{ax}+\mathrm{b})$.

Method of Solving Legendre's Linear Equation:

Consider the Legendre's linear equation

$$
(a x+b)^{n} \frac{d^{n} y}{d x^{n}}+p_{1}(a x+b)^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+p_{2}(a x+b)^{n-2} \frac{d^{n-2} y}{d x^{n}-2}+\ldots \ldots+p_{n} y=X
$$

To solve it we change variable x to z by putting

$$
\mathrm{ax}+\mathrm{b}=\mathrm{e}^{\mathrm{z}} \text { i.e. } \mathrm{z}=\log (\mathrm{ax}+\mathrm{b}) \text { and } \mathrm{D}=\frac{\mathrm{d}}{\mathrm{dz}}
$$

Now $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{dz}} \frac{\mathrm{dz}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{dz}} \cdot \frac{\mathrm{a}}{\mathrm{ax}+\mathrm{b}} \quad \because \frac{\mathrm{dz}}{\mathrm{dx}}=\frac{\mathrm{a}}{\mathrm{ax}+\mathrm{b}}$
$\therefore(a x+b) \frac{d y}{d x}=a \frac{d y}{d z}=a D y$
Again $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left[\frac{a}{a x+b} \cdot \frac{d y}{d z}\right]$

$$
=\frac{a}{a x+b} \cdot \frac{d}{d x}\left(\frac{d y}{d z}\right)-\frac{a^{2}}{(a x+b)^{2}} \cdot \frac{d y}{d z}
$$

$$
=\frac{a}{a x+b} \cdot \frac{d}{d z}\left(\frac{d y}{d z}\right) \frac{d z}{d x}-\frac{a^{2}}{(a x+b)^{2}} \cdot \frac{d y}{d z}
$$

$$
=\frac{a^{2}}{(a x+b)^{2}} \cdot \frac{d^{2} y}{d z^{2}}-\frac{a^{2}}{(a x+b)^{2}} \cdot \frac{d y}{d z}
$$

$\therefore(\mathrm{ax}+\mathrm{b})^{2} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\mathrm{a}^{2}\left[\frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dz}^{2}}-\frac{\mathrm{dy}}{\mathrm{dz}}\right]=\mathrm{a}^{2}\left(\mathrm{D}^{2}-\mathrm{D}\right) \mathrm{y}=\mathrm{a}^{2} \mathrm{D}(\mathrm{D}-1) \mathrm{y}$
Similarly $(a x+b)^{3} \frac{d^{3} y}{d x^{3}}=a^{3} D(D-1)(D-2) y$
and so on, in general $(a x+b)^{r} \frac{d^{r} y}{d x^{r}}=a^{r} D(D-1)(D-2)(D-3) \ldots(D-r+1) y$
\therefore Equation (i) becomes,
$\left[a^{n} D(D-1)(D-2) \ldots(D-n+1)+p_{1} a^{n-1} D(D-1)(D-2) \ldots(D-n+2)\right.$
$\left.+p_{2} a^{n-2} D(D-1)(D-2) \ldots(D-n+3)+\ldots \ldots+p_{n-1} a D+p_{n}\right] y=Z$
Which is linear differential equation with constant coefficients and
Z is function of z . Using usual method, G.S. in y and z is obtained. In this solution putting $\mathrm{z}=\log (\mathrm{ax}+\mathrm{b})$, we get required G.S. of given equation.

Ex. Solve $(x+2)^{2} \frac{d^{2} y}{d x^{2}}-(x+2) \frac{d y}{d x}+y=3 x+4$
Solution: Let $(x+2)^{2} \frac{d^{2} y}{d x^{2}}-(x+2) \frac{d y}{d x}+y=3 x+4 \ldots$ (i)
be the given Legendre's linear equation.
To solve it we put $x+2=e^{z}$ i.e. $z=\log (x+2)$ and $D=\frac{d}{d z}$, we get,

$$
(x+2) \frac{d y}{d x}=D y \text { and }(x+2)^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y
$$

Equation (i) becomes,
$[D(D-1)-D+1] y=3\left(e^{z}-2\right)+4$
i.e. $\left(D^{2}-2 D+1\right) y=3 e^{z}-2$

Which is LDE with constant coefficients.
It's A.E. is $\mathrm{D}^{2}-2 \mathrm{D}+1=0$
i.e. $(D-1)^{2}=0$
$\therefore \mathrm{D}=1,1$ are the roots of an A.E.
\therefore C.F. $=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{z}\right) \mathrm{e}^{\mathrm{Z}}$
and P.I. $=\frac{1}{(\mathrm{D}-1)^{2}}\left(3 \mathrm{e}^{\mathrm{z}}-2\right)$
$=\frac{1}{(D-1)^{2}} 3 \mathrm{e}^{\mathrm{Z}}-\frac{1}{(\mathrm{D}-1)^{2}} 2 \mathrm{e}^{0 \mathrm{z}}$
$=\frac{3 \mathrm{z}^{2} \mathrm{e}^{\mathrm{Z}}}{2!}-\frac{2 \mathrm{e}^{0 \mathrm{z}}}{(0-1)^{2}}$
$=\frac{3}{2} \mathrm{z}^{2} \mathrm{e}^{\mathrm{z}}-2$
\therefore G.S. $=$ C.F. + P.I.
i.e. $y=\left(C_{1}+C_{2} z\right) e^{z}+\frac{3}{2} z^{2} e^{z}-2$

Using $z=\log (x+2)$ i.e. $e^{z}=x+2$, we get,
$y=\left[C_{1}+C_{2} \log (x+2)\right](x+2)+\frac{3}{2}(x+2)^{2}[\log (x+2)]^{2}-2$
be the G.S. of given Legendre's equation.
Ex. Solve $(x+3)^{2} \frac{d^{2} y}{d^{2}}-4(x+3) \frac{d y}{d x}+6 y=\log (x+3)$
Solution: Let $(x+3)^{2} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}-4(\mathrm{x}+3) \frac{\mathrm{dy}}{\mathrm{dx}}+6 \mathrm{y}=\log (\mathrm{x}+3) \ldots$ (i)
be the given Legendre's linear equation.
To solve it we put $\mathrm{x}+3=\mathrm{e}^{\mathrm{z}}$ i.e. $\mathrm{z}=\log (\mathrm{x}+3)$ and $\mathrm{D}=\frac{\mathrm{d}}{\mathrm{dz}}$, we get,
$(x+3) \frac{d y}{d x}=\operatorname{Dy}$ and $(x+3)^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y$
Equation (i) becomes,
$[D(D-1)-4 D+6] y=z$
i.e. $\left(D^{2}-5 D+6\right) y=z$

Which is LDE with constant coefficients.
It's A.E. is $D^{2}-5 D+6=0$
i.e. $(D-2)(D-3)=0$
$\therefore \mathrm{D}=2,3$ are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{2 \mathrm{z}}+\mathrm{C}_{2} \mathrm{e}^{3 z}$
and P.I. $=\frac{1}{\mathrm{D}^{2}-5 \mathrm{D}+6} \mathrm{Z}$

$$
=\frac{1}{6\left[1-\left(\frac{5}{6} \mathrm{D}-\frac{1}{6} \mathrm{D}^{2}\right)\right]} \mathrm{Z}
$$

$$
=\frac{1}{6}\left[1+\left(\frac{5}{6} D-\frac{1}{6} D^{2}\right)+\left(\frac{5}{6} D-\frac{1}{6} D^{2}\right)^{2}+\ldots\right] z
$$

$$
=\frac{1}{6}\left[z+\frac{5}{6}(1)+0\right]
$$

$$
=\frac{1}{6} Z+\frac{5}{36}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=C_{1} e^{2 z}+C_{2} e^{3 z}+\frac{1}{6} z+\frac{5}{36}$

Using $z=\log (x+3)$ i.e. $e^{z}=x+3$, we get,
$y=C_{1}(x+3)^{2}+C_{2}(x+3)^{3}+\frac{1}{6} \log (x+3)+\frac{5}{36}$
be the G.S. of given Legendre's equation.
Ex. Solve $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=2 \sin [\log (1+x)]$
Solution: Let $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=2 \sin [\log (1+x)] \ldots$ (i)
be the given Legendre's linear equation.
To solve it we put $1+x=e^{z}$ i.e. $z=\log (1+x)$ and $D=\frac{d}{d z}$, we get,
$(1+x) \frac{d y}{d x}=D y$ and $(1+x)^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y$
Equation (i) becomes,
$[D(D-1)+D+1] y=2 \sin z$
i.e. $\left(D^{2}+1\right) y=2 \sin z$

Which is LDE with constant coefficients.
It's A.E. is $\mathrm{D}^{2}+1=0$
$\therefore \mathrm{D}= \pm \mathrm{i}$ are the roots of an A.E.
\therefore C.F. $=\mathrm{e}^{0 \mathrm{z}}\left(\mathrm{C}_{1} \cos z+\mathrm{C}_{2} \sin z\right)=\mathrm{C}_{1} \cos z+\mathrm{C}_{2} \sin z$

$$
\begin{aligned}
\text { and P.I. } & =\frac{1}{\mathrm{D}^{2}+1}(2 \sin \mathrm{z}) \\
& =\frac{-2 \mathrm{zcos} \mathrm{z}}{(2 \times 1)} \\
& =-\mathrm{zcos} \mathrm{z}
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=C_{1} \cos z+C_{2} \sin z-z \cos z=\left[C_{1}-z\right] \cos z+C_{2} \sin z$

Using $\mathrm{z}=\log (1+\mathrm{x})$ i.e. $\mathrm{e}^{\mathrm{z}}=1+\mathrm{x}$, we get,
$y=\left[C_{1}-\log (1+x)\right] \cos \log (1+x)+C_{2} \sin \log (1+x)$
be the G.S. of given Legendre's equation.
Ex. Solve $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos [\log (1+x)]$
Solution: Let $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos [\log (1+x)] \ldots$ (i)
be the given Legendre's linear equation.
To solve it we put $1+x=e^{z}$ i.e. $z=\log (1+x)$ and $D=\frac{d}{d z}$, we get,
$(1+x) \frac{d y}{d x}=D y$ and $(1+x)^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y$
Equation (i) becomes,
$[D(D-1)+D+1] y=4 \cos z$
i.e. $\left(D^{2}+1\right) y=4 \cos z$

Which is LDE with constant coefficients.
It's A.E. is $\mathrm{D}^{2}+1=0$
$\therefore \mathrm{D}= \pm \mathrm{i}$ are the roots of an A.E.
\therefore C.F. $=\mathrm{e}^{0 \mathrm{z}}\left(\mathrm{C}_{1} \cos z+\mathrm{C}_{2} \sin z\right)=\mathrm{C}_{1} \cos z+\mathrm{C}_{2} \sin \mathrm{z}$
and P.I. $=\frac{1}{\mathrm{D}^{2}+1}(4 \cos z)$
$=\frac{4 z \sin z}{(2 \times 1)}$

$$
=2 \mathrm{zsin} z
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=C_{1} \cos z+C_{2} \sin z+2 z \sin z=C_{1} \cos z+\left(C_{2}+2 z\right) \sin z$

Using $\mathrm{z}=\log (1+\mathrm{x})$ i.e. $\mathrm{e}^{\mathrm{z}}=1+\mathrm{x}$, we get,
$y=C_{1} \cos \log (1+x)+\left[C_{2}+2 \log (1+x)\right] \sin \log (1+x)$
be the G.S. of given Legendre's equation.

Ex. Solve $(3 x+2)^{2} \frac{d^{2} y}{d^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=3 x^{2}+4 x+1$
Solution: Let $(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=3 x^{2}+4 x+1 \ldots$ (i)
be the given Legendre's linear equation.
To solve it we put $3 x+2=e^{z}$ i.e. $z=\log (3 x+2)$ and $D=\frac{d}{d z}$, we get,

$$
(3 x+2) \frac{d y}{d x}=3 D y \text { and }(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}=9 D(D-1) y
$$

Equation (i) becomes,

$$
[9 D(D-1)+3(3 D)-36] y=3\left(\frac{e^{\mathrm{z}}-2}{3}\right)^{2}+4\left(\frac{\mathrm{e}^{\mathrm{z}}-2}{3}\right)+1
$$

i.e. $\left(9 D^{2}-9 D+9 D-36\right) y=\frac{1}{3}\left(e^{2 z}-4 e^{z}+4\right)+\frac{4}{3}\left(e^{z}-2\right)+1$
i.e. $\left(9 D^{2}-36\right) y=\frac{1}{3} e^{2 z}-\frac{4}{3} e^{z}+\frac{4}{3}+\frac{4}{3} e^{z}-\frac{8}{3}+1$
i.e. $9\left(D^{2}-4\right) y=\frac{1}{3} e^{2 z}-\frac{1}{3}$
i.e. $\left(D^{2}-4\right) y=\frac{1}{27} e^{2 z}-\frac{1}{27}$

Which is LDE with constant coefficients.
It's A.E. is $\mathrm{D}^{2}-4=0$
i.e. $(\mathrm{D}-2)(\mathrm{D}+2)=0$
$\therefore \mathrm{D}=2,-2$ are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{2 z}+\mathrm{C}_{2} \mathrm{e}^{-2 z}$
and P.I. $=\frac{1}{(\mathrm{D}-2)(\mathrm{D}+2)}\left(\frac{1}{27} \mathrm{e}^{2 z}-\frac{1}{27}\right)$

$$
\begin{aligned}
& =\frac{1}{27}\left[\frac{1}{(\mathrm{D}-2)(\mathrm{D}+2)} \mathrm{e}^{2 \mathrm{z}}-\frac{1}{(\mathrm{D}-2)(\mathrm{D}+2)} \mathrm{e}^{0 \mathrm{z}}\right] \\
& =\frac{1}{27}\left[\frac{\mathrm{ze}^{2 \mathrm{z}}}{(1!)(2+2)}-\frac{\mathrm{e}^{0 \mathrm{z}}}{(0-2)(0+2)}\right] \\
& =\frac{1}{108}\left(\mathrm{ze}^{2 \mathrm{z}}+1\right)
\end{aligned}
$$

\therefore G.S. $=$ C.F. + P.I.
i.e. $y=C_{1} e^{2 z}+C_{2} e^{-2 z}+\frac{1}{108}\left(z^{2 z}+1\right)$

Using $\mathrm{z}=\log (3 \mathrm{x}+2)$ i.e. $\mathrm{e}^{\mathrm{z}}=3 \mathrm{x}+2$, we get,
$y=C_{1}(3 x+2)^{2}+\frac{C_{2}}{(3 x+2)^{2}}+\frac{1}{108}\left[(3 x+2)^{2} \log (3 x+2)+1\right]$
be the G.S. of given Legendre's equation.

Ex. Solve $(2 x+1)^{2} \frac{d^{2} y}{d x^{2}}-2(2 x+1) \frac{d y}{d x}-12 y=6 x$
Solution: Let $(2 x+1)^{2} \frac{d^{2} y}{d x^{2}}-2(2 x+1) \frac{d y}{d x}-12 y=6 x \ldots$ (i)
be the given Legendre's linear equation.
To solve it we put $2 x+1=e^{z}$ i.e. $z=\log (2 x+1)$ and $D=\frac{d}{d z}$, we get,

$$
(2 x+1) \frac{d y}{d x}=2 D y \text { and }(2 x+1)^{2} \frac{d^{2} y}{d x^{2}}=4 D(D-1) y
$$

Equation (i) becomes,
$[4 D(D-1)-2(2 D)-12] y=6\left(\frac{\mathrm{e}^{\mathrm{z}}-1}{2}\right)$
i.e. $\left(4 D^{2}-4 D-4 D-12\right) y=3\left(e^{z}-1\right)$
i.e. $\left(4 D^{2}-8 D-12\right) y=3\left(e^{z}-1\right)$
i.e. $4\left(D^{2}-2 D-3\right) y=3\left(e^{z}-1\right)$
i.e. $\left(D^{2}-2 D-3\right) y=\frac{3}{4}\left(e^{z}-1\right)$

Which is LDE with constant coefficients.
It's A.E. is $D^{2}-2 D-3=0$
i.e. $(D-3)(D+1)=0$
$\therefore \mathrm{D}=3,-1$ are the roots of an A.E.
\therefore C.F. $=\mathrm{C}_{1} \mathrm{e}^{3 \mathrm{z}}+\mathrm{C}_{2} \mathrm{e}^{-\mathrm{z}}$
and P.I. $=\frac{1}{(\mathrm{D}-3)(\mathrm{D}+1)} \frac{3}{4}\left(\mathrm{e}^{\mathrm{z}}-1\right)$
$=\frac{3}{4}\left[\frac{1}{(D-3)(D+1)} e^{z}-\frac{1}{(D-3)(D+1)} e^{0 z}\right]$
$=\frac{3}{4}\left[\frac{\mathrm{e}^{\mathrm{z}}}{(1-3)(1+1)}-\frac{\mathrm{e}^{0 \mathrm{z}}}{(0-3)(0+1)}\right]$
$=\frac{3}{4}\left(-\frac{1}{4} e^{z}+\frac{1}{3}\right)$
$=-\frac{3}{16} e^{z}+\frac{1}{4}$
\therefore G.S. $=$ C.F. + P.I.
i.e. $y=C_{1} e^{3 z}+C_{2} e^{-z}-\frac{3}{16} e^{z}+\frac{1}{4}$

Using $\mathrm{z}=\log (2 \mathrm{x}+1)$ i.e. $\mathrm{e}^{\mathrm{z}}=2 \mathrm{x}+1$, we get,
$y=C_{1}(2 x+1)^{3}+C_{2}(2 x+1)^{-1}-\frac{3}{16}(2 x+1)+\frac{1}{4}$
i.e. $y=C_{1}(2 x+1)^{3}+\frac{C_{2}}{(2 x+1)}-\frac{3}{8} x+\frac{1}{16}$
be the G.S. of given Legendre's equation.

MULTIPLE CHOICE QUESTIONS (MCQ'S)

1) A differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=2 x^{2}$ is \qquad
A) L.D.E. with constant coefficient's
B) Homogeneous L.D.E.
C) Non-Homogeneous L.D.E.
D) None of these
2) A differential equation $x^{3} \frac{d^{2} y}{d x^{2}}-5 x \frac{d y}{d x}+8 y=7 x^{2}$ is $\ldots \ldots$.
A) L.D.E. with constant coefficient's
B) Homogeneous L.D.E.
C) Non-Homogeneous L.D.E.
D) None of these
3) A differential equation $\frac{d^{2} y}{d x^{2}}-\frac{2}{x} \frac{d y}{d x}-\frac{4}{x^{2}} y=x^{2}$ is
A) L.D.E. with constant coefficient's
B) Homogeneous L.D.E.
C) Non-Homogeneous L.D.E.
D) None of these
4) A differential equation of the form
$x^{n} \frac{d^{n} y}{d x^{n}}+P_{1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+P_{2} x^{n-2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots . .+P_{n-1} x \frac{d y}{d x}+P_{n} y=X$
Where $P_{1}, P_{2}, P_{3}, \ldots \ldots \ldots . P_{n}$ are constants and X is function of x only is called
A) L.D.E. with constant coefficient's
B) Homogeneous L.D.E.
C) Non-Homogeneous L.D.E.
D) None of these
5) A homogeneous linear differential equation is also called
A) Cauchy's linear equation
B) Legendre's linear equation
C) Non-Homogeneous L.D.E.
D) None of these
6) A differential equation of the form
$x^{n} \frac{d^{n} y}{d x^{n}}+P_{1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+P_{2} x^{n-2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots \ldots . .+P_{n-1} x \frac{d y}{d x}+P_{n} y=X$
Where $P_{1}, P_{2}, P_{3}, \ldots \ldots P_{n}$ are constants and X is function of x only can be reduced to L.D.E. with constant coefficient form by substitution
A) $z=\log x$
B) $x=\log z$
C) $z=e^{x}$
D) None of these
7) A differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=2 x^{2}$ can be reduced to L.D.E. with constant coefficient form by substitution .
A) $x=\log z$
B) $z=\log x$
C) $z=e^{x}$
D) None of these
8) A differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=x^{2} \log x$ can be reduced to L.D.E. with constant coefficient form by substitution
A) $x=\log z$
B) $z=\log x$
C) $z=e^{x}$
D) None of these
9) If $D \equiv \frac{d}{d z}$ and $z=\log x$ then $x \frac{d y}{d x}=\ldots \ldots$
A) Dy
B) $D(D-1) y$
C) $\mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2) \mathrm{y}$
D) None of these
10) If $D \equiv \frac{d}{d z}$ and $z=\log x$ then $x^{2} \frac{d^{2} y}{d x^{2}}=\ldots \ldots$
A) Dy
B) $D(D-1) y$
C) $\mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2) \mathrm{y}$
D) None of these
11) If $D \equiv \frac{d}{d z}$ and $z=\log x$ then $x^{3} \frac{d^{3} y}{d x^{3}}=\ldots \ldots$
A) Dy
B) $D(D-1) y$
C) $D(D-1)(D-2) y$
D) None of these
12) If $D \equiv \frac{d}{d z}$ and $z=\log x$ then $x^{r} \frac{d^{r} y}{d x^{r}}=\ldots \ldots$.
A) $\mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2)$
(D-r-1)y
B) $\mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2)$
(D-r)y
C) $\mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2)$
(D-r+1)y
D) None of these
13) To reduce the Legendre's Linear Equation
$(a x+b)^{n} \frac{d^{n} y}{d x^{n}}+P_{1}(a x+b)^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+P_{2}(a x+b)^{n-2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots \ldots+P_{n-1}(a x+b) \frac{d y}{d x}+P_{n} y=X$ in homogeneous linear differential equation form we substitute
A) $a x+b=u$
B) $z=\log (a x+b)$
C) $\mathrm{x}=\log (\mathrm{az}+\mathrm{b})$
D) None of these
14) To reduce the Legendre's Linear Equation $(a x+b)^{n} \frac{d^{n} y}{d x^{n}}+P_{1}(a x+b)^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+P_{2}(a x+b)^{n-2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots \ldots+P_{n-1}(a x+b) \frac{d y}{d x}+P_{n} y=X$ into linear differential equation with constant coefficient form we substitute
A) $a x+b=\log z$
B) $z=\log (a x+b)$
C) $\mathrm{x}=\log (\mathrm{az}+\mathrm{b})$
D) None of these
15) The Legendre's Linear Equation $(2 x+1)^{2} \frac{d^{2} y}{d x^{2}}-2(2 x+1) \frac{d y}{d x}-12 y=6 x$ can be reduced to L.D.E. with constant coefficient form by substitution
A) $2 x+1=\log z$
B) $z=\log (2 x+1)$
C) $\mathrm{x}=\log (2 \mathrm{z}+1)$
D) None of these
16) The Legendre's Linear Equation $(2 \mathrm{x}-1)^{3} \frac{d^{3} y}{d x^{3}}+(2 \mathrm{x}-1) \frac{d y}{d x}-2 \mathrm{y}=0$ can be reduced to L.D.E. with constant coefficient form by substitution
A) $2 x-1=\log z$
B) $z=\log (2 x-1)$
C) $\mathrm{x}=\log (2 \mathrm{z}-1)$
D) None of these
17) The Legendre's Linear Equation $(1+\mathrm{x})^{2} \frac{d^{2} y}{d x^{2}}+(1+\mathrm{x}) \frac{d y}{d x}+\mathrm{y}=4 \cos [\log (1+\mathrm{x})]$ can be reduced to L.D.E. with constant coefficient form by substitution
A) $1+x=\log z$
B) $z=\log (1+x)$
C) $\mathrm{x}=\log (\mathrm{z}+1)$
D) None of these
18) If $\mathrm{D} \equiv \frac{d}{d z}$ and $\mathrm{z}=\log (\mathrm{ax}+\mathrm{b})$ then $(\mathrm{ax}+\mathrm{b}) \frac{d y}{d x}=$.
A) aDy
B) $a^{2} D(D-1) y$
C) $a^{3} D(D-1)(D-2) y$
D) None of these
19) If $\mathrm{D} \equiv \frac{d}{d z}$ and $\mathrm{z}=\log (\mathrm{ax}+\mathrm{b})$ then $(\mathrm{ax}+\mathrm{b})^{2} \frac{d^{2} y}{d x^{2}}=\ldots \ldots$
A) aDy
B) $a^{2} D(D-1) y$
C) $a^{3} D(D-1)(D-2) y$
D) None of these
20) If $\mathrm{D} \equiv \frac{d}{d z}$ and $\mathrm{z}=\log (\mathrm{ax}+\mathrm{b})$ then $(\mathrm{ax}+\mathrm{b})^{3} \frac{d^{3} y}{d x^{3}}=\ldots \ldots$
A) aDy
B) $a^{2} D(D-1) y$
C) $a^{3} D(D-1)(D-2) y$
D) None of these
21) If $\mathrm{D} \equiv \frac{d}{d z}$ and $\mathrm{z}=\log \mathrm{x}$ then $(\mathrm{ax}+\mathrm{b})^{\mathrm{r}} \frac{d^{r} y}{d x^{r}}=\ldots \ldots$
A) $a^{r} D(D-1)(D-2)$
...... (D-r-1)y
B) $\mathrm{a}^{\mathrm{T}} \mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2)$
(D-r)y
C) $a^{r} D(D-1)(D-2)$
$\ldots .$. (D-r+1)y
D) None of these
22) If $\mathrm{D} \equiv \frac{d}{d z}$ and $\mathrm{z}=\log (\mathrm{x}+2)$ then $(\mathrm{x}+2) \frac{d y}{d x}=$
A) Dy
B) 2 Dy
C) $2 \mathrm{D}(\mathrm{D}-1) \mathrm{y}$
D) None of these
23) If $\mathrm{D} \equiv \frac{d}{d z}$ and $\mathrm{z}=\log (\mathrm{x}+2)$ then $(\mathrm{x}+2)^{2} \frac{d^{2} y}{d x^{2}}=$
A) 2 Dy
B) $D(D-1) y$
C) $4 \mathrm{D}(\mathrm{D}-1) \mathrm{y}$
D) None of these
24) If $\mathrm{D} \equiv \frac{d}{d z}$ and $\mathrm{z}=\log (\mathrm{x}+2)$ then $(\mathrm{x}+2)^{3} \frac{d^{3} y}{d x^{3}}=$
A) (D-1)y
B) $8 \mathrm{D}(\mathrm{D}-1) \mathrm{y}$
C) $\mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2) \mathrm{y}$
D) None of these
25) If $\mathrm{D} \equiv \frac{d}{d z}$ and $\mathrm{z}=\log (\mathrm{x}+2)$ then $(\mathrm{x}+2)^{\mathrm{n}} \frac{d^{\mathrm{n}} y}{d x^{\mathrm{n}}}=\ldots \ldots$
A) $D(D-1)(D-2) \ldots(D-n-1) y$
B) $D(D-1)(D-2) \ldots(D-n) y$
C) $\mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2)$.
.(D-n+1)y
D) None of these
26) If $\mathrm{D} \equiv \frac{d}{d z}$ and $\mathrm{z}=\log (3 \mathrm{x}+2)$ then $(3 \mathrm{x}+2) \frac{d y}{d x}=$
A) 3 Dy
B) 2 Dy
C) Dy
D) None of these
27) If $\mathrm{D} \equiv \frac{d}{d z}$ and $\mathrm{z}=\log (3 \mathrm{x}+2)$ then $(3 \mathrm{x}+2)^{2} \frac{d^{2} y}{d x^{2}}=\ldots \ldots$
A) 3 Dy
B) $9 \mathrm{D}(\mathrm{D}-1) \mathrm{y}$
C) $27 \mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2) \mathrm{y}$
D) None of these
28) If $\mathrm{D} \equiv \frac{d}{d z}$ and $\mathrm{z}=\log (3 \mathrm{x}+2)$ then $(3 \mathrm{x}+2)^{3} \frac{d^{3} y}{d x^{3}}=\ldots \ldots$
A) 3 Dy
B) $9 \mathrm{D}(\mathrm{D}-1) \mathrm{y}$
C) $27 \mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2) \mathrm{y}$
D) None of these
29) If $\mathrm{D} \equiv \frac{d}{d z}$ and $\mathrm{z}=\log (3 \mathrm{x}+2)$ then $(3 \mathrm{x}+2)^{\mathrm{r}} \frac{d^{\mathrm{r}} y}{d x^{\mathrm{r}}}=$
A) $3^{r} D(D-1)(D-2) \ldots(D-r+1) y$
B) $3^{r} \mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2) \ldots(\mathrm{D}-\mathrm{r}) \mathrm{y}$
C) $3^{r} \mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2) \ldots(\mathrm{D}-\mathrm{r}-1) \mathrm{y}$
D) None of these
30) If $\mathrm{D} \equiv \frac{d}{d z}$ and $\mathrm{z}=\log (4 \mathrm{x}+1)$ then $(4 \mathrm{x}+1) \frac{\mathrm{dy}}{\mathrm{dx}}=\ldots \ldots$
A) 4 Dy
B) $16 \mathrm{D}(\mathrm{D}-1) \mathrm{y}$
C) $64 \mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2) \mathrm{y}$
D) None of these
31) If $D \equiv \frac{d}{d z}$ and $z=\log (4 x+1)$ then $(4 x+1)^{2} \frac{d^{2} y}{d^{2}}=\ldots \ldots$
A) 4 Dy
B) $16 \mathrm{D}(\mathrm{D}-1) \mathrm{y}$
C) $64 \mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2) \mathrm{y}$
D) None of these
32) If $\mathrm{D} \equiv \frac{\mathrm{d}}{\mathrm{dz}}$ and $\mathrm{z}=\log (4 \mathrm{x}+1)$ then $(4 \mathrm{x}+1)^{3} \frac{\mathrm{~d}^{3} \mathrm{y}}{\mathrm{dx}^{3}}=$ \qquad
A) 4 Dy
B) $16 \mathrm{D}(\mathrm{D}-1) \mathrm{y}$
C) $64 \mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2) \mathrm{y}$
D) None of these
33) If $\mathrm{D} \equiv \frac{d}{d z}$ and $\mathrm{z}=\log (4 \mathrm{x}+1)$ then $(4 \mathrm{x}+1)^{\mathrm{r}} \frac{d^{\mathrm{r}} y}{d x^{\mathrm{r}}}=\ldots \ldots$
A) $4^{r} D(D-1)(D-2) \ldots(D-r+1) y$
B) $\mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2) \ldots(\mathrm{D}-\mathrm{r}+1) \mathrm{y}$
C) $4^{r} D(D-1)(D-2) \ldots(D-r-1) y$
D) None of these
34) If $D \equiv \frac{d}{d z}$ and $z=\log (2 x+5)$ then $(2 x+5) \frac{d y}{d x}=\ldots \ldots$.
A) 2 Dy
B) Dy
C) $5 \mathrm{D}(\mathrm{D}-1) \mathrm{y}$
D) None of these
35) If $D \equiv \frac{d}{d z}$ and $z=\log (2 x+5)$ then $(2 x+5)^{2} \frac{d^{2} y}{d x^{2}}=\ldots \ldots$
A) 2 Dy
B) $4 \mathrm{D}(\mathrm{D}-1) \mathrm{y}$
C) $25 \mathrm{D}(\mathrm{D}-1) \mathrm{y}$
D) None of these
36) If $D \equiv \frac{d}{d z}$ and $z=\log (2 x+5)$ then $(2 x+5)^{3} \frac{d^{3} y}{d x^{3}}=\ldots \ldots$
A) 2 Dy
B) $4 \mathrm{D}(\mathrm{D}-1) \mathrm{y}$
C) $8 \mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2) \mathrm{y}$
D) None of these
37) If $\mathrm{D} \equiv \frac{d}{d z}$ and $\mathrm{z}=\log (2 \mathrm{x}+5)$ then $(2 \mathrm{x}+5)^{\mathrm{r}} \frac{d^{\mathrm{r}} y}{d x^{\mathrm{r}}}=\ldots \ldots$
A) $2^{r} D(D-1)(D-2) \ldots(D-r+1) y$
B) $2^{r} D(D-1)(D-2) \ldots(D-r) y$
C) $2^{\mathrm{r}} \mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2) \ldots(\mathrm{D}-\mathrm{r}-1) \mathrm{y}$
D) None of these

॥ अंतरी पेटवू ज्ञानज्योत ॥

विद्यापीठ गीत

मंत्र असो हा एकच ह्रदयी 'जीवन म्हणजे ज्ञान' ज्ञानामधूनी मिळो मुक्ती अन मुक्तीमधूनी ज्ञान ॥धृ॥ कला, ज्ञान, विज्ञान, संस्कृती साधू पुरूषार्थ साफल्यास्तव सदा ‘अंतरी पेटवू ज्ञानज्योत' मंगल पावन चराचरातून स्रवते अक्षय ज्ञान॥१॥ उत्तम विद्या, परम शक्ति ही आमुची ध्येयासक्ती शील, एकता, चारित्र्यावर सदैव आमुची भक्ती सत्य शिवाचे मंदिर सुंदर, विद्यापीठ महान ॥२॥ समता, ममता, स्वातंत्र्याचे नांदो जगी नाते, आत्मबलाने होऊ आम्ही आमुचे भाग्यविधाते, ज्ञानप्रभुची लाभो करूणा आणि पायसदान ॥३॥ - कै.प्रा. राजा महाजन

THE NATIONAL INTERGRATION PLEDGE

"I solemnly pledge to work with dedication to preserve and strengthen the freedom and integrity of the nation.

I further affirm that I shall never resort to violence and that all differences and disputes relating to religion, language, region or other political or economic grievance should be settled by peaceful and constitutional means."

